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Abstract 

Four discrete models using the exact spectral derivative discretization finite difference (ESDDFD) 

method are proposed for a chaotic five-dimensional, conformable fractional derivative financial system 

incorporating ethics and market confidence. Since the system considered was recently studied using the 

conformable Euler finite difference (CEFD) method and found to be hyperchaotic, and the CEFD method 

was recently shown to be valid only at fractional index 𝛼 = 1, the source of the hyperchaos is in 

question. Through numerical experiments, illustration is presented that the hyperchaos previously 

detected is in part an artifact of the CEFD method as it is absent from the ESDDFD models.  

Keywords: Conformable calculus; Fractional-order financial system; ESDDFD and NSFD methods; 
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1 Introduction  

Hyperchaotic systems [1,2], typically defined as systems with at least two positive Lyapunov exponents  

[3-5], of fractional-order have been investigated in many contexts, such as systems of Rössler [6] or 

Lorenz [7] type, those with flux controlled memristors [8] or realized in circuits [9-11], those arising from 

cellular neural networks [12], and financial systems [13]. As recounted in [13], nonlinear financial system 

depicting the relationship among interest rates, investments, prices, and savings was first introduced by 

Huang and Li [14]. It was extended to fractional order in Chen [15], to uncertain fractional-order form in 

Wang, Huang and Shen [16], to delayed form in Mircea et al., [17], and discrete form in Xin, Chen, and 

Ma [15]. Average profit margin was added as a variable in Yu, Cai, and Li [16] while investment incentive 

and market confidence were introduced in Xin, Li, and Zhang [14, 15]. Xin and Zhang [15] updated the 

3-dimensional Huang and Li [8] model to a 4-dimensional one by accounting for market confidence, 

and [13] incorporated ethics risk to obtain a 5-dimensional system, which was then fractionalized to 

obtain the following fractional-order hyperchaotic financial system considered in [13]:  

𝑇𝑡
𝛼1𝑥 = 𝑧 + (𝑦 − 𝑎)𝑥 + 𝑘(𝑤 − 𝑝𝑢)        (1.1) 

𝑇𝑡
𝛼2𝑦 = 1 − 𝑏𝑦 − 𝑥2 + 𝑘(𝑤 − 𝑝𝑢)          

𝑇𝑡
𝛼3𝑧 = −𝑥 − 𝑐𝑧 + 𝑘(𝑤 − 𝑝𝑢)          

𝑇𝑡
𝛼4𝑤 = −𝑑𝑥𝑦𝑧           

𝑇𝑡
𝛼5𝑢 = 𝑘(𝑤 − 𝑝𝑢)          

where α = (α1,α2,α3,α4,α5) is subject to α1,α2,α3,α4,α5 ∈ (0, 1), and 𝑇𝑡
𝛼𝑖 , 1 ≤ 𝑖 ≤ 5, denotes the 

conformable fractional derivative of order 𝛼𝑖. The variables x, y, z, w, u are the interest rate, investment 

demand, price index, market confidence, and ethics risk; the parameters a, b, c are the saving amount, 
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cost per investment, and demand elasticity of commercial markets, respectively, and a, b, c ≥ 0; k, p, d 

are impact factors associated with ethics risk.  

Once proposed, and since analytic solutions do not exists, suitable numerical schemes to obtain 

solutions of the conformable derivative financial system. Though there are several methods to solve a 

conformable derivative system [22, 23-47], these are too complex for many people. Inspired by the 

discretization process for the Caputo derivative for Ricatti equations [45] and Chua systems [46], the 

conformable Euler’s finite difference (CEFD) method [47] for the five-dimensional fractional-order 

financial system is proposed in [3]. Numerical experiments with the resulting discrete model were 

conducted to detect a hyperchaotic attractor of the system. However, the standard Euler discretization 

of integer order systems such as studied in [3] is known to induce (see, e.g., [48], [49]) numerical 

instabilities and spurious behavior where none exists in the continuous system. Moreover, the CEFD 

method has recently shown [50] to be valid only for 𝛼 = 1 and is therefore not a valid fractional 

method. Nonstandard finite difference (NSFD) models have extensively [48] been shown to eliminate 

induced chaos; the ESDDFD methodology is a novel extension, developed in the context of advection-

reaction-diffusion equations [51], of the NSFD method to non-integer derivatives [52].   

It is therefore natural to ask whether some of the hyperchaotic behavior detected in the 

fractional financial system is an artifact of the method, and whether ESDDFD models can be constructed 

to eliminate such induced hyperchaos. The purpose of the present study is to investigate this question, 

in particular the effects of the discretization of the derivative and that of non-linear terms. To this end, 

the following four discrete models using the ESDDFD method are constructed for the system (1.1) and 

the experiments of [13] are repeated with the new models. 

