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Abstract: Early detection improves prognosis in pancreatic ductal adenocarcinoma (PDAC) but1

is challenging as lesions are often small and poorly defined on contrast-enhanced computed2

tomography scans (CE-CT). Deep learning can facilitate PDAC diagnosis, however current models3

still fail to identify small (<2cm) lesions. In this study, state-of-the-art deep learning models4

were used to develop an automatic framework for PDAC detection, focusing on small lesions.5

Additionally, the impact of integrating surrounding anatomy was investigated. CE-CT scans from6

a cohort of 119 pathology-proven PDAC patients and a cohort of 123 patients without PDAC were7

used to train a nnUnet for automatic lesion detection and segmentation (nnUnet_T). Two additional8

nnUnets were trained to investigate the impact of anatomy integration: (1) segmenting the9

pancreas and tumor (nnUnet_TP), (2) segmenting the pancreas, tumor, and multiple surrounding10

anatomical structures (nnUnet_MS). An external, publicly available test set was used to compare11

the performance of the three networks. The nnUnet_MS achieved the best performance, with an12

area under the receiver operating characteristic curve of 0.91 for the whole test set and 0.88 for13

tumors <2cm, showing that state-of-the-art deep learning can detect small PDAC and benefits14

from anatomy information.15
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1. Introduction17

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic18

cancer, which has the worst prognosis of all cancer diseases worldwide with a 5-year19

relative survival rate of only 10.8% [1,2]. The incidence of pancreatic cancer is increasing,20

and it is estimated to become the second leading cause of cancer-related deaths in West-21

ern societies by 2030 [2,3]. Patients diagnosed in early disease stages, where the tumors22

are small (size<2cm) and frequently resectable, present a much higher 3-year survival23

rate (82%) than patients diagnosed in later disease stages where the tumors are larger24

(17%) [4]. Unfortunately, tumors are rarely found in early stages and approximately25

80–85% of patients present with either unresectable or metastatic disease at the time of26

diagnosis [1]. Given these statistics, it is clear that early diagnosis of PDAC is crucial to27

improve patient outcomes, as reversing the stage distribution would more than double28

the overall survival, without any additional improvements in therapy [5].29

Early PDAC detection is challenging, as most patients do not present specific30

symptoms until advanced disease stages, and screening the general population is cost-31

prohibitive with current technology [5,6]. Furthermore, PDAC tumors are difficult32

to visualize in computed tomography (CT) scans, which are the most used modality33

for initial diagnosis, as lesions present irregular contours and poorly-defined margins34

[5]. This becomes an even more significant challenge in the initial disease stages as35

lesions are not only small (<2cm) but also often iso-attenuating, making them easily36

overlooked even by experienced radiologists [7]. A recent study that reconstructed the37
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progression of CT changes in prediagnostic PDAC, showed that suspicious changes38

could be retrospectively observed 18 to 12 months before clinical PDAC diagnosis.39

However, the radiologists’ sensitivity at identifying those changes, and consequently40

referring patients for further investigation, was only 44% [8].41

Artificial intelligence (AI) can potentially assist radiologists in early PDAC detection42

by leveraging high amounts of imaging data. Deep learning models, and more specif-43

ically convolutional neural networks (CNNs), are a class of AI algorithms especially44

suited for image analysis and have shown high accuracy in the image-based diagnosis45

of various types of cancer [9–11]. CNNs take the scan as input and automatically extract46

relevant features for the diagnostic task by performing a series of sequential convolution47

and pooling operations.48

Clinically relevant computer-aided diagnostic systems should have the ability to49

both detect the presence of cancer and, in the positive cases, localize the lesion in the50

input image, with minimal to none required user interaction.51

Recently deep learning models have started to be investigated for automatic PDAC52

diagnosis [12–17]. However, most studies perform only binary classification of the53

input image as cancerous or not cancerous, without simultaneous lesion localization.54

Furthermore, the majority of publications do not focus on small, early-stage lesions, with55

only one study reporting the model performance for tumors with size < 2cm [15].56

