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Simple Summary 

Acute myeloid leukemia (AML) is an aggressive heterogeneous cancer of the blood in which 70% of cases 
develop relapse. Relapse is mainly due to chemoresistant leukemic cells (LCs) that are characterized by high 
mitochondrial oxidative phosphorylation (OxPhos) status, i.e. cells that are dependent on the mitochondrial 
respiratory chain (MRC) function. The aim of our study was to determine whether diphenyleneiodonium 
(DPI), known as a potent inhibitor of flavoproteins, could be used to target AML cells. Herein, we 
demonstrated that DPI disrupts the mitochondrial function of AML cell lines. Interestingly, we found that 
cells with high-OxPhos are more sensitive to the apoptotic effects of DPI. Moreover, we showed that DPI 
sensitizes AML cell lines to cytarabine (Ara-C) treatment, suggesting that MRC inhibitors might be employed 
to target LCs that are resistant to this chemotherapeutic agent. 

Abstract  

Acute myeloid leukaemia (AML) is characterized by the accumulation of undifferentiated blast cells 
in the bone marrow and blood. In most AMLs, relapse frequently occurs due to resistance to 
chemotherapy. Compelling research results indicate that drug resistance in cancer cells is highly 
dependent on the intracellular levels of reactive oxygen species (ROS). Modulating ROS levels is 
therefore a valuable strategy to overcome the chemotherapy resistance of leukemic cells. In this 
study, we evaluated the efficiency of diphenyleneiodonium (DPI), a well-known inhibitor of ROS 
production, in targeting AML cells. Results showed that although inhibiting cytoplasmic ROS 
production, DPI triggered an increase in the mitochondrial ROS levels caused by the disruption of 
the mitochondrial respiratory chain. We also demonstrated that DPI blocks the mitochondrial 
oxidative respiration (OxPhos) in a dose-dependent manner and that AML cells with high OxPhos 
status were highly sensitive to treatment with DPI, which synergizes with the chemotherapeutic 
agent cytarabine (Ara-C). Thus, our results suggest that targeting mitochondrial function by DPI 
might be exploited to target AML cells with high OxPhos status.  
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1. Introduction 

Acute myeloid leukaemia (AML) is a heterogeneous clonal disorder of myeloid progenitors that 
accumulate due to a blockage in their differentiation, leading to death [1]. AML therapy has not much 
changed over the last decades, and more than 70% of AML patients relapse within 3-years after 
therapy [2]. AML relapse is caused by residual populations of quiescent leukemic stem cells (LSCs), 
associated with chemoresistant AML cells that have a high mitochondrial oxidative phosphorylation 
[3,4]. Altered cellular redox status with high reactive oxygen species (ROS) levels is indeed a common 
hallmark of AML cells. Several lines of evidence have indicated that NOX complexes that are major 
contributors of ROS production, including superoxide (O2•-) and hydrogen peroxide (H2O2), are also 
important regulators of AML progression and drug resistance [5,6]. Thus, targeting oxidative 
metabolism in AML has been proposed as a promising therapeutic strategy to eradicate AML cells[7]. 

We recently showed that all components of NOX2, the most prominent NOX complex across AML, 
are highly expressed at both the transcriptional and protein levels. Surprisingly, we did not find 
detectable constitutive NOX activity in 24 leukemic cell lines [8]. In addition, we demonstrated that 
NOX2 silencing neither affected AML cell growth nor triggered cell death in vitro. Adane et al. have 
recently shown that, although silencing of NOX2 induces the differentiation of primary AML cells, 
diphenyleneiodonium (DPI) used to inhibit NOX, did not affect the differentiation but triggered 
apoptosis [9]. While DPI is widely used to prove NOX activity [10], it is a non-specific inhibitor of 
flavoproteins that can impede the activity of nitric oxide synthases (NOS), xanthine oxidases (XOS), 
and complexes I and III of the mitochondrial respiratory chain (MRC) [11-13]. Importantly, DPI has 
been found to trigger the inhibition of the mitochondrial oxidative metabolism (OxPhos) in breast 
cancer cells and to induce a chemo-quiescent phenotype that blocked the propagation of cancer stem 
cells [14]. 