𝑥𝑘+1−𝑥𝑘

𝜙𝑗(ℎ,𝛼1)
= 𝐹𝑖

𝑥(𝑥𝑘, 𝑦𝑘 , 𝑧𝑘 , 𝑢𝑘 , 𝑤𝑘),         (1.2) 

𝑦𝑘+1−𝑦𝑘

𝜙𝑗(ℎ,𝛼2)
= 𝐹𝑖

𝑦(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 , 𝑢𝑘 , 𝑤𝑘),          

𝑧𝑘+1−𝑧𝑘

𝜙𝑗(ℎ,𝛼3)
= −𝑥𝑘 − 𝑐𝑧𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),       

𝑢𝑘+1−𝑢𝑘

𝜙𝑗(ℎ,𝛼5)
= 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),         

𝑤𝑘+1−𝑤𝑘

𝜙𝑗(ℎ,𝛼4)
= 𝐹𝑖

𝑤(𝑥𝑘, 𝑦𝑘 , 𝑧𝑘 , 𝑧𝑘),    

𝑖 = 1, 2 and 𝑗 = 1, 2, where, 

𝐹1
𝑥(𝑥𝑘, 𝑦𝑘 , 𝑧𝑘 , 𝑢𝑘, 𝑤𝑘) = 𝑧𝑘  +  (𝑦𝑘+1 –  a)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)  

𝐹1
𝑦(𝑥𝑘, 𝑦𝑘 , 𝑧𝑘 , 𝑢𝑘 , 𝑤𝑘) = 1 − 𝑏𝑦𝑘 − 𝑥𝑘𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘), 𝐹1

𝑤(𝑥𝑘, 𝑦𝑘 , 𝑧𝑘 , 𝑧𝑘) = −
𝑑

2
𝑥𝑘𝑦𝑘(𝑧𝑘 + 𝑧𝑘)  

𝐹2
𝑥 = 𝐹1

𝑥(𝑥𝑘, 𝑦𝑘+1, 𝑧𝑘 , 𝑢𝑘 , 𝑤𝑘), 𝐹2
𝑦

= 𝐹1
𝑦(𝑥𝑘, 𝑦𝑘+1, 𝑧𝑘 , 𝑢𝑘 , 𝑤𝑘), 𝐹2

𝑤 = 𝐹1
𝑤(𝑥𝑘, 𝑦𝑘+1, 𝑧𝑘 , 𝑧𝑘+1)  

The remainder of this article is organized as follows. In Sect. 2, ESDDFD fundamentals, 

description of the model (1.1), and the CEFD model from [3] are presented. Section 3 presents 

construction of the denominator functions, 𝜙𝑗(ℎ, 𝛼𝑚), 1 ≤ 𝑚 ≤ 5 , for the ESDDFD model (1.2) and 

compares sub-models of (1.2) with corresponding CEFD sub-models. In Sect. 4, experimental results are 

presented of hyperchaotic attractor detection from the proposed financial system using both methods. 

Some concluding remarks in Sect. 5 close the paper.   
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2 Preliminaries 

2.1 The conformable derivative ESDDFD discrete model construction fundamentals 

While the Riemann–Liouville, Caputo, Atangana-Belaneau, and Grunwald–Letnikov fractional derivatives 

[53–60] are widely used in various applications, their definitions lack the chain rule, a classical derivative 

property satisfied by the conformable fractional derivative (CFD) [61-63] and its various extensions (see, 

e.g., [64]). A financial system with market confidence and ethics risk model was recently [3] added to the 

many existing applications of the CFD in various scientific fields [65-75].  

 

2.2 The conformable derivative hyperchaotic financial system and its CEFD model 

The conformable fractional derivative financial system model (1.1) is based on a successive addition of 

various factors starting with the Huang and Li [8] nonlinear financial system model: 

 x˙ = z + (y – a)x,           (2.1) 

y˙ =1– by – x2,             

z˙ = –x – cz,             

modeling the interaction of interest rate, investment demand, and price index; the variables and 

parameters are the same as in (1.1). Model (2.1) was extended by Xin and Zhang [15] to account for 

market confidence:  

x˙ = z + (y – a)x + m1w,           (2.2) 

y˙ =1– by – x2 + m2w,            

z˙ = –x – cz + m3w,            

w˙ = –xyz,            

where m1, m2, m3 are the impact factors associated with market confidence; the remaining variables 

and parameters are the same as in (2.1). Model (1.1) is the fractionalization, predicated on the practice 

that fractional-order economic systems [15, 76–80] can generalize their integer-order forms [14, 81, 82], 

of the following extension of (2.2) in [] to account for both market confidence and ethics risk:  

x˙ = z + (y – a)x + k(w – pu),          (2.3) 

y˙ =1– by – x2 + k(w – pu),          

 z˙ = –x – cz + k(w – pu),            

u˙ = k(w – pu).              

w˙ = –dxyz,             

When α = (1, 1, 1, 1, 1), system (1.1) degenerates to system (2.3); in the absence of ethics risk, 

(2.3) reduces to (2.2); in the absence of market confidence, (2.2) reduces to (2.1). In these three cases, 

therefore, any discrete method developed for (1.1) must reduce to that of the respective three reduced 
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systems. Chaotic behavior for both the CEFD and ESDDFD models will be investigated in Section 3 for 

(1.1) as well as the three reduced systems (2.1)-(2.3). 

