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Abstract. Locally finiteness of some varieties of nonassociative coalgebras is studied
and the Gelfand-Dorfman construction for Novikov coalgebras and the Kantor construc-
tion for Jordan super-coalgebras are given. We give examples of a non-locally finite
differential coalgebra, Novikov coalgebra, Lie coalgebra, Jordan super-coalgebra, and
right-alternative coalgebra. The dual algebra of each of these examples satisfies very
strong additional identities. We also constructed examples of an infinite dimensional sim-
ple differential coalgebra, Novikov coalgebra, Lie coalgebra, and Jordan super-coalgebra
over a field of characteristic zero.
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1. Introduction

The notion of coalgebra is dual to the notion of algebra. The theory of (co)associative
coalgebras has been developed for a long time within the framework of the theory of Hopf
algebras [18]. The study of coalgebras, bialgebras, and Hopf algebras received a new
impetus when the term ”quantum group”, along with revolutionary new examples, was
launched by V. Drinfeld in 1986 [3]. Lie bialgebras, which are simultaneously Lie algebras
and Lie coalgebras, were introduced as one of the most important notions of quantum
group theory [4]. The study of Lie coalgebras, investigated earlier by W. Michaelis [11],
was intensified. It is well known that the dual of an associative coalgebra is an associative
algebra and the dual of a Lie coalgebra is a Lie algebra. In 1994 J. Anquella, T. Cortes, and
F. Montaner [1] called a coalgebra C an M-coalgebra if the dual algebra C∗ belongs to the
variety of algebras M. This allows to define alternative, Jordan, Malcev, left-symmetric,
Novikov coalgebras, and so on.

The Fundamental Theorem on Coalgebras asserts that every finitely generated asso-
ciative coalgebra over a field is finite-dimensional. An analogue of this result is true for
alternative and Jordan coalgebras [1], for structurable coalgebras [20], for Jordan copairs
[24], for right alternative Malcev admissible coalgebras and binary (-1,1)-coalgebras [15].
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Lie coalgebras are not locally finite and the first example of an infinite dimensional
finitely generated Lie coalgebra was given in [11]. In 1995 A. Slinko [17] found some
necessary and sufficient conditions for Lie coalgebras to be locally finite. A connec-
tion between Jordan and Lie (super)coalgebras, which is an analog of the well known
Kantor-Koecher-Tits construction for usual (super)algebras, was found in [21, 22]. M.E.
Goncharov and V.N. Zhelyabin [6, 7] showed that every Malcev coalgebra embeds into
a Lie coalgebra with triality. Unlike Jordan coalgebras, Jordan super-coalgebras are not
locally finite [22].

In 2000 D. Kozybaev [9] constructed an example of a non-locally finite right-symmetric
coalgebra and an example of a non-locally finite right-alternative coalgebra. I. Shestakov
reported [16] that the example of a right-alternative coalgebra given in [9] is incorrect.
This report attracted the attention of the authors to these old examples. First of all
we noticed that the left-symmetric analogue of the non-locally finite right-symmetric
coalgebra from [9] is a Novikov coalgebra. Moreover, we noticed that the commutator
coalgebra of this coalgebra is exactly the non-locally finite Lie coalgebra given by W.
Michaelis [11]. In order to understand the nature of these examples we started to study
codifferential coalgebras.

To any associative and commutative differential algebra A one relates the following
three algebras:

(1) a Novikov algebra obtained from A by the Gelfand-Dorfman construction;
(2) a Lie algebra obtained as the commutator algebra of the Novikov algebra mentioned

in (1); and
(3) a Jordan superalgebra obtained from A by the Kantor construction.
The notion of coderivation allows us to define the notion of a (co)differential coalgebra.

We constructed a very easy example C of a non-locally finite associative and commutative
differential coalgebra. Using this example we constructed three examples of non-locally
finite coalgebras. We define an analogue of the Gelfand-Dorfman construction for coalge-
bras and using this we give an example of a non-locally finite Novikov coalgebra obtained
from C, and the dual algebra of this coalgebra satisfies the identity (xy)z = 0. This ex-
ample coincides with Kozybaev’s example mentioned above. Moreover, the commutator
coalgebra of this Novikov coalgebra is exactly the non-locally finite Lie coalgebra given by
Michaelis [11]. This Lie coalgebra is metabelian. Using C and an analogue of the Kantor
construction for super coalgebras, we give an example of a non-locally finite Jordan super-
coalgebra. The dual of this super-coalgebra satisfies the super identities xy = yx, xz = zx,
and (zz1)(z2z3) = 0 for even variables x, y and for odd variables z, z1, z2, z3.

We repeated the same route starting from the simple differential algebra (F [x], ∂ = d
dx
)

over a field F of characteristic zero. The graded dual of this algebra is a simple infinite
dimensional differential coalgebra. Recall that a coalgebra is called simple if it does
not have any proper subcoalgebras. Applying the Gelfand-Dorfman construction to this
coalgebra, we get an example of a simple infinite dimensional Novikov coalgebra. This
coalgebra is the graded dual of the Novikov-Witt algebra L1 [10]. The commutator Lie
coalgebra of this coalgebra is also simple and coincides with the graded dual of the Witt
algebra W1. And finally, using the Kantor construction, we constructed an example of a
simple infinite dimensional Jordan super-coalgebra.
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We also noticed that the example of a non-locally finite right-alternative coalgebra from
[9] can be fixed only by interchanging the indexes 3n − 2 and 3n − 1 on lines 3 and 4
of the formula (12). The fixed example is given in Section 6. A much more complicated
example of a non-locally finite right-alternative coalgebra was recently given in [16].

