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Abstract: Given the global economic and societal importance of the polymer industry, the continu-

ous search for improvements in the various processing techniques is of practical primordial im-

portance. This review evaluates the application of optimization methodologies to the main polymer 

processing operations. The most important characteristics related with the usage of optimization 

techniques, such as the nature of the objective function, the type of optimization algorithm, the 

modelling approach used to evaluate the solutions, and the parameters to optimize, are discussed. 

The aim is to identify the most important features of an optimization system for polymer processing 

problems, and define the best procedure for each particular practical situation. For this purpose, a 

state-of-the-art of the optimization methodologies usually employed is first presented, followed by 

an extensive review of the literature dealing with the major processing techniques, the discussion 

being completed by considering both the characteristics identified and the available optimization 

methodologies. This first part of the review focus on extrusion, namely extruders, extrusion dies 

and calibrators. It is concluded that there is a set of methodologies that can be confidently applied 

in polymer processing, with a very good performance and without the need of demanding compu-

tation requirements.  

Keywords: polymer processing, single screw, twin screw, injection molding, blow molding, ther-

moforming, optimization, artificial intelligence 

 

1. Introduction 

Polymer processing is an important industrial activity that converts raw materials, 

such as polymers, polymer compounds, polymer blends, composites and nanocompo-

sites, into useful products mostly for applications in packaging, building and construc-

tion, mobility, electrical and electronics, medical, agriculture, household, leisure and 

sports. For example, in 2019 more than 55000 European companies (plastics raw materials 

producers, plastics converters, recyclers and machinery manufacturers in the EU28 Mem-

ber States) employed over 1.5 million people, and converted 50.7 Mt of plastics [1]. A pro-

gressively more sustainable and better performing range of polymer systems, together 

with increasingly more efficient and intelligent extrusion, injection molding, blow mold-

ing and thermoforming – the most important processing techniques for thermoplastics – 

are paramount to create or improve products with more advanced performances and 

functionalities. 

Thermoplastics processing typically involves three functional steps: plasticization of 

a solid polymer (usually supplied in pellet form), flow and shaping of the melt, and cool-

ing. Thus, an understanding of polymer processing requires a good knowledge of heat 

transfer, melt rheology, fluid mechanics, morphology development, among others. In the 

case of reactive extrusion, plasticization is combined with chemical reactions (polymer 

synthesis and/or modification) into a single process. In their seminal book on polymer 
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processing, Tadmor and Gogos [2] proposed a structural breakdown of polymer pro-

cessing into elementary steps, based on the principles of transport phenomena, fluid me-

chanics, heat and mass transfer, polymer melt rheology, solid mechanics, physics and 

chemistry of polymers and mixing, which provide the basic tools for quantitatively ana-

lyzing polymer processing. 

It is well recognized that the geometry of the processing equipment, the operating 

conditions selected, and the properties of the polymer system being processed determine 

the resulting morphology of the part, and hence its practical performance. This has fos-

tered extensive experimental investigation with the aim of obtaining a good understand-

ing of the physical, thermal, rheological and chemical processes developing during poly-

mer processing. Historically, the screw extraction experiments carried out by Maddock 

[3] were particularly relevant to shed light on plasticating extrusion. Once physical mod-

els of the underlying phenomena were available, they were translated into mathematical 

descriptions, either analytical or numerical, depending on the assumptions and simplifi-

cations made. Currently, modelling of polymer processing is well developed [2, 4-6], sim-

ulation software devoted to various processing techniques being commercially available. 

These programs solve the governing equations that describe the phenomena developing 

along the various individual process stages, coupled to the relevant boundary conditions 

(operating conditions and equipment geometry) and constitutive equations for the poly-

mer properties. The resulting predictions provide a description of how the process will 

perform under the conditions defined, which is obviously very useful to both processors 

and equipment/tool manufacturers. In some cases, the morphology of the part (macromo-

lecular/fibre orientation, crystallization rate, size of the spherulites, etc.) can be predicted 

from the knowledge of the thermomechanical process parameters, but the link to the end-

use engineering properties entails multi-scale modelling [7], which is still very costly com-

putationally.  

The direct use of these simulations for practical process troubleshooting, setting the 

operating conditions, defining a screw profile, designing an extrusion die, an injection 

mold, or a plastic bottle, would require to tackle the inverse problem, i.e., to solve the set 

of governing equations of the process in order to the geometrical and operational varia-

bles, while prescribing the required performance as boundary condition(s). This is com-

plex and usually mathematically ill-posed, as there is no unique relationship between 

cause and effect. Thus, in practice, four alternative methodologies can be adopted: 

1. Use the simulation tools on a trial and error basis. This is obviously expensive and 

inefficient, and relies on the capability of the user to input progressively more appro-

priate boundary conditions; 

2. Develop specific design approaches, i.e., using the modelling equations in a prear-

ranged sequence. Examples are methods to design extruder screws [8] or extrusion 

dies [9]; 

3. Adopt an optimization procedure, whereby the process modelling package is used 

judiciously by an optimization algorithm, in order to define a “best” solution, or a 

Pareto optimal solution (see below). Practical polymer processing problems gener-

ally involve multi-, often conflicting, criteria (for example maximize output, while 

minimizing viscous dissipation and mechanical energy consumption in plasticating 

single screw extrusion), hence this approach is usually labelled as multi-objective op-

timization. 

4. Perform data-driven optimization, which consists in the use of Artificial Intelligence 

(AI) techniques to explore the search space based on experimental or computational 

data [10, 11].  

Some of these methodologies were already presented in several reviews analyzing 

the application of optimization techniques in polymer processing. Kasat et al. [12] dis-

cussed the application of Genetic Algorithms (GAs) in polymer science and engineering, 

stressing the existence of multiple objectives and constraints that must be dealt with sim-

ultaneously. Particularly in the area of chemical reactions during polymerization, obtain-

ing a polymer with a desired molecular weight requires satisfying simultaneously various 
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objectives, such as minimizing the reaction time as it implies lower cost, and minimizing 

the concentration of side products as they decrease the product properties. Oduguwa et 

al. [13] extended the idea applying Evolutionary Algorithms (EA) to the manufacturing 

industry, which includes polymer processing. The main justification given for the use of 

this type of algorithms comes from the fact that the traditional methods frequently em-

ployed to solve complex real world problems tend to miss a more efficient exploration of 

the search space, becoming trapped in sub-optimal regions, while simultaneously they are 

often computationally expensive. Methodologies based on the use of a population of 

points (solutions), such as EAs, can overcome this situation, as these points can evolve 

simultaneously towards the Pareto optimal front, and thus access the global optimal so-

lutions. Oduguwa et al. [13] also refer the difficulties that optimization approaches face in 

being accepted in industry. Recently, Nastaj and Wilczyński [14] addressed the optimiza-

tion and scale-up of single and twin screw extrusion. However, they focused on method-

ologies developed by specific authors, and the optimization concepts discussed were 

somewhat limited. Thus, in general, previous reviews on the optimization of polymer pro-

cessing excluded several important technological or optimization aspects, are very limited 

in terms of the analysis performed, and even ignore several important published contri-

butions. 

After introducing some important concepts of multiobjective optimization, the pre-

sent review covers the application of optimization methods to solve real problems in pol-

ymer processing, encompassing extrusion, injection molding, blow molding and ther-

moforming. Due to the extension of the analysis, the work is divided into two parts. The 

present part 1 focus on extrusion, namely single and twin screw extruders, extrusion dies 

and calibrators. The most important contributions to the field are identified and future 

trends are discussed. 

2. Need for Optimization in Polymer Processing 

The practical need for optimization, namely in what concerns the process, the design 

variables, the modelling requirements and the objectives to be attained, will be illustrated 

with an example dealing with Injection Stretch Blow-Molding, a technique widely used 

for the manufacture of bottles for plain and carbonated drinks (and dealt with in greater 

detail in Part 2). Figure 1 illustrates the main production steps (A to E, following the open 

arrows). An injection unit (A) fills the cavity of an injection mold (B) to produce a pre-

form. This is then transferred to a blow-mold (C) where it is stretched and blown (D) 

against the contours of the mold cavity. Once the container is sufficiently cold, the mold 

opens (E), the part is removed and a new production cycle is initiated. Modelling this 

process in order to predict the performance of the part for a given set of input conditions 

(bottle design, operating conditions, equipment geometry, material properties) typically 

entails the numerical modelling of each of its individual steps, followed by coupling them 

through appropriate boundary conditions. Depending on the physical process models 

considered and consequent ability of the numerical routines, the thickness profile of the 

product, its morphology, and the mechanical performance could be predicted.  

