Taming hyperchaos with ESDDFD discretization of a conformable fractional derivative financial system with market confidence and ethics risk

D.P. Clemence-Mkhope and Gregory A. Gibson
Department of Mathematics and Statistics, North Carolina A&T State University, Greensboro, NC 27411. E-mail: clemence@ncat.edu, ggibson@ncat.edu

Abstract
Four discrete models using the exact spectral derivative discretization finite difference (ESDDFD) method are proposed for a chaotic five-dimensional, conformable fractional derivative financial system incorporating ethics and market confidence. Since the system considered was recently studied using the conformable Euler finite difference (CEFD) method and found to be hyperchaotic, and the CEFD method was recently shown to be valid only at fractional index \(\alpha = 1 \), the source of the hyperchaos is in question. Through numerical experiments, illustration is presented that the hyperchaos previously detected is in part an artifact of the CEFD method as it is absent from the ESDDFD models.

Keywords: Conformable calculus; Fractional-order financial system; ESDDFD and NSFD methods; Hyperchaotic attractor; Market confidence; Ethics risk

1 Introduction
Hyperchaotic systems [1,2], typically defined as systems with at least two positive Lyapunov exponents [3-5], of fractional-order have been investigated in many contexts, such as systems of Rössler [6] or Lorenz [7] type, those with flux controlled memristors [8] or realized in circuits [9-11], those arising from cellular neural networks [12], and financial systems [13]. As recounted in [13], nonlinear financial system depicting the relationship among interest rates, investments, prices, and savings was first introduced by Huang and Li [14]. It was extended to fractional order in Chen [15], to uncertain fractional-order form in Wang, Huang and Shen [16], to delayed form in Mircea et al., [17], and discrete form in Xin, Chen, and Ma [15]. Average profit margin was added as a variable in Yu, Cai, and Li [16] while investment incentive and market confidence were introduced in Xin, Li, and Zhang [14, 15]. Xin and Zhang [15] updated the 3-dimensional Huang and Li [8] model to a 4-dimensional one by accounting for market confidence, and [13] incorporated ethics risk to obtain a 5-dimensional system, which was then fractionalized to obtain the following fractional-order hyperchaotic financial system considered in [13]:

\[
\begin{align*}
T_t^{\alpha_1}x &= z + (y - a)x + k(w - pu) \\
T_t^{\alpha_2}y &= 1 - by - x^2 + k(w - pu) \\
T_t^{\alpha_3}z &= -x - cz + k(w - pu) \\
T_t^{\alpha_4}w &= -dxyz \\
T_t^{\alpha_5}u &= k(w - pu)
\end{align*}
\]

where \(\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) \) is subject to \(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \in (0, 1) \), and \(T_t^{\alpha_i} \), \(1 \leq i \leq 5 \), denotes the conformable fractional derivative of order \(\alpha_i \). The variables \(x, y, z, w, u \) are the interest rate, investment demand, price index, market confidence, and ethics risk; the parameters \(a, b, c \) are the saving amount,
cost per investment, and demand elasticity of commercial markets, respectively, and a, b, c ≥ 0; k, p, d are impact factors associated with ethics risk.

Once proposed, and since analytic solutions do not exists, suitable numerical schemes to obtain solutions of the conformable derivative financial system. Though there are several methods to solve a conformable derivative system [22, 23-47], these are too complex for many people. Inspired by the discretization process for the Caputo derivative for Ricatti equations [45] and Chua systems [46], the conformable Euler’s finite difference (CEFD) method [47] for the five-dimensional fractional-order financial system is proposed in [3]. Numerical experiments with the resulting discrete model were conducted to detect a hyperchaotic attractor of the system. However, the standard Euler discretization of integer order systems such as studied in [3] is known to induce (see, e.g., [48], [49]) numerical instabilities and spurious behavior where none exists in the continuous system. Moreover, the CEFD method has recently shown [50] to be valid only for α = 1 and is therefore not a valid fractional method. Nonstandard finite difference (NSFD) models have extensively [48] been shown to eliminate induced chaos; the ESDDFD methodology is a novel extension, developed in the context of advection-reaction-diffusion equations [51], of the NSFD method to non-integer derivatives [52].