The paper is organized as follows. In Section 2 we give some necessary terminology of
coalgebras, notations, and general statements. In Section 3 we give examples of non-locally
finite differential, Novikov, and Lie coalgebras. Simple infinite dimensional differential,
Novikov, and Lie coalgebras are given in Section 4. Section 5 is devoted to Jordan super-
coalgebras and Section 6 is devoted to right-alternative coalgebras.

2. Coalgebras and coderivations

Let F be an arbitrary field. For any vector space V over F denote by

V ∗ = HomF (V, F )

its dual vector space, i.e., the vector space of all linear forms on V .
Denote by

V ⊗n = V ⊗ . . .⊗ V︸ ︷︷ ︸
n

the n-th tensor power of the vector space V over F .
The map

ρ : (V ∗)⊗n → (V ⊗n)∗

defined by

ρ(f1 ⊗ . . .⊗ fn)(
∑
i1...in

ei1 ⊗ . . .⊗ ein) =
∑
i1...in

f1(ei1) . . . fn(ein)

is injective. For this reason we can assume that

(V ∗)⊗n ⊆ (V ⊗n)∗.

If ϕ : V → U is a linear map of vector spaces then the transpose ϕ∗ : U∗ → V ∗ of ϕ is
defined by

ϕ∗(u∗)(v) = u∗(ϕ(v)), v ∈ V, u∗ ∈ U∗.

A vector space C over F with a linear map

∆ : C → C ⊗F C

is called a coalgebra. The map ∆ is called its comultiplication. We often call the pair
(C,∆) a coalgebra in order to emphasize the comultiplication in question. For any a ∈ C,
using the Sweedler notation (see [18]), we write

∆(a) =
∑
a

a(1) ⊗ a(2).

If C is a coalgebra, then

(fg)(a) = ρ(f ⊗ g)(∆(a)) =
∑
a

f(a(1))g(a(2)), f, g ∈ C∗, a ∈ C,
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defines a product on C∗ and this product turns C∗ into an algebra. Denote this product
by

m∆ : C∗ ⊗ C∗ → C∗.

The algebra C∗ or (C∗,m∆) is called the dual algebra of the coalgebra (C,∆).
A coalgebra (C,∆) is called coassociative if

(∆⊗ id− id⊗∆)∆ = 0,

i.e., for any a ∈ C we have∑
a

(∆(a(1))⊗ a(2) − a(1) ⊗∆(a(2)) = 0.

It is well known that a coalgebra (C,∆) is coassociative if and only if its dual algebra
C∗ is associative. Moreover, a coalgebra (C,∆) is a Lie coalgebra if and only if its dual
C∗ is a Lie algebra [11]. Following these results, the definition of coalgebras from any
variety of algebras was given in [1]:

Let M be an arbitrary variety of algebras. A coalgebra (C,∆) is called an M-coalgebra
if its dual algebra C∗ belongs to M.
Let V be a vector space and let τ : V ⊗ V 7→ V ⊗ V be the ordinary flip, i.e., a linear

map with τ(x⊗ y) = y ⊗ x for all x, y ∈ V .
A coalgebra (C,∆) is called cocommutative if

∆ = τ∆,

i.e., ∑
a

a(1) ⊗ a(2) =
∑
a

a(2) ⊗ a(1)

for any a ∈ C.
Let (C,∆) be an arbitrary coalgebra. A subspace B of C is called subcoalgebra of the

coalgebra (C,∆) if ∆(B) ⊆ B ⊗B.
A subcoalgebra B of a coalgebra (C,∆) is called proper if B ̸= {0}, C. A coalgebra

(C,∆) without proper subcoalgebras is called simple [14].
It is well known [1] that C admits a C∗-bimodule structure. The left and right actions

of C∗ on C are defined by

α · a =
∑
(a)

a(1)α(a(2)), a · α =
∑
(a)

α(a(1))a(2), α ∈ C∗, a ∈ C.

Moreover, a vector subspace B of a coalgebra C is a subcoalgebra if and only if B is a
C∗-subbimodule of C. Therefore the intersection of any set of subcoalgebras of C is again
a subcoalgebra.

Let S be a subset of a coalgebra C. The smallest subcoalgebra Coalg(S) of C that
contains S is called the subcoalgebra generated by S. In other words, Coalg(S) is the
C∗-subbimodule of C generated by S. If S is a finite set then Coalg(S) is called finitely
generated.

A coalgebra (C,∆) is called locally finite if every finitely generated subcoalgebra of C
is finite dimensional.
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A linear map d : C 7→ C is called a coderivation of the coalgebra (C,∆) if

∆d = (d⊗ id+ id⊗ d)∆,

i.e.,

∆(d(a)) =
∑
a

d(a(1))⊗ a(2) + a(1) ⊗ d(a(2)), a ∈ C.

A triple (C,∆, d) is called a (co)differential coalgebra if (C,∆) is a coalgebra and d is
its coderivation. A subspace B of a differential coalgebra C is called a subcoalgebra if B is
a subcoalgebra of (C,∆) and d(B) ⊆ B, i.e., B is a codifferentially closed subcoalgebra.

Lemma 1. Let d be a coderivation of the coalgebra (C,∆). Then its transpose d∗ is a
derivation of the dual algebra C∗, i.e.,

d∗(fg) = d∗(f)g + fd∗(g), f, g ∈ C∗.