Such a sophisticated tool would be used quite inefficiently if conventional means 

were adopted. For example, if the aim is to produce a bottle with a minimum weight and 

a maximum thickness uniformity, the computer model will be used on a trial-end-error 

basis, with the operator progressively fine tuning the operating conditions and/or bottle 

design until attaining a satisfactory result. A much more efficient strategy would be to 

consider again the modelling sequence and solve the inverse problem, whereby the bottle 

characteristics are imposed as boundary conditions and the equations are solved in order 

to the operating conditions. This would imply approaching the process backwards, from 

F to A, as indicated by the curved black arrows in Fig.1. However, this is mathematically 

ill-posed, as there are no unique relationships between cause and effect. 

Alternatively, an optimization problem can be defined, consisting of two objectives 

(minimize bottle weight and maximize its thickness uniformity) and a restriction (the min-

imum thickness must be higher than a pre-defined value). The decision variable is the 3D 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 December 2021                   doi:10.20944/preprints202112.0005.v1

https://doi.org/10.20944/preprints202112.0005.v1


 

thickness distribution of the part that results from all prior process steps, which consti-

tutes a huge decision variables space. The optimization can either proceed following steps 

(i) to (v) in Fig.1, or the system can be considered as a whole and all steps can be optimized 

simultaneously. 

 

Figure 1. Optimization of Injection Stretch Blow-Molding. (A) to (E) illustrate the process steps. Open ar-

rows follow the process sequence; black curved arrows follow the optimization sequence.  

Fig. 2 shows results obtained for the optimization of steps (i) and (ii). In step (i) the 

aim is to define the thickness profile of the bottle that minimizes its weight, the maximum 

strain under a given load and the thickness uniformity in terms of a parameter RMSE. 

Using EAs, an initial population of solutions is generated randomly, evolving until the 

100th generation. From the analysis of the Pareto front, solution S3-i was selected. The fol-

lowing optimization problem concerns the blowing phase (here considered to take place 

after stretching the pre-form), i.e., the optimization of the thickness profile of the preform 

that produces the optimal bottle thickness profile found in the first step. For that purpose, 

the mean (f1) and the maximum (f2) errors between the optimal thickness distribution and 

the thickness distribution of the parison must be minimized. More details on this optimi-

zation can be found elsewhere [15, 16]. 
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Figure 2. Typical results for the blow-molding optimization example: solution S3-i is selected for step 

(ii), from which a new Pareto set is obtained. 

3. Multi-Objective Optimization 

The aim of optimization is to find the best set of decision variables, i.e., a solution, 

that optimizes an objective function on a given search space, often in the presence of equal-

ity and/or inequality constraints, with the main purpose of approaching that solution to a 

global optimum [17]. Without loss of generality, in the case of a maximization problem, 

the mathematical formulation is the following: 
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where f is the objective function of the N parameters xi, gj are the J (J≥0) inequality con-

straints, and hk are the K (K≥0) equality constraints. 

In the absence of a systematic procedure, a traditional way of finding the best possi-

ble solution consists in performing a statistical and/or regression analysis based on exper-

imental or computational results. From a set of data, it is possible to deduce a mathemat-

ical model relating the objective function (f) with the decision variables (xi). From this 

model, an approximation to the optimal solution can be found both graphically and math-

ematically. This simple approach relates linearly the objectives with the decision variables. 

The quality of the solution depends strongly on the number of solutions available to con-

struct the model. Consequently, more elaborated models can be deduced if more solutions 

are available. This type of regression methods has different forms of being identified in 

the literature: design of experiments, response surface, statistical analysis, data fitting, etc. 

Another kind of methodologies uses some type of information to perform the search. 

In most classical algorithms, the problem is solved starting with a solution generated ran-

domly in the search space and, by means of a moving rule in a unidirectional direction 

based on the use of local information, the algorithm progresses point-by-point to find the 

best solution (figure 3-A). This new optimized solution will be the starting point for the 
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next step, where the same procedure is repeated a number of pre-defined times. If more 

than one objective exists, they must be aggregated into a single objective. The differences 

between the available algorithms rely on the way this search direction is defined. Two 

types of such methods exist: direct and gradient based. In the first case, the search is only 

guided based on the values of the objective function and constraints, e.g., simplex search, 

pattern search and conjugate direction methods. These methods are usually slow, requir-

ing a high number of function evaluations. The second type involves the use of infor-

mation concerning the first and/or second derivative of the objective functions values 

and/or constraints, e.g., steepest descent and conjugate gradient methods. The use of de-

rivatives hastens convergence, but these methods are unable to deal with non-differenti-

able and discontinuous problems. The calculation of the derivatives must be possible, 

which does not often happen in real problems [17]. These methods face other difficulties: 

i) the convergence is strongly dependent on the initial solution chosen, ii) the solution 

found is often stuck in a local sub-optimum, iii) the algorithm is unable to deal with a 

discrete problem and cannot take properly into account its multi-objective nature. In fact, 

real world optimization problems (such as polymer processing) can comprise linear 

and/or non-linear objective functions and constraints, discrete and/or continuous varia-

bles, stochastic or deterministic inputs, and single or multiple objectives. Thus, the choice 

of the algorithm to use will depend strongly on the problem features [17]. 

 

Figure 3. A) Single objective optimization versus B) multi-objective optimization. 

Most (if not all) real optimization problems are multiobjective, i.e., it is necessary to 

satisfy simultaneously several performance measures (objectives), which are often con-

flicting. Also, their relative importance to the process may be subjective and can be dealt 

with in different ways. Mathematically, a multiobjective optimization problem can be de-

fined as [18, 19]: 
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where M is the number of objectives. 

The various objectives can be taken into account a priori, a posteriori or iteratively. 

In the first case, the optimization takes place after the decision maker (DM) defines the 

relative importance of the objectives using, for example, weights or goals. The perfor-

mance of the solutions can be obtained through the use of aggregation functions, e.g., 

weighted sum, weighted product, or weighted Tchebycheff metric [20]. Then, a traditional 

single-objective methodology can be used to find the optimum, as illustrated in figure 3-

A. A weighted sum is simple, but not only it is difficult to set the weight vectors to obtain 

a Pareto-optimal solution in a desired region of the objective space, it does not allow to 

find certain Pareto-optimal solutions in a nonconvex and/or discontinuous objective 

space. The weighted Tchebycheff metric guarantees finding all Pareto-optimal solutions, 

assuming that the ideal solution in this multidimensional space (z*) is known. However, 

some weaknesses also exist: i) the minimum and maximum values of the objectives and 

of z* must be known, ii) for a small number of objectives, not all Pareto-optimal solutions 

are obtained, and iii) as the number of objectives increases, the problem becomes non-

differentiable [18, 19]. The second alternative consists in optimizing simultaneously all the 

objectives without considering beforehand the preferences of the DM. The results will be 

a set of solutions denoted as Pareto set, were two spaces of interest exist, instead of a single 

one as before, i.e., the decision variables and the objectives domain, as depicted in figure 

3-B. Thus, the aim of multi-objective optimization is to find feasible solutions where all 

objective functions are optimized. These solutions are incomparable to each other, since it 

is not possible to state that one is better than another in all objectives simultaneously. The 

Pareto solutions are the set of non-dominated solutions (the full circles in figure 3-B). In 

the figure, Solution 2 is better than solution 3 in both objectives, thus solution 3 is domi-

nated by solution 1. The same does not happen when comparing solutions 1 and 2, as 

none of these solutions dominates the other. In this case, the selection of a solution can 

only be made using additional preference information that must be provided a posteriori 

by the DM [20]. Finally, the optimization and choice of solutions steps can be made itera-

tively and interleaved, i.e., the optimization algorithm provides alternative solutions to 

the decision maker, who indicates his/her preferences, and the optimization algorithm 

runs again taking into account this information. The process is repeated until a satisfactory 

solution (or solutions) is/are found. The decision making can be performed by humans 

and/or by computer algorithms [21]. 

The better known and more widely used multi-objective optimization algorithms are 

based on Evolutionary Algorithms (EA). These are meta-heuristics that mimic the process 

of natural evolution of a population of individuals, the solutions, along successive gener-

ations. They comprise Genetic Algorithms (GA), Evolutionary Programming (EP), Evolu-

tion Strategies (ES) and Genetic Programming (GP). Figure 4 illustrates schematically how 

this type of algorithms works. The individuals with higher performance in the environ-

ment will have more capacity to survive, which implies that they also have more capacity 

to be reproduced into the next generations. As in natural evolution, the offspring (new 

solutions) are generated by genetic operators such as crossover and mutation, inheriting 

most of the parent characteristics. The population of individuals, which are the potential 

solutions to the problem under study, evolves using the mechanisms of selection and var-

iation. The selection operators enable the best individuals to have higher probability of 

being selected for generating offspring and the variation operators allow the generation 

of new individuals [18, 19, 22]. Selection is based on the quality of each individual, which 

is given by a fitness function that is associated with the objective or objective functions for 

single or multi-objective optimization, respectively. 
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Figure 4. The evolutionary cycle. 