In this study, we hypothesize that state-of-the-art deep learning architectures can be57

used to detect and localize PDAC lesions accurately, especially regarding the subgroup58

of tumors with size < 2 cm. We propose a fully automatic deep-learning framework that59

takes an abdominal CE-CT scan as input and produces a tumor likelihood score and a60

likelihood map as output. Furthermore, we assess the impact of surrounding anatomy61

integration, which is known to be relevant for clinical diagnosis [7], on the performance62

of the deep-learning models. The framework performance is validated using an external,63

publicly available test set, and the results on the subgroup of tumors with size < 2cm are64

also reported.65

2. Materials and Methods66

2.1. Dataset67

This study was approved by the institutional review board (Radboud University68

Medical Centre, Nijmegen, The Netherlands), and informed consent from individual69

patients was waived due to its retrospective design. CE-CT scans in the portal venous70

phase from 119 patients with pathology-proven PDAC in the pancreatic head (PDAC71

cohort) and 123 patients with normal pancreas (non-PDAC cohort), acquired between72

January 1st, 2013 and June 1st, 2020, were selected for model development.73

Two publicly available abdominal CE-CT datasets containing scans in the portal74

venous phase were combined and used for model testing: (1) "The Medical Segmentation75

Decathlon" dataset (MSD) from Memorial Sloan Kettering Cancer Center (USA), con-76

sisting of 281 patients with pancreatic malignancies [18] , and (2) "The Cancer Imaging77

Archive" dataset from the US National Institutes of Health Clinical Center, containing 8078

patients with normal pancreas [19,20] .79

The size of the tumors was measured from the tumor segmentation as the maximum80

diameter in the axial plane.81

2.2. Image Acquisition and Labeling82

The CE-CT scans were acquired with five scanners (Aquilion One, Toshiba [Tochigi,83

Japan]; Sensation 64 and SOMATOM Definition AS+, Siemens Healthcare [Forchheim,84

Germany]; Brilliance 64, Philips Healthcare [Best, Netherlands]; BrightSpeed, GE Medical85

system, [Milwaukee, WI, USA]). The slice thickness was 1.0–5.0 mm, and image size was86

either 512×512 pixels (232 images) or 1024x1024 pixels (10 images). Images with size87

1024x1024 pixels were resampled to 512x512 prior to inclusion in model development.88
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All images from the PDAC-cohort were manually segmented using ITK-SNAP89

version 3.8.0 by trained medical students, being verified and corrected by an abdominal90

radiologist with 17 years of experience in pancreatic radiology. The annotations included91

the segmentation of the tumor, pancreas parenchyma, and six surrounding relevant92

anatomical structures, namely the surrounding veins (portal vein, superior mesenteric93

vein, and splenic vein), arteries (aorta, superior mesenteric artery, celiac trunk, hepatic94

artery, and splenic artery), pancreatic duct, common bile duct, pancreatic cysts (if present)95

and portomeseneric vein thrombosis (if present).96

2.3. Automatic PDAC Detection Framework97

This study uses a segmentation-oriented approach for automatic PDAC detection98

and localization, where each voxel in the image is assigned either a tumor or non-tumor99

label. The models in the proposed pipeline were developed using the state-of-the-art,100

self-configuring framework for medical segmentation nnUnet [21]. All models employed101

a 3D U-Net [22] as base architecture and were trained for 250,000 training steps with102

5-fold cross-validation.103

Regions of interest (ROIs) around the pancreas were manually extracted for both104

the PDAC and non-PDAC cohorts. An anatomy segmentation network was trained105

to segment the pancreas and the other anatomical structures (refer to the previous106

section), using the extracted ROIs from the scans in the PDAC cohort. This network was107

used to automatically annotate the ROIs from the non-PDAC cohort, which were then108

combined with the manually annotated PDAC cohort to train three different nnUnet109

models for PDAC detection and localization: (1) segmenting only the tumor (nnUnet_T),110