It is therefore natural to ask whether some of the hyperchaotic behavior detected in the fractional financial system is an artifact of the method, and whether ESDDFD models can be constructed to eliminate such induced hyperchaos. The purpose of the present study is to investigate this question, in particular the effects of the discretization of the derivative and that of non-linear terms. To this end, the following four discrete models using the ESDDFD method are constructed for the system (1.1) and the experiments of [13] are repeated with the new models.

\[
\begin{align*}
\frac{x_{k+1} - x_k}{\phi_j(h, \alpha_j)} &= F^x_i(x_k, y_k, z_k, u_k, w_k), \\
\frac{y_{k+1} - y_k}{\phi_j(h, \alpha_j)} &= F^y_i(x_k, y_k, z_k, u_k, w_k), \\
\frac{z_{k+1} - z_k}{\phi_j(h, \alpha_j)} &= -x_k - cz_k + k(w_k - pu_k), \\
\frac{u_{k+1} - u_k}{\phi_j(h, \alpha_j)} &= k(w_k - pu_k), \\
\frac{w_{k+1} - w_k}{\phi_j(h, \alpha_j)} &= F^w_i(x_k, y_k, z_k, z_k),
\end{align*}
\]

(1.2)

where \(i = 1, 2\) and \(j = 1, 2\), where,

\[
\begin{align*}
F^x_1(x_k, y_k, z_k, u_k, w_k) &= z_k + (y_{k+1} - a)x_k + k(w_k - pu_k), \\
F^y_1(x_k, y_k, z_k, u_k, w_k) &= 1 - by_k - x_k x_k + k(w_k - pu_k), \\
F^w_1(x_k, y_k, z_k, z_k) &= -\frac{d}{2}x_k y_k (z_k + z_k), \\
F^x_2 &= F^x_1(x_k, y_{k+1}, z_k, u_k, w_k), F^y_2 = F^y_1(x_k, y_{k+1}, z_k, u_k, w_k), F^w_2 = F^w_1(x_k, y_{k+1}, z_k, z_{k+1}).
\end{align*}
\]

The remainder of this article is organized as follows. In Sect. 2, ESDDFD fundamentals, description of the model (1.1), and the CEFD model from [3] are presented. Section 3 presents construction of the denominator functions, \(\phi_j(h, \alpha_m)\), \(1 \leq m \leq 5\), for the ESDDFD method and compares sub-models of (1.2) with corresponding CEFD sub-models. In Sect. 4, experimental results are presented of hyperchaotic attractor detection from the proposed financial system using both methods. Some concluding remarks in Sect. 5 close the paper.
2 Preliminaries

2.1 The conformable derivative ESDDFD discrete model construction fundamentals

While the Riemann–Liouville, Caputo, Atangana-Belaneau, and Grunwald–Letnikov fractional derivatives [53–60] are widely used in various applications, their definitions lack the chain rule, a classical derivative property satisfied by the conformable fractional derivative (CFD) [61-63] and its various extensions (see, e.g., [64]). A financial system with market confidence and ethics risk model was recently [3] added to the many existing applications of the CFD in various scientific fields [65-75].

2.2 The conformable derivative hyperchaotic financial system and its CEFD model

The conformable fractional derivative financial system model (1.1) is based on a successive addition of various factors starting with the Huang and Li [8] nonlinear financial system model:

\[
\begin{align*}
x' &= z + (y - a)x, \\
y' &= 1 - by - x^2, \\
z' &= -x - cz,
\end{align*}
\]

modeling the interaction of interest rate, investment demand, and price index; the variables and parameters are the same as in (1.1). Model (2.1) was extended by Xin and Zhang [15] to account for market confidence:

\[
\begin{align*}
x' &= z + (y - a)x + m_1w, \\
y' &= 1 - by - x^2 + m_2w, \\
z' &= -x - cz + m_3w, \\
w' &= -xyz,
\end{align*}
\]

where \(m_1, m_2, m_3\) are the impact factors associated with market confidence; the remaining variables and parameters are the same as in (2.1). Model (1.1) is the fractionalization, predicated on the practice that fractional-order economic systems [15, 76–80] can generalize their integer-order forms [14, 81, 82], of the following extension of (2.2) in [1] to account for both market confidence and ethics risk:

\[
\begin{align*}
x' &= z + (y - a)x + k(w - pu), \\
y' &= 1 - by - x^2 + k(w - pu), \\
z' &= -x - cz + k(w - pu), \\
u' &= k(w - pu), \\
w' &= -dxyz,
\end{align*}
\]

When \(\alpha = (1, 1, 1, 1, 1)\), system (1.1) degenerates to system (2.3); in the absence of ethics risk, (2.3) reduces to (2.2); in the absence of market confidence, (2.2) reduces to (2.1). In these three cases, therefore, any discrete method developed for (1.1) must reduce to that of the respective three reduced
systems. Chaotic behavior for both the CEFD and ESDDFD models will be investigated in Section 3 for (1.1) as well as the three reduced systems (2.1)-(2.3).