Based on the advantage of working with a population of solutions, multi-objective 

procedures were developed whereby the solutions evolve towards the optimal Pareto 

front in a single run. They are usually known as Multi-Objective Evolutionary Algorithms 

(MOEAs). In order to spread the population of solutions along the entire Pareto front, an 

additional operator measuring diversity is considered. The performance of the algorithm 

will depend on the balance between convergence, given by the value of the objective func-

tions, and diversity, a measure of the distance between the solutions on the search space. 

Convergence and diversity are combined into a single fitness operator that is responsible 

for the selection of the solutions to be reproduced for the subsequent generations. This 

can be done in three ways: i) based on Pareto dominance [22, 23], ii) scalarizing [24] and 

iii) using indicator algorithms [25, 26, 27]. The research on MOEAs allowed the develop-

ment of other types of multi-objective algorithms, such as Ant Colony Optimization 

(ACO) [28], Particle Swarm Optimization (PSO) [29], Simulated Annealing (SA) [30] and 

Differential Evolution (DE) [31]. 

Another important optimization topic concerns the robustness of the solutions ob-

tained, i.e., the capacity of the solutions found of being robust against, for example, 

changes in the design variables. This may signify that the best solutions are not the ones 

selected, but, instead, other solutions that perform well for different ranges of the design 

variables. Robustness can be taken into account through expectation measures, which 

quantify simultaneously fitness and robustness, or by variance measures, which assess 

the deviation of the original fitness in the neighborhood of the solution. Several combina-

tions of expectation and variance measures have been linked to a MOEA, and applied to 

a few multi-objective problems, in order to select the most performing approach [32]. Gas-

par-Cunha et al. [33] developed a set of benchmark problems to account for diverse types 

of robustness circumstances. The methodology was also assessed through application to 

some real problems. Figure 5 explains the concept in a multi-objective environment: solu-

tion 1 is more robust than solution 2, as the same variation in the decision variables do-

main produces less variation in the objectives domain.  

Since the result of a MOEA is a set of solutions, the decision maker is always chal-

lenged with the need to select the best (single) solution from this Pareto set. For this pur-

pose, it is necessary to introduce, at some point of the optimization process, the prefer-

ences of one (or more) decision maker(s). A methodology based on a weighted stress func-

tion method was used for fitness assignment in MOEA [34]. This approach provides a fast 

convergence and a better final approximation performance, as measured by the usual 

quality indicators, when compared with traditional methods, such as aggregation func-

tions. 
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Figure 5. Concept of robustness in multi-objective environment. Solution 1 is more robust than 

solution 2, as the same variation in the decision variables domain (x1,x2) produces less variation in 

the objectives domain (f1,f2). 

4. Optimization Algorithms in Polymer Processing 

4.1. Methodology 

Figure 6 displays the polymer processing sequences targeted by the present review, 

as they can entail optimization problems. They include single screw (A) and twin screw 

(B) extrusion, injection molding (C), blow molding (either based on extrusion (A3) or in-

jection molding (C2)) and thermoforming (A2) (which produces 3D shapes from previ-

ously extruded sheets). Typically, these processes involve a plasticating step (carried out 

by the plasticating unit – which is an extruder, in the case of (A) and (B)), which encom-

passes material feed, melting, mixing, pressure generation and pumping, followed by 

shaping and cooling. All these stages can be approached as optimization problems. In the 

case of the plasticating unit, it may be necessary to define the screw profile, or set the 

operating conditions for a given polymer system/product combination. When extruding 

profiles (A1), the design of the extrusion die and calibrator can be approached as optimi-

zation problems. Indeed, die design aims at defining the geometry of the flow channel 

that assures uniform melt velocity (and, if possible, also equal residence time) across the 

entire extrudate cross-section at the die exit. Similarly, the extrusion of flat film/sheet (A2) 

with uniform thickness (or a pre-defined thickness variation) along its width requires a 

proper design of the die. Intermeshing co-rotating twin screw extruders are extensively 

used in compounding and reactive extrusion operations (B), the outcome of the process 

consisting of a new material in pellet form, to be subsequently converted into a final prod-

uct by one of the available processing techniques. Since the geometry of these machines 

must be adapted to the requirements of each production, which may vary significantly, 

the screws and barrel are often built as assemblies of individual elements (which are sup-

plied with different conveying, distributive and dispersive mixing abilities). Thus, screw 

design consists of selecting a given number of screw elements from a larger set of possi-

bilities, and position them in the right sequence. This constitutes an interesting, albeit 

complex, optimization problem. In injection molding (C), mold design (C1), screw design 

and setting the operating conditions are well recognized optimization problems. Finally, 

blow molding also entails optimization challenges, as discussed in section 2. 

The discussion of the efforts reported in the open literature to solve the above opti-

mization problems will be performed, whenever possible, using the following type of data 

(and respective acronyms): 

1. Objective function. It can be Single Objective (SO), Aggregated Product (AP), Aggre-

gated Sum (AS) or Multi-Objective (MO); 

2. Optimization algorithm, e.g., Empirical, Regression, Direct, Gradient, Augmented 

Lagrangian (AL), Pattern Search (PS), Expert System (ES), Evolutionary Algorithm (EA), 

Differential Evolution (DE), Ant Colony Optimization (ACO), Stochastic Local Search 

(SLS), Two-Phase Local Search (TPLS); 

x1

x2

f1

f2

1

2
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3. Modeling approach: unidimensional (1D), two-dimensional (2D) and three-dimen-

sional (3D), using Analytical (A), Finite Differences (FD), Finite Volumes (FV) or Finite 

Elements (FE) approaches; 

4. Decision variables, i.e., parameters to optimize. The aim can be to define the Operat-

ing Conditions (OC), Screw Design (SD), Screw Configuration (SC) (the last two will be 

explained below), Die Geometry (DG). The number of variables considered in the problem 

is indicated between brackets in the tables below; 

5. Other characteristics, related with the process/modeling, the optimization, or others; 

 

Figure 6. Polymer processing sequences targeted by the present review. (A) single screw extru-

sion: of profiles (A1), flat film/sheet for thermoforming (A2), extrusion blow molding (A3); (B) co-

rotating twin-screw compounding and pelletizing (B1); (C) injection molding: mold (C2) injection 

blow molding. Left: plasticizing units; Right: shaping and cooling. 

4.2. Single Screw Extrusion 

This section reviews the previous optimization studies of the plasticating unit of sin-

gle screw extruders (SSE). The decision variables that have been considered are related 

with the optimization of the operating conditions (screw speed and barrel temperature 

profile) and/or of the screw geometry. Conventional and barrier screws, as well as units 

with a grooved barrel in the feed zone have been studied. Table 1 summarizes the features 

of the various publications found in the literature. 
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Table 1. Previous publications on the optimization of single screw extruders. 

Objective  

function 

Optimization 

Algorithm 

Modelling 

Approach 

Decision 

variables 

Other 

characteristics 
Authors (year) reference 

SO Direct 1D-A SD Step-by-step Helmy and Parnaby (1976) [38] 

SO Empirical 1D-A SD Grooves Potente et al. (1992) [39] 

SO ES 1D-A OC+SD  Worteberg et al. (1994) [40] 

SO Empirical 1D-A SD Step-by-step Chung (1998, 2016) [8,41] 

SO Empirical 1D-A SD Zone-by-zone Rauwendaal (1986) [42] 

SO AL 3D-N SD  Altinkaynak (2010), [43] 

AP Empirical 1D-A OC  Potente et al. (1993, 1994, 1996) [44,45,46] 

AP Regression 1D-A SD Statistical Potente and Zelleröhr (1997) [47] 

AP Regression 1D-A SD DOE Potent and Krell (1997) [48] 

AP(3) Regression 1D-A OC(2)+SD(1)  Wilczyński et al. (2001, 2003) [49,50] 

AP(3) Regression 1D-A OC(2)+SD(1)  Wilczyński et al. (2004) [51] 

AS(3) Regression 1D-A SD  Thibodeau and Lafleur (2000) [52,53] 

AS(2) EA 1D-A OC(2)+SD(1)  Nastaj and Wilczyński (2018) [54] 

AS(2) EA 1D-A OC(2)+SD(1) Starve-feed Nastaj and Wilczyński (2020) [55] 

AS(2) DE+PS Experimental OC(1) Various techniques Abeykoon et al. (2011, [56] 

AS(4) EA 2D-N OC(4)  Gaspar-Cunha et al. (1998, [57] 

AS(4)+MO(4) EA 2D-N OC(4)  Covas et al. (1999) [58] 

MO(7) EA 2D-N SD(6)  Gaspar-Cunha et al. (2001) [59] 

MO(5) EA 2D-N SD(5) Barrier screws Covas et al. (2004) [60] 

MO(2) EA 2D-N OC(4)+SD(6) Mixing Domingues at al. (2012) [61] 

MO(5) EA 2D-N SD(4) Barrier screws Gaspar-Cunha et al. (2006) [62] 

MO(19) EA 2D-N OC(3) Scale-up Covas and Gaspar-Cunha (2009) [63] 

MO(9) EA 2D-N SD(4) Scale-up Gaspar-Cunha and Covas (2014) [64] 

MO(3) EA 2D-N SD(4) Robustness + DM Denysiuk et al. (2018) [65] 

MO(5) EA 2D-N OC(4)+SD86) Innovization Deb et al. (2014) [66] 

The earliest attempts to optimize single screw extrusion used statistics, regression, 

and response surface analyses based on experimental data [35] and computer modelling 

[36, 37, 38]. Helmy and Parnaby [38] applied a steady-state hill-climbing optimization 

method, together with an analytical modelling routine, to design screws, this being a good 

example of the application of traditional optimization methods (see figure 3-A). They im-

plemented an iterative procedure where the required pressure and flow rate at the die, as 

well as the constraints (e.g., machine dimensions, screw strength and product quality), are 

initially defined. The search is made considering a single objective (screw power effi-

ciency). Potente et al. [39] used an 1D analytical modelling software to optimize a screw 

for a grooved barrel extruder, using a trial-and-error procedure. Worteberg et al. [40] em-

ployed the same modelling software to develop an expert system to optimize extrusion, 

but recognized the required intense interaction between process simulation and expert 

system, in order to create a data base with an adequate dimension, capable to work with 

variations in operating conditions, material properties and system geometry. 