(2) segmenting the tumor and pancreas (nnUnet_TP), (3) segmenting the tumor, pancreas111

and the multiple surrounding anatomical structures (nnUnet_MS). These networks were112

trained with two different initializations and identical 5-fold cross-validation splits,113

originating ten models for each configuration. The cross-entropy (CE) loss function114

was used for the PDAC-detection networks since it has been shown to be more suitable115

for segmentation-oriented detection tasks than the soft DICE+CE loss function, which116

is selected by default in the nnUnet framework [23,24]. Additionally, the full CE-CT117

scans from the PDAC cohort were downsampled to a resolution of 256×256 and used118

to train a low-resolution pancreas segmentation network, which was then employed to119

automatically extract the pancreas ROI from unseen images during inference.120

At inference time, images were downsampled, and the low-resolution pancreas121

segmentation network was used to obtain a coarse segmentation of the pancreas. This122

coarse mask was upsampled back to the original image resolution and dilated with123

a spherical kernel to close any existing gaps. Finally, a fixed margin was applied to124

automatically extract the ROI, which was the input to the previously described PDAC125

detection models. This extraction margin was defined based on the cross-validation126

results obtained with the PDAC cohort so that no relevant information is lost while127

cropping the ROI.128

Each of the PDAC detection models (nnUnet_T, nnUnet_TP and nnUnet_MS) out-129

puts a voxel-level tumor likelihood map, which indicates the regions of the image where130

the network predicts a PDAC lesion and the respective prediction confidence. In the131

case of the nnUnet_TP and nnUnet_MS networks, a segmentation of the pancreas is132

also produced. This segmentation was used in post-processing to reduce false positives133

outside the pancreas by masking the tumor confidence maps so that only the PDAC134

predictions in the pancreas region are maintained.135

After post-processing, candidate PDAC lesions were extracted iteratively from the136

tumor likelihood map by selecting the voxel with maximum predicted likelihood and137

including all connected voxels (in 3D) with at least 40% of this peak likelihood value.138

Then, the candidate lesion was removed from the model prediction, and the process was139

repeated until no candidates remained or a maximum of 5 lesions were extracted. The140
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final output of the framework was a tumor likelihood defined as the maximum value of141

the tumor likelihood map.142

A schematic representation of the inference pipeline from the original image input143

to the final tumor likelihood prediction is shown in Figure 1.144

2.4. Analysis145

Patient-level performance was evaluated using the receiver operating characteristic146

(ROC) curve, while lesion-level performance was evaluated using the free-response147

receiver operating characteristic (FROC) curve. The ROC analysis assesses the model’s148

confidence that a tumor is or is not present by plotting the true positive rate (sensitivity)149

against the false positive rate (1-specificity) at different thresholds for the model out-150

put, defined as the maximum value of the tumor likelihood map. The FROC analysis151

additionally assesses whether the model identified the lesion in the correct location, by152

plotting the true positive rate against the average number of false positives per image, at153

different thresholds for each individual lesion prediction [25,26]. Each candidate lesion154

extracted from the tumor detection likelihood map was represented by the maximum155

confidence value within that lesion candidate, being considered a true positive if the156

Dice similarity coefficient with the ground truth was at least 0.1.157

To compare the three different PDAC-detection configurations, the ten trained158

models for each were applied individually to the test set. A permutation test with159

100,000 iterations was then used to assess statistically significant differences between the160

area under the ROC curve (AUC-ROC) and partial area under the FROC curve (pAUC-161

FROC), which was calculated in the interval of [0.001-5] false positives per patient. A162

confidence level of 97.5% was used to assess statistical significance (with Bonferroni163

correction for multiple comparisons).164

The final performance for each configuration was obtained by ensambling the165

predictions of the ten models.166

Figure 1. Schematic overview of the proposed automatic PDAC detection framework. The first step in the pipeline is to automatically
extract the ROI from the full input CE-CT scan, using the low-resolution pancreas segmentation network. This ROI is then fed to
each of the PDAC detection networks: nnUnet_T, nnUnet_TP and nnUnet_MS. The final tumor likelihood output is derived from the
networks’ tumor detection likelihood maps, which in the case of the nnUnet_TP and nnUnet_MS models is post-processed using the
automatically generated pancreas segmentation.
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3. Results167