Recently, it has been proposed that drug resistance of AML cells might be dependent on their OxPhos 
status [3]. Hence, we hypothesized that DPI could target OxPhos in AML cells rather than its 
canonical NOX inhibition. Thus, we examined the effects of DPI on oxidative metabolism, 
proliferation and resistance to chemotherapy in various AML cell lines harbouring low and high 
OxPhos phenotypes. 

 

2. Results 

2.1. DPI reduces cytoplasmic ROS, while induces superoxide production 

To study the effect of DPI on AML cells, we used eight AML cell lines, covering M0-M5 FAB stages 
[15] and having no endogenous NOX activity [8]. First, we measured ROS production rate using CM-
H2DCFDA that detects cytoplasmic ROS (cytoROS) production, mainly H2O2, and dihydroethidium 
(DHE) taht detects intracellular superoxide (O2•-). We noticed a high heterogeneity in ROS production 
between the cell lines (Figure 1a). KG-1, HL-60, NB-4, and THP-1 cells clustered together, showing 
concomitant high production rates of O2•- and cytoROS, suggesting steady transformation of O2•- into 
H2O2. Markedly, KG-1a cells (M0), a model of immature AML, derived from KG-1, showed low 
production rates of superoxide (23 RFU/min) and cytoROS (59 RFU/min). This agrees with the idea 
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that more mature cells have higher ROS levels. After treatment with 20 µM DPI, a dose sufficient to 
inhibit flavoproteins, all cell lines showed a substantial increase in O2•- production, while only five of 
them had decreased cytoROS production rates, compared to their respective controls (Figure 1b-c). 
To investigate the origin of O2•- increase following DPI treatment, we measured mitochondrial O2•- 
(mitoROS) production using MitoSOX, a DHE derivative that is specific to mitochondria. At steady 
state, the profile of O2•- production detected by MitoSOX was concordant to that obtained by DHE 
(Figure 1d). Noteworthy, KG-1a cells had the lowest level. Remarkably, DPI treatment triggered a 
strong induction of mitoROS levels in all cell lines (Figure 1e). Although KG-1a cells showed the 
strongest induction (40-fold) with DPI, its increased mitoROS level never reached the baseline levels 
of the other cell lines. Together, these data showed that DPI decreases cytoplasmic ROS production 
but concomitantly triggers an increase in mitochondrial ROS production. 

 

Figure 1. Steady state and DPI-induced ROS production in eight AML cell lines. (a) ROS production rates 
presented as DHE vs. H2CM-DCFDA fluorescence rates. ROS production rate (RFU/min) was calculated from 
the curve’s slope during 1 h using ClarioStar Data Analysis software. (b) Effect of DPI (20 µM) on ROS 
production rate measured by CM-DCFDA fluorescence (n=3). (c) Effect of DPI (20 µM) on ROS production rate 
measured by DHE fluorescence (n=3). DPI data are shown as normalized fluorescence rates with respect to the 
control for each cell line. (d-e) Baseline mitochondrial ROS production measured by MitoSox fluorescence (d). 
and effect of DPI on mitochondrial ROS (e) (n=4). Data are shown as mean values ± SEM. One-sample t-test was 
used to compare normalized rates to 1 (∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). 