The following discrete model was obtained in [3] from the CEFD method and used to investigate 

hyperchaos of the system (1.1): 

𝑥𝑘+1 = 𝑥𝑘 +
ℎ𝛼1

𝛼1
(𝑧𝑘 + (𝑦𝑘 − 𝑎)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘))      (2.4) 

𝑦𝑘+1 = 𝑦𝑘 +
ℎ𝛼2

𝛼2
(1 − 𝑏𝑦𝑘 − 𝑥𝑘𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘))      

𝑧𝑘+1 = 𝑧𝑘 −
ℎ𝛼3

𝛼3
(𝑥𝑘 + 𝑐𝑧𝑘 − 𝑘(𝑤𝑘 − 𝑝𝑢𝑘))        

𝑢𝑘+1 = 𝑢𝑘 +
ℎ𝛼5

𝛼5
𝑘(𝑤𝑘 − 𝑝𝑢𝑘)          

𝑤𝑘+1 = 𝑤𝑘 −
ℎ𝛼4

𝛼4
𝑑𝑥𝑘𝑦𝑘𝑧𝑘          

  

3 ESDDFD Discretization of conformable derivative system and its reductions 

In the ESDDFD and NSFD discretization methodologies, the first step is to consider a linear sub-system 

whose exact or best scheme can be constructed. Such a sub-system in this case is the following, 

𝑇𝑡
𝛼1𝑥 = −𝑎𝑥,                 𝑇𝑡

𝛼2𝑦 = −𝑏𝑦,   𝑇𝑡
𝛼3𝑧 = −𝑐𝑧,  

𝑇𝑡
𝛼4𝑤 = 0, 𝑇𝑡

𝛼5𝑢 = −𝑘𝑝𝑢,       (3.1) 

which has only positive solutions for any positive initial data. The exact discretization of (3.1), which has 

a solution identical to that of (3.1), is as follows:  

𝑥𝑘+1−𝑥𝑘

𝜙1(ℎ,𝛼1)
= −𝑎𝑥𝑘,     

𝑦𝑘+1−𝑦𝑘

𝜙1(ℎ,𝛼2)
= −𝑏𝑦𝑘,   

𝑧𝑘+1−𝑧𝑘

𝜙1(ℎ,𝛼3)
= −𝑐𝑧𝑘, 

𝑤𝑘+1−𝑤𝑘

𝜙1(ℎ,𝛼4)
= 0, 

𝑢𝑘+1−𝑢𝑘

𝜙1(ℎ,𝛼5)
= −𝑘𝑝𝑢𝑘,       (3.2) 

where the nonstandard denominators 𝜙1(ℎ, 𝛼𝑖), 1 ≤ 𝑖 ≤ 5, are given by 

𝜙1(ℎ, 𝛼𝑖) =
1

𝑄𝑖
(1 − 𝑒

−
𝑄𝑖
𝛼𝑖

[(𝑡+ℎ)𝛼𝑖−𝑡𝛼𝑖]
), with 𝑄1 = 𝑎, 𝑄2 = 𝑏, 𝑄3 = 𝑐, 𝑄4 = 0, 𝑄5 = 𝑘𝑝.    

Since (1.1) reduces to (3.1), any valid discrete model for (1.1) must be reducible to one 

consistent with its exact discretization, that is, (3.2). By comparison, a reduction of the CEFD model (2.4) 

to the sub-system (3.1) yields the following discrete sub-system: 

𝑥𝑘+1 = 𝑥𝑘 −
ℎ𝛼1

𝛼1
𝑎𝑥𝑘 , 𝑦𝑘+1 = 𝑦𝑘 −

ℎ𝛼2

𝛼2
𝑏𝑦𝑘,  𝑧𝑘+1 = 𝑧𝑘 −

ℎ𝛼3

𝛼3
𝑐𝑧𝑘,   

𝑤𝑘+1 = 𝑤𝑘 + 𝑄4
ℎ𝛼4

𝛼4
𝑤𝑘, 𝑢𝑘+1 = 𝑢𝑘 −

ℎ𝛼5

𝛼5
𝑘𝑝𝑢𝑘,     (3.3) 

which is positive only if the following condition is satisfied: (1 −
ℎ𝛼𝑖

𝛼𝑖
𝑄𝑖) ≥ 0, 1 ≤ 𝑖 ≤ 5, with the 𝑄𝑖  as in 

(3.2); such conditional positivity is known to induce chaotic behavior. All the sub-equations. (3.2) are of 

the form 
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 𝑇𝑡
𝛼𝑃 = −𝜆𝑃, 

whose CEFD scheme is  

𝑃𝑘+1 = 𝑃𝑘 −
ℎ𝛼

𝛼
𝜆𝑃𝑘,  

which has been conclusively shown in [50] to be valid only for 𝛼 = 1.  

It is shown in [50] that a modified CEFD (MCEFD) may be obtained from the following alternate 

CFD definition, which is equivalent to the fractional change of variables in the integer-valued derivative 

(see also [Ulnes et al]): 

 

Definition 1. Given a real-valued function on [0, ∞), the conformable fractional derivative has the 

following alternative definition: 

𝑇𝑡
𝛼

0
𝐶 [𝑓(𝑡)] ≡ lim

ℎ→0
∆𝑡

𝛼
0

𝐶𝐹𝐷 [𝑓(𝑡)] = 𝛼lim
ℎ→0

𝑓(𝑡+ℎ)−𝑓(𝑡)

[(𝑡+ℎ)𝛼−𝑡𝛼] 
, 

 where 𝑇𝑡
𝛼

0
𝐶 [𝑓(0)] is understood to mean 𝑇𝑡

𝛼
0
𝐶 [𝑓(0)] = lim

𝑡→0+
𝑇𝑡

𝛼
0
𝐶 [𝑓(𝑡)]. 

 

The Euler scheme resulting from the MCFED is therefore the same as that given in Eqn. (3.2), only with 

the denominators 

 𝜙1(ℎ, 𝛼𝑖) =
1

𝑄𝑖
(1 − 𝑒

−
𝑄𝑖
𝛼𝑖

[(𝑡+ℎ)𝛼𝑖−𝑡𝛼𝑖]
)  

replaced by 

 𝜙2(ℎ, 𝛼𝑖) =
1

𝛼𝑖
[(𝑡 + ℎ)𝛼𝑖 − 𝑡𝛼𝑖], 1 ≤ 𝑖 ≤ 5,  

which is equivalent to replacing ℎ𝛼𝑖 by 𝛼𝑖𝜙2(ℎ, 𝛼𝑖) in the CEFD scheme (3.3). 

