Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

Article

Evaluation and Testing Platform for Automotive LiDAR

Sensors

Tiago Gomes

Joao L. Monteiro

* Ricardo Roriz

1,

t{, Luis Cunha *{), Andreas Ganal ?, Narciso Soares 2, Teresa Aratjo 2, and

Centro ALGORITMI, Universidade do Minho, Portugal; {mr.gomes, ricardo.roriz, luis.cunha,
joao.monteiro}@dei.uminho.pt

Bosch Car Multimedia Portugal S.A., Automotive Electronics Division; {andreas.ganal, narciso.soares,
teresa.araujo}@pt.bosch.com

* Correspondence: mr.gomes@dei.uminho.pt; Tel.: +351-253510180 (T.G.)

1t Current address: Centro ALGORITMLI, Escola de Engenharia - Universidade do Minho, 4800-058
Guimaraes, Portugal

Abstract: The world is facing a great technological transformation towards full autonomous
vehicles, where optimists predict that by 2030, autonomous vehicles will be sufficiently reliable,
affordable and common to displace most human driving. To cope with these trends, reliable
perception systems must enable vehicles to hear and see all the surroundings, being light detection
and ranging (LiDAR) sensors a key instrument for recreating a 3D visualization of the world in real
time. However, perception systems must rely in accurate measurements of the environment. Thus,
sensors must be calibrated and benchmarked before being placed on the market or assembled in
a car. This article presents an Evaluation and Testing Platform for Automotive LiDAR sensors
with the main goal of testing not only commercially available sensors, but also sensor prototypes
currently under development in Bosch Automotive Electronics division. The testing system
can benchmark any LiDAR sensor under different conditions, recreating the expected driving
environment to which such devices are normally subjected. To characterize and validate the sensor
under test, the platform evaluates several parameters such as the field of view (FoV), angular
resolution, sensor’s range, etc. This project results from a partnership between the University of
Minho and Bosch Car Multimedia Portugal, S.A.

Keywords: autonomous driving; LiDAR; perception systems; evaluation and testing.

1. Introduction

The world is undergoing an unprecedented technological transformation, where
vehicles and autonomous driving systems are evolving at a breathtaking pace [1-4].
Optimistic predictions claim that by 2030, autonomous vehicles will be sufficiently
reliable, affordable and common to displace most human driving, providing huge
savings and benefits [5]. However, most of the vehicles in our roads today are still
manually controlled, and to achieve full driving autonomy they must evolve through
different levels of driving automation, as defined by the American Society of Automotive
Engineers (SAE) [6]. While levels 0 - No Driving Automation, 1 - Driver Assistance, and
2 - Partial Driving Automation, still require the human driver to monitor the driving
environment; with levels 3 - Conditional Automation, 4 - High Automation, and 5 - Full
Automation, the automated system can autonomously monitor and navigate the driving
environment.

Current level-2 vehicles are provided with advanced driver-assistance systems
(ADAS), which can help the driver in several decisions upon situations that may com-
promise the safety of all occupants, assist in different parking tasks, provide traffic alerts,
promote collision avoidance with other vehicles and objects, etc. Nonetheless, to cope

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0000-0000-000X
https://orcid.org/0000-0000-0000-000X
https://orcid.org/0000-0000-0000-000X
https://orcid.org/0000-0000-0000-000X
https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

20f16

with these revolutionary trends, new solutions at the sensor level must be created to
enable vehicles the ability to hear and see the surrounding environment. An autonomous
vehicle requires reliable sensors to recreate an accurate mapping of the surroundings,
which is only possible with multi-sensor perception systems relying on a combination of
Radar, Cameras, and light detection and ranging (LiDAR) sensors [7-10], as illustrated
in Figure 1. Radar sensors can provide (1) cross-traffic alerts, Blind Spot Assist features,
and (2) Adaptive Cruise Control; the LiDAR sensor can be used to (3) translate the
physical world into a 3D representation, achieving several distances with high levels
of accuracy and precision; and Camera vision systems can help in features such as (4)
object detection and classification, and (5) collision avoidance.

Figure 1. Perception system of a car.

LiDAR sensors are emerging as the state-of-the-art technology that must be manda-
tory on a perception system, since it enables a true 3D visualization of the surroundings
through a point cloud representation in real time [11-13]. Accurate and precise measure-
ments of the surroundings with a LIDAR can assist the perception systems in several
tasks [9], e.g., obstacles, objects, and vehicles detection [14-16]; pedestrians recognition
and tracking [17,18]; ground segmentation for road filtering [19]; among others [20].
The advances around LiDAR keep improving its measuring and imaging architectures
[12,21,22]. Nonetheless, the measurements and the 3D point cloud of a LiDAR sen-
sor can always be corrupted by several noise sources, e.g., internal components [23],
mutual interference [24,25], reflectivity issues [26], light [11], adverse weather condi-
tions [10,27,28], and others [29], making compulsory to test and analyze all sensor’s
characteristics before being placed on the market or assembled in a car.

This article presents an Evaluation and Testing Platform for Automotive LIDAR
Sensors. The main goal of the testing platform is to test not only commercially available
sensors, but also sensor prototypes that are under development in the Automotive
Electronics division of Bosch Car Multimedia Portugal, S.A. The testing system is able
to benchmark any LiDAR sensor under under real situations, created on a simula-
tion/emulation environment, to recreate the expected driving conditions to which such
devices are normally subjected. These conditions can be related to disturbances caused
by different targets with different materials, compositions, reflectiveness, geometry,
environmental and noise conditions, among others. In order to characterize and validate
the sensor under test, the testing platform evaluates several parameters such as the field
of view (FoV), angular resolution, sensor’s range, etc. This article contributes to the state
of the art with:

1) an evaluation and testing platform for testing several parameters of a LIDAR
sensor for automotive applications;

2) a point cloud filter-based approach to evaluate several characteristics of a LIDAR
sensor at the reception level;

3) a desktop and an embedded approach for deploying the testing platform soft-
ware;

4) and the validation of the platform with the test and evaluation of a commercial
off-the-shelf (COTS) LiDAR sensor.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

30f16

2. LiDAR Sensors for Automotive

= A

Backscattered }‘
Signal

Receiver

Signal Photo Optical
processing sensor System

_ LIDAR Sensor je--smresemmemeans-oeemmrnnoen e - Target

Figure 2. LIDAR Working Principle.