The following discrete model was obtained in [3] from the CEFD method and used to investigate hyperchaos of the system (1.1):

\[
\begin{align*}
 x_{k+1} &= x_k + \frac{h^{a_1}}{a_1} (z_k + (y_k - a)x_k + k(w_k - pu_k)) \\
y_{k+1} &= y_k + \frac{h^{a_2}}{a_2} (1 - by_k - x_kx_k + k(w_k - pu_k)) \\
z_{k+1} &= z_k - \frac{h^{a_3}}{a_3} (x_k + cz_k - k(w_k - pu_k)) \\
u_{k+1} &= u_k + \frac{h^{a_5}}{a_5} k(w_k - pu_k) \\
w_{k+1} &= w_k - \frac{h^{a_4}}{a_4} dx_ky_kz_k
\end{align*}
\]

(2.4)

\[\text{3 ESDDFD Discretization of conformable derivative system and its reductions}\]

In the ESDDFD and NSF D discretization methodologies, the first step is to consider a linear sub-system whose exact or best scheme can be constructed. Such a sub-system in this case is the following,

\[
\begin{align*}
 T_t^{α_1} x &= -ax, & T_t^{α_2} y &= -by, & T_t^{α_3} z &= -cz, \\
 T_t^{α_1} w &= 0, & T_t^{α_5} u &= -kpu,
\end{align*}
\]

(3.1)

which has only positive solutions for any positive initial data. The exact discretization of (3.1), which has a solution identical to that of (3.1), is as follows:

\[
\begin{align*}
 \frac{x_{k+1} - x_k}{\phi_1(h, α_1)} &= -ax_k, & \frac{y_{k+1} - y_k}{\phi_1(h, α_2)} &= -by_k, & \frac{z_{k+1} - z_k}{\phi_1(h, α_3)} &= -cz_k, \\
 \frac{w_{k+1} - w_k}{\phi_1(h, α_4)} &= 0, & \frac{u_{k+1} - u_k}{\phi_1(h, α_5)} &= -kpu_k,
\end{align*}
\]

(3.2)

where the nonstandard denominators \(\phi_i(h, α_i), 1 ≤ i ≤ 5\), are given by

\[
\phi_i(h, α_i) = \frac{1}{Q_i} \left(1 - e^{-Q_i(t+h) α_i(t-α_i)}\right), \quad Q_1 = a, Q_2 = b, Q_3 = c, Q_4 = 0, Q_5 = kp.
\]

Since (1.1) reduces to (3.1), any valid discrete model for (1.1) must be reducible to one consistent with its exact discretization, that is, (3.2). By comparison, a reduction of the CEFD model (2.4) to the sub-system (3.1) yields the following discrete sub-system:

\[
\begin{align*}
 x_{k+1} &= x_k - \frac{h^{a_1}}{a_1} ax_k, & y_{k+1} &= y_k - \frac{h^{a_2}}{a_2} by_k, & z_{k+1} &= z_k - \frac{h^{a_3}}{a_3} cz_k, \\
w_{k+1} &= w_k + Q_4 \frac{h^{a_4}}{a_4} w_k, & u_{k+1} &= u_k - \frac{h^{a_5}}{a_5} kpu_k,
\end{align*}
\]

(3.3)

which is positive only if the following condition is satisfied: \(1 - \frac{h^{a_i}}{a_i} Q_i ≥ 0, 1 ≤ i ≤ 5\), with the \(Q_i\) as in (3.2); such conditional positivity is known to induce chaotic behavior. All the sub-equations. (3.2) are of the form...
\[T_\alpha^k P = -\lambda P, \]
whose CEFD scheme is
\[P_{k+1} = P_k - \frac{h^\alpha}{\alpha} \lambda P_k, \]
which has been conclusively shown in [50] to be valid only for \(\alpha = 1 \).