To enable assessment of the effect of the denominators 𝜙𝑗(ℎ, 𝛼𝑖), 𝑗 = 1,2, the following 

schemes are compared: 

𝑥𝑘+1−𝑥𝑘

𝜙𝑗(ℎ,𝛼1)
= 𝑧𝑘  +  (𝑦𝑘  –  a)𝑥𝑘 ,         (3.4a) 

𝑦𝑘+1−𝑦𝑘

𝜙𝑗(ℎ,𝛼2)
= 1 − 𝑏𝑦𝑘 − (𝑥𝑘)2,          

𝑧𝑘+1−𝑧𝑘

𝜙𝑗(ℎ,𝛼3)
= −𝑥𝑘 − 𝑐𝑧𝑘 , 𝑗 = 1,2 .          

To enable assessment of the effect of the non-local discretization of nonlinear terms, the 

following schemes are compared:  

𝑥𝑘+1−𝑥𝑘

𝜙𝑗(ℎ,𝛼1)
= 𝑧𝑘  +  (𝑦𝑘+1 –  a)𝑥𝑘         (3.4b) 

𝑦𝑘+1−𝑦𝑘

𝜙𝑗(ℎ,𝛼2)
= 1 − 𝑏𝑦𝑘 − 𝑥𝑘+1𝑥𝑘          

𝑧𝑘+1−𝑧𝑘

𝜙𝑗(ℎ,𝛼3)
= −𝑥𝑘 − 𝑐𝑧𝑘 , 𝑗 = 1, 2.          

The terms (𝑦 –  a)𝑥, and x2are discretized non-locally as, respectively, (𝑦𝑘+1 –  a)𝑥𝑘 and 𝑥𝑘+1𝑥𝑘, while 

discretization of the terms 𝑧 in Eqns. (3.4a) and 𝑥 in Eqn. (3.4c) as 𝑧𝑘 and 𝑥𝑘 ensures respective consistency 

with the terms 𝑐𝑧 of in Eqn. (3.4c) and 𝑎𝑥 in Eqn. (3.4a in the cases 𝑐 = 1 and 𝑎 = 1.  
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By comparison, the scheme obtained by a reduction of the CEFD model (2.4) to its 3-dimensional 

sub-system (2.1) yields the following discrete sub-system: 

𝑥𝑘+1 = 𝑥𝑘 +
ℎ𝛼1

𝛼1
(𝑧𝑘 + (𝑦𝑘  –  a)𝑥𝑘)        (3.5)  

𝑦𝑘+1 = 𝑦𝑘 +
ℎ𝛼2

𝛼2
(1 − 𝑏𝑦𝑘 − 𝑥𝑘𝑥𝑘)          

𝑧𝑘+1 = 𝑧𝑘 +
ℎ𝛼3

𝛼3
(−𝑥𝑘 − 𝑐𝑧𝑘).          

Since system (3.5) reduces to the 𝑥 − 𝑦 − 𝑧 sub-system of (3.3), which suffers from induced chaos, it is 

to be expected that it too suffers the same, which will be numerically investigated in the next section.  

The ESDDFD models (1.2) are then obtained by discretizing 𝑘(𝑤 − 𝑝𝑢) as  𝑘(𝑤𝑘 − 𝑝𝑢𝑘) to 

ensure consistency with (3.2) and then discretizing 𝑥𝑦𝑧 non-locally as either 
1

2
𝑥𝑘𝑦𝑘(𝑧𝑘 + 𝑧𝑘) or  

1

2
𝑥𝑘𝑦𝑘+1(𝑧𝑘 + 𝑧𝑘+1), where the form 𝑥𝑘𝑦𝑘+1 is used to match the 𝑥𝑦 term in the 𝑥 −equation.  

𝑥𝑘+1−𝑥𝑘

𝜙𝑗(ℎ,𝛼1)
= 𝑧𝑘  +  (𝑦𝑘  –  a)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)       (3.6) 

𝑦𝑘+1−𝑦𝑘

𝜙𝑗(ℎ,𝛼2)
= 1 − 𝑏𝑦𝑘 − (𝑥𝑘)2 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)        

𝑧𝑘+1−𝑧𝑘

𝜙𝑗(ℎ,𝛼3)
= −𝑥𝑘 − 𝑐𝑧𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘).         

𝑢𝑘+1−𝑢𝑘

𝜙𝑗(ℎ,𝛼5)
= 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),          

𝑤𝑘+1−𝑤𝑘

𝜙𝑗(ℎ,𝛼4)
= −

𝑑

2
𝑥𝑘𝑦𝑘(𝑧𝑘 + 𝑧𝑘), 𝑗 = 1,2.        

and 

𝑥𝑘+1−𝑥𝑘

𝜙𝑗(ℎ,𝛼1)
= 𝑧𝑘  +  (𝑦𝑘+1 –  a)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)       (3.7) 

𝑦𝑘+1−𝑦𝑘

𝜙𝑗(ℎ,𝛼2)
= 1 − 𝑏𝑦𝑘 − 𝑥𝑘+1𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)        

𝑧𝑘+1−𝑧𝑘

𝜙𝑗(ℎ,𝛼3)
= −𝑥𝑘 − 𝑐𝑧𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘).         