The clinical characteristics of the patients in the PDAC cohort are summarized in168

Table 1. For the non-PDAC cohort, the mean age was 52.3±21.4 (years), and there were169

54 female and 69 male patients.170

The performance of the three different PDAC detection network configurations on171

the internal 5-fold cross validation sets are shown in Table 2. At the patient level, the172

nnUnet_MS achieves the best performance, with a AUC-ROC of 0.991. Regarding lesion173

localization performance, the three configurations achieve similar pAUC-FROC, with174

the nnUnet_MS and nnUnet_TP performing slightly better than the nnUnet_T.175

Table 1. Clinical characteristics of the patients in the PDAC cohort. Data are mean±standard
deviation or median (interquartile range). The tumor stages are: I-locally resectable, II-borderline

resectable, III-locally advanced, IV-metastasized.

Age (years) 69.2±8.5
Gender (M/F) 67/52

Tumor Stage (I/II/III/IV) 22/21/47/29
Tumor size (cm) 2.8 (2.3-3.7)

Table 2. Internal 5-fold cross-validation results for each configuration.

Configuration mean AUC-ROC (95%CI) mean pAUC-fROC (95%CI)

nnUnet_T 0.963 (0.914-1.0) 3.855 (3.156-4.553)
nnUnet_TP 0.986 (0.956-1.0) 3.999 (3.252-4.747)
nnUnet_MS 0.991 (0.970-1.0) 3.996 (3.027-4.965)

The mean ROC and FROC curves obtained on the external test set with each176

PDAC detection network configuration are shown in Figure 2, with the respective 95%177

confidence intervals. These curves were calculated using the 10 different trained models178

(2 initialisations with 5 fold cross-validation) for each configuration. The nnUnet_MS179

and nnUnet_TP both achieve AUC-ROC around 0.89, which is significantly higher than180

the nnUnet_T (p = 0.007 and p = 0.009, respectively). At a lesion level, the nnUnet_MS181

achieves a significantly higher pAUC-FROC than both the nnUnet_TP and nnUnet_T182

(p < 10−4).183

Figure 2. Mean ROC and FROC curves with respective confidence intervals for the external test set.
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There were 73 tumors with size < 2 cm in the MSD dataset. Figure 3 shows the184

patient and lesion level results for each configuration on this sub-set of smaller tumors.185

In a patient level, the AUC-ROC decreases in about 0.05 for each configuration, when186

compared to the results obtained on the whole dataset. The nnUnet_MS and nnUnet_TP187

continued to outperform the nnUnet_T, although the differences were not statistically188

significant at a confidence level of 97.5% (p = 0.034 and p = 0.077 respectively). Regard-189

ing lesion-level performance, the pAUC-FROC for the nnUnet_MS was still significantly190

higher than for the nnUnet_TP and nnUnet_T (p < 10−4 and p = 4.8 · 10−4 respectively).191

The results obtained by ensembling the 10 models for each configuration are shown192

in Table 3.193

Figure 3. Mean ROC and FROC curves with respective confidence intervals for the external set considering only the
subgroup of tumors with size < 2cm.

Table 3. Ensemble results for each configuration on the whole test set and the subgroup of tumors
with size < 2 cm.