It is shown in [50] that a modified CEFD (MCEFD) may be obtained from the following alternate CFD definition, which is equivalent to the fractional change of variables in the integer-valued derivative (see also [Ulness et al]):

Definition 1. Given a real-valued function on \([0, \infty)\), the conformable fractional derivative has the following alternative definition:

\[
\frac{C^\alpha T^\alpha}{0} f(t) \equiv \lim_{h \to 0} \frac{C^\alpha \Delta^\alpha f(t)}{h^\alpha},
\]

where \(\frac{C^\alpha T^\alpha}{0} f(0) \) is understood to mean \(\frac{C^\alpha T^\alpha}{0} f(t) \) as \(t \to 0^+ \).

The Euler scheme resulting from the MCFED is therefore the same as that given in Eqn. (3.2), only with the denominators

\[
\phi_1(h, \alpha_i) = \frac{1}{\alpha_i} \left(1 - e^{-Q(t+h)\alpha_i - t^{\alpha_i}} \right)
\]

replaced by

\[
\phi_2(h, \alpha_i) = \frac{1}{\alpha_i} [(t + h)^{\alpha_i} - t^{\alpha_i}], 1 \leq i \leq 5,
\]

which is equivalent to replacing \(h^{\alpha_i} \) by \(\alpha_i \phi_2(h, \alpha_i) \) in the CEFD scheme (3.3).

To enable assessment of the effect of the denominators \(\phi_j(h, \alpha_i), j = 1,2 \), the following schemes are compared:

\[
\frac{x_{k+1} - x_k}{\phi_j(h, \alpha_i)} = z_k + (y_k - a)x_k, \hspace{1cm} (3.4a)
\]

\[
\frac{y_{k+1} - y_k}{\phi_j(h, \alpha_i)} = 1 - by_k - (x_k)^2,
\]

\[
\frac{z_{k+1} - z_k}{\phi_j(h, \alpha_i)} = -x_k - cz_k, \hspace{1cm} j = 1,2.
\]

To enable assessment of the effect of the non-local discretization of nonlinear terms, the following schemes are compared:

\[
\frac{x_{k+1} - x_k}{\phi_j(h, \alpha_i)} = z_k + (y_{k+1} - a)x_k, \hspace{1cm} (3.4b)
\]

\[
\frac{y_{k+1} - y_k}{\phi_j(h, \alpha_i)} = 1 - by_k - x_{k+1}x_k,
\]

\[
\frac{z_{k+1} - z_k}{\phi_j(h, \alpha_i)} = -x_k - cz_k, \hspace{1cm} j = 1,2.
\]

The terms \((y - a)x\) and \(x^2\) are discretized non-locally as, respectively, \((y_{k+1} - a)x_k\) and \(x_{k+1}x_k\), while discretization of the terms \(z\) in Eqns. (3.4a) and \(x\) in Eqn. (3.4c) as \(z_k\) and \(x_k\) ensures respective consistency with the terms \(cz\) of in Eqn. (3.4c) and \(ax\) in Eqn. (3.4a) in the cases \(c = 1\) and \(a = 1\).
By comparison, the scheme obtained by a reduction of the CEFD model (2.4) to its 3-dimensional sub-system (2.1) yields the following discrete sub-system:

\[\begin{align*}
 x_{k+1} &= x_k + \frac{h^a_1}{a_1} (z_k + (y_k - a) x_k) \\
 y_{k+1} &= y_k + \frac{h^a_2}{a_2} (1 - b y_k - x_k x_k) \\
 z_{k+1} &= z_k + \frac{h^a_3}{a_3} (-x_k - c z_k).
\end{align*} \tag{3.5} \]

Since system (3.5) reduces to the \(x - y - z \) sub-system of (3.3), which suffers from induced chaos, it is to be expected that it too suffers the same, which will be numerically investigated in the next section.

The ESDDFD models (1.2) are then obtained by discretizing \(k(w - pu) \) as \(k(w_k - pu_k) \) to ensure consistency with (3.2) and then discretizing \(x y z \) non-locally as either \(\frac{1}{2} x_k y_k (z_k + z_k) \) or \(\frac{1}{2} x_k y_k (z_k + z_k) \), where the form \(x_k y_k (z_k + z_k) \) is used to match the \(xy \) term in the \(x - \)equation.