In a high-level overview, a LIDAR system is composed of two main components,
a light Emitter (laser) and a Receiver (light detector), as depicted in Figure 2. The
laser emits short light pulses with a well-defined time interval (few to several hundred
nanoseconds), and with specific spectral properties into the optical steering system. By
regulating mirror’s angles, the system controls the direction of the light vertically and
horizontally, providing multiple angle detection with just a single beam. Additionally,
the optical properties of the beam can be changed by the lens system in order to achieve
better performance ratios, e.g., with signal modulation schemes [22,30]. After reflecting
into an object, the signal is reflected back to the sensor and the receiver collects the
photons and it is followed by a system that, depending on the application, filters and
selects specific wavelengths or polarization. The receiver system is also responsible to
convert the optical signal into an electrical one and its intensity stored in a computing
unit. The collected values are related to the photons time of travel and, consequently, the
distance to the obstacle can be calculated. Within an automotive application, the main
characteristics of a LIDAR sensor to be considered to include in the LiDAR testing and
evaluation platform are: (1) horizontal and vertical field of view (FoV); (2) horizontal
and vertical angular resolution (AR); (3) the influence of external illumination; (4) power
consumption; and (5) sensor’s minimum and maximum ranges. Such parameters are
described as follows:

¢ The Field of View is one of the metrics that particularly defines the maximum angle
a LiDAR sensor is able to detect objects, as shown in Figure 3. When two scanning
angles are available, the sensor can scan over a 3D area defined by the Vertical
FoV (VFoV) and the Horizontal FoV (HFoV). This test is designed to identify the
maximum detection angles of the sensor to validate its defined values.

* The Angular Resolution defines the sensor’s ability to better scan and detect objects
within the FoV, as depicted in Figure 4. Higher resolutions allow for smaller blind
spots between laser firings, enabling the detection of small objects and greater
detail of the environment, particularly at higher detection ranges. Thus, this test is
designed to identify the sensors angular resolution, both vertically and horizontally,
in different areas of the FoV, verifying if the collected values match the requirements
or sensor’s characteristics defined by the manufacturer.

Figure 3. LiDAR horizontal and vertical FoV. Figure 4. LiDAR horizontal and vertical AR.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

40f16

e Background light & Sunlight can have a severe impact on the sensor’s behaviour.
In real-world environments, LIDAR sensors can substantially decrease their per-
formance when exposed to external light interference such as the sunlight back-
scattering in targets with high reflectivity characteristics. Removing such light noise
can be particularly challenging due to solar radiation being a powerful light source
present in a wide range of wavelengths [31]. Therefore, it is important to evaluate
the sensor’s output when exposed to background light in a controlled environment.

* The Power Consumption test aims at monitoring and analyzing the power con-
sumption of the device under test (DUT) in different operation modes, configured
parameters, and environment/target conditions.

* The Range can be defined as the minimum and the maximum distances in which
the sensor successfully detects an object. While detecting the minimum range can be
quite simple, finding the maximum range is not straightforward. This is dependent
on the reflectivity of the target, which is considered detected when it appears in at
least 90% (Detection Probability) of the measured frames in the point cloud. With a
target reflectivity higher than 40-50%, detecting the maximum range in a straight
line inside our testing laboratory (max. range of 100 meters) would be impossible
for high-range sensors. However, by using the relationship between the returning
signal strength from a specific target with a known reflectivity and the distance to
the target, the maximum range for higher reflective targets can be deduced from
the measurements performed with lower reflectivity ones. This method is based
on the signal power arriving at the LIDAR detector as defined by the Equation 1,
where A is a constant, Ry, is the target’s reflectivity, and 7, is the target’s distance.

P, sig — % 1
lab

If the required minimum level for the returning signal remains the same regardless
the target’s reflectivity, the maximum distance (for any reflectivity value) can be
calculated with the Equation 2, where Rg;y, is the target reflectivity to be simulated,
and 7y, is the corresponding target distance calculated for the new reflectivity level.
To reduce errors in the estimations, several measurements for the maximum range
must be done, e.g., targets with reflectivities of 10%, 20%, and 40%.

2
- Rsimrlab
sitm —
Riap

@

3. LiDAR Evaluation and Testing

The Evaluation and Testing Platform for Automotive LiDAR Sensors aims at de-
signing and developing a test-bench for LiDAR sensors (commercially available and
Bosch prototypes currently under development) that is able to characterize and test
the main parameters previously described in Section 2. Such tests are being performed
inside two Bosch locations: (1) the Optical Lab (range up to 23 meters) and (2) the Long
Range Measurements lab (range up to 100 meters).