Some authors claimed to design screws “scientifically”. Chung [8, 41] proposed to 

design the entire screw through a sequence of steps aiming to match a given output. From 

a balance between heat conducted and heat generated by viscous dissipation, the depths 

of the metering and feeding sections were defined. Then, some adjustments were made 

taking into account practical/empirical rules. Rauwendaal [42] defined the screw geome-

try by solving the analytical equations pertaining to each functional zone in order to the 

relevant objectives, such as power consumption and output.  

Traditional (and inefficient) methods are still being used to optimize SSE. For exam-

ple, Altinkaynak [43] developed a full 3D finite element code for the melting and metering 
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zones, which was used to optimize the screw pitch and depth of the metering zone. How-

ever, since the Augmented Lagrangian method (an algorithm for solving constrained op-

timization problems) was adopted to maximize output, together with a constraint (the 

melt temperature at the extruder outlet could not exceed a pre-defined limit), the rele-

vance of the results obtained was very limited. Hence, this work illustrates the need to 

find a good balance between the use of computationally demanding modelling codes and 

the optimization method. 

Potente and co-authors [44-48] reported one of the first systematic attempts to con-

sider multiple objectives by means of a simple scalar objective function, together with a 

1D analytical modelling program. For instance, Potente and co-authors [44, 45, 46] as-

sumed the M-square root (M is the number of objectives) of the product of the individual 

objectives (such as output and length of screw required for melting), to avoid any of them 

assuming a zero value. However, an empirical procedure was employed to optimize the 

process. Potente and Zelleröhr [47] optimized the process with a statistical method and a 

regression analysis, obtaining contour plots for the quality function from a regression 

analysis to the results generated by the modelling software. Potente and Krell [48] pro-

posed a methodology for screw design involving a DOE (Design of Experiments) and 

multiple regression. A similar strategy using the STATISTICA software and a 1D analyti-

cal process description was adopted by Wilczyński et al. [49, 50]. The barrel temperature, 

screw speed and screw channel depth in the metering zone were optimized (using a M-

square root of the product of the normalized objectives) in order to maximize mass flow 

rate and minimize power consumption and melt temperature at the die outlet. Subse-

quently [51], these results were compared with those obtained using Artificial Neural Net-

works (ANN) instead of the statistical analysis. It was concluded that the statistical strat-

egy produced better results. Thibodeau and Lafleur [52, 53] adopted a 5-level central com-

posite statistical model to design screws that maximize mixing and minimize melt tem-

perature in the feed zone through a desirability function. The optimum was found on a 

response surface determined by a 1D analytical modelling program. 

Nastaj and Wilczyński [54] applied EAs to optimize the screw speed and the length 

of the metering zone that maximize output and minimize mechanical power consump-

tion, with a weighted sum as global objective function. Similarly, the same authors [55] 

optimized starve fed/flood fed single screw extruders in terms of screw speed, barrel tem-

perature and length of the metering zone, for the same two objectives. They concluded 

that starve feed extrusion performs better. 

Abeykoon et al. [56] compared the performance of differential evolution and particle 

swarm algorithms, both based on the use of a population of solutions. The aim was to find 

the barrel set temperatures that minimize the difference between the average melt tem-

perature at the die and the temperature required by the process, as well as the temperature 

variance at the die. These two objectives were aggregated in a single objective function 

thru a weighted sum. The melt temperature was evaluated using a static nonlinear poly-

nomial model whose parameters were obtained from experimental data. Data analysis 

allowed to build a model for evaluating the objectives, while the population based algo-

rithms were used for the optimization.  

Gaspar-Cunha et al. [57] analyzed the advantages and shortcomings of implementing 

an optimization methodology based on the interplay between a modelling package, an 

objective function, and an EA to solve single screw extrusion problems. The various ob-

jectives were taken into account through an aggregation function (the weighted sum) to 

define the operating conditions (screw speed and barrel temperature profile) that pro-

duced the desired output and/or product characteristics. Although the approach was able 

to find solutions with physical meaning, changing the weights of the aggregation function 

did not allow to access most of the solutions along the Pareto front, as the algorithm con-

verged to the extremes of the search space. Therefore, multi-objective algorithms seem a 

better alternative. Indeed, upon applying a MO approach based on EAs to the same SSE 

problem, the trade-off between four different objectives was established, providing a bet-

ter understanding of the features of the extrusion system under study [58]. Figure 7 shows 
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the two-dimensional Pareto fronts after optimizing the operating conditions of a SSE in 

order to maximize output and mixing, and minimize the length of screw required for ma-

terial melting. The aim is to approach the edges, as indicated by the arrows. The best 

points are those near to the lines in each graph. Nevertheless, during the optimization 

process it was found that when more than two objectives were considered, most of the 

solutions were non-dominated. Thus, a new MOEA based on a clustering strategy was 

developed to select the solutions while maintaining the diversity along the Pareto front. 

The same MOEA was used to optimize the screw geometry (described by 6 parameters) 

for the same SSE problem [59], the methodology being sensitive to changes in the design 

parameters, but obviously dependent on the ability of the modelling routine to provide 

precise predictions. The approach was extended to the design of Maillefer barrier screws, 

assuming five design screw parameters and five objectives [60]. Domingues et al. [61] 

modelled the evolution of the morphology of immiscible liquid-liquid and solid-liquid 

systems in SSE, and used these data to compute distributive and dispersive mixing indi-

ces. These were added as new objective functions to optimize the operating conditions 

and screw geometry using the same MOEA. Subsequently, a modified strategy was 

adopted to optimize all together conventional and Maillefer barrier screws [62]. A struc-

tured chromosome representation was adopted, in which various parts of the chromo-

some represent the same variables and the genotype representation is based on a hierar-

chy (i.e., one of the decision variables is a flag indicating the type of screw). The results 

showed that different regions of the Pareto front are attained by the two screw types. 

 

Figure 7. Pareto curves after optimization of the operating conditions of a SSE, in order to maxim-

ize output and mixing and minimize the length of screw required for melting.  

Scale-up in SSE often consists in finding the geometry and/or the operating condi-

tions of a target extruder (in general, of production size) in order to obtain materials or 

products with the same characteristics of those developed with existing equipment (com-

monly, a laboratory extruder). This should require that flow and heat transfer at the two 

scales are similar, but the problem is difficult to solve as changes in scale affect differently 

the various process parameters. Covas and Gaspar-Cunha [63] approached scale-up as a 

multiobjective optimization problem, where the aim is to minimize the differences in per-

formance between extruders of different sizes while satisfying simultaneously several ob-

jectives. Screw speed and barrel temperatures in three zones were initially assumed as 
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decision variables. Subsequently, the same methodology was applied to screw design, 

considering four screw geometrical parameters and nine objectives [64].  

Robustness and decision making strategies have also been included in the solution 

of SSE problems [65]. In this way, it becomes possible to focus the search on solutions that 

converge to regions where the preference was defined either by the relative importance 

of the objectives, or by considering the robustness of solutions against perturbations in 

the design variables. Deb et al. [66] proposed an “innovization” methodology to capture 

relationships between the relevant process parameters (i.e., the decision variables) and the 

objectives from the final results of a multi-objective optimization algorithm. After apply-

ing a MOEA, the optimal trade-off solutions are analyzed and the interactions between 

the parameters are obtained automatically. The procedure was applied to an SSE problem, 

a set of rules relating the relevant decision variables with the objectives for each case stud-

ied being established. 

