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Abstract7

The Physics Informed Neural Networks framework is applied to the understanding of the dy-8

namics of Coronavirus of 2019. To provide the governing system of equations used by the9

framework, the Susceptible-Infected-Recovered-Death mathematical model is used. The study10

focused on finding the patterns of the dynamics of the disease which involves predicting the in-11

fection rate, recovery rate and death rate; thus predicting the active infections, total recovered,12

susceptible and deceased at any required time. The study used data that was collected on the13

dynamics of COVID-19 from the Kingdom of Eswatini between March 2020 and September14

2021. The obtained results showed less errors thus making highly accurate predictions.15

1 Introduction and Background16

1.1 Introduction17

Coronavirus disease of 2019 (COVID-19) is a diseases caused by the Severe Acute Respiratory18

Syndrome Coronavirus 2 (SARS-CoV-2) virus [4]. It has spread and caused havoc at a global19

scale and was officially declared a pandemic by the World Health Organization (WHO) in 1120

March 2020 [5, 6]. This virus is a member of the Beta coronavirus family which makes it highly21
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likely to cause severe symptoms and fatal [8]. Due to the massive impact of the viral disease there22

is a agent need to understand its dynamics [3, 5, 12–14].23

The spread of diseases like COVID-19 can be modelled using systems of ordinary differential24

equations (ODEs). Data analysis methods have also been used to understand the spreading pat-25

terns of COVID-19 including the machine learning (ML) approach [3, 15]. The viability of using26

artificial intelligence (AI) methods to solve ODEs has been disputed since these equations are gov-27

erned by scientific laws which are never instilled during the training process [1]. A new framework28

called the Physics Informed Neural Networks (PINNS) has been developed and aims to eliminate29

this problem. It also achieves high prediction accuracy from small sized datasets [2].30

The Physics Informed Neural Network framework has been applied to multiple studies of COVID-31

19. One study applied PINNS to estimate the spread of COVID-19, which also considers the32

aid of quarantine controls. The study employed the Susceptible - Exposed - Infected - Removed33

as the governing systems of equations. It mainly tries to understand the benefits of the imple-34

mentations of COVID-19 restrictions [12]. Another study was conducted where the parameters35

were time-varying, it employed the Susceptible-Infected-Recovered-Deceased (SIRD) model as36

the governing systems of equations. This model however was developed using a recurrent neural37

network [3].38

The PINNS is a Artificial Neural Network (ANN) framework which during the training process39

exposes the developed neural network to data sets and governing laws. The governing laws are40

provided in the form of ODEs or PDEs to the model [1, 2, 35]. Understanding the dynamics of41

COVID-19 is crucial in reducing the effects of the virus. AI models have been developed, but most42

of these models tend to require a lot of training data to achieve high accuracy. This is however not43

possible for cases like the newly discovered COVID-19 since it has a small data set. Other models44

only fit the given data rendering them less accurate in making future predictions. This brings about45

the need for development of models that can use small size data to make accurate predictions on46

the dynamics of the diseases spread.47

The aim of the study is to use the Physics Informed Neural Networks framework to determine the48

dynamics of COVID-19. The PINNS mathematical model used is the study is the SIRD model. The49

study focuses on determining the average rates of the virus’ contraction, recovery and deaths. It50

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2021                   doi:10.20944/preprints202111.0555.v1

https://doi.org/10.20944/preprints202111.0555.v1


uses it to determine the active infections, total recovered, susceptible and deceased at any required51

time. The study uses data from the Kingdom of Eswatini obtained between March 2020 and52

September 2021 to train the neural network.53

Outline of the study The remainder of the document has four sections, the first is the literature54

review section. This section contains a review of some studies pertaining the use of the PINNS.55

The following section contains the methodology section which contains the analysis of the math-56

ematical and physics informed neural network framework. The section that follows is the results57

and simulations section, which contains the results and errors obtained and the analysis. There is58

also the conclusion with recommendations of future studies.59

1.2 Background60

Artificial Neural Networks are the basis of deep learning, a branch of AI and ML [17]. They are61

computational models created as an attempt to harness the capabilities of both the human brains62

and computers [2, 21]. A common structure of ANNS consists of nodes arranged in layer format63

joined by connectors [22]. The first layer is called the input layer, it receives data in vector format64

and passes a dot product of the connector weight and received data to adjacent node [23]. The65

dot product in the nodes is multiplied by the activation function [24]. The activation function is66

a mathematical function which changes the input values to a non-linear format. This process is67

called the feedforward process [23]. The process which takes the error and adjusts the weights68

during the training process is called backpropagation.69

Definition 1. A feedforward neural network with a total of N neurons arranged in a single layer

is a function y : Rd → R of the form

y(t) =
N∑
i=1

αiσ(w
T
i + bi),

where t ∈ Rd, αi, bi ∈ R. σ is the activation function, wi are weights for each neuron multiplied70

to input value t. αi are neural network weights and are applied to the output of each neuron in the71

layer and bi is the bias of each neuron.72
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There are numerous activation functions used in neural networks. The study employees the tangent73

hyperbolic function (tanh).74

Definition 2. A tangent hyperbolic activation function is a function σ : R→ R such that

σ(t)→

 1 as t→∞,

−1 as t→ −∞.