𝑢𝑘+1−𝑢𝑘

𝜙𝑗(ℎ,𝛼5)
= 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),          

𝑤𝑘+1−𝑤𝑘

𝜙𝑗(ℎ,𝛼4)
= −

𝑑

2
𝑥𝑘𝑦𝑘+1(𝑧𝑘 + 𝑧𝑘+1), 𝑗 = 1,2.        

The schemes are explicit and can be explicitly solved for each  𝑗 = 1,2,  in the order 

𝑥𝑘+1, 𝑦𝑘+1, 𝑧𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1   to obtain the following: 

𝑥𝑘+1 = 𝑥𝑘 + 𝜙𝑗(ℎ, 𝛼1)[𝑧𝑘  + (𝑦𝑘  –  a)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)]     (3.8) 

𝑦𝑘+1 = 𝑦𝑘 + 𝜙𝑗(ℎ, 𝛼2)[1 − 𝑏𝑦𝑘 − (𝑥𝑘)2 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)]     

𝑧𝑘+1 = 𝑧𝑘 − 𝜙𝑗(ℎ, 𝛼3)[𝑥𝑘 + 𝑐𝑧𝑘 − 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)].      
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𝑢𝑘+1 = 𝑢𝑘 + 𝜙𝑗(ℎ, 𝛼5)[𝑘(𝑤𝑘 − 𝑝𝑢𝑘)],         

𝑤𝑘+1 = 𝑤𝑘 −
𝑑

2
𝜙𝑗(ℎ, 𝛼4)𝑥𝑘𝑦𝑘(𝑧𝑘 + 𝑧𝑘), 𝑗 = 1,2.       

While implicit, the schemes can be explicitly solved for each  𝑗 = 1,2 in the order 

𝑢𝑘+1, 𝑧𝑘+1, 𝑥𝑘+1, 𝑦𝑘+1, 𝑤𝑘+1   to obtain the following: 

𝑢𝑘+1 = 𝑢𝑘 + 𝜙𝑗(ℎ, 𝛼5)[𝑘(𝑤𝑘 − 𝑝𝑢𝑘)]         

𝑧𝑘+1 = 𝑧𝑘 − 𝜙𝑗(ℎ, 𝛼3)[𝑥𝑘 + 𝑐𝑧𝑘 − 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)]       

𝑥𝑘+1 =
1

[1+𝜙𝑗(ℎ,𝛼1)𝑥𝑘𝜙𝑗(ℎ,𝛼2)𝑥𝑘]
(𝑥𝑘 + 𝜙𝑗(ℎ, 𝛼1)𝑥𝑘{𝑦

𝑘
+ 𝜙𝑗(ℎ, 𝛼2)[1 − 𝑏𝑦

𝑘
+ 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)]})  

 +
1

[1+𝜙(ℎ,𝛼1)𝑥𝑘𝜙(ℎ,𝛼2)𝑥𝑘]
𝜙𝑗

(ℎ, 𝛼1)[𝑧𝑘 − a𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)]  

𝑤𝑘+1 = 𝑤𝑘 − 𝜙𝑗(ℎ, 𝛼4)
𝑑

2
𝑥𝑘𝑦𝑘+1(𝑧𝑘 + 𝑧𝑘+1)        

  

4. Numerical Experiments 

In this section, hyperchaos detection experiments are conducted parallel to those of [3] by varying the 

parameters related to ethics risk, such as α5, the confidence factor k, and the risk factor p, in the CEFD 

and ESDDFD models and their reductions. The following parameters and initial point values are fixed 

following [1]: h = 0.002, a = 0.8, b = 0.6, c = 1, d = 2, α1 = 0.3, α2 = 0.5, α3 = 0.6, α4 = 0.24, x0 = 0.4, y0 = 

0.6, z0 = 0.8, w0 = 0.3, u0 = 0.4.  

4.1 Three-dimensional systems comparison 

There were no experiments performed in [13] for this case. Simulations for both the ESDDFD model (3.4) 

and CEFD model (3.5) are performed with the same parameters. The following models (4.1) – (4.4), 

obtained by the ESDDFD method,   
𝑥𝑘+1−𝑥𝑘

1

0.8
[1−𝑒

−0.8
0.3 [(𝑡+ℎ)0.3−𝑡0.3]

]
= 𝑧𝑘  +  (𝑦𝑘  –  0.8)𝑥𝑘 ,     (4.1) 

𝑦𝑘+1−𝑦𝑘

1

0.6
[1−𝑒

−0.6
0.5 [(𝑡+ℎ)0.5−𝑡0.5]

]
= 1 − 0.6𝑦𝑘 − (𝑥𝑘)2,       

𝑧𝑘+1−𝑧𝑘

[1−𝑒
−1
0.6[(𝑡+ℎ)0.6−𝑡0.6]

]
= −𝑥𝑘 − 𝑧𝑘,         

 

𝑥𝑘+1−𝑥𝑘
1

0.3
[(𝑡+ℎ)0.3−𝑡0.3]

= 𝑧𝑘  +  (𝑦𝑘  –  0.8)𝑥𝑘,       (4.2) 

𝑦𝑘+1−𝑦𝑘
1

0.5
[(𝑡+ℎ)0.5−𝑡0.5]