4.3. Twin-Screw Extrusion 

As illustrated in Figure 8, optimization of twin-screw extruders (TSE) may involve: 

i) the definition of the operating conditions (N - screw speed, Q - feed-rate and Tb - barrel 

temperature profile); ii) the determination of the geometry of individual screw elements; 

and/or iii) the determination of the screw configuration, i.e., finding the best location along 

the screw axis of existing screw elements). These problems arise within the context of 

compounding, reactive extrusion, extrusion, or scale-up, and can involve co-rotating or 

counter-rotating intermeshing twin-screw extruders. Table 1 summarizes the features of 

the previous studies on these topics. 

As with SSE, co-rotating twin-screw extruders were initially optimized using empir-

ical approaches based on experimental and computational data. Potente and co-authors 

[67, 68] developed SIGMA, a 1D modelling software, but details on the optimization 

method, including design variables and objectives, were not given. The results achieved 

seem to have been based on a trial-and-error procedure. Vainio et al. [69] investigated ex-

perimentally different screw profiles for the preparation of an uncompatibilized immisci-

ble PA6/PP blend, with the aim of optimizing the screw configuration. Although the pro-

cess parameters influencing mixing were identified, no systematic optimization method 

was offered. Berzin et al. [70] optimized graphically the cationization of wheat starch in a 

laboratory extruder in terms of screw configuration and operating conditions, taking into 

account geometrical and process constraints, with the aim of scaling-up the results to a 

larger industrial extruder. Five different screw configurations were analyzed, assuming 

the minimization of the specific mechanical energy and the maximization of the reaction 

efficiency. The scale-up procedure used the same type of data for screws geometrically 

similar to those studied for the smaller extruder. 
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Figure 8. Optimization of co-rotating twin-screw extruders (TSE): i) operating conditions, screw speed 

(N), feed rate (Q) and barrel and die set temperatures (Tb); ii) geometry of individual screw elements; iii) 

position of a set of individual screw elements (5 conveying elements, 3 kneading blocks and 1 left 

handed element) along the screw shaft.  

Table 2. Previous publications on the optimization of twin-screw extruders. 

Objective  

function 

Optimization 

Algorithm 

Modelling 

Approach 

Decision 

variables 

Other 

characteristics 
Authors (year) reference 

Not defined Empirical 1D-A Not defined  Potente et al. (1994, 1999) [67,68] 

SO Empirical Experimental Not-defined Mixing Vainio et al. (1995) [69] 

SO(2) Regression 1D-Ludovic OC(3)+SD(1) Reactive Extrusion Berzin et al. (2007) [70] 

SO Regression Experimental OC(2) Counter-rotating Maridass and Gupta (2004, [71] 

SO(2) Regression Experimental OC Reactive Extrusion Ulitzsh et al. (2020) [72] 

SO(2) Regression Experimental OC(2) Scale-up Fukuda et al. (2015) [73] 

AP(3) Gradient 1D-A SD(2) Conv. elements Potente and Thümen(2006) [74] 

AS(2) EA 2D-numerical OC(1)+SD(1) Reactive Extrusion Zhang et al. (2015) [75] 

AS+MO(6) EA 1D-Ludovic OC(4)  Gaspar-Cunha et al. (2002) [76] 

MO(7+2) EA 1D-Ludovic OC(4)+SC(10) Reactive Extrusion Gaspar-Cunha et al. (2005) [78] 

MO(5)(7) EA 1D-Ludovic SD(4)+SC(10) Robustness Covas et al. (2004) [60] 

MO(3) SLS 2D-FD SC(14)  Teixeira et al. (2011) [80] 

MO(3) EA+ACO+SLS+TPLS 2D-FD SC(14)  Teixeira et al. (2012) [81] 

MO(3) ACO+TPLS 2D-FD SC(14)  Teixeira et al. (2014) [82] 

MO(3) EA 1D-Ludovic OC(1)+SC(14) Reactive Extrusion Teixeira et al. (2011) [83] 

MO(3) EA 2D-FD SD(1)+SC(8) Scale-up Covas et al. (2011) [84] 

Various authors adopted statistical methods for TSE optimization. The analysis ap-

plied by Maridass and Gupta [71] was based on experimental data on the recycling of 

natural rubber vulcanizates in a counter rotating twin screw extruder. The aim was to find 
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the barrel temperature and screw speed that maximized the properties of the material 

obtained. For that purpose, the contour plots obtained were analyzed visually. Ulitzsch et 

al. [72] selected a response surface methodology to optimize the synthesis of vinyltri-

methoxysilane-grafted ethylene-octene-copolymer using experimental data. Five process 

parameters and their interactions were optimized, in order to maximize both the grafting 

degree and efficiency. Second-order interaction effects existed, making this process diffi-

cult to control with such a simple optimization methodology. Fukuda et al. [73] used a 

DOE to analyzed separately two different scale-up rules, one based on the volumetric flow 

rate, the other related to dispersive mixing, with the aim of optimizing the operating con-

ditions of the target extruder. 

Potente and Thümen [74] applied a gradient method to optimize the radial and flight 

clearances of conveying screw elements, in order to maximize the pressure gradient and 

minimize the temperature gradient and power consumption.  

Zhang et al. [75] employed a single objective EA to optimize free radical bulk 

polymerization, with the aim of defining the barrel temperature and screw length that 

maximize both monomer conversion and monomer conversion per unit energy consump-

tion. A weighted sum took into account the two objectives. A weighted sum and a MOEA 

were adopted to set the operating conditions of three extruders with different screw con-

figurations [76], while using the Ludovic software [77] to evaluate the objective functions.  

When optimizing operating conditions, or the geometry of individual screw ele-

ments, the characteristics of these tasks are identical to those of equivalent SSE problems, 

since the decision variables to optimize vary continuously in the search space. However, 

defining the best location of screw elements along the screw shaft is a discrete and com-

binatory problem. Gaspar-Cunha et al. [78] used a modified MOEA to define the most 

adequate location of a pre-selected set of screw elements (denoted as screw configuration 

problem, SC). An analogy was made with the traveling salesman problem, or sequencing 

problem in operations research, with the cities being the screw elements that must be cov-

ered sequentially by the traveling salesman in order to maximize a prescribed perfor-

mance. Within the obvious limitations of the exercise, the results were validated experi-

mentally and the methodology was also applied to -caprolactam polymerization via re-

active extrusion. Later, the robustness of the solutions, considering changes in the value 

of the decision variables, was also taken into account [60]. An alternative approach using 

Stochastic Local Search (SLS) algorithms to tackle the SC problem was also attempted [79]. 

An efficient single-objective iterative improvement strategy, based on various neighbor-

hood structures, neighborhood search strategies, and neighborhood restrictions, was pro-

posed, whereby the algorithms were embedded into a variation of a bi-objective two-

phase local search (TPLS) framework. The results were compared to those obtained by the 

previous MOEA, evidencing a higher quality approximation to the Pareto front, with a 

faster convergence. Process modelling contained of a global plasticating treatment co-ro-

tating twin screw extrusion [80]. Given the good results obtained, Teixeira et al. [81] solved 

the SC problem through the hybridization of different local search procedures, including 

Pareto local search and TPLS algorithms, with two different population-based algorithms, 

a MOEA and a Multi-Objective Ant Colony (MOACO). This approach outperformed the 

other algorithms studied and their combinations. With the aim of exploring the full po-

tential of the hybrid algorithm, the influence of the MOACO algorithm parameters was 

investigated, and the results obtained were compared with those of MOEA and TPLS al-

gorithms [82]. It was concluded that the hybridization of the MOACO algorithm has a 

significant potential for solving the SC problem. 

Teixeira et al. [83] adopted a MOEA algorithm to solve the SC problem for starch 

cationization by reactive extrusion, aiming at the minimization of the specific mechanical 

energy and the maximization of output and reaction conversion. As far as scale-up in TSE 

is concerned, Gaspar-Cunha and Covas [84] employed a multi-objective optimization 

strategy to define the geometry (location of eight screw elements) and operating condi-

tions of the target extruder that minimized the differences in viscous dissipation, specific 

mechanical energy and average strain between the target and reference machines. 
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4.4. Dies and Calibrators 

Extrusion dies aim at converting the circular flow at the outlet of the extruder into a 

flow with a specific cross-section (to produce film/sheet, pipes, profiles, etc). The latter 

may not correspond to the actual product cross-section/dimensions, as the die geometry 

must compensate for all the shape/dimensional changes of the extrudate along the extru-

sion line. As a matter of fact, due to its viscoelastic nature, the extrudate will swell pro-

gressively as it leaves the die, but this might be partially/totally offset by the draw down 

created by the haul-off. During cooling, thickness differences may arise in the cross-sec-

tion due to gravity flow, and the extrudate will shrink and might distort due to buoyancy 

forces in a water tank. Thus, not only extrusion dies are built in such a way that they 

attempt to anticipate subsequent changes in the shape of the extrudate, they allow for 

some local adjustments in the channel geometry. Also, whenever possible, the external 

contour of the extrudate is corrected prior to cooling by means of a calibrator. 