3.1. System Architecture

The Optical Lab is composed of a set of equipment used to perform the desired
tests. For the FoV, AR, and short-range measurements, we use a customized rail system
and goniometric rotation system (RotGon) composed of a URS150BPP Rotation Stage
and an M-BGM200BPP Goniometer from Newport. Regarding the power consumption,
we use a direct current (DC) power analyzer (the N6705C 4 channel station), while
for the external illumination influence we use an independent setup, which is further
explained. Except for the backlight interference test, the testing and evaluation platform,

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

50f16

Processing System

RotGon
Desktop m C—
(Intel Xeon E3-1270v6] DDR4 32GB -
Processing System (PS) 64bit
512 GB - SSD
[NVidia Quadro P2000] 178 - HDD LiDAR Sensor
Graphic Card Memory m n

Embedded System
00

[Quad-core ARM® Cortex™-s3 | o000
Rail System

Processing System (PS)

SD-Card Slot -
[xitinx 16nm FinFET+ chip | 16Gb

Logic (PL) - FPGA Memory '

Power Supply

Figure 5. System Architecture.

whose architecture is depicted by Figure 5, connects all the equipment within a Robot
Operating System (ROS) environment. All the processing tasks are distributed between a
workstation and an embedded platform with acceleration capabilities through available
field-programmable gate array (FPGA) technology. They both assure the complete
system’s functionality, allowing the laboratory to perform tests with either one of the
systems alone or by both at the same time. The latter approach would also enable
redundancy capabilities into the testing system.

The workstation is a great solution for developing the testing algorithms and other
compute-intensive software tasks without concerning about the hardware resources. It
is composed of a powerful desktop processor, a high-performance graphics card, and
32 gigabytes of ramdom-access memory (RAM). Within the workstation, some tasks,
due to their heavy processing requirements, can either be performed by the available
processing units or even by the combination of processors and the graphics card. Despite
this solution, and having in mind the minimal setup and hardware resources, the testing
sequences and algorithms are also supported by an embedded system built upon the
Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC (available in the ZCU104 Evaluation
Kit). This MPSoC features a processing system (PS) that includes a quad-core Arm
Cortex-A53 application processor, a dual-core Cortex-R5 real-time processor, a Mali-400
MP2 graphics processing unit, a 4KP60 capable H.264/H.265 video codec, programmable
logic (PL) with FPGA technology, and 2GB of DDR4 memory. The embedded system
allows exploring the available FPGA for accelerating heavy processing tasks, which
can help in mitigating the overall processor’s workload and avoid the utilization of the
workstation. This can be useful in tests that require moving equipment. For the purpose
of this article, all implementations were performed only on the workstation.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

6 of 16

3.2. Lab Equipment

Figure 6. Evaluation and testing platform with the goniometric rotation system, a LIDAR sensor,
and the rail system.

RotGon: The RotGon enables tilting /rotating the LiDAR sensors in three distinct angles.
The rotation stage allows a continuous motion of 360° with a maximum speed of 40°/s
and a resolution of 0.2 mdeg. The goniometer allows an angular range between -45° and
45° and features a worm mounted rotary encoder for improved accuracy and repeatabil-
ity. Having a high precision, the RotGon is highly important for the measurement of the
AR and the FoV.

Rail System: The rail system was designed to enable movements of a base that can
handle weights up to 30 kg and that can be programmed by external communication. On
top of the base, there will be targets of different reflectivity installed. The rail system’s
structure has a length of 25 meters and it is installed inside the laboratory. Figure 6 depicts
the rail system with the LiDAR sensor installed on top of the RotGon (left side), and the
moving platform with a mounted target at the end of the rail structure (right side). The
rail system allows to control the velocity and the acceleration/deceleration of the moving
target with given values in mm/s for velocity and + mm/s? for acceleration/deceleration.
Prior to its utilization, the rail system was calibrated with a rangefinder equipment that
was used for measuring several distances to a target with 95% reflectivity mounted
on the rail system. The measurements were used as reference values for the internal
position detector sensor.

Power Supply: This equipment is used to power and monitor the power consumption
of the LiDAR sensor under test. The power supply used in the evaluation and testing
platform is the N6705C DC Power Analyzer, which includes 4 independent channels
that can be used to power and monitor 4 different connected modules. The voltage and
current levels for each channel can be changed in real-time, allowing to further test the
sensor’s behaviour under different power source conditions.

External illumination influence (background & sunlight): This setup enables to test the
influence of the external illumination by artificially changing the target’s background
light conditions. The main concept for this test is illustrated in Figure 7a. Its implemen-
tation, as depicted in Figure 7b, consists of four lamps attached to a metal frame (with
a dimension of 50x50cm), which illuminate the target from four different positions to
achieve a non-homogeneity of less than 10% in the center of the target. Considering that
the frame is a two-dimensional plane, the lamps are placed on the center of each edge
of the frame. The lamps used are the MAGIS 650 W Quartz-Halogen Fresnel Spotlight,
based on a tungsten-quartz-halogen filament that can deliver 650W of power and allow
the change of light divergence. Finally, to regulate the power applied to the target, a
combination of different neutral density (ND) filters can be used in front of each lamp.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

7 of 16

Lamp 3

MAGIS 650 W Lamp . . » Frame Structure
Ref. (0,0,0)
Lamp 2 : Lamp 1
> Target 5%’:&“
DUT
. @ Beam Divergence Control

Lamp 4 ND Filter in front of the Lamp

(a) Main concept. (b) Frame with 4 MAGIS 650W spotlights.

Figure 7. Setup for the background light influence test.