Subgroup Configuration AUC-ROC pAUC-FROC

Whole Test Dataset
nnUnet_T 0.872 3.031

nnUnet_TP 0.914 3.397
nnUnet_MS 0.909 3.700

Tumors size < 2cm
nnUnet_T 0.831 2.671

nnUnet_TP 0.867 3.289
nnUnet_MS 0.876 3.553

Figure 4 shows an example of the network outputs of nnUnet_TP and nnUnet_MS194

for an isoattenuating lesion in the neck-body of the pancreas. This lesion was missed by195

both the nnUnet_T and nnUnet_TP, but could be correctly identified by the nnUnet_MS196

model.197
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Figure 4. Example of an isoattenuating tumor from the external test set which was
missed by both the nnUnet_T and nnUnet_TP but could be correctly localized by the
nnUnet_MS. (A) slice of the original ROI input; (B) ground truth segmentation of tumor
and pancreas; (C) output of the nnUnet_TP, which in this case is only the pancreas
segmentation as the tumor is not detected; (D) output of the nnUnet_MS, which is the
segmentation of the detected tumor and surrounding anatomy.

4. Discussion198

In this study, the state-of-the-art, self-configuring framework for medical segmenta-199

tion nnUnet [21] was used to develop a fully automatic pipeline for the detection and200

localization of PDAC tumors on CE-CT scans. Furthermore, the impact of integrating201

surrounding anatomy was assessed.202

A significant challenge of applying deep learning to PDAC detection is that the203

pancreas occupies only a small portion of abdominal CE-CT scans, with the lesions204

being an even smaller target within that region. Training and testing the networks with205

full CE-CT scans would be very resource consuming and provide a lot of unnecessary206

information regarding surrounding organs, distracting the model’s attention from the207

pancreatic lesion location. In this way, it is necessary to select a small volume of interest208

around the pancreas, but having expert professionals manually annotate the pancreas209

before running each image through the network requires extra time and resources,210

which would significantly diminish the model’s clinical usefulness. To address this211

issue, the first step in our PDAC detection framework is to automatically extract a212

smaller volume of interest from the full input CE-CT scan by obtaining a coarse pancreas213

segmentation with a low-resolution nnUnet. To the best of our knowledge, this is the214

first study to develop a deep-learning-based fully automatic PDAC detection framework215

and externally validate it on a publicly available test set.216

Previous studies have employed deep CNNs for automatic PDAC detection on217

CT scans [12–17], but only two studies validated their models on an external test set218

[15,16], with one using the publicly available pancreas dataset. Liu and Wu, et al.219

[15] developed a 2D, patch-based deep learning model using the VGG architecture to220

distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue. This approach221

required the prior expert delineation of the pancreas, which was then processed by the222

network in patches that were classified as cancerous or non-cancerous. At a patient level,223

the presence of tumor was then determined based on the proportion of patches that the224

model classified as cancerous. The authors tested this model on the external test set225

and achieved a AUC-ROC of 0.750 (95%CI [0.749-0.752]) for the patch-based classifier,226

and 0.920 (95%CI [0.891-0.948]) for the patient-based classifier [15]. On the sub-group227

of tumors with size < 2 cm, the model achieved a sensitivity of 0.631 (0.502 to 0.747).228
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More recently, Si, et al. [16] developed an end-to-end diagnosis pipeline for pancreatic229

malignancies, achieving an AUC-ROC of 0.871 in an external test set, but validation on230

the public available dataset was not performed.231

Our proposed automatic PDAC detection framework achieved a maximum ROC-232

AUC of 0.914 for the whole external test set and 0.876 for the subgroup of tumors with233

size < 2 cm. This performance is comparable to the current state-of-the-art for this test234

dataset [15], but with the advantage of being obtained automatically from the input235

image, with no user interaction required. Another advantage of our framework is that236

the lesion location is also identified and so the classification outcomes are immediately237

interpretable, since they directly arise from the network’s segmentation of the tumor.238

Moreover, the achieved results set a new baseline performance for fully automatic PDAC239

detection, noticeably improving on the previous best AUC-ROC of 0.871 reported by Si,240

et al.241

To the best of our knowledge, this is the first study to assess the impact of multiple242

surrounding anatomical structures in the performance of deep learning models for243