2.1. DPI disrupts the mitochondrial membrane potential 

To explain the quick mitoROS burst induced by DPI, we speculated that DPI may have induced an 
oxidative stress by disrupting the mitochondrial respiratory chain (MRC). We thus examined the 
functional impact of DPI on the mitochondrial activity of AML cells by labelling with 
tetramethylrhodamine ethyl ester (TMRE) as a readout to determine the effects on mitochondrial 
membrane potential (ΔΨm). FCCP, a common mitochondrial-depolarizing agent was used as a 
positive control. The basal level of ΔΨm was variable across the cell lines (Figure 2a; control black 
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bars). This variability was mainly due to differences in the mitochondrial mass, as determined by 
Mitotracker Deep Red labelling (Figure 2b and 2c). DPI notably decreased ΔΨm in all cell lines, except 
in KG-1a cells in which ΔΨm was negligible, in accordance with the lowest mitochondrial biomass 
found in this cell line (Figure 2a, b, c). Collectively, these data indicated that DPI triggers O2•- 
production in AML cell lines by inhibiting MRC. 

 

Figure 2. Effect of DPI on mitochondrial membrane potential (ΔΨm). (a) Effect of DPI on ΔΨm was measured 
by TMRE fluorescence. FCCP was used as a positive control (20 uM). (b) Physiological mitochondrial mass in 
indicated AML cell lines was measured by MitoTracker fluorescence. (c) Spearman correlation analysis of ΔΨm 
and mitochondrial mass was measured by TMRE and mitoTracker, respectively, determined in a and b. Dots 
represents cells from independent experiments. Data are shown as mean values ± SEM (n=4). Student’s t-test 
was used to compare treated conditions to controls (∗ p <0.05; ∗∗ p <0.01).  

2.3. DPI disrupts the MRC and alters the energetic metabolism 

To gain insights into the effect of DPI on MRC, we performed bioenergetic analyses of OxPhos 
through the measurement of oxygen consumption rate (OCR) using SeaHorse technology. DPI 
significantly reduced the OCR of six out of the eight cell lines (Figure 3a), and the maximal respiration 
capacity in all cell lines (Figure 3b). To examine the OCR inhibition efficiency of DPI, we calculated 
its IC50 values alongside the standard inhibitors antimycin A and rotenone in three representative 
cell lines (Figure 3c; THP-1 and MV-4-11 with high OCR, and KG-1a with low OCR). Results showed 
that DPI had IC50 values on OCR (0.2 - 1.29 µM) that are in the same range as those of antimycin A 
(0.26 – 0.53 µM) and rotenone (0.55 – 1.22 µM), indicating that DPI is as efficient as current respiratory 
chain inhibitors (Table 1). Finally, to prove that blocking OCR may induce mitoROS, the three cell 
lines were treated either with DPI or a combination of rotenone and antimycin. As expected, all 
inhibitors triggered a similar increase in mitoROS level (Figure 2d). Together, these data indicate that 
DPI blocks MRC in AML cell lines and induces an oxidative burst with a similar efficiency to standard 
inhibitors. 
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Figure 3. Effect of DPI on mitochondrial oxygen consumption rate (OCR). (a) Quantification of the acute effect 
of DPI on the OCR of eight AML cell lines. (b) Quantification of the effect of DPI on maximal respiration of the 
same cell lines. c) Left: schematic representation of the experimental design to measure the OCR IC50 values for 
DPI, rotenone and antimycine A. Right: a representative experiment showing OCR kinetic response of THP-1 
cell line to selected DPI doses (0.2, 2, and 10 µM). Mitochondrial OCR was calculated for each cell line from the 
control condition after injection of a mix of rotenone (0.5 µM) and antimycin A (0.5 µM). Residual mitochondrial 
OCR was deduced from the inhibitor condition after a secondary injection of a mix of rotenone (0.5 µM) and 
antimycin A (0.5 µM). (d) Effect of DPI (20 µM) on mitoROS in the three cell lines in comparison with rotenone 
(0.5 µM)/antimycine (0.5 µM) combination. Data are shown as mean values ± SEM (n=3). In (a), One-sample t-
test was used to compare delta OCR values to 0. In (b) and (d), Student’s t-test was used to compare treated 
conditions to controls (∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). 
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Table 1. IC50 values of mitochondrial OCR for various NOX and respiratory chain inhibitors. 