Proof. Let f, g ∈ C∗, a ∈ C. Then

(d∗(fg))(a) = (fg)(d(a)) = ρ(f ⊗ g)∆(d(a)) =
∑
a

f(d(a(1)))g(a(2)) + f(a(1))g(d(a(2)))

=
∑
a

(d∗(f))(a(1))g(a(2)) + f(a(1))(d
∗(g))(a(2)) = (d∗(f)g + fd∗(g))(a),

which proves the statement of the lemma. 2

Corollary 1. If (C,∆, d) is an associative and commutative differential coalgebra then
(C∗,m∆, d

∗) is an associative and commutative differential algebra.

Let A be an algebra over F with the multiplication

m : A⊗ A→ A,

i.e., m(a⊗ b) = ab for all a, b ∈ A. Let

m∗ : A∗ 7→ (A⊗ A)∗

be the transpose of m. Unfortunately, the image m∗(A∗) of m∗ does not always belong
to A∗ ⊗ A∗ ≡ ρ(A∗ ⊗ A∗) ⊆ (A ⊗ A)∗. The structure of the dual coalgebra (A◦,∆◦) is a
little complicated (see [1, 12]).

Let

A =
⊕
i∈Z

Ai, AiAj ⊆ Ai+j,

be a Z-graded algebra such that there exists an integer m with Ai = 0 for all i < m and
Ai is finite dimensional for all i ≥ m. In this case

(A⊗ A)k =
⊕
k=i+j

Ai ⊗ Aj

is finite dimentional for all k and

(A⊗ A)∗k =
⊕
k=i+j

ρ(A∗
i ⊗ A∗

j).

5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2021                   doi:10.20944/preprints202111.0522.v1

https://doi.org/10.20944/preprints202111.0522.v1


The coproduct ∆ = ρ−1m∗ turns the graded space⊕
i∈Z

A∗
i

into a coalgebra. This coalgebra is called the graded dual of the graded algebra A.

The following lemma is useful for studying subcoalgebras.

Lemma 2. Let V be a vector space and let W be a subspace of V . Let a =
∑n

i=1 ai ⊗ bi
and let the vectors a1, . . . , an be linearly independent. Assume that a ∈ W ⊗W . Then
b1, b2, . . . , bn ∈ W .

Proof. Let α1, . . . , αn be a system of linear forms dual to a1, . . . , an, i.e., αi(aj) = δij
for all i, j, where δ is the Kronecker delta function.

Set ϕ = α1 ⊗ id : V ⊗ V 7→ V . Then

ϕ(
∑

ei ⊗ fi) =
∑
i

α1(ei)fi.

Obviously, ϕ(W ⊗W ) ⊆ W and ϕ(a) =
∑

i α1(ai)bi = b1. Since a ∈ W ⊗W it follows
that ϕ(a) ∈ W . Consequently, b1 ∈ W . Similarly, we get b2, . . . , bn ∈ W . 2

3. Examples of non locally finite differential, Novikov, and Lie
coalgebras

An algebra A is called a Novikov algebra if it satisfaies the following identities:

x(yz)− (xy)z = y(xz)− (yx)z,(1)

(xy)z = (xz)y.(2)

Recall that an algebra satisfying the identity (1) is called left-symmetric. Left-symmetric
algebras are Lie-admissible, i.e., if A is a left-symmetric algebra then A with respect to
the commutator [x, y] := xy − yx is a Lie algebra. This algebra is called the commutator
algebra of A and is denoted by A(−).
The identity (1) can be written as

(x, y, z) = (y, x, z),(3)

where (x, y, z) := (xy)z − x(yz) is the associator of elements x, y, z.

The Gelfand-Dorfman construction [5]. Let A be an associative and commutative
algebra with a derivation d. Define a new multiplication (◦) on A by

x ◦ y = xd(y),

where x, y ∈ A. Then (A, ◦) is a Novikov algebra.
Moreover, the vector space A with respect to the bracket

[x, y] = xd(y)− yd(x)

is a Lie algebra. Obviously, (A, [·, ·]) is the commutator algebra of the Novikov algebra
(A, ◦).
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Thus, any associative and commutative differential algebra A generates the Novikov
algebra (A, ◦) and the Lie algebra (A, [·, ·]). Over a field of characteristic zero every
Novikov algebra can be embedded into a Novikov algebra (A, ◦) for a suitable associative
commutative differential algebra A [2]. The class of Lie algebras embeddable into Lie
algebras of the type (A, [·, ·]) is not described yet.

Proposition 1. A pair (C,∆) is a Novikov coalgebra if and only if the following (co)identities
hold:

(∆⊗ id− id⊗∆)∆ = (τ ⊗ id)(∆⊗ id− id⊗∆)∆,(4)

(∆⊗ id)∆ = (id⊗ τ)(∆⊗ id)∆.(5)

Proof. Let (C,∆) be a coalgebra and let α, β, γ ∈ C∗ and c ∈ C. Then

(α, β, γ)(c) = (α⊗ β ⊗ γ)((∆⊗ id− id⊗∆)∆(c))

and
(β, α, γ)(c) = (α⊗ β ⊗ γ)((τ ⊗ id)(∆⊗ id− id⊗∆)∆(c)).

Consequently,

[(α, β, γ)− (β, α, γ)](c)

= (α⊗ β ⊗ γ)[(∆⊗ id− id⊗∆)∆− (τ ⊗ id)(∆⊗ id− id⊗∆)∆](c)).