A key feature of neural networks is that during training they adjust the internal values such that75

they can solve any given problem to some degree of accuracy. By definition neural networks are76

discriminatory functions [22]. This property thus make the neural network have suitable properties77

to be a universal approximator.78

Theorem 1.1. If the σ in the neural network definition is a continuous, then the set of all neural79

networks is dense in a space of continuous discriminatory functions function with domain C on In80

denoted by C(In). Where In is an n-dimensional unit cube.81

Proof. Let N ⊂ C(In) be the set of neural networks. Where N is a linear subspace of C(In). To82

show that N is dense in C(In), we show that its closure is C(In). By contradiction, suppose N 6=83

C(In). Then N is a closed proper subspace of C(In).84

Two main approaches used to make predictions are the mathematical modelling approach and the85

data based approach. These two models have different advantages and disadvantages. Mathemati-86

cal models used in the estimation of any process are mainly derived from underlying processes [1].87

These models thus conform to governing laws, this gives them a guided output which, if given88

the correct initial values always provides accurate answers. The key disadvantages though is that89

mathematical models do not account for any unforeseen changes, a weakness in real time process90

analysis [33].91

Data models including ML algorithms determine patterns from input data and provide an output.92

To understand these patterns efficiently, they require larger data sets [2]. This means given a small93

data set other closely relevant data may be used increasing the margin of error. The need for94

large data and intensive training process also brings about a need for massive processing power95

which is expensive [34]. Data can also be reduced to fit the available processing power which can96
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compromise results.97

2 Review of Studies on Physics Informed Neural Networks98

The newly developed Physics Informed Neural Networks framework has been used to analyses and99

simulate multiple models. This section reviews some of the studies of Physics Informed Neural100

Networks. Some of the studies also cover COVID-19 related studies.101

2.1 Physics Informed Deep Learning for Traffic State Estimation102

The Physics Informed Neural Networks framework has been used in the analysis of real time103

traffic states. Traffic state estimation is the process of estimating traffic variables using partial104

data. These traffic variables include f which is the traffic flow rate, v the vehicle’s average speed105

rate and ρ which is the vehicle density. The aim of traffic states analysis is to achieve better road106

planning and understanding. This includes early detection of vehicle congestion blockades and107

high transportation demand. An example is a detection of a sudden drop in the average speed v108

would indicate severe congestion or an accident [1].109

The approaches that are used to conduct these traffic estimations are mainly mathematical and data110

driven approaches; the study uses the data driven approach. However, since the use of data driven111

approaches like machine learning require a lot of data. This data has a drawback as it requires a112

lot of sensors and other equipment which are very expensive. This forces transportation planners113

to collect data only in cost effective areas thus leading to the collection of noisy data. To mitigate114

these challenges the study employees a physics informed neural network approach.115

In the development of the mathematical models, they set the variables based on the data collected,116

q is the indicated number of vehicles crossing a location at time. The average speed v is obtained117

by finding the mean speed of vehicles and the vehicle density ρ is obtained as the number of118

vehicles in a particular road distance. N(x,t) is the cumulative traffic flow which is the total119

number of vehicles that pass a particular point x by time t. q(x,t) is a partial differential equation120

of cumulative flow which represent the flow with respect to time (t). Density ρ(x,t) is a partial121
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differential equation of cumulative flow with respect to x. The mathematical representations of the122

densities is123

q(x,t) =
∂N(x,t)

∂t
, (1)

ρ(x,t) =
−∂N(x,t)

∂x
. (2)

The conservation law states124

∂qN(x,t)

∂x
+
∂ρN(x,t)

∂t
= 0 (3)

The relationship between the stated variables is:

v(ρ) = vf

(
1− ρ

ρm

)
, (4)

q(ρ) = ρvf

(
1− ρ

ρm

)
. (5)

where vf = traffic free flow and ρm = maximum traffic flow125

The cost function (JDL) is used to improve the accuracy of the neural network; it is calculated126

by obtaining the mean square error (MSE) of N number of outputs at point x at time t. ρ∗(x,t)127

is the neural network’s prediction and ρ(x,t) is the genuine value. The implementation of the128

physics informed neural network then additionally finds the MSE JPHY which is with regard to129

the conservation of the stated conservation laws.130

JDL =
1

N

N∑
i=1

|ρ(x,t)− ρ∗(x,t)|2 (6)

JPHY =
1

N

N∑
i=1

|vf (1−
2ρ(x,t)

ρm
) +

∂ρ(x,t)

∂x
) +

∂ρ(x,t)

∂t
)|2 (7)

The physics informed neural network is then used to optimize the neural network and a param-131

eter µ is added to give the neural network an adjustment weight. They then added the PINNS132
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implementation equation.133