3.3. ROS Software Architecture

The system’s software stack is based on a ROS environment on top of a Linux
operating system (OS), both supported by the embedded system and the workstation.
Despite each distribution being different for each platform (due to the hardware re-
sources asymmetry, processor architectures, etc.), the combination of Linux and ROS
creates the required abstraction layer to develop software packages regardless their
target platform. Alongside the required ROS core components, our software architecture
is composed of eight software packages, as depicted by Figure 8.

oV rercnn)V aaitcoctam) porore 1 sorits croct N Sorear)/ = N7 e
. Launch || RotGon || Railsystem || Powersupply | Sanity Check Sensor Target Detection Tests ! g Iy
! files driver . o I
ool oo oallbic oo odlc oo oo odbe s ool o e Alb oo s o o o e o ! e o oo oo h =z
e Tt LoooooqiesssssSlrssssss sl eSSl oo oo oo oo D00 D oo e
q - change_euclidean_filter h
-move_r_to; ||~ ’"°V_9_t°: - power_cycle; - check_live_nodes; _parameters; - start_fov_test; || g i
I - move_r0_to; ||- Stop; i - power_off; - powersupply_test; " change_clustering - change_rotgon |I & 1
1 -move_g_to; ||-restart; X - power_on - railsystem_test; Sensor _parameters; _offsets 1 E "
1 - power; fSsetiorere) - rotgon_test; dependent || "change_fov_filter [
f - go_home -jog_plus; - complete_test _parameters; " ® 1
{ -Jog_minus - change_fov_filter_state;] jll
I - status; - state; - voltage; - distance_filtered_point ! L
1 - position - isReady; - current Sensor | |-Cloudi 'on
. errors; dorsort || clustered_point_cloud; (-
- position ependent || target_detected;)
y - fov_filtered_point_cloud; I = n
Pooodlooo oo locococodboooocadificcocooocallccco oo cccdo oo --
\ AN AN AN AN AN A
1 O,
[ROS Enviroment J' o,
e
=)
A A n
Linux Operating System o
Embedded System Desktop System %

Figure 8. Software stack overview.

Launch files package: This package was developed to ease the system’s launch with the
correct testing setup. It allows flexible debug sessions with different LIDAR sensors,
different sensor configurations, and several system setups where one or more compo-
nents, e.g., RotGon, railsystem, may not be used. This package only presents launch files
without services or topics available.

RotGon package: The RotGon component enables tilting /rotating the LiDAR sensors
in three distinct angles. Therefore, this package provides three services (one for each
axis), to move the sensor to the desired position/angle: move_r_to, move_r0_to, and
move_g_to. Additionally, it provides a self-reset service, go_home, that moves all axis
to the 0° degrees position, and a service, power, to turn the power on and off. This
package publishes information into two topics: one to display the current RotGon status
regarding errors, status, and another to output the current angle position in real-time,
position.

Railsystem package: This package is responsible for moving the target across the sen-
sor’s FoV. Therefore, it provides two services: one to send the target to a desired position,
move_to, and another to move the target at a constant speed and acceleration (jog_plus

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

8 of 16

for moving the target away from the sensor, and jog_minus for moving the target to-
wards the sensor) until the service stop is called. Two more services are available to
control the system regarding errors, reset_errors, and communication issues, restart.
Like RotGon, this package has two topics, state and position, to publish information
about the testing equipment status and current position.

Powersupply package: The Powersupply package is responsible for controlling the
sensor’s power source. It provides three services to individually control each channel:
one for turning on the power source, power_on, one for turning off the power source,
power_off, and another one for resetting the power supply, power_cycle. It can also set
different voltage and current values, providing their real-time measurements present in
the channel that is powering the sensor.

Sanity Check package: This package consists of a set of tools used to verify the full
operation of the main system that are going to be used for testing a sensor, i.e., the rail
system, the RotGon, and the power supply. It provides one service to individually test
each core component, <equipment>_test, one that tests the connectivity with the nodes,
check_live_nodes, and another that sequentially tests all the setup.

Sensor driver package: The sensor driver package is dependent on the sensor that
is currently under test. Since most manufacturers provide a ROS-based driver with
standard point cloud topics and services/launch files to interface their LIDAR sensors,
the evaluation and testing platform can support a broad number of sensor drivers.
Nonetheless, this package has to be manually installed and configured before changing
the test configuration and the sensor.

Target detection package: This package is required for tests that depend on the target’s
visibility inside the sensor’s FoV and consequently visible in the point cloud. It supports
a set of services that are used to enable and configure several filters applied to the
point cloud, such as target’s distance, software-based FoV, etc. Such filters are further
explained in the next Section. This service can output several topics with the filtered
point clouds (one per filter), and one topic that continuously informs if the target is
inside the sensor’s FoV (target_detected).

Tests package: The Tests package contains the supported tests for the evaluation and
testing platform that require the utilization of at least one of the equipment mentioned
above. For each test, e.g., FoV and AR, a service is used to trigger the automated
execution of the whole procedure. During the test, all the test outputs are saved in a
ROS log file.

4. System Implementation

For the sake of simplicity, this Section only describes the software-based filters that
can be applied to a point cloud, and the approaches used to calculate the FoV and the
AR. The remaining tests, e.g., sensor’s range, point cloud acquisition (with and without
background illumination), are left aside of this article.

4.1. Point Cloud filtering for target detection

The evaluation and testing platform aims at supporting any COTS LiDAR sensor
and Bosch prototypes under development. Regarding the supported tests, e.g., FoV,
detecting targets can be challenging since not all sensors provide the point’s intensity
values along with the points coordinates information. Therefore, and in order to support
all sensors’ outputs, we have created a set of filters that can be used to detect targets
without relying on the point’s intensity values, such as a distance and a clustering filter.

Distance filter (DF): Since the target is placed at a well-known distance from the sensor,
the output of this filter is a new point cloud (published to the filtered_point_cloud topic)
containing points that are at this distance + a threshold value (used to avoid removing

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

9o0f 16

(a) Distance filter applied. (b) Distance filter and euclidean (c) Distance filter and euclidean

clustering applied. clustering applied and tuned.
Figure 9. Target detection steps.

points that actually belong to the target). The result from applying the distance filter is
shown in Figure 9a. This procedure not only removes undesired points, but also helps in
reducing the computational costs of the subsequent tasks.