This implies that the identity (3) in C∗ is equivalent to the identity (4) in C.
Similarly, the identity (2) in C∗ is equivalent to the identity (5) in C. 2

The Gelfand-Dorfman construction for coalgebras. Let (C,∆, d) be an associa-
tive and commutative differential coalgebra. Define on the space C a new comultiplication
∆N by

∆N = (id⊗ d)∆.

This means
∆N(a) =

∑
a

a(1) ⊗ d(a(2))

for any a ∈ C. Set also

∆L = ∆
(−)
N = (1− τ)∆N ,

i.e.,

∆N(a) =
∑
a

(a(1) ⊗ d(a(2))− d(a(2))⊗ a(1))

for any a ∈ C.

Proposition 2. (1) The coalgebra (C,∆N) is a Novikov coalgebra and the product in its
dual algebra is defined by

α ◦ β = αd∗(β), α, β ∈ C∗.

(2) The coalgebra (C,∆L) is a Lie coalgebra and the bracket in its dual algebra is defined
by

[α, β] = αd∗(β)− d∗(α)β, α, β ∈ C∗.
7
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Proof. By Corollary 1, the dual (C∗,m∆, d
∗) of the diferential coalgebra (C,∆, d) is a

differential algebra. We have

(fg)(a) = ρ(f ⊗ g)(∆(a)),

where f, g ∈ C∗, a ∈ C. By the Gelfand-Dorfman construction, the algebra (C∗, ◦) is a
Novikov algebra, where f ◦ g = fd∗(g) for all f, g ∈ C∗.

On the other hand,

(f◦g)(a) = (fd∗(g))(a) =
∑
a

f(a(1))d
∗(g)(a(2)) =

∑
a

f(a(1))g(d(a(2))) = ρ(f⊗g)(∆N(a)),

i.e.,
f ◦ g = fd∗(g) = ρ(f ⊗ g)∆N .

Hence (C∗, ◦) is the dual algebra of the coalgebra (C,∆N). Since (C∗, ◦) is a Novikov
algebra it follows that (C,∆N) is a Novikov coalgebra.

The second statement of the lemma can be checked similarly. 2

Example 1. Let C be a vector space with a linear basis

e, f1, f2, . . . , fn, . . . .

Define a comultiplication ∆ : C → C ⊗ C on C by

∆(e) = e⊗ e, ∆(fi) = fi ⊗ e+ e⊗ fi, i ≥ 1.

Define also a linear map d : C → C by

d(e) = 0, d(fi) = fi+1, i ≥ 1.

Lemma 3. The triple (C,∆, d) is an associative and commutative differential coalgebra.

Proof. Obviously (C,∆) is cocommutative. Direct calculations give that

(∆⊗ id− id⊗∆)∆(e) = e⊗ e⊗ e− e⊗ e⊗ e = 0,

(∆⊗ id− id⊗∆)∆(fi) = fi ⊗ e⊗ e+ e⊗ fi ⊗ e

+e⊗ e⊗ fi − fi ⊗ e⊗ e− e⊗ fi ⊗ e− e⊗ e⊗ fi = 0,

i.e., (C,∆) is coassociative.
We also have

∆(d(e)) = 0 = d(e)⊗ e+ e⊗ d(e),

∆(d(fi)) = ∆(fi+1) = fi+1 ⊗ e+ e⊗ fi+1 =

(d(fi)⊗ e+ d(e)⊗ fi+1) + (fi+1 ⊗ d(e) + e⊗ d(fi)), i ≥ 1.

This means that d is a coderivation of the coalgebra (C,∆). 2
By Lemma 3, (C,∆, d) is an associative and commutative differential coalgebra. Con-

sequently, (C∗,m∆, d
∗) is an associative and commutative differential algebra. Following

the tradition in the theory of ordinary differential algebras, we denote the derivative of
x ∈ C∗ by x′, i.e., x′ = d∗(x).

Proposition 3. The differential coalgebra (C,∆, d) is not locally finite and the differential
algebra (C∗,m∆, d

∗) satisfies the differential identity

x′y′ = 0.
8
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Proof. Obviously the codifferential subcoalgebra B of C generated by f1 contains fi for
all i. Since

∆(f1) = f1 ⊗ e+ e⊗ f1 ∈ B ⊗B

it follows that e ∈ B by Lemma 2. Therefore B = C is infinite dimensional.
Let α, β ∈ C∗ and c ∈ C. Then

(d∗(α)d∗(β))(c) =
∑
c

α(d(c(1)))β(d(c(2))).

Consequently

(d∗(α)d∗(β))(e) = α(d(e))β(d(e)) = 0

and

(d∗(α)d∗(β))(fi) = α(d(fi))β(d(e)) + α(d(e))β(d(fi)) = 0

since d(e) = 0.
This means that C∗ satisfies the differential identity x′y′ = 0. 2

Example 2. Consider the comultiplication ∆N = (id ⊗ d)∆ on C. By Proposition 2,
(C,∆N) is a Novikov coalgebra. We have

∆N(e) = (id⊗ d)∆(e) = e⊗ d(e) = 0

and
∆N(fi) = (id⊗ d)∆(fi) = e⊗ d(fi) = e⊗ fi+1

for all i ≥ 1.

Theorem 1. The Novikov coalgebra (C,∆N) is not locally finite and the Novikov algebra
C∗ satisfies the identity

(xy)z = 0.