J = µJDL + (1− µ)JPHY (8)

The accuracy is then calculated using the Frobenius norm to measure the accuracy of the neural134

network. The model was tested using varying data sizes and collection locations and there were135

positive results [1].136

2.2 Physics Informed Neural Networks for Power Systems137

This study implemented the physics informed neural network in the analysis of power generation.138

The power generation process involves the use of generators which are driven by various energy139

forms including wind and water. The analysis and understanding of a real time power generation140

is vital in the understanding of the amount of power the generators are producing [33]. The use141

of data models to analyses the power production and use of mathematical models to make the142

estimations in not new. However they all have drawbacks, the use of data and machine learning143

models requires massive data. To eliminate the noisy data there is also a need to have the data144

processed by experts before use. This analysis model also requires the development of complex145

neural network designs [33].146

The study thus introduces the use of physics informed neural network to implement a training147

process dependent on both data and physics laws. The study uses a single machine infinite bus148

(SMIB) system, which is a generator with only one generator. The parameters and variables in149

the equation include the inertia constant m1, d1 damping coefficient, B12 is the entry of the bus150

sustenance. P1 is power generated by the generator, V1 and V2 are voltage magnitudes of buses 1151

and 2, σ1, σ2 represent the voltage angle behind reactance σ. is the angular frequency of generators.152

Thus the resulting function is153

fσ(t,P1) = m1σ
.. + d1σ

. +B12V1V2 sin(σ)− P1. (9)

7
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Equation 9 is used as the governing equation in the implementation of the physics informed neural154

network. The model adjusts σ, σ. and P1 between [Pmin,Pmax] during the learning process. The155

model was simulated using data sets that were created using computer models and showed very156

positive results [33].157

158

2.3 Neural Network aided quarantine control model estimation of global159

COVID-19 spread160

The study provides two deep learning models to make approximations of the parameters of the

spread of COVID-19.These models are used to make forecasts using data from the USA, China

(Wuhan), Italy and South Korea. The deep learning models used in the models are both of physics

informed neural network format. The PINNS is employed to eliminate the problems associated

with machine learning and normal neural network models. These problems include the over fitting

of data, the need for high processing power and the need for extra data from other pandemics or

diseases spread such as MERS and SARS in this case. Artificial neural networks are also complex

making it hard to comprehend how the final approximation is attained. However, PINNS make

the process easier and thus ease the understanding and analysis of COVID-19’s spread. The study

mainly tries to understand the benefits of the implementations of COVID-19 restrictions [12].

The system of ODE’s used in the first model is that of a SEIR model. In the model S represents the

number of of people who are Susceptible in the population, E represents the number of Exposed

people in the population, I represent the number of people who are Infected or active cases and R

represents number of people who have been removed. The first employed model does not account

for the impacts that can be imposed by the policies that have been implemented to reduce the

spread of COVID-19.

The common mathematical models however do not account for these in the predictions they make;

making it hard to account for variables or elements such as over crowding, social distancing and

other policies which may have been implemented by the different countries. The main policies

highlighted by the authors include the use of police to enforce proper social distancing in traffic

crossings, shops and other places. It also focuses on the shutdown of public transport, trains and
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airports. Thus to account for these multiple policies and have a better prediction the study uses real

data. This study is conducted using data and estimations. The study also estimates the effective

reproduction rate. The first model:

dS(t)

dt
= −βS(t)I(t)

N
, (10)

dE(t)

dt
=
βS(t)I(t)

N
− σE(t), (11)

dI(t)

dt
= σE(t)− γI(t), (12)

dR(t)

dt
= γI(t). (13)

Subjected to the initial conditions, S = S0, I = I0, R = R0 and E = E0.

The second model used in the study accounts for quarantine control. The model thus introduces

a time dependent variable T (t) = Q(t) × I(t). This also changes the effective reproduction rate

to Rt = β
γ+Q(t)

.The parameter Q(t) is also determined using a separate neural network which

takes in the data of Time, Susceptible, Exposed, Infected and Recovered as input data. The model

processes the data in a 2-layer network with 10 nodes per layer and uses a ReLu activation function

(NN(W,U) ). The determined Q(t) is then put in the Physics Informed Neural Network which

uses the model below to make the approximations of the model.

dS(t)

dt
= −βS(t)I(t)

N
, (14)

dI(t)

dt
=
βS(t)I(t)

N
− (γ −Q(t))I(t)

dI(t)

dt
=
βS(t)I(t)

N
− (γ −NN(W,U))I(t), (15)

dR(t)

dt
= γI(t), (16)

dT (t)

dt
= Q(t)I(t) = NN(W,U)I(t). (17)

Subjected to the initial conditions, S = S0, I = I0, R = R0 and T = T0.161

162

The results that were attained by the study showed that the first model which does not account163
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for imposed restrictions had approximations which were bigger than the real values. This means164

it approximated that the virus would be more catastrophic. The second model achieved a better fit165

showing that the imposed restrictions have had a positive impact in the spread of COVID-19. The166

model was also comprehensible providing parameters which can be used to make future predic-167

tions [12].168

2.4 Identification and prediction of time-varying parameters of COVID-19169

model: a data-driven deep learning approach170

This study focused on finding the parameters of an SIRD model which are time based rather than

to the average parameter [3]. This study also used a deep learning model and specifically a Physics

Informed Neural Network. The virus spreading model employed is that study is an SIRD where

S represents the number of people who are Susceptible, I represents the Infected people or active

cases, R represents the number of Recovered people and D represents the number of Deaths.