= 1 − 0.6𝑦𝑘 − (𝑥𝑘)2,      

𝑧𝑘+1−𝑧𝑘
1

0.6
[(𝑡+ℎ)0.6−𝑡0.6]

= −𝑥𝑘 − 𝑧𝑘,        
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𝑥𝑘+1−𝑥𝑘

1

0.8
[1−𝑒

−0.8
0.3

[(𝑡+ℎ)0.3−𝑡0.3]
]

= 𝑧𝑘  + (𝑦𝑘+1 –  0.8)𝑥𝑘,       (4.3) 

𝑦𝑘+1−𝑦𝑘

1

0.6
[1−𝑒

−0.6
0.5

[(𝑡+ℎ)0.5−𝑡0.5]
]

= 1 − 0.6𝑦𝑘 − 𝑥𝑘+1𝑥𝑘,        

𝑧𝑘+1−𝑧𝑘

[1−𝑒
−1
0.6

[(𝑡+ℎ)0.6−𝑡0.6]
]

= −𝑥𝑘 − 𝑧𝑘,          

 

𝑥𝑘+1−𝑥𝑘

1
0.3

[(𝑡+ℎ)0.3−𝑡0.3]
= 𝑧𝑘  + (𝑦𝑘+1 –  0.8)𝑥𝑘,       (4.4) 

𝑦𝑘+1−𝑦𝑘

1
0.5

[(𝑡+ℎ)0.5−𝑡0.5]
= 1 − 0.6𝑦𝑘 − 𝑥𝑘+1𝑥𝑘,        

𝑧𝑘+1−𝑧𝑘

1
0.6

[(𝑡+ℎ)0.6−𝑡0.6]
= −𝑥𝑘  

are compared to (4.5), obtained by the CEFD method, 

𝑥𝑘+1 − 𝑥𝑘 +
ℎ0.3

0.3
(𝑧𝑘 + (𝑦𝑘  –  0.8)𝑥𝑘),        (4.5)  

𝑦𝑘+1 = 𝑦𝑘 +
ℎ0.5

0.5
(1 − 0.6𝑦𝑘 − 𝑥𝑘𝑥𝑘),         

𝑧𝑘+1 = 𝑧𝑘 +
ℎ0.6

0.6
(𝑥𝑘 − 𝑧𝑘).          

 

 

 

 

While bifurcations can be seen in the CEFD model, they are absent from the results of the ESDDFD 

models.  

 

Figures 4.1  
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Figures 4.1(a). CEFD model (4.5) profiles of 𝑥, 𝑦 𝑧 

 

 
 

Figures 4.1(b). Profiles of 𝑥, 𝑦, 𝑧 for each model (4.1) through (4.4) 
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4.2  Five-dimensional systems comparison; Varying α5, k, and p 

For this case experiments performed in [13] are performed with the same parameters for the models 

(3.4), obtained by the ESDDFD method, for the various cases and values of (𝛼5, 𝑘, 𝑝) used in [13]. 

𝑥𝑘+1 = 𝑥𝑘 +
ℎ0.3

0.3
(𝑧𝑘 + (𝑦𝑘 − 0.8)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘))      (4.6) 

𝑦𝑘+1 = 𝑦𝑘 +
ℎ0.5

05
(1 − 0.6𝑦𝑘 − 𝑥𝑘𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘))       

𝑧𝑘+1 = 𝑧𝑘 −
ℎ0.6

0.6
(𝑥𝑘 + 𝑧𝑘 − 𝑘(𝑤𝑘 − 𝑝𝑢𝑘))        

𝑤𝑘+1 = 𝑤𝑘 −
ℎ0.24

0.24
2𝑥𝑘𝑦𝑘𝑧𝑘          

𝑢𝑘+1 = 𝑢𝑘 +
ℎ𝛼5

𝛼5
𝑘(𝑤𝑘 − 𝑝𝑢𝑘)          

are compared to the following four models (3.4), respectively MCEFD, ESDDFD1, ESDDFD2, ESDDFD3, 

obtained by the ESDDFD and NSFD methods:  
𝑥𝑘+1−𝑥𝑘

1

0.3
[(𝑡+ℎ)0.3−𝑡0.3]

= 𝑧𝑘  +  (𝑦
𝑘

 –  0.8)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)     (4.7) 

𝑦𝑘+1−𝑦𝑘

1
0.5[(𝑡+ℎ)

0.5
−𝑡0.5

]
= 1 − 0.6𝑦𝑘 − 𝑥𝑘𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),     

𝑧𝑘+1−𝑧𝑘
1

0.6
[(𝑡+ℎ)0.6−𝑡0.6]

= −𝑥𝑘 − 𝑧𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),      

𝑤𝑘+1−𝑤𝑘

1
0.24

[(𝑡+ℎ)0.24−𝑡0.24]
= −𝑥𝑘𝑦𝑘(𝑧𝑘 + 𝑧𝑘)       

𝑢𝑘+1−𝑢𝑘
1

𝛼5
[(𝑡+ℎ)𝛼5−𝑡𝛼5]

= 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),         

 

𝑥𝑘+1−𝑥𝑘

1

0.8
[1−𝑒

−0.8
0.3 [(𝑡+ℎ)0.3−𝑡0.3]

]
= 𝑧𝑘  +  (𝑦

𝑘
 –  0.8)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)    (4.8) 

𝑦𝑘+1−𝑦𝑘

1
0.6

[1−𝑒
−0.6
0.5

[(𝑡+ℎ)
0.5

−𝑡0.5]
]