Cluster filter (CF): The cluster filter algorithm groups the points present in the point
cloud and evaluates if the target is within the clusters created. Since the target’s distance,
size, and sensor’s resolution can have an effect on the clustering results, this algorithm
must be tuned afterwards. Figure 9b depicts the output of the CF without tuning its
parameters, where two clusters were identified, as represented by the yellow and the
red points. The points present inside the yellow cluster result from points that are at
the same distance as the target, which must be removed on the next step. To detect if
the resulting clusters represent the target, an euclidean clustering filter is applied. Since
the point density within the target’s cluster is higher than in other objects at the same
distance, this filter analyzes the neighbour points of each point within a defined search
radius R1. If a neighbor point is inside this search radius R1, it belongs to the same
cluster and it is kept on the point cloud. Otherwise, it is removed. This task is performed
by resorting to the method EuclideanClusterExtraction.extract present in the point cloud
library (PCL) [32]. The parameters used to configure this method are:

e Cluster Tolerance: Defines the search radius R1. If the chosen value is to small, the
same target can be divided into multiple clusters. On the other hand, if this value
is to high, multiple objects can be set as just one cluster. This parameter allows an
interval value between 0.01 and 1 meter.

* Minimum Cluster Size: This parameter is used to define the minimum number of
points required to form a cluster. It allows values between 1 and 10 000 points.

* Maximum Cluster Size: This parameter defines the maximum number of points
used to form a cluster. It supports a minimum of 2 and a maximum of 50 000 points.

Figure 9c depicts the point cloud output after applying the tuned euclidean clus-
tering filter. When the target’s cluster is found, this filter also publishes a message to
the target_detected topic using the TargetInfo message type, which basically contains
a boolean variable (True if the target is being detected and False otherwise), and the
number of points inside the cluster. The new point cloud that only contains the target’s
cluster is published in the clustered_point_cloud topic, which can finally be used in testing
the sensor’s parameters, e.g., the FoV and the AR.

FoV software filter (FoVSF): The purpose of this filter is to enable support for any LiDAR
sensor on the market, including rotating-based COTS LiDAR sensors widely used in
automotive applications, which usually provide a 360° horizontal FoV. Notwithstanding,
for the purpose of testing and validating the platform, which must also support LiDAR
sensors with limited FoV, this software filter allows the cropping of the point cloud to a
desired horizontal and vertical FoV. The filter runs in two steps. First, it converts the

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

10 of 16

points in the point cloud from the cartesian coordinate system to the spherical one by
using Equation 3 for calculating the azimuth, and Equation 4 for the elevation angle.
In the second step, the algorithm discards the points from the point cloud that are not
within the desired thresholds. The output of this filter is a ROS topic with a new point
cloud containing the points that are within the configured FoV. Later in Section 5, it is
possible to see an application of this filter.

arctan % x180

X180 if x>0andy >0
arctan £ x 180 :
g) TR 180, ifx <Oandy >0 3)
= ¥
270 — X0 ey < 0andy < 0
Y
arctan <180 1 360, otherwise
N
I P — ifz>0
- V2R @
¢ _(mn—nzxwo +90), ifz<0
0, otherwise

4.2. Implementation of the FoV test

The test to determine the sensor’s FoV consists of using a target with a well-known
size and reflectivity, placed at a know distance on top of the rail system target’s holder.
Since the rail system can only provide variable ranges, we can take advantage of the
RotGon to move the sensor both in the horizontal and vertical directions and check when
the target moves outside the sensor’s FoV. By using the position data from the RotGon,
it is possible to determinate the sensor’s FoV. This procedure is illustrated in Figure 10.

Start Angular
Resolution Test

Rotgon Target

1 1
1 1
: Find Target [} {1 !
. T RX T Tx :
1 1

I

Get Max and Min Ry Ty :
detection angle in 1
]

I

I

Ty axis (VFoV) Rx Tx

1

1 Get Max and Min Ry Ty

! detection angle in

: Tx axis (HFoV) RX Tx
1

[HOHC O T T A
Get Max detection [R 0

1

1

I angles in all B y

[quadrants Rxt

! (VFoV&HFoV)

i U]

Figure 10. Field of View flowchart Overview.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

11 of 16

The test starts with a routine that uses the services provided by the Target Detection
ROS package (previously explained) to find a target inside the sensor’s point cloud data.
If the target is detected, the algorithm starts measuring the FoV. Firstly, it starts by
finding the maximum and minimum angles in the vertical axis for achieving the vertical
FoV (blue color). Next, the same concept is applied to the horizontal axis for finding the
horizontal FoV (red color). Finally, the values retrieved in the previous tasks are used as
the starting conditions to test the consistency of both horizontal and vertical FoV in the
limits of all quadrants (green color).

P4

P3 — P11 —
Ty FoVy = P1—P3
FoV, = P2 — P4
P1|P2 P3|P4
FoVy + FoV,
2 P1+ P2
P1 FoViyin = T
Figure 11. Target positions for the FoV measure- FoViay = M
ment. 2

In all procedures, to get the maximum and minimum detection angles, the system
increments/decrements the RotGon angles until the target reaches the four different
positions illustrated in Figure 11:

® PI-Last position where the target is completely outside of the FoV;

* P2 - First position where the target is completely inside of the FoV;

* P3-Last position where the target is completely inside of the FoV;

* P4 - First position where the target is completely outside of the FoV after P3;

Then, based on Equations 5, for each axis it is calculated the minimum detection
angle (FoV,,;;,), maximum detection angle (FoVy;4x) and the FoV. Since the method uses
the mean values of two known positions to achieve the minimum and maximum values,
the target size is automatically removed from the calculations. Moreover, and in order to
calculate the FoV as close as possible to its real value, in the limits of the FoV (where
the target starts to disappear) we use the lowest angular step provided by the RotGon,
which is 0.01°.