Where β is the spreading rate, γ is the recovery rate and δ is the death rate [49].

dS(t)

dt
= −βS(t)I(t)

N
, (18)

dI(t)

dt
=
βS(t)I(t)

N
− γI(t)− δI(t), (19)

dR(t)

dt
= γI(t), (20)

dD(t)

dt
= δI(t). (21)

The model is subjected to the initial values, S = S0, I = I0, R = R0 and D = D0.171

172

This model does however employ a different orientation of neural networks called a recurrent173

neural network; a class of artificial neural network. These types of networks have a connection174

between the nodes forming a directed graph with a long and temporal sequence. This allows the175

network to exert a temporal dynamic behaviour which allows them to have a kind of Long Shot176

Temporal Memory (LSTM). The model takes in real life data as input data and uses a Physics177

Informed neural Network to approximate the parameters.The output values are taken as the input178
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S(t) I(t)

R(t)

D(t)

β

γ

δ

Figure 1: A schematic flow diagram representing an Susceptible - Infected - Recovered - Dead (SIRD) COVID-19
transmission.

of the LSTM recurrent neural network and are used to make predictions of future parameters. The179

output values which have been obtained are then substituted in the SIRD model. This is a new and180

advanced model of neural network and provides a better approximation [3].181

3 Methodology182

The governing laws of the Physics Informed Neural Networks framework are provided as math-183

ematical equations. This section covers the development and evaluation of the key mathematical184

models of focus. The mathematical model serve as the assumed physics laws the model should185

adhere to.186

The Susceptible - Infected - Recovered - Deceased (SIRD) model used assumes that the population187

can assume four states, Susceptible (S), Infected (I), Recovered (R) and Deceased (D). The suscep-188

tible population is the group which can contract the virus, this contraction occurs at the rate β. The189

infected population is the population group that has contacted the virus and it’s still active. The190

infected group can be removed to either assume a recovered population at the rate γ or deceased191

population at the rate δ. This means δ is the death rate, β is the infection rate and γ is the recovery192

rate. Figure 1 shows the resulting COVID-19 transmission SIRD flow diagram.193

From the flow diagram in Figure 1 we obtain the system.194
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dS(t)

dt
= −βS(t)I(t)

N
, (22)

dI(t)

dt
=
βS(t)I(t)

N
− γI(t)− δI(t), (23)

dR(t)

dt
= γI(t), (24)

dD(t)

dt
= δI(t). (25)

The model is subjected to the initial values, S = S0, I = I0, R = R0 = 0 and D = D0 = 0.195

196

As an accuracy and optimization aid, studies and implementations of neural networks have show

that the use of numbers less than 1 is better. Hence we need to rescale the given data to assume

values between 0 and 1 through the non-dimentionalization process.

w = S
N
, x = I

N
, y = R

N
, z = D

N
, t = q

Thus

S = wN, I = xN, R = yN, D = zN

Subsisting in the SIRD model we obtain

12
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d(wN)

dq
= −β(wN)(xN)

N

d(xN)

dq
=
β(wN)(xN)

N
− γxN − δxN

d(yN)

dq
= γxN

d(zN)

dq
= δxN

Hence the resulting system is.

dw

dq
= −βwx

dx

dq
= βwx− γx− δx

dy

dq
= γx

dz

dq
= δx

3.1 The neural network197

The resulting neural network that we develop takes a single input value of time t. The input is198

passed through the layers with weights Wi,j where i is the position of the start node and j is the199

position of the ending node. These weights form a matrix and at every node the product of the200

weight and time is subjected to an activation function tanh denoted by σ. The output nodes of the201

model are S(t), I(t),R(t) and D(t) which form the output layer. x is the sum of the products of202

W and t.203

σ(x) =
ex − e−x

ex + e−x
(26)

The representation of a neural network matrix with m layers and n nodes per layer.204
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3.1.1 Residual of model’s equations205

The residual error of an ODE is the difference between the right hand side and the left hand side of

an ODE. In the development of PINNS the residual error is used to calculate the loss function of

the neural network. From the SIRD model we obtain four residual error functions. From Equation

22 we obtain ResS , the residual error of the susceptible population. From Equation 23 we obtain

ResI which is the residual error of the infected population. Equation 24 gives the residual error

of the recovered population ResR. From Equation 25 we obtain ResD the residual error of the

deceased population.