\[\begin{align*}
 \frac{x_{k+1} - x_k}{\phi_j(h, a_1)} &= z_k + (y_k - a) x_k + k(w_k - pu_k) \\
 \frac{y_{k+1} - y_k}{\phi_j(h, a_2)} &= 1 - b y_k - (x_k)^2 + k(w_k - pu_k) \\
 \frac{z_{k+1} - z_k}{\phi_j(h, a_3)} &= -x_k - c z_k + k(w_k - pu_k),
\end{align*} \tag{3.6} \]

and

\[\begin{align*}
 \frac{x_{k+1} - x_k}{\phi_j(h, a_1)} &= z_k + (y_{k+1} - a) x_k + k(w_k - pu_k) \\
 \frac{y_{k+1} - y_k}{\phi_j(h, a_2)} &= 1 - b y_k - x_{k+1} x_k + k(w_k - pu_k) \\
 \frac{z_{k+1} - z_k}{\phi_j(h, a_3)} &= -x_k - c z_k + k(w_k - pu_k),
\end{align*} \tag{3.7} \]

The schemes are explicit and can be explicitly solved for each \(j = 1,2, \) in the order

\[\begin{align*}
 x_{k+1}, y_{k+1}, z_{k+1}, u_{k+1}, w_{k+1} \quad \text{to obtain the following:}
 x_{k+1} &= x_k + \phi_j(h, a_1)[z_k + (y_k - a) x_k + k(w_k - pu_k)] \tag{3.8} \\
 y_{k+1} &= y_k + \phi_j(h, a_2)[1 - b y_k - (x_k)^2 + k(w_k - pu_k)] \\
 z_{k+1} &= z_k + \phi_j(h, a_3)[x_k + c z_k - k(w_k - pu_k)].
\end{align*} \]
\[u_{k+1} = u_k + \phi_j(h, \alpha_5)[k(w_k - pu_k)], \]
\[w_{k+1} = w_k - \frac{d}{2} \phi_j(h, \alpha_4)x_ky_k(z_k + z_k), \quad j = 1, 2. \]

While implicit, the schemes can be explicitly solved for each \(j = 1, 2 \) in the order \(u_{k+1}, z_{k+1}, x_{k+1}, y_{k+1}, w_{k+1} \) to obtain the following:

\[u_{k+1} = u_k + \phi_j(h, \alpha_5)[k(w_k - pu_k)] \]
\[z_{k+1} = z_k - \phi_j(h, \alpha_3)[x_k + cz_k - k(w_k - pu_k)] \]
\[x_{k+1} = \frac{1}{1 + \phi_j(h, \alpha_1)x_k\phi_j(h, \alpha_2)x_k}[x_k + \phi_j(h, \alpha_1)x_k[y_k + \phi_j(h, \alpha_2)[1 - by_k + k(w_k - pu_k)]]] \]
\[+ \frac{1}{1 + \phi(h, \alpha_1)x_k\phi(h, \alpha_2)x_k}\phi_j(h, \alpha_1)[z_k - ax_k + k(w_k - pu_k)] \]
\[w_{k+1} = w_k - \phi_j(h, \alpha_4)\frac{d}{2}x_ky_{k+1}(z_k + z_{k+1}) \]

4. Numerical Experiments

In this section, hyperchaos detection experiments are conducted parallel to those of [3] by varying the parameters related to ethics risk, such as \(\alpha_5 \), the confidence factor \(k \), and the risk factor \(p \), in the CEFD and ESDDFD models and their reductions. The following parameters and initial point values are fixed following [1]: \(h = 0.002, a = 0.8, b = 0.6, c = 1, d = 2, \alpha_1 = 0.3, \alpha_2 = 0.5, \alpha_3 = 0.6, \alpha_4 = 0.24, x_0 = 0.4, y_0 = 0.6, z_0 = 0.8, w_0 = 0.3, u_0 = 0.4 \).

4.1 Three-dimensional systems comparison

There were no experiments performed in [13] for this case. Simulations for both the ESDDFD model (3.4) and CEFD model (3.5) are performed with the same parameters. The following models (4.1) – (4.4), obtained by the ESDDFD method,

\[\frac{1}{0.8} \left[\frac{x_{k+1} - x_k}{1 - e^{-0.6[(t+h)^{0.3} - t^{0.3}]}(t+h)^{0.3}} \right] = z_k + (y_k - 0.8)x_k, \]

\[\frac{1}{0.6} \left[\frac{y_{k+1} - y_k}{1 - e^{-0.5[(t+h)^{0.5} - t^{0.5}]}(t+h)^{0.5}} \right] = 1 - 0.6y_k - (x_k)^2, \]

\[\frac{1}{0.6} \left[\frac{z_{k+1} - z_k}{1 - e^{-0.6[(t+h)^{0.6} - t^{0.6}]}(t+h)^{0.6}} \right] = -x_k - z_k, \]