4.3. Implementation of the AR test

The sensor’s AR defines the distance (in degrees) between two consecutive mea-
sured points. A smaller distance represents a better sensor’s AR, as well as a higher
number of collected points per frame. With this concept in mind, the most straightfor-
ward way to calculate the angular resolution of a LIDAR output is by firstly counting
the number of points present in the point cloud, obtained from a high-reflectivity target
with a known size (Tyigin X Theignt) (Figure 12), placed at a known distance (Tj;st), and
later, converting the value to angular resolution using Equations 6.

Target width

'P3$ P5 b

TI1Y) [1 2 arcsin (gt)
j ® o |o] &« @ ARj = —— AL D

p |

1 b3 larget s Ta) \umber Hyumber_points
—1height of points . Theight 6
X | ° r ° " " 9 AR, = ZML(HM) ©)
P6 |

P2 | P Vnumber_points

Number
of points

Figure 12. Points reflected by a known target.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

12 of 16

Based on those trigonometric functions which relate the right-angled triangle cre-

ated by half the size of the target (% or @), and the distance between the sensor
and the target (Tj;s;), it is possible to measure the angle needed to perceive half of the
target. Then, the angular resolution can be achieved by dividing this angle by half the
number of points that represent the target. Like in the FoV, the AR test also re-measures
the vertical and horizontal angular resolutions at different target positions. However,
such positions are not the same as the FoV. While for the FoV, the goal was to get the
RotGon angles where the target is entirely inside or outside the point cloud; for the AR
test, the goal is to get multiple positions, as illustrated by Figure 13, where the angular
resolution can be different.

Moreover, and since a sensor usually presents more point density in the center of the
point cloud, the AR can vary several tenths of degrees depending on the target position.
Hence, this measurement is performed within different regions inside the point cloud
defined by a software FoV filter that reduces the FoV by 25% into smaller FoV areas,
as depicted by Figure 13. After computing both vertical and horizontal AR for each
target position, the test summarizes the information by calculating the arithmetic mean
of each virtual FoV based on Equations 7. For each percentage of FoV, nine positions
are considered: the central position that is common for all virtual FoV and all the eight
border positions.

1 9
| | = | | ARy, = 9 (; ARhPm%)
| | |_ ﬁ 1 so% | 1 l; (7)
5% ARy, = 3 (Z ARUPiu%)
100% 9 =1

Figure 13. Target positions for a full AR evaluation.

5. Results

To validate the evaluation and testing platform and the algorithms developed
for testing LiDAR sensors, and for the sake of simplicity, this Section only shows the
setup that we have created for testing the FoV of a COTS LiDAR sensor. For this
purpose we have selected the Velodyne VLS-128, which is one of the highest resolution
sensor available in the market specially designed for autonomous vehicles, with the
setup previously depicted in Figure 6. This way, this simple test can show the full
functionalities of the system since it uses most of the equipment available inside the
laboratory (the RotGon, the rail system, and the power supply), and the software point
cloud filtering modules previously discussed (DF, CF, and FoVSEF). To provide reliable,
precise and accurate measurements, all equipment was previously calibrated, and to
ensure the proper operation of the evaluation and testing platform, we run a sanity
check sequence before testing the sensor.

5.1. Sanity check

The sanity check sequence tests independently the power supply, the rail system,
and the RotGon. This is provided by the Sanity Check package, which provides four
main services: powersupply_test, railsystem_test, rotgon_test and complete_test. Be-
fore running the sanity check procedure each service uses the check_live_nodes service
that checks if the ROS node corresponding to the equipment being tested is turned on
and visible within the ROS network. Regarding the outcome of the sanity checks, the
test either results in success, meaning that the system is ready to test the LiDAR sensor,
or in failure, reporting which component resulted on an error. Those errors reported by
each equipment’s node are summarized in Table 1.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

13 of 16

Table 1: Sanity check error list.

Equipment | Result Description
No problems detected
No node detected in the ROS Environment
Values detected not matching the expected values
No problems detected
No node detected in the ROS Environment
Component not ready
Component has internal errors
Component not moving after a moving command
Component not stopping after a stop command
Component not in the correct position
No problems detected
No node detected in the ROS Environment
Component not in the correct position

Powersupply

Railsystem

Rotgon

W[NN O QI x| W N | W N —

Power supply sanity check: After checking if the powersupply_node is alive, this test
verifies if any sensor is connected to the system by getting the list of connected sensors.
Then, it evaluates if each connected sensor’s parameters match the values reported by
the power supply. There are three possible outcomes: (1) the node is unresponsive;
(2) the connected sensor matches the configured parameters; or (3) the power supply
readings do not match the expected values.

Rail system sanity check: Similarly to the power supply, the rail system routine begins
by testing if its corresponding ROS node is alive. Next, the rail system is validated
by sending the platform that holds the target into different positions while checking
the system’s response. Therefore, two dedicated services are defined: move_sequence
and is_moving. While the first is responsible for calling the move_to services, the
latter checks if the target is, in fact, moving or at the desired position. The rail system
sanity check has six possible results: (1) no problems were detected; (2) the node is
unresponsive; (3) the node’s internal flags indicate a busy state, i.e., the rail system is not
ready to receive commands; (4) the internal flags indicate internal error status; (5) the
target did not move after a move_to command; (6) the target could not stop after a stop
command; and (7) the target is not at the expected position.