PDAC detection. Pancreatic lesions often present low contrast and poorly defined244

margins on CE-CT scans, with 5.4-14% of tumors being completely iso-attenuating and245

impossible to differentiate from normal pancreatic tissue [27]. These iso-attenuating246

tumors are identified only by the presence of secondary imaging findings (such as the247

dilation of the pancreatic duct) and are more prevalent in early disease stages [7,27]. In248

clinical practice, surrounding structures such as the pancreatic duct, the common bile249

duct, the surrounding veins (protomesenteric and splenic veins), and arteries (celiac250

trunk, superior mesenteric, common hepatic, and splenic arteries) are essential for PDAC251

diagnosis and local staging [7,27]. However, so far deep-learning models have focused252

only on the tumor and non-cancerous pancreas parenchyma, not taking the diagnostic253

information provided by all surrounding anatomy into account.254

In this framework, the anatomy information was incorporated in the nnUnet_MS255

model, which was trained to segment not only the tumor and pancreas parenchyma but256

also several other relevant anatomical structures. The rationale behind this approach257

was that by learning to differentiate between the different types of tissue present in the258

pancreas volume of interest, the network could learn underlying relationships between259

the structures and consequently better localize the lesions. This network was compared260

to the nnUnet_T, which was trained to segment only the tumor, and the nnUnet_TP,261

trained to segment the tumor and pancreas parenchyma, in order to assess the impact of262

adding surrounding anatomy.263

The results on the external test set show that, at a patient level, there is a clear benefit264

in adding the pancreas parenchyma when compared to training with only the tumor265

segmentation, as both the nnUnet_TP and nnUnet_MS achieved a significantly higher266

AUC-ROC than the nnUnet_T. There were however no differences in the performances267

of the nnUnet_TP and nnUnet_MS networks. Contrastingly, at a lesion-level, there was268

a clear separation between the three FROC curves both on the whole test set and on269

the subgroup of tumors with size<2 cm (Figures 2,3), with the nnUnet_MS achieving270

significantly higher pAUC-FROC than the two other configurations. This shows that the271

addition of surrounding anatomy improves the model’s ability to localize PDAC lesions.272

Figure 4 illustrates the advantage of anatomy integration in the case of an iso-dense273

lesion that is obstructing the pancreatic duct, causing its dilation. Both the nnUnet_T and274

nnUnet_TP models fail to identify this lesion, as there are no visible differences between275

the tumor and healthy pancreas parenchyma. However, the nnUnet_MS can accurately276

detect its location in the pancreatic neck-body following the termination of the dilated277

duct. By providing supervised training to segment the duct and other surrounding278

structures, the neural model can better focus on the remaining regions in the pancreas279

parenchyma, which may explain its ability to detect faint tumors. Furthermore, the multi280

structure segmentation provided by the nnUnet_MS presents useful information to the281

radiologist that can assist the interpretation of the network output regarding the tumor.282
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Despite the promising results, there are two main limitations to this study. First,283

the models were trained with a relatively low number of patients and only included284

tumors in the pancreatic head, which could be holding back the performance on external285

cohorts with heterogeneous imaging data. We are currently working on extending the286

training dataset to incorporate more patients, including tumors in the body and tale of287

the pancreas, in order to mitigate this issue. Second, training the anatomy segmentation288

network requires manual labeling of the different structures, which is resource-intensive.289

To address this problem, we only manually labeled the images from the PDAC-cohort290

and used self-learning to automatically segment the non-PDAC cohort, which could be291

introducing errors in training. Like the previous issue, the solution to this problem is to292

increase the size of the training dataset so that the model can learn better representations293

of the anatomy and consequently perform higher quality automatic annotations.294

5. Conclusions295

This study proposes a fully automatic, deep-learning-based framework that can296

identify whether a patient suffers from PDAC or not and localize the tumor in CE-CT297

scans. The proposed models achieve a maximum AUC of 0.914 in the whole external298

test set and 0.876 for the subgroup of tumors with size < 2 cm, indicating that state299

of the art deep learning models are able to identify small PDAC lesions and could be300

useful at assisting radiologists in early PDAC diagnosis. Moreover, we show that adding301

surrounding anatomy information significantly increases model performance regarding302

lesion localization.303
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