\[\frac{1}{0.3} \left[\frac{x_{k+1} - x_k}{(t+h)^{0.3} - t^{0.3}} \right] = z_k + (y_k - 0.8)x_k, \]

\[\frac{1}{0.5} \left[\frac{y_{k+1} - y_k}{(t+h)^{0.5} - t^{0.5}} \right] = 1 - 0.6y_k - (x_k)^2, \]

\[\frac{1}{0.6} \left[\frac{z_{k+1} - z_k}{(t+h)^{0.6} - t^{0.6}} \right] = -x_k - z_k, \]
\[
\begin{align*}
\frac{x_{k+1} - x_k}{1 - e^{-0.8(t+h)^0.3 - \epsilon 0.3}} &= z_k + (y_{k+1} - 0.8)x_k, \\
\frac{y_{k+1} - y_k}{1 - e^{-0.6(t+h)^0.5 - \epsilon 0.5}} &= 1 - 0.6y_k - x_{k+1}x_k, \\
\frac{z_{k+1} - z_k}{1 - e^{-0.6(t+h)^0.6 - \epsilon 0.6}} &= -x_k - z_k,
\end{align*}
\] (4.3)

\[
\begin{align*}
\frac{x_{k+1} - x_k}{h^{0.3}(t+h)^{0.3} - \epsilon 0.3} &= z_k + (y_{k+1} - 0.8)x_k, \\
\frac{y_{k+1} - y_k}{h^{0.5}(t+h)^{0.5} - \epsilon 0.5} &= 1 - 0.6y_k - x_{k+1}x_k, \\
\frac{z_{k+1} - z_k}{h^{0.6}(t+h)^{0.6} - \epsilon 0.6} &= -x_k
\end{align*}
\] (4.4)

are compared to (4.5), obtained by the CEFD method,

\[
\begin{align*}
x_{k+1} &= x_k + h^{0.3}(z_k + (y_k - 0.8)x_k), \\
y_{k+1} &= y_k + h^{0.5}(1 - 0.6y_k - x_k x_k), \\
z_{k+1} &= z_k + h^{0.6}(x_k - z_k).
\end{align*}
\] (4.5)

While bifurcations can be seen in the CEFD model, they are absent from the results of the ESDDFD models.

Figures 4.1
Figures 4.1(a). CFD model (4.5) profiles of x, y, z

Figures 4.1(b). Profiles of x, y, z for each model (4.1) through (4.4)
4.2 Five-dimensional systems comparison; Varying α, k, and p

For this case experiments performed in [13] are performed with the same parameters for the models (3.4), obtained by the ESDDFD method, for the various cases and values of (α, k, p) used in [13].

\[
x_{k+1} = x_k + \frac{h^{0.3}}{0.3}(z_k + (y_k - 0.8)x_k + k(w_k - pu_k))
\]

\[
y_{k+1} = y_k + \frac{h^{0.5}}{0.5}(1 - 0.6y_k - x_kx_k + k(w_k - pu_k))
\]

\[
z_{k+1} = z_k - \frac{h^{0.6}}{0.6}(x_k + z_k - k(w_k - pu_k))
\]

\[
w_{k+1} = w_k - \frac{h^{0.24}}{0.24}x_ky_kz_k
\]

\[
u_{k+1} = u_k + \frac{h^{0.5}}{\alpha}(w_k - pu_k)
\]

are compared to the following four models (3.4), respectively MCEFD, ESDDFD1, ESDDFD2, ESDDFD3, obtained by the ESDDFD and NSFD methods:

\[
\frac{1}{0.3^4(t + h)^{0.3 - t^{0.3}}} x_{k+1} = z_k + (y_k - 0.8)x_k + k(w_k - pu_k)
\]

\[
\frac{1}{0.3^5(t + h)^{0.5 - t^{0.5}}} y_{k+1} = 1 - 0.6y_k - x_kx_k + k(w_k - pu_k),
\]

\[
\frac{1}{0.6^6(t + h)^{0.6 - t^{0.6}}} z_{k+1} = -x_k - z_k + k(w_k - pu_k),
\]

\[
\frac{1}{0.24^7(t + h)^{0.24 - t^{0.24}}} w_{k+1} = -x_ky_k(z_k + z_k)
\]

\[
\frac{1}{\alpha^8(t + h)^{\alpha - t^{\alpha}}} u_{k+1} = k(w_k - pu_k),
\]