Extrusion dies usually comprise an adapter, which converts the circular flow from 

the extruder into the required channel shape for extrusion, and a parallel zone with con-

stant cross-section, which allows for some macromolecular relaxation. The ensemble 

adapter/parallel zone should be designed in such a way that the velocity and the residence 

time of all the individual melt streams in the cross-section are uniform. To ensure this, 

and despite of the wide variety of extruded shapes, there are generally three approaches 

to design the adapter: 

i) using a manifold, i.e., use a larger channel upstream to distribute the flow transver-

sally, prior to its progress downstream. The die geometry is such that a central flow 

stream has a shorter path in the manifold and a longer path in the shallower parallel 

zone, while the reverse occurs for a flow stream near to the edges. This approach is 

frequently adopted for the production of cast film and sheet, wire insulation and 

extrusion blow molding.  

ii) using a cylindrical mandrel to convert the circular flow from the extruder into an 

annular flow. Since the classical torpedo-type solution with its supports (known as 

spider legs) creates unbalanced flow and strong welding lines, it was progressively 

replaced by basket-type dies and spiral mandrel dies. The mandrels of the latter are 

designed in such a way that the flow from the extruder is divided into individual 

melts which feed helical channels with decreasing depth along their length in the 

mandrel. Thus, the helical flow is gradually converted into an axial annular flow. 

iii) using an adapter to change gradually from the inlet circular channel into the desired 

cross-section. The design of dies for hollow profiles, or for profiles containing thick-

ness differences in their cross-section is particularly challenging. 

Rakos and Sebastian [85] proposed an empirical optimization procedure to define the 

geometry of different types of dies using a numerical modelling code, but no details were 

given concerning the objectives and design variables. In the following sections, each type 

of die is studied separately 

4.4.1. Manifold Dies 

Matsubara [86, 87] solved the analytical flow modelling equations in order to a major 

design variable (the variation along the length of the manifold radius) of a coat hanger die 

that assured uniform flow rate and residence time across the width, and extended the 

methodology to T-dies [88, 89]. Table 3 shows that the design of manifold dies as an opti-

mization problem was carried out using a single objective function, and that as optimiza-

tion procedure empirical methods, regression analyses, sequential quadratic programing, 

gradient techniques, or evolutionary algorithms were adopted. 
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Table 3. Previous publications on the optimization of manifold dies (manifold type: CH- Coat Hanger, TCH- Tapered 

Coat Hanger, Blow – blow molding) 

Objective  

function 

Optimization 

Algorithm 

Modelling 

Approach 

Decision 

variables 

Other 

characteristics 
Authors (year) reference 

Not defined Empirical 1D-A DG(?) Various dies Rakos and Sebastian (1990) [85] 

SO Empirical 1D-A DG(1) CH Matsubara (1979, 1980) [86,87] 

SO Empirical 1D-A DG(1) T-die Matsubara (1980, 1988) [88,89] 

SO Empirical 1D-A DG(3) CH Winter and Fritz (1986) [90] 

SO Empirical 3D-N DG(3) CH Liu et al. (1988, 1994) [91] 

SO Empirical 3D-N DG(4) TCH, 2 cavities Lee and Liu (1989) [92] 

SO Empirical 3D-N DG(3) CH Liu et al. (1988, 1994) [93] 

SO Empirical 3D-N DG(4) TCH Yu and Liu (1998) [94] 

SO Empirical 3D-N DG(3) CH Na and Kim (1995) [95] 

SO Empirical 2D-N DG(2) CH Huang et al. (2004) [96] 

SO Regression 1D-A OC(1)+DG(3) CH Chen et al. (1997) [97] 

SO Regression 3D-N DG(5) CH Razeghiyadaki et al. (2020, 2021) [98,99] 

SO SQP + Regression 3D-N DG(1) CH Lebaal et al. (2006) [100] 

SO SQP + Regression 3D-N DG(4) CH Lebaal et al. (2009) [101] 

SO SQP + Regression 3D-N OC(3)+DG(1) CH Lebaal et al. (2010) [102] 

SO SQP + Regression 3D-N DG(4) CH (wire) Lebaal et al. (2012) [103] 

SO Gradient 3D-N DG(2) CH Smith et al. (1998, 1998) [104,105] 

SO Gradient 3D-N OC(1)+DG(2) CH Smith (2003) [106] 

SO Gradient 3D-N DG(811) CH, Robustness Smith (2003) [107] 

SO Gradient 3D-N DG(9) CH Sun and Gupta (2004) [108] 

SO Gradient 3D-N DG(5) CH, Restrictor Bates et al. (2003) [109] 

SO 
Regression+ 

Gradient+EA 
3D-N DG(5) CH, Restrictor Siens et al. (2006) [110] 

SO EA 3D-N DG(n) CH Michaeli and Kaul (2004) [11] 

SO EA 3D-N DG(2) CH Meng and Zhao (2011) [112] 

SO EA 3D-N DG(4) Slot die Sun and Wang (2010) [113] 

SO EA 3D-N DG(2) Blow: 2-CH  Meng et al. (2009, 2012) [114,115] 

AS(2) Regression 3D-N DG(3) CH Han and Wang (2012) [116] 

AS(n) Gradient 3D-N OC(1)+DG(2) CH, Robustness Smith and Wang (2004) [117] 

AS(n) Gradient 3D-N OC(1)+DG(2) CH  Smith and Wang (2005) [118] 

AS(n) SQP 3D-N OC(1)+DG(2) CH Wang and Smith (2006) [119,120] 

AS(3) EA 3D-N OC()+DG() CH Zhang et al. (2020) [121] 

MO(2) DOE, RSM, EA 3D-N DG(3/8/12) CH Lee et al. (2015) [122] 

MO(2) EA 3D-N DG(3) CH Han and Wang (2012) [123] 

AS(2) & 

MO(2) 
Regression + EA 3D-N DG(1) Blow: 2-CH Han and Wang (2014) [124] 

Winter and Fritz [90] recommended the use of a specific design procedure for a coat 

hanger die, taking into account uniformity of the exit velocity and average residence time, 

regardless of flow rate or polymer viscosity, and considering separation of the flows. The 

geometry of dies with a square and circular manifold and constant thickness of the parallel 

section was defined, in which the design variables were the width or the diameter of the 

manifold, as a function of its length, and the height of the parallel section.  

Liu et al. [91] developed a method to optimize coat hanger dies with non-circular 

manifold, to avoid dead spots in the transition to the parallel zone. The aim was to define 

the geometries of the manifold and parallel zone in order to deliver uniform flow, while 
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keeping uniform residential time distribution for different polymers and operating con-

ditions. A numerical modelling program was used to evaluate the solutions. The same 

empirical strategy was used by Lee and Liu [92] to design a coat-hanger die with a line-

arly-tapered inner cavity and a straight outer cavity, but taking into account inertial, grav-

itational, and viscous effects. Later, Liu et al [93] and Yu and Liu [94] proposed a unified 

lubrication approximation to model the polymer flow inside the die with the aim of de-

signing the same coat-hanger die [93] and a tapered coat-hanger die [94].  

Na and Kim[95] applied an empirical approach to design linearly tapered coat-

hanger dies with circular manifold (in terms of slot thickness, manifold angle and land 

length) with the aim of obtaining uniform flow rate distribution at the die exit in the trans-

verse direction, using a 3D finite element modelling code. Even recently, a simple empir-

ical approach was used by Huang et al. [96] to design coat hanger dies that maximize the 

uniformity of the velocity distribution at the die exit defining as decision variables the 

manifold radius and angle and slit height. 

The application of regression techniques, based, for example, in Taguchi methods, 

enabled the development of more systematic optimization approaches. This is the case of 

Chen et al. [97], who investigated the effect of material rheology, gap thickness, manifold 

angle, and flow rate, on the thickness uniformity of coat hanger dies. The Taguchi method 

was used to optimize the geometry of dies with different widths, the solutions being eval-

uated with an analytical model, and flow rate was also appended as design variable. Re-

cently, Razeghiyadaki et al. [98, 99] used a response surface method to optimize the geom-

etry of a coat hanger die in order to obtain uniform velocity at the die lips. The response 

surface was generated from computations using a commercial package, and a central com-

posite DOE defined the conditions for the calculations. A spline curve was used to outline 

the geometry using five variables (depth and the width of the die and three nodes of the 

spline). The optimization involved minimizing the quadratic function obtained. Lebaal et 

al. [100] determined the geometry of a coat-hanger die using a global response surface 

method with Kriging interpolation (a regression technique), and Sequential Quadratic 

Programming (SQP) to minimize the global difference between the local velocities at the 

die exit and the average value, assuming as decision variable the depth of the distribution 

channel, and as restriction the pressure required by the flow. Later, four decision variables 

were considered, namely the depth and the opening of the channel repartition, the gap, 

and the height of the relaxation zone [101]. The same methodology was applied to define 

the depth of the distribution channel and the operating conditions [102], as well as to de-

sign a wire coat hanger based on the same flow balance principle [103]. It is important to 

note that SQP requires that the objective function and the constraints are twice differenti-

able, which was possible in this case because the objective function and the constraints 

were defined by regression prior to the application of SQP. 