Proof. Let B be the subcoalgebra of (C,∆N) generated by f1. If fi ∈ B then

∆N(fi) = (id⊗ d)∆(fi) = e⊗ fi+1 ∈ B ⊗B

implies that e, fi+1 ∈ B by Lemma 2. Consequently, B = C is infinite dimensional.
Let α, β, γ ∈ C∗. Then

((αβ)γ)(e) = (α⊗ β ⊗ γ)(∆⊗ id)∆(e) = 0,

((αβ)γ)(fi) = (α⊗ β ⊗ γ)(∆⊗ id)∆(fi) = (α⊗ β ⊗ γ)(∆(e)⊗ fi+1) = 0,

since ∆(e) = 0. Hence the algebra C∗ satisfies the identity (xy)z = 0. 2
Example 2 is the left-symmetric analogue of the non-locally finite right-symmetric coal-

gebra from [9].

Example 3. Now consider the Lie coalgebra (C,∆L). Recall that ∆L = ∆
(−)
N and,

consequently,
∆L(e) = (d⊗ id+ id⊗ d)∆(e) = 0,

∆L(fi) = (d⊗ id+ id⊗ d)∆(fi) = e⊗ fi+1 − fi+1 ⊗ e

for all i ≥ 1.
9
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Theorem 2. The Lie coalgebra (C,∆L) is not locally finite and the Lie algebra C∗ satisfies
the identity

[[x, y], [z, t]] = 0.

Proof. Let B be the subcoalgebra of (C,∆L) generated by f1. If fi ∈ B then

∆L(fi) = e⊗ fi+1 − fi+1 ⊗ e ∈ B ⊗B

implies that e, fi+1 ∈ B by Lemma 2. Consequently, B = C is infinite dimensional.
Let α, β, γ, δ ∈ C∗. Then

([α, β])(e) = (α⊗ β)∆L(e) = 0

and

([[α, β], [γ, δ]])(fi) = (α⊗ β ⊗ γ ⊗ δ)(∆L ⊗∆L)∆L(fi)

= (α⊗ β ⊗ γ ⊗ δ)(∆L(e)⊗∆L(fi+1)−∆L(fi+1)⊗∆L(e)) = 0

since ∆L(e) = 0. Therefore [[α, β], [γ, δ]] = 0. 2
Example 3 is Michaelis’s example of a non-locally finite Lie coalgebra from [11].

4. Infinite dimensional coalgebras without proper subcoalgebras

Let F be a field of characteristic zero and let F [x] be the algebra of polynomials over
F in one variable x. Then (F [x],m, ∂), where m is the polynomial multiplication and
∂ = d

dx
, is a simple differential algebra. Consider the natural grading

F [x] = F1⊕ Fx⊕ . . .⊕ Fxn ⊕ . . . .

The following example is the graded dual of the differential algebra (F [x],m, ∂).
Example 4. Let

C = Fx0 ⊕ Fx1 ⊕ . . .⊕ Fxn ⊕ . . . ,

where xi ∈ F [x]∗ is defined by xi(x
j) = δij for all i, j. It is easy to check that the dual

comultiplication

∆ = ρ−1m∗ : C → C ⊗ C

is defined by

∆(xn) =
n∑

i=0

xi ⊗ xn−i

and the coderivation

d = ∂∗ : C → C

is defined by

d(xn) = (n+ 1)xn+1

for all n ≥ 0.
Consequently, (C,∆, d) is an associative and commutative differential coalgebra.

Proposition 4. The differential coalgebra (C,∆, d) is simple.
10
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Proof. Let B be a nonzero subcoalgebra of C and let

f = xn +
∑
i<n

αixi ∈ B.

Then

∆(f) = xn ⊗ 1 +
∑
i<n

xi ⊗ fi ∈ B, fi ∈ C.

By Lemma 2 this implies that xn ∈ B. Since B is differentially closed it follows that
xi ∈ B for all i ≥ n. Morever,

∆(xn) =
n∑

i=0

xi ⊗ xn−i ∈ B

imples that x0, . . . , xn−1 ∈ B by Lemma 2. Consequently, B = C. 2
Applying the Gelfand-Dorfman construction to the differential algebra (F [x],m, ∂) we

get a Novikov algebra (F [x], ◦), where f ◦ g = f∂(g). This Novikov algebra was denoted
by L1 in [10] and is the first algebra in the list of left-symmetric Witt algebras Ln. Notice
that the commutator algebra of Ln is the Witt algebra Wn [10]. Since L1 is a Novikov
algebra, we call L1 the Novikov-Witt algebra. Recall that

L1 = F∂ ⊕ Fx∂ ⊕ . . .⊕ Fxn∂ ⊕ . . .

is the algebra of all derivations of F [x] with respect to the product

xi∂ ◦ xj∂ = jxi+j−1∂, i, j ≥ 0.

The following example is the graded dual of the Novikov-Witt algebra L1.
Example 5. Let (C,∆, d) be the differential coalgebra from Example 4. Applying the

Gelfand-Dorfman construction, we get a Novikov coalgebra (C,∆N), where

∆N = (id⊗ d)∆,

i.e.,

∆N(xn) =
n∑

i=0

(n− i+ 1)xi ⊗ xn−i+1

Theorem 3. The Novikov coalgebra (C,∆N) is simple.

Proof. Let B be a nonzero subcoalgebra of C and let

f = xn +
∑
i<n

αixi ∈ B.