\[
\frac{1}{0.8^9(1 - e^{-0.3^4(t + h)^{0.3 - t^{0.3}}})} x_{k+1} = z_k + (y_k - 0.8)x_k + k(w_k - pu_k)
\]

\[
\frac{1}{0.6^10(1 - e^{-0.5^5(t + h)^{0.5 - t^{0.5}}})} y_{k+1} = 1 - 0.6y_k - x_kx_k + k(w_k - pu_k),
\]

\[
\frac{1}{0.6^11(1 - e^{-0.6^6(t + h)^{0.6 - t^{0.6}}})} z_{k+1} = -x_k - z_k + k(w_k - pu_k),
\]

\[
\frac{1}{0.24^12(1 - e^{-0.24^7(t + h)^{0.24 - t^{0.24}}})} w_{k+1} = -x_ky_k(z_k + z_k)
\]

\[
\frac{1}{\alpha^13(1 - e^{-\alpha^8(t + h)^{\alpha - t^{\alpha}}})} u_{k+1} = k(w_k - pu_k),
\]
\[
\begin{align*}
\frac{x_{k+1}-x_k}{1 - \alpha_3 (t+h)^{0.3} - t^{0.3}} &= z_k + (y_{k+1} - 0.8)x_k + k(w_k - pu_k) \\
\frac{y_{k+1}-y_k}{1 - \alpha_5 (t+h)^{0.5} - t^{0.5}} &= 1 - 0.6y_k - x_{k+1}x_k + k(w_k - pu_k), \\
\frac{z_{k+1}-z_k}{1 - \alpha_6 (t+h)^{0.6} - t^{0.6}} &= -x_k - z_k + k(w_k - pu_k), \\
\frac{w_{k+1}-w_k}{1 - \alpha_7 (t+h)^{0.2} - t^{0.24}} &= -x_k y_{k+1}(z_k + z_{k+1}), \\
\frac{u_{k+1}-u_k}{1 - \alpha_8 (t+h)^{0.25} - t^{0.25}} &= k(w_k - pu_k),
\end{align*}
\]

\[\tag{4.9}\]

\[
\begin{align*}
\frac{x_{k+1}-x_k}{1 - \alpha_6 (t+h)^{0.3} - t^{0.3}} &= z_k + (y_{k+1} - 0.8)x_k + k(w_k - pu_k) \\
\frac{y_{k+1}-y_k}{1 - \alpha_8 (t+h)^{0.5} - t^{0.5}} &= 1 - 0.6y_k - x_{k+1}x_k + k(w_k - pu_k), \\
\frac{z_{k+1}-z_k}{1 - \alpha_9 (t+h)^{0.6} - t^{0.6}} &= -x_k - z_k + k(w_k - pu_k), \\
\frac{w_{k+1}-w_k}{1 - \alpha_{10} (t+h)^{0.2} - t^{0.24}} &= -x_k y_{k+1}(z_k + z_{k+1}), \\
\frac{u_{k+1}-u_k}{1 - \alpha_{11} (t+h)^{0.25} - t^{0.25}} &= k(w_k - pu_k),
\end{align*}
\]

\[\tag{4.10}\]

4.2.1 Varying \(\alpha_5\) with fixed \(k = 2\) and \(p = 1\) and \(\alpha_s \in [0.232, 0.328]\).

In this case [13] concluded that system (2.4) is hyperchaotic with \(\alpha_s \in [0.232, 0.328]\). Fixing \(\alpha_5 = 0.24\), a set of two positive Lyapunov exponents and three negative Lyapunov exponents. Profiles for \(x, y, z, w\) and \(u\), when \(\alpha_5 = 0.232\) for model (4.6) are given below. For each model (4.7) through (4.10) a graph of the five variables is given using the same step size and parameter values. These models produce identical graphs which differ significantly from the graphs for model (4.6). The Bifurcation tests for the ESDDFD model (3.4) are performed with the same parameters. The bifurcations diagrams for \(x, z\) and \(u\) for models (4.6) through (4.10) are reproduced for \(h = 0.002\).
Figures 4.2.1(a). CFD model (4.6) profiles of (i) u, (ii) x, (iii) z, (iv) y, (v) w, at $k = 2, p = 1, \alpha_5 = 0.232$
Figures 4.2.1(b). Models (4.7), (4.8), (4.9) and (4.10) profiles of x, y, z, w and u at $k = 2, p = 1, \alpha_5 = 0.232$