    Mitochondrial OCR IC50 

    KG1a   THP1   MV-4-11 

Inhibitors   Target   IC50 (µM) 95% CI (µM)   IC50 (µM) 95% CI (µM)   IC50 (µM) 95% CI (µM) 

Rotenone  Complex I  0.55 0.40 to 0.76  1.22 0.83 to 1.80  0.64 0.51 to 0.82 

Antimycin A  Complex III  0.26 0.18 to 0.39  0.53 0.40 to 0.69  0.32 0.24 to 0.42 

DPI  Flavoproteins  0.2 0.13 to 0.30  1.29 0.91 to 1.82  0.78 0.55 to 1.11 

Note: IC50 values (micromolars) are calculated by a nonlinear fit model and shown as estimated value with 95% 
CI. Abbreviations: IC50, 50% inhibitory concentration. CI, confidence interval. 

2.4. DPI reduces cell proliferation and triggers apoptosis 

Since DPI induced oxidative stress by blocking mitochondrial respiration, we examined its impact on 
cell growth and survival. To address the effect of a chronic exposure, we used a low dose of DPI 
(0.2 µM) and followed the proliferation of AML cell lines for three days. The results showed that all 
cell lines exposed to DPI had a significant reduction in their expansion capacity compared to their 
corresponding controls (Figure 4a). Furthermore, to investigate whether reduced expansion resulted 
from proliferation slowdown or cell death induction, we quantified apoptosis at day 3 of culture, 
using Annexin-V and 7-AAD (Figure 4b). Following DPI treatment, most cell lines showed moderate 
to high levels of apoptosis that could partially explain cell growth reduction (Figure 4a-b). NB-4, 
THP-1, and MV-4-11 cells, which showed the highest apoptosis rates (Figure 4b), were also those with 
the highest maximal OCR capacities (Figure 3b). In contrast, KG-1a cells that showed low mitoROS 
and minimal ΔΨm (Figures 1d and 2a) also showed minimal apoptosis (Figure 4b). Together, these 
data suggest that DPI reduces cell growth by inhibiting cell division in an apoptosis-dependent 
manner and that cells with high OxPhos metabolism are more sensitive to DPI-induced apoptosis. 
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Figure 4. Effect of DPI on cell proliferation and apoptosis. Cell growth was assessed using resazurin reduction 
assay at indicated days, following DPI (0.2 µM) treatment. Analysis of apoptosis was performed at day 3 after 
treatment. (a) Growth curves from various conditions for eight AML cell lines. Relative cell growth was 
calculated as resazurin fluorescence fold change compared to control at day 0. Data are shown as mean ± SEM 
(n = 3). Two-way ANOVA was performed for each cell line followed by Tukey’s post hoc analysis. Adjusted p 
values are shown from day 3 comparing DPI condition to DMSO control (∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001). 
(b) Apoptosis in DPI-treated AML cell lines. 7-AAD/Annexin V staining distinguishes between live, early 
apoptotic and late apoptotic cells. Data are shown as mean ± SEM (n = 3 independent experiments). Student’s t-
test was used to compare DPI conditions to their corresponding control counterparts (∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ 
p < 0.001). 

2.4. Effect of combination therapy of DPI and cytarabin on AML cell lines 

Recent findings have suggested that AML cells with high OxPhos are more resistant to therapeutic 
agents [3,4]. Therefore, we investigated whether DPI may synergize with Ara-C to eliminate AML 
cells. To address this issue, we used two representative cell lines, THP-1 and MV-4-11, with high 
OxPhos, and KG-1a, with the lowest OxPhos status. A dose-response matrix was designed to test 35 
different combinations of doses ranging from 0 to 0.5 µM for Ara-C and 0 to 0.4 µM for DPI (Figure 
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5a). Data showed that the combination of DPI and Ara-C had synergistic effect in THP-1 and MV-4-
11 cells (positive Loewe scores) but not in KG-1a (a negative score) (Figure 5a-b). This suggests that 
only the cell lines with high OCR might be sensitized by DPI. 