ResS =
dS(t)

dt
+
βS(t)I(t)

N
, (27)

ResI =
dI(t)

dt
− βS(t)I(t)

N
+ γI(t) + δI(t), (28)

ResR =
dR(t)

dt
− γI(t), (29)

ResD =
dD(t)

dt
− δI(t). (30)

3.1.2 The loss function206

To optimize a neural network through back propagation, a loss function has to be first obtained.207

For the PINNS we developed, we find the loss function lossT by obtaining the sum of two loss208

functions loss1 and loss2. loss1 is the sum of the mean square errors of susceptible population209

MSESoutput, the mean square errors of the infected populationMSEIoutput, the mean square errors210

of the recovered population MSERoutput and the mean square errors of the deceased population211

MSEDoutput. MSESoutput is the mean square error of the difference of the predicted susceptible212

S∗(ti) and the actual data value Si. MSEIoutput is the mean square error of the difference of the213

predicted infected I∗(ti) and the actual data value Ii. MSERoutput is the mean square error of the214

difference of the predicted recovered R∗(ti) and the actual data value Ri. MSEDoutput is the mean215

square error of the difference of the predicted deceased D∗(ti) and the actual data value Di.216

loss2 is the sum of the mean square errors of susceptible population residual error MSESres given217

by the mean square errors of the infected population residual error MSEIres, the mean square218
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errors of the recovered population residual error MSERres and the mean square errors of the de-219

ceased population residual error MSEDres.220

loss1 =MSESoutput +MSEIoutput +MSERoutput

+MSEDoutput (31)

loss2 =MSESres +MSEIres +MSERres

+MSEDres (32)

lossT = loss1 + loss2 (33)

MSESres =
1

M

M∑
i=1

|ResS|2 (34)

MSEIres =
1

M

M∑
i=1

|ResI |2 (35)

MSERres =
1

M

M∑
i=1

|ResR|2 (36)

MSEDres =
1

M

M∑
i=1

|ResD|2 (37)

MSESoutput =
1

M

M∑
i=1

|S∗(ti)− Si|2 (38)

MSEIoutput =
1

M

M∑
i=1

|I∗(ti)− Ii|2 (39)

MSERoutput =
1

M

M∑
i=1

|R∗(ti)−Ri|2 (40)

MSEDoutput =
1

M

M∑
i=1

|D∗(ti)−Di|2. (41)

From the input of time, to the matrix of layers, the output layer and the residual functions we obtain221

a neural network which resembles Figure 2222
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Figure 2: A schematic representation of the Physics informed neural network which takes an input of time (t) and
outputs Susceptible(S), Infected (I), Recovered (R) and Deceased D. The output is subjected to PINN.

3.2 Basic model properties223

The following section provides the analysis of the mathematical model. It gives a detailed evalu-224

ation on the properties of the model and its expected behaviour such as finding the reproduction225

number which is the minimum number of transmissions expected for a pandemic to occur and the226

system of ODE’s sensitivity analysis.227

3.2.1 Reproduction Number R0228

To understand COVID-19 which has become a pandemic we need to determine the minimum rate229

at which secondary infections should occur for a pandemic to occur. The reproduction number R0230

is also the rate which any spread below would stop the spread.The following is its derivation.231

0 < βS0I0 − (γ + δ)I0 (42)

0 < βS0 − (γ + δ) (43)

βS0 < (γ + δ) (44)

R0 =
βS0

γ + δ
(45)
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3.2.2 SIRD Model Analysis232

The sensitivity analysis of the mathematical model also provides some of the Key properties of233

the model such as the projected maximum number of infections Imax. From Equation 22,Equation234

23,Equation 24 and Equation 25 we find the maximum number of infected individuals that can235

occur at a particular time. First we divide Equation 22 and Equation 23.236

dI(t)

dS(t)
= −1 + γ + δ

βS

Integrating we obtain

I + S − γ + δ

β
(lnS) = I0 + S0 −

γ + δ

β
(lnS0)

To obtain the maximum value we find a point where the Equation 3.2.2 is equal to zero, and we237

determine it occurs when S = β
γ+δ

.238

I + S − γ + δ

β
(lnS) = I0 + S0 −

γ + δ

β
(lnS0)

Imax + S − γ + δ

β
(lnS) = I0 + S0 −

γ + δ

β
(lnS0)

Imax +
β

γ + δ
− γ + δ

β
(ln(

β

γ + δ
)) = I0 + S0 −

γ + δ

β
(lnS0)

Imax = I0 + S0 −
γ + δ

β
[1 + (ln(

β

γ + δ
)S0)]

Imax = I0 + S0 −
γ + δ

β
[1 + (ln(R0))].