Then

∆N(f) = (n+ 1)1⊗ xn+1 +
∑

i<n+1

fi ⊗ xi ∈ B, fi ∈ C.

11
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By Lemma 2 this implies that xn+1 ∈ B. Consequently, we can assume that xn ∈ B for
some n ≥ 0. Then

∆N(xn) =
n∑

i=0

(n− i+ 1)xi ⊗ xn−i+1 ∈ B

implies that x0, . . . , xn+1 ∈ B by Lemma 2. Consequently, B = C. 2

The following example is the graded dual of the Witt algebra W1.
Example 6. Let (C,∆, d) be the Novikov coalgebra from Example 5. Then the

commutator coalgebra (C,∆L) is a Lie coalgebra, where

∆L = ∆
(−)
N = (1− τ)∆N ,

i.e.,

∆L(xn) =
n∑

i=0

(n− i+ 1)xi ⊗ xn−i+1 − (i+ 1)xi+1 ⊗ xn−i

=
n+1∑
i=0

(n+ 1− 2i)xi ⊗ xn+1−i.

Theorem 4. The Lie coalgebra (C,∆L) is simple.

Proof. Let B be a nonzero subcoalgebra of C and let

f = xn +
∑
i<n

αixi ∈ B.

Then, as in the proof of Theorem 3, we get xn+1 ∈ B. Applying Lemma 2 to the inclusion
∆L(xn) ∈ B ⊗B, we get x0 ∈ B. Consequently, B = C. 2
Notice that an example of an infinite dimensional Lie coalgebra without finite dimen-

sional subcoagebras was constructed in [12] and [13].

5. Non locally finite Jordan supecoalgebras

Let G be the Grassman algebra with identity. Then G = G0 + G1 is a Z2-graded
algebra. Let J = J0 + J1 be a Z2-graded algebra. Then G(J) = J0 ⊗ G0 + J1 ⊗ G1 is a
subalgebra of the algebra G ⊗ J . The subalgebra G(J) is called Grassman envelope of
the algebra J .
An algebra J is called a Jordan superalgebra, if its Grassman envelope G(J) is a Jordan

algebra, i.e., G(J) satisfies the following identities:

xy = yx,

(x2y)x = x2(yx).

The Kantor construction [8]. Let A be an associative commutative algebra over
F with a derivation D. Denote by A an isomorphic copy of the vector space A with an
isomorphism a 7→ a. On the direct sum of the vector spaces

J(A,D) = A⊕ A
12
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define a product (·) by

a · b = ab, a · b = ab, a · b = ab, a · b = aD(b)−D(a)b,

where a, b ∈ A and ab is the product of elements in A. Then J(A,D) is a Jordan
superalgebra. The superalgebra J(A,D) is called a superalgebra of the vector type.

The Kantor construction for coalgebras. Let (C,∆, d) be an associtive and com-
mutative differential coalgebra. Let C be an isomorphic copy of the vector space C with
an isomorphism c 7→ c. On the direct sum of vector spaces

J(C, d) = C ⊕ C

define a coproduct ∆J by

∆J(c) =
∑
(c)

c(1) ⊗ c(2) + c(1) ⊗ d(c(2))− d(c(1))⊗ c(2),

∆J(c) =
∑
(c)

c(1) ⊗ c(2) + c(1) ⊗ c(2),

where c ∈ C and ∆(c) =
∑

(c) c(1) ⊗ c(2).

Proposition 5. The coalgebra (J(C, d),∆J) is a Jordan supercoalgebra and its dual
J(C∗, d∗) is a Jordan superalgebra of the vector type.

Proof. By Corollary 1, (C∗,m∆, d
∗) is an associative and commutative differential alge-

bra. We have J(C, d)∗ = C∗+(C)∗. The isomorphism of C and C induces the isomorphism
of C∗ and (C)∗. Under this isomorphism, for any α ∈ C∗ there corresponds α ∈ (C)∗

such that α(c) = α(c) for any c ∈ C. Therefore, we can write that J(C, d)∗ = C∗ + C∗.
Let α, β ∈ C∗, and c ∈ C. Denote by (·) the multiplication of the algebra (J(C, d),∆J)

∗.
Then we have

(α · β)(c) = ρ(α⊗ β)∆J(c), (α · β)(c) = ρ(α⊗ β)∆J(c),

(α · β)(c) = ρ(α⊗ β)∆J(c), (α · β)(c) = ρ(α⊗ β)∆J(c).

From this we get

α · β = αβ, α · β = αβ, αβ = αβ, α · β = αd∗(β)− d∗(α)β,

where αβ is the product of elements in the dual algebra (C∗,m∆, d
∗).

Consequently, (J(C, d),∆J)
∗ = J(C∗, d∗). 2

Example 7. Let (C,∆, d) be the differential coalgebra from Example 1 and let
(J(C, d),∆J) be the Jordan supercoalgebra obtained from (C,∆, d) by the Kantor con-
struction for coalgebras. Notice that

∆J(e) = e⊗ e, ∆J(fi) = e⊗ fi + fi ⊗ e+ e⊗ fi+1 − fi+1 ⊗ e,

∆J(e) = e⊗ e+ e⊗ e, ∆J(fi) = e⊗ fi + fi ⊗ e+ e⊗ fi + fi ⊗ e,

for all i ≥ 1.
13
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Theorem 5. The Jordan super-coalgebra (J(C, d),∆J) is not locally finite and its dual
superalgebra satisfies the super identities

xy = yx, xz = zx, (z1z2)(z3z4) = 0

for all even x, y and odd z, z1, z2, z3, z4.