 

Figure 5. Effect of combination therapy of DPI and Ara-C. (a) 3D interaction landscape showing Loewe’s 
synergy score for the combination of various doses of DPI and Ara-C on growth inhibition of KG-1a, THP-
1 and MV-4-11 cell lines. Synergy score on Z axis corresponds to excess% inhibition beyond the expectation 
by the Loewe additivity equation. This score reflects the percentage of growth inhibition that can be 
attributed to the drug interactions. An average synergy score is shown over the dose-response matrix. Data 
are shown as the average from 3 independent experiments. (b) Barplots showing the effects of DPI (0.1 
µM), Ara-C (0.25 µM) or their combination on cell growth, as compared to control. Data are shown as mean 
values ± SEM (n = 3). Student’s t-test followed by BH adjustment was used for pairwise comparisons (* p 
< 0.05; ** p < 0.01). 

 

3. Discussion 

This study aimed to understand the mode of action of DPI in AML cell lines. We demonstrated that 
DPI, although inhibiting cytoplasmic ROS production, disrupts MRC, increases mitochondrial ROS 
production, and triggers the apoptosis of AML cell lines, especially those with a high-OxPhos status. 
In addition, we showed that DPI synergizes with Ara-C in eliminating high-OxPhos AML cells 
preferentially. 
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First, we showed that DPI reduces cytoROS production in five of the eight tested cell lines. This 
decrease was previously shown in three leukemic cell lines (KU-812, MOLM-13 and HEL) treated 
with DPI [16]. DPI had also been found to reduce the cytoROS production, thereby impacting the 
proliferation of prostate cancer cells [17]. Moreover, our results showed that DPI can inhibit the 
mitochondrial respiration, induce a rise in mitoROS level and induce apoptosis. This is in line with 
the data showing that DPI induces cell cycle arrest and decreases the mitochondrial potential of 
prostate cancer cell lines [18]. Furthermore, Ozsvari et al. demonstrated that the treatment of breast 
cancer cell lines with DPI inhibited mitochondrial oxidative metabolism (OxPhos), thereby reducing 
mitochondrial ATP production by more than 90% [14]. However, DPI did not trigger the production 
of mitochondrial ROS in these cells, which could be explained by the use of a very low dose (10 nM). 
Collectively, these data showed that DPI can efficiently inhibit mitochondrial respiration in different 
types of cancer cells even at very low doses. 

Our data indicated that DPI can readily impede the mitochondrial respiration in OxPhos-high AML 
cells, independently of NOX inhibition, causing a strong burst of superoxide production. Moreover, 
we recently reported that another NOX inhibitor, VAS3947, induces the apoptosis of AML cells 
through cysteine thiol alkylation, independently of NOX inhibition [19]. Several studies indicated 
that NOX complexes are important regulators of AML progression and drug resistance [9,20-25], but 
many of these have used non-specific inhibitors, including DPI and VAS3947, to prove NOX activity 
or to study the functional impact of NOX inhibition on leukemic cells. Our findings suggest that the 
use of such inhibitors to study the role of NOX in oxidative metabolism can be misleading and 
highlight the need to develop more specific NOX inhibitors. 