RotGon sanity check: This routine verifies four moving commands: go_home, move_r_to,
move_r0_to and move_g to. Next it tests if the moving parts (one for each axis) is at
the desired angle. This test can report three possible situations: (1) the RotGon is alive
and running; (2) The RotGon node is unresponsive; and (3) the RotGon positions are
different from the expected.

5.2. FoV Test

To validate the FoV testing algorithm, we have used different FoV values within the
range of the Velodyne VLS-128: horizontal FoV of 360°, and vertical FoV of 40°. This can
be adjusted by using FoVSF provided by the Target Detection package. It is important to
mention that we have forced this step to prove the functionality of the FOVSF (mostly for
the horizontal plane since the VLS-128 provides a 360° horizontal FoV), which may not
be required when testing sensors with limited FoV values and it is required to validate
the parameters provided and set by the manufacturer. After placing the target at a
known distance and within the visibility of the configured FoV, the DF is applied to
remove the points in the point cloud that are outside the desired range, resulting in a
cleaner point cloud that will help in reducing the computational requirements of the
subsequent tasks. Lastly, the CF step is applied. From here, the system has successfully
locked the target and is finally able to evaluate the FoV value that is known and was
previously set.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

14 of 16

The results are published in real-time to the target_detected topic that is being
subscribed by the running test script, which in this case corresponds to the FoV test.
Figure 14 depicts all the performed steps in order to detect and lock the target in the
point cloud: (1) Figure 14a shows the raw data sent by the VLS-128; (2) Figure 14b
depicts the FoVSF being applied; (3) Figure 14c illustrates the DF output; and (4) Figure
14d shows only the point cluster that corresponds to the target visible and locked in the
point cloud.

(a) VLS-128 point cloud (raw data) (b) FoVSF applied

(c) DF applied (d) DF and CF applied
Figure 14. Target detection steps.

Hereafter, we run the Tests package, which is responsible to perform the algorithms
previously described in Figures 10 and 11. The gathered results are summarized in Table
3, which were obtained using the parameters described in Table 2.

Table 2: Filter parameters.

Cluster filter Distance filter Target
Cluster Cluster Cluster Threshold | Threshold Distance
Tolerance | Size (min) | Size (max) (min) (max)
0.03 m 100 pt 2000 pt 55m 5.6m 55m

We have performed three distinct tests, Test 1, Test 2, and Test 3, which consisted in
changing the sensor’s FoV and validating the configured values. For the vertical FoV,
we could measure different regions inside the original sensor’s values (40°) since this
area is in the range of the RotGon’s rotation angles. For the horizontal FoV, we have
used three different values: (1) 60°; (2) 55° and (3) 135°.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

150f 16
Table 3: Test results.
FoV filter Measured FoV

Horizontal | Horizontal | Vertical Vertical Horizontal | Horizontal | Vertical Vertical

FoV (min) | FoV (max) | FoV(min) | FoV (max) | FoV (min) | FoV (max) | FoV (min) | FoV (max)
Test 1 0° 60° -10° 15° 0.03° 59.97° -9.95° 14.89°
Test 2 20° 75° -25° 0° 20.02° 74.89° -24.69° -0.13°
Test 3 0° 135° 0° 17° -0.08° 134.7° 0.04° 16.92°

In all results we could see the proper operation of the evaluation and testing
platform, where some calculated angles have slight deviations from the desired values.
It is important to mention that our measurements are being performed from a sensor’s
receiver perspective, which are only based on the point cloud data provided by the
sensor and which are going to be used by other (high-level) applications within the
perception system of the car. Therefore, we consider that at this order of magnitude,
these deviations are not critical and can still validate the sensors parameters being tested.
When a more accurate analysis is required, we can also submit the sensor to an end-
of-line testing scenario that is part of the laboratory responsible to test sensors under
development within other Bosch projects. However, end-of-line testing for the laser
transmitter are out of the scope of this article.

6. Conclusions

This article presents an evaluation and testing platform that is able to test and vali-
date different parameters of LIDAR sensors designed for automotive applications. The
platform was built upon a set of equipment supported by a ROS software environment.
Since the purpose of this platform is to evaluate any LiDAR sensor available in the
market, we have created several ROS packages to control and automate the tests, and a
set of software-based filters for being able to support any sensor’s output based only
on point cloud data information. Despite all tests being performed from the sensor’s
receiver perspective, the results are quite promising. We could validated the output of a
Velodyne VLS-128 sensor, as well as the concept of our point cloud filtering approaches
such as the FoV, distance, and point clustering. Hereafter, future developments will
provide the support for tests under real-life environments, such as adverse weather.

Acknowledgments: This work is supported by: European Structural and Investment Funds in the FEDER component, through
the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n® 037902; Funding Reference:
POCI-01-0247-FEDER-037902].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Daily, M.; Medasani, S.; Behringer, R.; Trivedi, M. Self-Driving Cars. Computer 2017, 50, 18-23.

2. Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixdo, TM.; Mutz, E;
de Paula Veronese, L.; Oliveira-Santos, T.; De Souza, A.F. Self-driving cars: A survey. Expert Systems with Applications 2021,
165, 113816.

3. Gao, C,; Wang, G.; Shi, W.; Wang, Z.; Chen, Y. Autonomous Driving Security: State of the Art and Challenges. IEEE Internet of
Things Journal 2021, pp. 1-1.

4. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443-58469.

5. Litman, T. Autonomous vehicle implementation predictions; Victoria Transport Policy Institute Victoria, Canada, 2021.

6. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Sae recommended
practice, SAE International, Geneva, CH, 2021.

7. Guerrero-Ibafiez, J.; Zeadally, S.; Contreras-Castillo,]. Sensor Technologies for Intelligent Transportation Systems. Sensors (Basel,
Switzerland) 2018, 18, 1212.