Proof. Let B be the subcoalgebra of J(C, d) generated by f1. If fi ∈ B, then ∆J(fi) ∈
B⊗B implies that e, e, fi ∈ B by Lemma 2. If fi ∈ B, then ∆J(fi) ∈ B⊗B implies that
fi+1 ∈ B. Consequently, B = J(C, d) is infinite dimensional.
By Proposition 5, the dual of the supercoalgebra (J(C, d),∆J) is the Jordan superalge-

bra J(C∗, d∗) obtained from the differential algebra (C∗,m∆, d
∗) by the Kantor construc-

tion. The first two identities of J(C∗, d∗), mentioned in the lemma, directly follow from
the Kantor construction since C∗ is an associative and commutative algebra. Notice that
the product of two odd elements z1, z2 from J(C∗, d∗) belongs to the ideal d∗(C∗)C∗. By
Proposition 3, we have d∗(C∗)2 = 0. Consequently, (z1z2)(z3z4) = 0 for all odd elements
z1, z2, z3, z4. 2

The following example is the graded dual of the simple Jordan superalgebra J(F [x], ∂)
obtained from the simple differential algebra (F [x], ∂) by the Kantor construction.

Example 8. Let (C,∆, d) be the codifferential coalgebra from Example 4 and let
(J(C, d),∆J) be the Jordan super-coalgebra obtained from (C,∆, d) by the Kantor con-
struction for coalgebras. Direct calculations give that

∆J(xn) =
n∑

i=0

xi ⊗ xn−i +
n+1∑
i=0

(n+ 1− 2i)xi ⊗ xn−i+1,

∆J(xn) =
n∑

i=0

(xi ⊗ xn−i + xi ⊗ xn−i),

for all n ≥ 0.

Theorem 6. The Jordan supercoalgebra (J(C, d),∆J) is simple.

Proof. Let B be a nonzero subcoalgebra of (J(C, d),∆J) and let

f = xn +
∑
i<n

αixi + c ∈ B,

where c ∈ C. Then

∆J(f) =
∑
i≥0

ai ⊗ xi +
∑
i≥0

bi ⊗ xi ∈ B ⊗B

and it is easy to check that bn+1 ̸= 0. By Lemma 2, xn+1 ∈ B. Then ∆J(xn+1) ∈ B ⊗ B
implies that x0, . . . , xn+1, x0, . . . , xn+1 ∈ B. Consequently, B = C.
If

f = xn +
∑
i<n

αixi ∈ B,

then ∆J(f) ∈ B ⊗ B implies that xn, xn ∈ B by Lemma 2. Continuing the same discus-
sions, we get B = C. 2
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Notice that an example of a Jordan super-coalgebra without finite dimensional subco-
agebras was constructed in [23]

6. Non locally finite right alternative coalgebra

In this section we give a corrected version of the example of a non locally finite right-
alternative coalgebra from [9]. This example was constructed on the base of the example
of a finitely generated metabelian right-alternative algebra that is not residually finite
[19].

An algebra A is called right-alternative if it satisfies the following identities:

(yx)x = yx2,(6)

((xy)z)y = x((yz)y).(7)

The identity (6) is called right-alternativity and can be written in terms of the associ-
ators as

(y, x, x) = 0.(8)

Over fields of characteristic ̸= 2 this identity also implies the Moufang identity (7) (see
[25]).

Proposition 6. Let (A,∆) be a coalgebra over a field F of characteristic ̸= 2. The
coalgebra (A,∆) is right-alternative if and only if the following identity holds:

(∆⊗ id− id⊗∆)∆ + (id⊗ τ)(∆⊗ id− id⊗∆)∆ = 0.(9)

Proof. Let (C,∆) be a coalgebra and let α, β, γ ∈ C∗ and c ∈ C. Then

(α, β, γ)(c) = (α⊗ β ⊗ γ)((∆⊗ id− id⊗∆)∆(c))

and

(α, γ, β)(c) = (α⊗ β ⊗ γ)((id⊗ τ)(∆⊗ id− id⊗∆)∆(c)).

Consequently,

[(α, β, γ) + (α, γ, β)](c)

= (α⊗ β ⊗ γ)[(∆⊗ id− id⊗∆)∆ + (id⊗ τ)(∆⊗ id− id⊗∆)∆](c).

This implies that the identity (9) in C is equivalent to linearized version of the identity
(8) in C∗. Consequently, (9) is equivalent to (8) over fields of characteristic ̸= 2. 2

Example 9. Let A be a vector space with a linear basis

e1, e2, f1, f2, . . . , fn, . . . .

Define a comultiplication ∆ on the vector space A by

∆(e1) = 0, ∆(e2) = 0,

∆(f3n−2) = e1 ⊗ f3n, ∆(f3n−1) = e2 ⊗ f3n,

∆(f3n) = e2 ⊗ f3n+1 − f3n+1 ⊗ e2 − e1 ⊗ f3n+2 + f3n+2 ⊗ e1, n ≥ 1.
15
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Theorem 7. The coalgebra (A,∆) is a right-alternative non locally finite coalgebra. More-
over, the dual algebra A∗ satisfies the identities (xy)(zt) = ((xy)z)t = 0.