Now we obtain the amount of people that we expect to eventually get infected. The fate of infected239

individuals is that they either recover RRend or die Dend hence we find the expected number of240

people to either recover or die.241
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Rend = RRend +Dend,

Rend = S0 + I0 − Send.

where

Send =
γ + δ

β
ln(Send),

Send = I0 + S0 −
γ + δ

β
ln(S0)

Where S represents susceptibles, I represents Infected, R represents Recovered and D represents242

Deceased. Then N = S + I + R +D the total number of the population. β is the infection rate,243

γ is the recovery rate and δ is the death rate. Since in the analysis or in the model Recovered244

and Deceased individuals have the same effects on the model, we group them as R representing245

removed with the removal rate of (γ + δ). Such that we have,246

dS(t)

dt
= −βS(t)I(t)

N
,

dI(t)

dt
=
βS(t)I(t)

N
− (γ + δ)I(t),

dR(t)

dt
= (γ + δ)I(t).

Which can be rewritten as,247

dS(t)

dt
= −βS(t)I(t)

N
dI(t)

dt
=
βS(t)I(t)

N
− (γ + δ)I(t)

R = N − I − S
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Figure 3: A Mathematica generated graph simulation of an example SIRD model. The green represents Susceptible
population, blue represents the recoveries, red is the active infected population and orange is the deceased population.

4 Findings and Discussions248

This section contains the results obtained from the simulations of the Physics Informed Neural249

Networks framework. It also provides a detailed analysis of the results and changes in accuracy250

with varying parameters such as data size. The data is from national daily updates and a Google251

studio analysis page by University of Eswatini and Wits Ithemba Labs [52].252

4.1 Simulation Using Mathematica Generated Data253

To test the model and validate the PINNS we first generated artificial data of an SIRD model254

using Mathematica. The advantage of data of this kind was that its less noisy. We initialized the255

model with a susceptible population of 100,000, 0 recoveries and deaths and 5 infections. The256

average infection rate is 0.14, average recovery rate was 0.037 and the average death rate was257

0.005 obtaining the results in Figure 3.258

4.1.1 PINNS model of Mathematica results259

The results of this model discussed above from a PINNS of 3 layers with 30 nodes per layer.260
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Figure 4: The resulting graph of the predicted values of the Susceptible and the actual values of the susceptible from
the Mathematica generated data.
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Figure 5: The resulting graph of the predicted values of the Infected population and the actual values of the infected
population from the Mathematica generated data
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Figure 6: The graphs shows the results of the predicted values of the Recovered and the actual values of the recovered
from the Mathematica generated data.
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Figure 7: The resulting graph of the predicted values of the Deceased population and the actual values of the deceased
population from the Mathematica generated data.
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Figure 8: This graph shows a comparison of the predicted values of susceptible population and the actual data of
susceptible population for the State of Alabama.

The graph in Figure 3 is the resulting graph of the data used for the artificial data for the early261

training process. Figure 4 is a data fitting graph of the susceptible population and there is a good262

fit which means there is a substantially small sized error. Figure 5 is the obtained results and the263

graphs have a good fit which means they have a small error. The graph in Figure 6 is that of the264

results of the recovered and it also has a good fit and less errors. Figure 7 is the resulting graph of265

deceased, this graph has a good fit, but is less accurate compared to the other graphs.266

4.2 PINNS Simulations of Alabama State Data267

For further validation of the model we tested the SIRD model using a data set from the American268

State of Alabama. The data set covered about 300 days and the simulation was on a 3 layer neural269

network with each layer having 30 nodes each and 1 million iterations were conducted.270

Figure 8 is a resulting graph obtained using data fitting for the susceptible population and there271

is a good fit which means there is minimal sized error. Figure 9 is the resulting graph of the data272

fitting, it has a good fit which means they have a small error. The graph in Figure 10 is that of the273

results of the recovered and it also has a good fit and less errors. Figure 11 is the resulting graph274
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Figure 9: The graph shows a comparison of the predicted infected population values and the actual data infected
population for the State of Alabama.
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Figure 10: This graph shows a comparison of the predicted values of recovered population and the actual data of
recovered population for the State of Alabama.
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Figure 11: The graph shows a comparison of the predicted deceased population values and the actual data deceased
population for the State of Alabama.

of deceased, this graph has a good fit, however it has a bigger error compared to the other graphs.275

4.3 PINNS simulation of A model using 170 data points276

After using a small sized data set to train the model of 30% of the available data results were277

obtained. Figure 12 is a resulting graph obtained only for data fitting purposes for the susceptible278

population and there is a good fit which, hence a small sized error. Figure 13 is the obtained graph279

of the data fitting, it has a good fit which means they have a small error. The graph in Figure 14280

is that of the results of the recovered and it also has a good fit and less errors. Figure 15 is the281

resulting graph of deceased, this graph has a good fit, however it has a bigger error compared to282

the other graphs. The overall outcome shows that as much as the fitting has less errors, they are283

more larger compared to the cases where bigger size data was used.284
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Figure 12: This graph shows a comparison of the predicted values of susceptible population and the actual data of
susceptible population for a 130 data points.
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Figure 13: The graph shows a comparison of the predicted infected population values and the actual data infected
population for a 130 data points.
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Figure 14: This graph shows a comparison of the predicted values of recovered population and the actual data of
recovered population for a 130 data points.
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Figure 15: The graph shows a comparison of the predicted deceased population values and the actual data deceased
population for a 130 data points.
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Figure 16: This graph shows a comparison of the predicted values of susceptible population and the actual data of
susceptible population for a 530 data points.