We showed for the first time that DPI acts synergistically with Ara-C to induce apoptosis in AML 
cells having a high-OxPhos metabolism (THP-1 and MV-4-11), but not in low-OxPhos cells (KG-1a). 
The combined treatment of DPI with FLT3-ITD inhibitors, midostaurin or sorafenib, has been found 
to synergistically inhibit the proliferation of AML cell lines harbouring FLT3-ITD, and its 
combination with the tyrosine kinase inhibitor imatinib has been showed to synergistically increase 
apoptosis in chronic myeloid leukemia (CML) cells in vivo [25]. Remarkably, the authors have 
demonstrated that the viability of healthy CD34-positive cells has not been affected by DPI, 
suggesting that this compound might be safely used in the treatment of myeloid leukaemias. Recent 
reports revealed that chemoresistance and relapse may arise from cells bearing high-OxPhos 
metabolism [3,4]. Notably, Ara-C resistant AML populations exhibit metabolic characteristics and 
gene signatures compatible with a high-OxPhos status [3]. In these cells, targeting the mitochondrial 
metabolism induced an energetic shift towards low-OxPhos and enhanced anti-leukaemic effects of 
Ara-C [3]. Altogether, these data support our findings that targeting the high-OxPhos status of AML 
cells might help to overcome the resistance to chemotherapy. 

In summary, this work reports that DPI antileukemic activity is caused by the inhibition of MRC and 
OxPhos disruption. We also found that DPI can synergize with Ara-C in targeting high-OxPhos AML 
cells. Thus, our data pave the development of therapies that specifically target mitochondrial 
respiration in myeloid leukaemias in the future. 
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4. Materials and Methods  

4.1. Cell lines and culture 

Human myeloid leukaemia cell lines (KG-1a, KG-1, HL-60, NB-4, ML-2, THP-1, MV-4-11, U-937) were 
purchased from DSMZ (German Collection of Microorganisms & Cell Cultures, Braunschweig, 
Germany). Cells were cultured in RPMI media (Life Technologies, Villebon-sur-Yvette, France) 
supplemented with 10 % heat-inactivated fetal bovine serum (FBS, Life Technologies), 2 mM L-
glutamine (Life Technologies), 100 U/mL penicillin (Sigma-Aldrich, Saint-Quentin-Fallavier, France) 
and 100 µg/mL streptomycin (Boehringer-Mannheim, Meylan, France) at 37°C in fully humidified air 
and 5% CO2. For all experiments, cells were harvested from culture while in their exponential growth 
phase. 

4.2. ROS measurement 

4.2.1. Fluorometric assay(CM-DCFDA and DHE) 

Cells were washed with PBS and seeded in a 96-well plate at 2.105 cells per well in a 200 µL reaction 
volume in the presence or absence of DPI (20 µM) (Sigma-Aldrich, Saint-Quentin-Fallavier, France). 
DMSO was used as vehicle control. Cytoplasmic ROS and intracellular superoxide productions were 
detected by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-DCFDA) (Life 
Technologies) or Dihydroethidium (DHE) (Invitrogen, Villebon sur Yvette, France), respectively, 
each with a concentration of 5 µM per well. ROS production was measured kinetically for CM-
DCFDA (λex = 483-14 nm, λem = 530-30 nm) and DHE (λex = 490-15 nm, λem = 600-20 nm) every minute 
for 1 h at 37°C using a ClarioStar plate reader (BMG Labtech, Champigny-sur-Marne, France). ROS 
production rate (RFU/min) was calculated via the ClarioStar Data Analysis software using the slope 
of the curve at steady state. 

4.2.2. Flow cytometry assay (MitoSOX) 

Cells were washed with PBS and resuspended at 1.105 cells in 100 µL reaction volume in the presence 
or absence of DPI (20 µM). DMSO was used as vehicle control. Mitochondrial superoxide production 
was measured using MitoSOX (Life Technologies), which was added at 5 µM per condition. The 
samples were incubated in the dark for 30 min at 37°C prior to fluorescence measurement on a C6 
Accuri® flow cytometer (Becton Dickinson, Le Pont de Claix, France). Data were analysed using 
FlowJo® software (Becton Dickinson). 