= 1 − 0.6𝑦𝑘 − 𝑥𝑘𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),     

𝑧𝑘+1−𝑧𝑘

[1−𝑒
−1
0.6[(𝑡+ℎ)0.6−𝑡0.6]

]
= −𝑥𝑘 − 𝑧𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),      

𝑤𝑘+1−𝑤𝑘

[1−𝑒
−1

0.24
[(𝑡+ℎ)0.24−𝑡0.24]

]

= −𝑥𝑘𝑦𝑘(𝑧𝑘 + 𝑧𝑘)       

𝑢𝑘+1−𝑢𝑘

1

kp
[1−𝑒

−𝑘𝑝
𝛼5

[(𝑡+ℎ)𝛼5−𝑡𝛼5]
]

= 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),    
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𝑥𝑘+1−𝑥𝑘
1

0.3
[(𝑡+ℎ)0.3−𝑡0.3]

= 𝑧𝑘  +  (𝑦
𝑘+1

 –  0.8)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)     (4.9) 

𝑦𝑘+1−𝑦𝑘

1
0.5[(𝑡+ℎ)

0.5
−𝑡0.5

]
= 1 − 0.6𝑦𝑘 − 𝑥𝑘+1𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),     

𝑧𝑘+1−𝑧𝑘
1

0.6
[(𝑡+ℎ)0.6−𝑡0.6]

= −𝑥𝑘 − 𝑧𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),      

𝑤𝑘+1−𝑤𝑘

1
0.24

[(𝑡+ℎ)0.24−𝑡0.24]
= −𝑥𝑘𝑦𝑘+1(𝑧𝑘 + 𝑧𝑘+1)       

𝑢𝑘+1−𝑢𝑘
1

𝛼5
[(𝑡+ℎ)𝛼5−𝑡𝛼5]

= 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),    

  
𝑥𝑘+1−𝑥𝑘

1

0.8
[1−𝑒

−0.8
0.3 [(𝑡+ℎ)0.3−𝑡0.3]

]
= 𝑧𝑘  +  (𝑦

𝑘+1
 –  0.8)𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘)    (4.10) 

𝑦𝑘+1−𝑦𝑘

1
0.6

[1−𝑒
−0.6
0.5

[(𝑡+ℎ)
0.5

−𝑡0.5]
]

= 1 − 0.6𝑦𝑘 − 𝑥𝑘+1𝑥𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),     

𝑧𝑘+1−𝑧𝑘

[1−𝑒
−1
0.6[(𝑡+ℎ)0.6−𝑡0.6]

]
= −𝑥𝑘 − 𝑧𝑘 + 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),     

𝑤𝑘+1−𝑤𝑘

[1−𝑒
−1

0.24
[(𝑡+ℎ)0.24−𝑡0.24]

]

= −𝑥𝑘𝑦𝑘+1(𝑧𝑘 + 𝑧𝑘+1)       

𝑢𝑘+1−𝑢𝑘

1

kp
[1−𝑒

−𝑘𝑝
𝛼5

[(𝑡+ℎ)𝛼5−𝑡𝛼5]
]

= 𝑘(𝑤𝑘 − 𝑝𝑢𝑘),          

 

4.2.1 Varying α5 with fixed k = 2 and p = 1 and α5 ∈ [0.232, 0.328]. 

In this case [13] concluded that system (2.4) is hyperchaotic with α5 ∈ [0.232, 0.328]. Fixing α5 = 0.24, a 

set of two positive Lyapunov exponents and three negative Lyapunov exponents. Profiles for 𝑥, 𝑦, 𝑧, 𝑤 

and 𝑢, when 𝛼5 = 0.232 for model (4.6) are given below. For each model (4.7) through (4.10) a graph of 

the five variables is given using the same step size and parameter values. These models produce 

identical graphs which differ significantly from the graphs for model (4.6). The Bifurcation tests for the 

ESDDFD model (3.4) are performed with the same parameters. The bifurcations diagrams for 𝑥, 𝑧 and 𝑢 

for models (4.6) through (4.10) are reproduced for ℎ = 0.002.  
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Figures 4.2.1(a). CEFD model (4.6) profiles of (𝑖)𝑢, (𝑖𝑖)𝑥, (𝑖𝑖𝑖)𝑧, (𝑖𝑣)𝑦, (𝑣)𝑤, at 𝑘 = 2, 𝑝 = 1, 𝛼5 = 0.232 
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Figures 4.2.1(b). Models (4.7), (4.8), (4.9) and (4.10) profiles of 𝑥, 𝑦, 𝑧, 𝑤 𝑎𝑛𝑑 𝑢 at 𝑘 = 2, 𝑝 = 1, 𝛼5 = 0.232 

 

 

 

 
Figures 4.2.1(c). CEFD model (4.6) bifurcation of 𝑥, 𝑧, 𝑢  versus  𝛼5 for ℎ = 0.002 
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Figures 4.2.1(d). ESDDFD model (4.7), (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝑝 = 1, 𝛼5 ∈ [0.232, 0.328] 

 

 
Figures 4.2.1(e). ESDDFD model (4.8), (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝑝 = 1, 𝛼5 ∈ [0.232, 0.328] 
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Figures 4.2.1(f). ESDDFD model (4.9), (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝑝 = 1, 𝛼5 ∈ [0.232, 0.328] 
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Figures 4.2.1(g). ESDDFD model (4.10), (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝑝 = 1, 𝛼5 ∈ [0.232, 0.328] 

 

 
Figures 4.2.1(h) 𝒉 = 𝟎. 𝟏, 𝜶𝟓 =  𝟎. 𝟑 𝒙, 𝒚, 𝒛, 𝒘, 𝒖 for (4.7) through (4.10) 

 

For step sizes above 0.003 CEFD fails. MCEFD fails for step sizes above 0.573.  The graphs below, using the same 

parameters as in Figure 4.2.1(b) with h = 1.0, show the effect of larger step sizes on methods (4.8), (4.9) and (4.10). 