4.4 PINNS simulation of A model using all available data points at the time285

(576 data points)286

The simulation were conducted with 5,00,000 iterations and 4 layers and each layer having 30287

nodes. The size of the data set used was 576 which was the maximum days data available at the288

time.289

Figure 16 is the resulting graph for data fitting purposes for the susceptible population and there is290

a small sized error and a good fitting. Figure 17 is the obtained graph of the data fitting, it has a291

good fit which means they have a small error. The graph in Figure 18 is that of the results of the292

recovered and it also has a good fit and less errors. Figure 19 is the resulting graph of deceased,293

this graph has a good fit, however it has a bigger error compared to the other graphs. The overall294

outcome shows that as much as the fitting has less errors, they are more larger compared to the295

cases where bigger size data was used.296

4.5 PINNS simulation forecasting 30 days297

Simulations using the 3 layers of 30 nodes per layer was conducted and there were 5,000,000298

iterations made during the training.299
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Figure 17: The graph shows a comparison of the predicted infected population values and the actual data infected
population for a 530 data points.
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Figure 18: This graph shows a comparison of the predicted values of recovered population and the actual data of
recovered population for a 530 data points.
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Figure 19: The graph shows a comparison of the predicted deceased population values and the actual data deceased
population for a 530 data points.
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Figure 20: This graph shows a comparison of the predicted values of susceptible population and the actual data of
susceptible population for a SIRD model with future predictions.
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Figure 21: The graph shows a comparison of the predicted infected population values and the actual data infected
population for a SIRD model with future predictions.
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Figure 22: This graph shows a comparison of the predicted values of recovered population and the actual data of
recovered population for a SIRD model with future predictions.
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Figure 23: The graph shows a comparison of the predicted deceased population values and the actual data deceased
population for a SIRD model with future predictions.

Figure 20 is a resulting graph on the forecasting of 30 days of the susceptible population, the num-300

bers seem to continue dropping which is the expected results. Figure 21 is the obtained graph301

showing the forecasted data of the active infections which shows a curved format. The graph in302

Figure 22 is that of the results of the forecasted recoveries. Figure 23 is the resulting graph of the303

forecasted deceased population. The forecast also determined that the maximum expected infec-304

tions Imax, susceptibles population expected at the end of the spread of the disease Sendand the305

total expected recoveries Rend.306

307

Imax = 72,121308

Send = 1,094,719309

Rend = 70,274310

4.6 Deep Learning Sensitivity Analysis311

The Physics Informed neural Network framework developed in the study is mainly affected by four312

factors. These are the number of iterations performed during training, the size of the training data313

used, the total number of layers in the model and the number of nodes in each layer. To conduct the314

sensitivity analysis first the default model is setup, number of iterations = 200 000, size of training315
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data = 400, number of layers = 3 and number of nodes = 30.316
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Table 1: Results of the mean square error analyzing of varying number of iterations and number of
layers in the simulations

Number of layers

.3
Iterations

2 4 8

100 000 3.397× 10−6 1.996× 10−7 5.461× 10−8

200 000 2.434× 10−6 1.871× 10−7 3.866× 10−8

400 000 2.098× 10−7 2.340× 10−8 3.584× 10−9

800 000 1.454× 10−7 1.621× 10−8 3.055× 10−9

Table 2: Results of the mean square error analysing of varying number of nodes in a layer and
number of layers in the simulations

Number of layers

.3
Nodes

2 4 8

10 1.870× 10−7 2.098× 10−8 4.783× 10−9

20 2.494× 10−7 2.243× 10−8 4.131× 10−9

40 2.144× 10−7 2.830× 10−8 4.723× 10−9

80 2.789× 10−7 2.941× 10−8 8.794× 10−9

Table 3: Results of the mean square error analysing of varying sizes of data points and number of
layers in the simulations

Number of layers

.3
Data size

2 4 8

100 2.269× 10−7 2.070× 10−8 3.438× 10−9

150 2.121× 10−7 3.473× 10−8 4.123× 10−9

200 3.364× 10−7 2.904× 10−8 1.015× 10−9

350 3.214× 10−7 4.470× 10−8 3.440× 10−9
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Table 4: Results of the mean square error analysing of varying number of iterations and number of
nodes per layer in the simulations

Number of Iterations

.3
Nodes

100 000 400 000 800 000

10 8.991× 10−7 3.655× 10−8 5.824× 10−8

20 2.361× 10−6 2.323× 10−8 2.390× 10−8

40 5.144× 10−7 7.846× 10−8 2.632× 10−8

80 7.642× 10−7 5.921× 10−8 3.327× 10−8

Table 5: Results of the mean square error analyzing of varying number of iterations and data size
per layer in the simulations