Smith et al. [104] proposed a systematic optimization methodology combining pro-

cess modeling, a design sensitivity analysis (using both direct and adjoint methods), and 

optimization based on a gradient technique. The aim was to keep the non-uniformity of 

the velocity profile across the die exit below a certain level, and to minimize pressure 

drop, i.e., to achieve product homogeneity with minimal processing cost. The design var-

iables were the length of the parallel zone and the cross section of the flow channel. The 

residence time in the die was considered subsequently [105]. Then, with the aim of mini-

mizing the die length and to satisfy constraints related to uniform residence time and exit 

velocity, the inlet pressure, the manifold height and the shape of the parallel zone were 

taken as variables [106]. Also, to determine the geometry of a sheet die that will best ac-

commodate a range of operating conditions, Smith [107] optimized 811 half-height design 

variables that describe the die cavity thickness distribution for an example where the inlet 

and outlet die half-heights are fixed. Sun and Gupta [108] applied a gradient quadratic 

penalty method to define the geometry of a coat hanger die (using nine decision variables), 

that minimizes the velocity variation across the die exit without excessively increasing the 

pressure drop. The penalty method consisted in adding a burden to the objective function 

for surpassing a pressure drop threshold. Bates et al. [109] applied a gradient optimization 
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method to determine the optimum geometrical profiles of a restrictor (choker bar) neces-

sary to obtain a uniform flow distribution of a slit die to be used in a range of applications 

involving three materials with varying degrees of shear thinning, each at a high and a low 

flow rate. The restrictor was optimized considering the height of five points along half the 

width of the die. Later, this study was extended to include regression and EA optimization 

algorithms [110]. 

A single objective EA was used by Michaeli and Kaul [111] to optimize a T-shaped 

manifold, in order to minimize the standard deviation of the local velocities at the die exit, 

the decision variables being a few points in the mesh that defined the flow path. The same 

optimization strategy was applied to define the geometry of a coat hanger die taking as 

design variables two parameters related with the radius of the manifold and the height of 

the parallel zone [112]. Also using a single objective EA, Sun and Wang [113] optimized 

four geometrical parameters of the manifold. The aim was to minimize the stagnation 

temperature (a combination of static and kinetic temperatures), and the solutions were 

evaluated using a 3D numerical commercial modeling code. Meng et al. [114, 115] de-

signed a double coat hanger die with a manifold of quadratic geometry in order to dis-

tribute uniformly the melt across a large width. A single objective EA was selected to de-

fine the gap and the manifold angle. 

Several authors recognized the need to take in several objectives, hence using aggre-

gation functions (e.g., weighted sum) together with single objective optimization algo-

rithms. Han and Wang [116] applied a regression technique (based on an orthogonal array 

design) to determine the manifold angle and gap height of a coat-hanger die that minimize 

the variation of the outlet velocity and the residence time, using a 3D numerical modeling 

code. The same optimization methodology (see also [104]) was used to include the effect 

of the variability of the set temperature or of material properties, i.e., a robustness analysis. 

In this case, the objective function was the weight sum of the inlet pressures for each flow 

condition that are induced by changes in temperature and/or material properties [117, 

118]. An arbitrary gap height distribution in the manifold and different polymer rheolog-

ical models were also added [118]. Wang and Smith [119, 120] solved the same problem 

using SQP. Zhang et al. [121] optimized the geometry and operating conditions of a coat 

hanger die using a single objective EA consisting of the weighted sum of three objectives 

(minimization of the mechanical deformation of the die, of the pressure drop and of the 

variation of the outlet velocity). The solutions to be evaluated were obtained through the 

application of a DOE, from which a regression model was obtained to be used by the EA. 

Only recently MO optimization methods have been applied to the definition of the 

die geometry. Lee et al. [122] evaluated the performance of different optimization strate-

gies (comprising a design of experiments, the response surface model and two different 

MOEAs) for the delineation of the geometry of a coat hanger die. The latter was divided 

in sectors that resulted in three case studies involving the definition of three, eight and 

twelve design variables, respectively. In parallel, two objectives were selected, minimiza-

tion of the total pressure drop and maximization of a flow uniformity parameter, which 

were evaluated using a commercial 3D modeling software. Considering simultaneously 

these two objectives, Han and Wang [123] used a MOEA to optimize the same geometrical 

parameters, taking as starting point the geometry of a previously optimized die [116]. 

Later, the same authors [124] optimized a double coat-hanger die with a quadratic geom-

etry manifold using identical optimization techniques (regression and MOEA). 

4.4.3. Mandrel Dies 

Table 4 identifies the previous studies concerning the optimization of mandrel dies. 

Huang [125] proposed a strategy with two steps to optimize the geometry of a spiral man-

drel die (that can be utilized for the extrusion of pipes and blown films). The Taguchi 

method was used to define a set of geometries able to assess the flow balance principle, 

then this set of geometries were evaluated iteratively taking into account total pressure 

drop, degree of mixing and residence time distribution. It was concluded that the best 

solution to use in real practice results from a balance between the different objectives, 
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hence a multi-objective strategy must be pursued. Mu et al. [126] adopted a MOEA to op-

timize the geometry of an annular die, aiming at minimizing local differences in outlet 

velocity and minimizing the swell ratio, while restricting the shear stress to a critical value 

that guaranteed steady extrusion. An ANN, trained with 3D numerical modelling results, 

was used to evaluate the solutions, whilst the decision variables were the channel contrac-

tion angle, the flow gap and the relative length of the parallel zone. 

Table 4. Previous publications on the optimization of mandrel. 

Objective  

function 

Optimization 

Algorithm 

Modelling 

Approach 

Decision 

variables 

Other 

characteristics 
Authors (year) reference 

SO Regression 2D-N DG(4)  Huang (1998) [125] 

MO(2) EA 3D-N + ANN DG(3)  Mu et al. (2010) [126] 

4.4.2. Profile Dies 

Two main approaches (not necessarily exclusive) have been generally adopted for 

the design of profile dies (see Table 5 for a summary of the previous studies published): 

optimization of the flow balance at the die exit, and correction of the shape/dimensions of 

the die exit for the effect of post-extrusion extrudate-swell (this is sometimes denoted as 

the Inverse Extrusion Problem (IEP) [127]. According to Pittman [128], the design of pro-

file dies should encompass the following aspects: i) consider as much as possible the ther-

momechanical phenomena, such as an appropriate rheological description and kinemat-

ics, eventual wall slip conditions, extrusion instabilities, material residence time and deg-

radation, extrudate swell, draw-down and thermal effects; ii) select the best strategy, e.g. 

flow balancing, streamlined channels, avoiding-cross-flow, using flow separators and de-

signing for extrudate swell; iii) formulate clearly the optimization in terms of objective 

function, constraints, decision variables, algorithms and optimization strategies; iv) per-

form a clear geometry and mesh parameterization. 

Legat and Marchal [127] designed a square die by solving the IEP for the die channel 

shape given the extrudate geometry, based on an implicit formulation. Tran-Cong and 

Phan-Thien [129] proposed an empirical optimization method to take into account the ef-

fect of extrudate-swell on die design. Flow modeling used the boundary element method 

and the free surface was modelled based on particle path lines that were optimized at 

every iteration. Also through a trial-and-error empirical approach, Hurez et al. [130] opti-

mized the lengths of the die land channels using analytical flow modelling. Three empir-

ical strategies based on cross flow minimization were utilized by Švábík et al. [131] to 

achieve flow balancing by varying the die land length. However, these methods are only 

able to deal with simple dies. With the aim of solving the IEP, Gifford [132] discussed the 

concept of target profile, i.e., the final profile to be obtained after the extrudate-swell, and 

how to deal with the free surface using surface particles that must fit the target profile. 

Rezaei et al. [133] optimized the length of the die lands of a profile die using an empirical 

scheme based on sensitivity analysis in order to balance the flow at die exit.  

One of the first systematic optimization approaches was made by Coupez et al. [134], 

who adopted the simplex method to optimize the geometrical parameters of a profile die 

in terms of flow balancing, based on 3D numerical modelling, but with unclear decision 

variables. Ready and Schaub [135] used of a regression optimization method based on a 

response surface methodology with the results obtained by an adaptive 3D numerical 

method, and defining as decision variables the corner positions of macro-blocks located 

in the numerical mesh. An optimization approach based on the gradient-free method (spe-

cifically, bound optimization by quadratic approximation) was applied to manifold and 

profile dies [136] The method uses a regression approach based on a quadratic response 

surface obtained from the modeling calculations. Spline lines approximate the domain 

boundary, the design variables corresponding to the weights and locations of the 22 con-

trol points that define the splines. The objective function was the variance of the local 

maximal velocity as compared to the average maximal velocity over all die sections. Based 

on the same optimization framework, Pauli et al. [137] considered that a good die design 
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must also attain a homogeneous extrudate-swell across the die exit, and thus applied the 

two objectives simultaneously to a U-shape profile using 19 x 9 control points. 