Note the differences in the early behavior between the methods, especially when compared with h = 0.002.   
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Figures 4.2.1(i) 𝒉 = 𝟏. 𝟎, 𝜶𝟓 =  𝟎. 𝟐𝟑𝟐 𝒙, 𝒚, 𝒛, 𝒘, 𝒖 for (4.8) through (4.10) 

 

4.2.2  Varying p with fixed k = 2,  α5 = 0.3, and p ∈ [1, 2]. 

In this case, [13] concluded that system (2.4) is hyperchaotic with p ∈ [1, 2]. Fixing p = 1, a set of two 

positive Lyapunov exponents and three negative Lyapunov exponents was determined. Bifurcation tests 

for the ESDDFD model (3.4) are performed with the same parameters for the full discrete model (1.2). 

 
Figures 4.2.2(a). CEFD model (4.6) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝛼5 = 0.3, 𝑝 ∈ [1, 2] 
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Figures 4.2.2(b). MCEFD model (4.7) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝛼5 = 0.3, 𝑝 ∈ [1, 2] 

 
Figures 4.2.2(c). ESDDFD1 model (4.8) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝛼5 = 0.3, 𝑝 ∈ [1, 2] 
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Figures 4.2.2(d). ESDDFD2 model (4.9) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝛼5 = 0.3, 𝑝 ∈ [1, 2] 

 
Figures 4.2.2(e). ESDDFD2 model (4.10) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑘 = 2, 𝛼5 = 0.3, 𝑝 ∈ [1, 2] 
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Figures 4.2.2(f). Models (4.7), (4.8), (4.9) and (4.10) profiles of 𝑥, 𝑦, 𝑧, 𝑤 𝑎𝑛𝑑 𝑢 at 𝑘 = 2, 𝑝 = 1.94, 𝛼5 = 0.3 

 

 

 

 

 

4.2.3 Varying k with fixed p = 1 and α5 = 0.3 with k ∈ [1.5, 2.5]. 

In this case [13] concluded that system (2.4) is hyperchaotic with k ∈ [1.5, 2.5]. Fixing k = 1.5, a set of two 

positive Lyapunov exponents and three negative Lyapunov exponents were determined. Bifurcation 

tests for the ESDDFD model (3.4) are performed with the same parameters for the full discrete model 

(1.2). 
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Figures 4.2.3(a). CEFD model (4.6) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑝 = 1, 𝛼5 = 0.3, 𝑘 ∈ [1.5, 2.5] 

 
Figures 4.2.3(b). MCEFD model (4.7) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at  𝑝 = 1, 𝛼5 = 0.3, 𝑘 ∈ [1.5, 2.5] 
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Figures 4.2.3(c). ESDDFD1 model (4.8) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at  𝑝 = 1, 𝛼5 = 0.3, 𝑘 ∈ [1.5, 2.5] 

 
Figures 4.2.3(d). ESDDFD2 model (4.9) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at  𝑝 = 1, 𝛼5 = 0.3, 𝑘 ∈ [1.5, 2.5] 
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Figures 4.2.3(e). ESDDFD2 model (4.10) (𝑖)𝑢 𝑣𝑠 𝛼5, (𝑖𝑖)𝑥 𝑣𝑠 𝛼5, (𝑖𝑖𝑖)𝑧 𝑣𝑠 𝛼5 , at 𝑝 = 1, 𝛼5 = 0.3, 𝑘 ∈ [1.5, 2.5] 

 

Figures 4.2.3(f). Models (4.7), (4.8), (4.9) and (4.10) profiles of 𝑥, 𝑦, 𝑧, 𝑤 𝑎𝑛𝑑 𝑢 at 𝑘 = 2.45, 𝑝 = 1, 𝛼5 = 0.3 

 

4.2.4 With fixed k = 2, p = 1 and α5 = 0.24.  [13] concluded that system (2.4) has a hyperchaotic 

attractor in the 𝑦 − 𝑧 − 𝑢 and 𝑥 − 𝑦 − 𝑤 planes.  
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Figures 4.2.4(a). CEFD model (4.6)  𝑘 = 2, 𝑝 = 1, 𝛼5 = 0.24 

 

 

 
 Figures 4.2.4(b). MCEFD models (4.7) through (4.10) 𝑘 = 2, 𝑝 = 1, 𝛼5 = 0.24 

 

 

  

5. Discussion 

A discrete model using the conformable Euler finite difference (CEFD) model, (2.4), was constructed in 

[13] and used to detect hyperchaotic behavior of the system (1.1). In this paper, a discrete model (1.2) 

has been constructed for the system (1.1) and the parameters from [13] used to study hyperchaos using 

bifurcation techniques. The discrete model (1.2) is constructed using the exact spectral derivative 

discretization finite difference (ESDDFD) method, a universal extension of the nonstandard finite 

difference method to fractional derivatives, which is designed to eliminate contrived chaos, Various 

cases are considered, in parallel to those considered in [13] as well as for sub-systems relevant to the 

construction of the discrete model (1.2) 
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