Number of Iterations

.3
Data size

100 000 400 000 800 000

100 1.292× 10−6 1.188× 10−7 2.752× 10−8

150 2.536× 10−6 3.273× 10−8 2.843× 10−8

200 1.110× 10−6 1.491× 10−8 2.064× 10−8

350 1.063× 10−6 3.399× 10−8 1.661× 10−8

Table 6: Results of the mean square error analyzing of varying sizes of data points iterations and
number of nodes in layers in the simulations

Number of Nodes

.3
Data size

10 40 80

100 6.102× 10−8 4.882× 10−8 1.533× 10−7

150 4.574× 10−8 3.127× 10−8 1.823× 10−7

200 4.053× 10−8 3.386× 10−8 5.401× 10−8

350 1.277× 10−7 3.318× 10−8 1.231× 10−8
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Then multiple simulations were conducted setting all the model variables as default, only vary317

two parameters and take a record of all the mean square errors. Only a single simulation of the318

model setup is conducted. The initial parameters are randomly set for each scenario which means319

there are some uncontrolled margins of errors. For such cases a contingency only allows one extra320

simulation trial.321

From Table 1 the results of the study show that as all other parameters remain the same an increase322

in the number of iterations reduces the margin of error in the same layer. The results also vividly323

shows that an increase in the number of layers also reduces the error. That means that when the324

number of layer and iterations are increased much better accuracy is achieved. Table 2 results show325

that the increase in number of layers reduces the error. The size of the error in each layer also varies326

just like the changes with the number of layers. From the results it’s observed that the change in the327

number of nodes has limited effects. Table 3 shows that an increase in the number of hidden layers328

reduces the margin error. It also shows that an increase in the size of data also reduces the margin329

of error.This shows that an increase in both the data size and number of iterations will reduce the330

margin of error.331

Table 4 results shows that as the number of nodes per layer is increased the margin of error is332

reduced. The results also show that the as the number of iterations are increased the error also333

reduces. Table 5 shows that as the number of iterations increases the error is reduced. It also334

shows that as the error is random smaller iterations but as the iterations increase the larger data335

set achieve less errors. Table 6 shows that as the data increase per number of nodes the error is336

reduced, however as the number of nodes are increased the size of the error increases.337

4.7 Discussion338

The results obtained showed high accuracy especially in data fitting compared to mathematical339

model approach. One other advantage of this model is that the as it makes predictions it also340

predicts the wave behaviour of the active infected population. In comparison to other PINNS341

approaches the model achieved an relatively similar results on being surpassed slightly by a con-342

volutional neural network time varying model [12, 49]. The biggest limit that the method has is343

35

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2021                   doi:10.20944/preprints202111.0555.v1

https://doi.org/10.20944/preprints202111.0555.v1


that it uses historical data. This makes it loss efficiency as it gets used to forecast data especially if344

the forecasted period is long since other factors previously unforeseen get introduced such as new345

species.346

5 Conclusion347

The aim of the study was to analyse the dynamics of COVID-19 using the Physics Informed Neural348

Networks framework; A framework which exposes a neural network to both data and governing349

equations during the training process. The mathematical model employed as the governing equa-350

tions of the PINNS training model was the Susceptible- Infected - Recovered - Deceased. The data351

used for conducting the simulations was from the kingdom of Eswatini. Simulations of PINNS352

were conducted results were obtained and viewed in the form of tables and graphs.These simula-353

tions included the use of artificial data to validate the model.354

The first simulation of this model included the use of only 170 data points which gave accurate355

result. These results were less accurate compared to results obtained from simulations of larger356

datasets but, were reasonably accurate proving that the framework can achieve accurate results even357

from small size datasets [49]. A larger dataset containing all the data available at the time was also358

used. The results were obtained with highly accurate predictions, compared to conventional deep359

learning [12, 49]. The model was also more accurate than mathematical models used in various360

other studies [37]. Other simulations involved forecasting prospective SIRD values.361

The obtained results conclude that the model is well suited to make predictions of values within362

the training period. This thus means that the model is well suited in data fitting, where there are363

some days where data was not collected,was wrongly inserted or was lost. The other benefit of364

the framework is that it returns the spreading rate, death rate and recovery rate which were setup365

to serve as the adjusting variables for the PINNS part of the neural network. One limit however366

is that increasing the number of forecasted days leads to diminishing accuracy. This also occurs367

since the predictions are linked to the spread rate, death rate and recovery rate patterns which are368

determined using the old available data. The model does also predict the wave format displayed369

by the active infections. This concludes that the model is highly suitable for making short-term370
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predictions, but for long-term purposes predictions can be made with a sustainable margin of error.371

One big limitation faced during the research was the shortage of data and process power. Thus for372

further research we recommend the development of a model which will group each of the SIRD373

populations using age, since it has been shown that different age groups are affected by the disease374

differently. Using the well segmented data each of the parameters or rates can then be defined as375

per age group. We also recommend that a model similar to the one used in the study be tested only376

at a larger scale using higher processing power.377
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