Figures 4.2.1(c). CEFD model (4.6) bifurcation of x, z, u versus α_5 for $h = 0.002$
Figures 4.2.1(d). ESDDFD model (4.7), (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $k = 2, p = 1, \alpha_5 \in [0.232, 0.328]$

Figures 4.2.1(e). ESDDFD model (4.8), (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $k = 2, p = 1, \alpha_5 \in [0.232, 0.328]$
Figures 4.2.1(f). ESDDFD model (4.9), (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $k = 2$, $p = 1$, $\alpha_5 \in [0.232, 0.328]$
Figures 4.2.1(g). ESDDFD model (4.10), (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $k = 2, p = 1, \alpha_5 \in [0.232, 0.328]$.
4.2.2 Varying \(p \) with fixed \(k = 2 \), \(\alpha_5 = 0.3 \), and \(p \in [1, 2] \).

In this case, [13] concluded that system (2.4) is hyperchaotic with \(p \in [1, 2] \). Fixing \(p = 1 \), a set of two positive Lyapunov exponents and three negative Lyapunov exponents was determined. Bifurcation tests for the ESDDFD model (3.4) are performed with the same parameters for the full discrete model (1.2).
Figures 4.2.2(b). MCEFD model (4.7) (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $k = 2, \alpha_5 = 0.3, p \in [1, 2]$.

Figures 4.2.2(c). ESDDFD1 model (4.8) (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $k = 2, \alpha_5 = 0.3, p \in [1, 2]$.
Figures 4.2.2(d). ESDDFD2 model (4.9) (i) u vs α_5, (ii) x vs α_6, (iii) z vs α_5, at $k = 2, \alpha_5 = 0.3, p \in [1, 2]$

Figures 4.2.2(e). ESDDFD2 model (4.10) (i) u vs α_5, (ii) x vs α_6, (iii) z vs α_5, at $k = 2, \alpha_5 = 0.3, p \in [1, 2]$
Figures 4.2(f). Models (4.7), (4.8), (4.9) and (4.10) profiles of \(x, y, z, w \) and \(u \) at \(k = 2, p = 1.94, \alpha_5 = 0.3 \)

4.2.3 Varying \(k \) with fixed \(p = 1 \) and \(\alpha_5 = 0.3 \) with \(k \in [1.5, 2.5] \).

In this case [13] concluded that system (2.4) is hyperchaotic with \(k \in [1.5, 2.5] \). Fixing \(k = 1.5 \), a set of two positive Lyapunov exponents and three negative Lyapunov exponents were determined. Bifurcation tests for the ESDDFD model (3.4) are performed with the same parameters for the full discrete model (1.2).
Figures 4.2.3(a). CEFD model (4.6) (i) $u \ vs \ \alpha_5$, (ii) $x \ vs \ \alpha_5$, (iii) $z \ vs \ \alpha_5$, at $p = 1, \alpha_5 = 0.3, k \in [1.5, 2.5]$

Figures 4.2.3(b). MCEF model (4.7) (i) $u \ vs \ \alpha_5$, (ii) $x \ vs \ \alpha_5$, (iii) $z \ vs \ \alpha_5$, at $p = 1, \alpha_5 = 0.3, k \in [1.5, 2.5]$
Figures 4.2.3(c). ESDDFD1 model (4.8) (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $p = 1, \alpha_5 = 0.3$, $k \in [1.5, 2.5]$

Figures 4.2.3(d). ESDDFD2 model (4.9) (i) u vs α_5, (ii) x vs α_5, (iii) z vs α_5, at $p = 1, \alpha_5 = 0.3$, $k \in [1.5, 2.5]$
4.2.4 With fixed $k = 2$, $p = 1$ and $\alpha_5 = 0.24$. [13] concluded that system (2.4) has a hyperchaotic attractor in the $y - z - u$ and $x - y - w$ planes.
5. Discussion

A discrete model using the conformable Euler finite difference (CEFD) model, (2.4), was constructed in [13] and used to detect hyperchaotic behavior of the system (1.1). In this paper, a discrete model (1.2) has been constructed for the system (1.1) and the parameters from [13] used to study hyperchaos using bifurcation techniques. The discrete model (1.2) is constructed using the exact spectral derivative discretization finite difference (ESDDFD) method, a universal extension of the nonstandard finite difference method to fractional derivatives, which is designed to eliminate contrived chaos. Various cases are considered, in parallel to those considered in [13] as well as for sub-systems relevant to the construction of the discrete model (1.2).
References