Table 5. Previous publications on the optimization of profile dies (KP – key points (see text); MP – mesh parameterization; GP – 

geometry parameterization). 

Objective  

function 

Optimization 

Algorithm 

Modelling 

Approach 

Decision 

variables 

Other 

characteristics 
Authors (year) reference 

SO Empirical 3D-N GP IEP Legat and Marchal (1993) [127] 

SO Empirical 3D-N GP IEP Tran-Cong and Phan-Thien (1988) [129] 

SO Empirical A GP  Hurez et al. (1996) [130] 

SO Empirical 3D-N GP  Švábík et al. (1999) [131] 

SO Empirical 3D-N GP IEP Gifford (2003) [132] 

SO Empirical 3D-N GP(3)  Rezaei Shahreza et al. (2010) [133] 

SO Simplex 3D-N GP  Coupez et al. (1999) [134] 

SO Regression 3D-N MP  Ready and Schaub (1999) [135] 

SO Regression 3D-N GP(22)  Elgeti et al. (2012) [136] 

SO Regression 3D-N GP(171) IEP Pauli et al. (2013) [137] 

SO Gradient 3D-N MP  Sienz et al (1998, 2010) [138, 139] 

SO Gradient 3D-N GP  Szarvasy et al. (2000) [140] 

SO ES 3D-N MP  Sienz et al. (1999) [141] 

SO Gradient 2D-N KP  Ettinger et al. (2004, 2004) [142, 143] 

SO Gradient 2D-N KP(2-46]  Ettinger et al. (2012) [144] 

SO SA 3D-N GP(3)  Yilmaz et al. (2014) [145] 

SO Feedback Control 3D-N GP IEP Spanjaards et al. (2021) [146] 

WS(2) Simplex 3D-N GP  Nóbrega et al. (2002, 2003) [147,148,149] 

WS(2) Simplex 3D-N GP  Carneiro et al. (2004) [150] 

WS(4) Gradient 3D-N GP(8)  Zhang et al. (2019) [154] 

Sienz et al. [138, 139] applied a gradient optimization method based on a sensitivity 

analysis to design a flow balanced profile die. The same method was used to maximize 

the velocity at the die exit of another die, using as design variable the land height for the 

inner branches, the solutions being evaluated by a 3D numerical commercial code, and 

the optimized results being assessed experimentally [140]. An expert-system driven opti-

mization was also employed [141]. Ettinger et al. [142] and Ettinger [143] proposed a meth-

odology to design profile extrusion dies for Poly(vinyl chloride) (PVC) involving model-

ling, parameterization techniques, optimization strategies, and the determination of ma-

terial parameters. Parametrization was based on key-points (KP) with two coordinates 

(x,y) and a radius (i.e., the design variables), while flow modelling was carried out with 

FE performed on 2D die cross-section slices. The optimization problem was solved em-

ploying a gradient optimization algorithm, but other strategies were also tested (global 

and sequential optimization schemes, height approximation method and parallel decou-

pled scheme), with a view to flow balancing. Later, the authors designed several complex 

window profiles with the aim of guaranteeing that the right quantity of material is deliv-

ered to all parts of the die exit. They fixed between 2 and 46 design variables and used the 

gradient optimization method based on the calculation of the sensitivities obtained from 

the rates of change of the objective function with respect of the decision variables [144]. 

Yilmaz et al. [145] determined the height of the thick channel and the length of the 

narrow channel of a L-shape profile die that would balance the flow, using simulated an-

nealing together with a kriging meta-model to estimate the modelling results based on 3D 

numerical computations. Very recently, Spanjaards et al. [146] proposed to solve the IEP 

using the theory of feedback control, which in practice corresponds to evaluate new solu-
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tions (obtained from a parameter found through trial-and-error) by the modelling pro-

gram. The methodology was applied to a rectangular channel geometry, with the aim of 

defining the curved sides of the adapter by minimizing the effects of extrudate-swell. 

Finally, some authors considered the use of multiple objectives during the optimiza-

tion. Nóbrega et al. [147, 148, 149] and Carneiro et al. [150] proposed an optimization meth-

odology based on the simplex method to design a rectilinear profile die. As can be seen in 

Figure 9(A), the flow channel comprises a parallel zone, a pre-parallel zone, a transition 

zone and an adapter, but only the first two were considered in the design. Two decision 

variables were used, the length and thickness of the parallel zone, and the objective func-

tion corresponds to the weighted sum of the flow balance and of the length/thickness ratio 

of the zones to be optimized. Figure 9(B) displays the evolution of the objective function 

during the twelve optimization iterations. Convergence is attained after the third itera-

tion, the improvements obtained after the ninth iteration being due to mesh refinement. 

The authors compared the performance of the non-linear Simplex method with a trial-

and-error procedure, but no conclusion about the best method was clearly reported [151]. 

The optimization results were assessed experimentally [152, 153]. Zhang et al. [154] ap-

plied a gradient method based on a sensitivity analysis of a response surface obtained 

from 3D numerical modelling relating the objective function with the design variables, to 

optimize an L-shape profile die. The design variables were the parameters of spline curves 

based on 8 control points, the objective function was the weighted sum of maximization 

of flow balance and extrudate-swell homogeneity, and minimization of points displace-

ment and dimensional tolerance. 

 

Figure 9. Optimization of a die for the production of a hollow profile: (A) flow channel layout, and decision variables (length and 

thickness of the parallel zone) and (B) evolution of the weighted sum (objective function) along 12 iterations (adapted from [149]). 

4.4.2. Calibrators 

The design of calibrators is linked to that of profile dies, as they must assure that the 

cross-section of the extrudate stands within the defined tolerances. For that purpose, the 

calibrator should cool the extrudate contour uniformly, until an outer layer of polymer 

has solidified and so its geometry is preserved. Thus, the design of calibrators involves 

the definition of the number and length of the units to be used, and for each, the number, 

location and diameter(s) of the cooling channels. Table 6 identifies the previous optimiza-

tion studies on this topic.  

Fradette et al. [155] seems to have pioneered the scientific design of calibrators for 

profile extrusion. The strategy included a modelling routine (3D numerical modelling), 

an objective function (the weighted sum of minimizing the cooling time and maximizing 

the cooling uniformity), decision variables (48 variables defining locations and diameter 

of 16 cooling channels) and optimization algorithm (gradient optimization).  
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Nóbrega and Carneiro [156] used the simplex method to optimize a calibration sys-

tem comprising three units separated by two annealing zones, the results being obtained 

by a 3D numerical modelling code. The system was defined by eight geometry related 

decision variables (length of calibrators and of the annealing zones, temperature of the 

cooling fluid in each calibrator). Subsequently [157], the number of calibrators was taken 

as additional decision variable, and a MOEA with two objectives (minimization of the 

final extrudate average temperature and of the corresponding standard deviation). Duan 

and Zhang [158] optimized the location and diameter of the cooling channels, considering 

the weighted sum of two objectives (maximizing the cooling uniformity and the effi-

ciency), but little detail is given on the optimization procedure. Finally, Ren et al. [159] 

applied EA to optimize a calibrator based on 3D numerical simulations, assuming the 

weighted sum of two objectives (maximization cooling uniformity and efficiency), with 

the aim to define the location and diameter of a variable number of cooling channels. 

Table 6. Previous publications on the optimization of calibrators for extruded profiles. 

Objective  

function 

Optimization  

Algorithm 

Modelling 

Approach 

Decision 

variables 

Other 

characteristics 
Authors (year) reference 

SO Simplex 3D-N GP(5)  Nóbrega and Carneiro (2005) [156] 

AS(2) Empirical 3D-N GP(n)  Duan and Zhang (2014) [158] 

AS(2) Gradient 3D-N GP(48)  Fradette et al. (1996) [155] 

AS(2) EA 3D-N GP(n)  Ren et al. (2010) [159] 

MO EA 3D-N GP(8)  Nóbrega et al. (2008) [157] 

5. Conclusions 

This review discussed the application of optimization methods to solve real problems 

in extrusion, namely for single and twin screw extruders, extrusion dies and calibrators. 

It was shown that equating processing challenges as optimization problems is much more 

efficient than relying on empirical knowledge, or in the use of simulation tools on a trial 

and error basis. 

Regardless of the specific processing routine being analyzed, it is evident that there 

is a strong interdependence between the objective function (i.e., the system performance), 

the optimization algorithm and data collecting (i.e., experimental or computational data). 

Selecting a specific optimization algorithm depends on the features of the problem and 

whether the goal is to optimize one or several objectives. Aspects such as the scarcity of 

data, the possibility of generating data during the optimization, as well as the time re-

quired to obtain such data must be take into consideration as well. 

The second part of this review will focus on the application of optimization ap-

proaches to molding processes (injection and blow molding, thermoforming). Trends in 

process optimization will be also discussed. 
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