8. Marti, E.; de Miguel, M.A_; Garcia, F,; Perez,]. A Review of Sensor Technologies for Perception in Automated Driving. IEEE
Intelligent Transportation Systems Magazine 2019, 11, 94-108.

9. Shahian Jahromi, B.; Tulabandhula, T.; Cetin, S. Real-Time Hybrid Multi-Sensor Fusion Framework for Perception in Autonomous

Vehicles. Sensors 2019, 19.

https://doi.org/10.20944/preprints202111.0562.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2021 d0i:10.20944/preprints202111.0562.v1

16 of 16

10.

11.
12.

13.

14.

15.

16.
17.

18.
19.

20.

21.
22.

23.
24.
25.
26.
27.
28.
29.

30.

31.

32.

Mohammed, A.S.; Amamou, A.; Ayevide, FK.; Kelouwani, S.; Agbossou, K.; Zioui, N. The Perception System of Intelligent
Ground Vehicles in All Weather Conditions: A Systematic Literature Review. Sensors 2020, 20.

Warren, ML.E. Automotive LIDAR Technology. 2019 Symposium on VLSI Circuits, 2019, pp. C254-C255.

Li, Y.; Ibanez-Guzman, J. Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and
Perception Systems. IEEE Signal Process. Mag. 2020, 37, 50-61.

Roriz, R.; Cabral, J.; Gomes, T. Automotive LiDAR Technology: A Survey. IEEE Transactions on Intelligent Transportation Systems
2021, pp. 1-16.

Arnold, E.; Al-Jarrah, O.Y.; Dianati, M.; Fallah, S.; Oxtoby, D.; Mouzakitis, A. A Survey on 3D Object Detection Methods for
Autonomous Driving Applications. IEEE Transactions on Intelligent Transportation Systems 2019, 20, 3782-3795.

Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud. 2019 IEEE/CVF Conf. on
Comput. Vision and Pattern Recognition (CVPR) 2019, pp. 770-779.

Wu, J.; Xu, H.; Tian, Y.; Pi, R.; Yue, R. Vehicle Detection under Adverse Weather from Roadside LiDAR Data. Sensors 2020, 20.
Wang, H.; Wang, B.; Liu, B.; Meng, X.; Yang, G. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle.
Robotics and Autonomous Systems 2017, 88, 71-78.

Peng, X.; Shan, J. Detection and Tracking of Pedestrians Using Doppler LiDAR. Remote Sensing 2021, 13.

Huang, W,; Liang, H.; Lin, L.; Wang, Z.; Wang, S.; Yu, B.; Niu, R. A Fast Point Cloud Ground Segmentation Approach Based on
Coarse-To-Fine Markov Random Field. IEEE Trans. on Intell. Transp. Syst. 2021, pp. 1-14.

Karlsson, R.; Wong, D.R.; Kawabata, K.; Thompson, S.; Sakai, N. Probabilistic Rainfall Estimation from Automotive Lidar, 2021,
[arXiv:eess.SP/2104.11467].

Raj, T.; Hashim, F.; Huddin, B.; Ibrahim, M.; Hussain, A. A Survey on LiDAR Scanning Mechanisms. Electronics 2020, 9.
Behroozpour, B.; Sandborn, PAM.; Wu, M.C.; Boser, B.E. Lidar System Architectures and Circuits. IEEE Communications
Magazine 2017, 55, 135-142.

Jiménez, J. Laser diode reliability: Crystal defects and degradation modes. Comptes Rendus Physique 2003, 4.

2-D Optical-CDMA modulation in automotive time-of-flight LIDAR systems. 2020, Vol. 2020-July.

A CDMA Modulation Technique for Automotive Time-of-Flight LIDAR Systems. IEEE Sensors Journal 2017, 17, 3507-3516.
AVM / LiDAR sensor based lane marking detection method for automated driving on complex urban roads. 2017.

Jokela, M.; Kutila, M.; Pyykonen, P. Testing and Validation of Automotive Point-Cloud Sensors in Adverse Weather Conditions.
Applied Sciences 2019, 9.

Vargas Rivero,].R.; Gerbich, T.; Teiluf, V.; Buschardt, B.; Chen, J]. Weather Classification Using an Automotive LIDAR Sensor
Based on Detections on Asphalt and Atmosphere. Sensors 2020, 20.

Chan, P.H.; Dhadyalla, G.; Donzella, V. A Framework to Analyze Noise Factors of Automotive Perception Sensors. IEEE Sensors
Letters 2020, 4, 1-4.

Suss, A.; Rochus, V.; Rosmeulen, M.; Rottenberg, X. Benchmarking time-of-flight based depth measurement techniques. Smart
Photonic and Optoelectronic Integrated Circuits XVIII; He, S.; Lee, E.H.; Eldada, L.A., Eds. International Society for Optics and
Photonics, SPIE, 2016, Vol. 9751, pp. 199 - 217.

Sun, W.; Hu, Y.; MacDonnell, D.G.; Weimer, C.; Baize, R.R. Technique to separate lidar signal and sunlight. Opt. Express 2016,
24,12949-12954.

Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). 2011 IEEE International Conference on Robotics and Automation
(ICRA), 2011, pp. 1-4.

http://xxx.lanl.gov/abs/2104.11467
https://doi.org/10.20944/preprints202111.0562.v1

	Introduction
	LiDAR Sensors for Automotive
	LiDAR Evaluation and Testing
	System Architecture
	Lab Equipment
	ROS Software Architecture

	System Implementation
	Point Cloud filtering for target detection
	Implementation of the FoV test
	Implementation of the AR test

	Results
	Sanity check
	FoV Test

	Conclusions
	References