4.3. Mitochondrial function measurement 

4.3.1. Mitochondrial mass  

The relative quantification of mitochondrial mass was evaluated using the fluorescent probe 
MitoTracker Deep Red (Invitrogen) according to the supplier’s instructions. Briefly, cells (1.105) were 
harvested from culture and then stained with MitoTracker (50 nM) in 200 µL of fresh RPMI media 
without FBS for 30 min at 37°C in the dark. Cells were then washed in warm PBS and fluorescence 
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intensity was measured by flow cytometry on C6 Accuri® flow cytometer. DMSO was used as a 
vehicle control. FlowJo® Software® was used for data analysis. 

4.3.2. Mitochondrial membrane potential 

Mitochondrial membrane potential (ΔΨm) was assessed using the fluorescent probe tetramethyl-
rhodamine ethyl ester (TMRE; Invitrogen). A total of 1.105 cells were resuspended in fresh RPMI 
media supplemented with 10% FBS and stained with TMRE (100 nM) in presence or absence of DPI 
(20 µM) in 200 µL for 30 min at 37°C in the dark. Cells were then washed in warm PBS and 
fluorescence intensity was measured by flow cytometry on C6 Accuri® flow cytometer. FCCP 
(20 µM) (Selleckchem Houston, USA) was used as positive control and DMSO was used as vehicle 
control. FlowJo® Software® was used for data analysis. 

4.4. Mitochondrial respiration 

Oxygen consumption rate (OCR) was quantified using a Seahorse XFe96 Analyzer (Agilent 
Technologies), as described previously with slight modifications [26]. Briefly, cells were plated at 
1.105 cells per well in XF96 (Agilent) cell culture plates. OCR measurements were carried in a 
substrate-free base medium supplemented with 2 mM glutamine (Gibco, Carlsba, CA, USA) and 
10 mM glucose (Sigma-Aldrich). The OCR values are presented as pmoles/min/105 cells. Sequential 
injections of DPI (20 µM; Sigma) or vehicle DMSO, oligomycin (1 µM; Sigma), DNP (100 µM), and 
rotenone/antimycin A (0.5 µM; Sigma) were used to determine the main respiratory parameters, in 
particular the acute response to DPI and the impact of the latter on maximal respiration. A modified 
strategy was used to calculate IC50 values for DPI, rotenone and antimycine A, as described in Figure 
2d. The effect of DPI, or standard inhibitors, concentrations on the OCR variation were compared 
with the effect of the rotenone antimycin A mix, used as a positive control for inhibition of the 
respiratory chain. This allowed to define the IC50 of the respiratory activity for each compound. 

4.5. Apoptosis assay 

Cells were cultured alone or in the presence of DPI (0.2 µM). Three days following drug addition, 
cells were harvested and washed with cold PBS and then resuspended in Annexin V Binding Buffer 
(BioLegend, London, UK). Next, the cells were stained with APC-conjugated Annexin V (BioLegend) 
and 7-AAD (Sigma-Aldrich) according to BioLegend’s instructions and then analysed using C6 
Accuri® flow cytometer and FlowJo® software. 

4.7. Drug combination assay 

Cells were seeded in 160 µL media at a density of 4x103 cells/well and incubated overnight at 37°C. 
They were then exposed to various concentrations of DPI and Cytarabine (Ara-C) (Sandoz France 

Levallois-Perret, France) in a final volume of 200 µL. Proliferation assay was followed after 72 h of 
treatment through resazurin fluorescence assay. Resazurin (0.1 mg/mL) was added at 20 µL/well and 
incubated for 4 h at 37°C in the dark, then fluorescence was (λex = 529.5-19 nm, λem = 582-36 nm) 
measured using ClarioStar microplate reader. Synergy analyses was done in R environment using 
the Synergyfinder package [27]. 
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5. Conclusions 

This work 1) demonstrates that DPI affects AML proliferation in absence of NOX activity, 2) confirms 
its inhibitory effect on MRC, and 3) shows that combining conventional chemotherapy with a MRC 
inhibitor may help to eradicate the chemotherapy resistance of leukemic cells. 
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