Proof. Let ∆Ass = (∆⊗ id− id⊗∆)∆. If f, g, h ∈ A∗, then

(f, g, h)(a) = (f ⊗ g ⊗ h)(∆ass(a))

for all a ∈ A. We have (f, g, g)(ei) = 0 since ∆(ei) = 0 for i = 1, 2.
Direct calculations give that

∆Ass(f3n−2) = (∆⊗ id− id⊗∆)(e1 ⊗ f3n) = −e1 ⊗∆(f3n)

= −e1 ⊗ e2 ⊗ f3n+1 + e1 ⊗ f3n+1 ⊗ e2 + e1 ⊗ e1 ⊗ f3n+2 − e1 ⊗ f3n+2 ⊗ e1,

∆Ass(f3n−1) = −e2 ⊗∆(f3n) = −e2 ⊗ e2 ⊗ f3n+1

+e2 ⊗ f3n+1 ⊗ e2 + e2 ⊗ e1 ⊗ f3n+2 − e2 ⊗ f3n+2 ⊗ e1,

and

∆Ass(f3n) = (∆⊗ id− id⊗∆)(e2 ⊗ f3n+1 − f3n+1 ⊗ e2 − e1 ⊗ f3n+2 + f3n+2 ⊗ e1)

= −∆(f3n+1)⊗ e2 +∆(f3n+2)⊗ e1 − e2 ⊗∆(f3n+1) + e1 ⊗∆(f3n+2)

= −e1 ⊗ f3(n+1) ⊗ e2 + e2 ⊗ f3(n+1) ⊗ e1 − e2 ⊗ e1 ⊗ f3(n+1) + e1 ⊗ e2 ⊗ f3(n+1).

Consequently,

(f, g, g)(f3n−2) = −f(e1)g(e2)g(f3n+1) + f(e1)g(f3n+1)g(e2)

+f(e1)g(e1)g(f3n+2)− f(e1)g(f3n+2)g(e1) = 0,

(f, g, g)(f3n−1) = −f(e2)g(e2)g(f3n+1) + f(e2)g(f3n+1)g(e2)

+f(e2)g(e1)g(f3n+2)− f(e2)g(f3n+2)g(e1) = 0,

and

(f, g, g)(f3n) = −f(e1)g(f3(n+1))g(e2) + f(e2)g(f3(n+1))g(e1)

−f(e2)g(e1)g(f3(n+1)) + f(e1)g(e2)g(f3(n+1)) = 0.

Consequently, (f, g, g)(a) = 0 for all f, g ∈ A∗ and a ∈ A, i.e., (f, g, g) = 0. This means
that A∗ satisfies the identity (8).

Set ϕ = (∆⊗ id⊗ id)(∆⊗ id)∆. Direct calculations give that

ϕ(e1) = ϕ(e2) = 0,

ϕ(f3n−2) = (∆⊗ id⊗ id)(∆⊗ id)(e1 ⊗ f3n) = (∆⊗ id⊗ id)(∆(e1)⊗ f3n) = 0,

ϕ(f3n−1) = (∆⊗ id⊗ id)(∆⊗ id)(e2 ⊗ f3n) = (∆⊗ id⊗ id)(∆(e2)⊗ f3n) = 0,

and

ϕ(f3n) = (∆⊗ id⊗ id)(−∆(f3n+1)⊗ e2 +∆(f3n+2)⊗ e1) =

(∆⊗ id⊗ id)(−e1 ⊗ f3(n+1) ⊗ e2 + e2 ⊗ f3(n+1) ⊗ e1) = 0

for all n ≥ 1.
Consequently, (((fg)h)e)(a) = 0 for all f, g, h, e ∈ A∗ and a ∈ A, i. e., ((fg)h)e = 0.

This means that A∗ satisfies the identity ((xy)z)t = 0.
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Now set ψ = (id⊗∆⊗ id)(id⊗∆)∆. Then

ψ(e1) = ψ(e2) = 0,

ψ(f3n−2) = (id⊗∆⊗ id)(id⊗∆)(e1 ⊗ f3n) = (id⊗∆⊗ id)(e1 ⊗∆(f3n))

= −e1 ⊗∆(f3n+1)⊗ e2 + e1 ⊗∆(f3n+2)⊗ e1

= −e1 ⊗ e1 ⊗ f3(n+1) ⊗ e2 + e1 ⊗ e2 ⊗ f3(n+1) ⊗ e1,

ψ(f3n−1) = (id⊗∆⊗ id)(id⊗∆)(e2 ⊗ f3n) = (id⊗∆⊗ id)(e2 ⊗∆(f3n))

= −e2 ⊗∆(f3n+1)⊗ e2 + e2 ⊗∆(f3n+2)⊗ e1

= −e2 ⊗ e1 ⊗ f3(n+1) ⊗ e2 + e2 ⊗ e2 ⊗ f3(n+1) ⊗ e1,

and

ψ(f3n) = (id⊗∆⊗ id)(id⊗∆)(e2 ⊗ f3n+1 − f3n+1 ⊗ e2 − e1 ⊗ f3n+2 + f3n+2 ⊗ e1)

= (id⊗∆⊗ id)(e2 ⊗∆(f3n+1)− e1 ⊗∆(f3n+2))

= (id⊗∆⊗ id)(e2 ⊗ e1 ⊗ f3(n+1) − e1 ⊗ e2 ⊗ f3(n+1))

= e2 ⊗∆(e1)⊗ f3(n+1) − e1 ⊗∆(e2)⊗ f3(n+1) = 0

for all n ≥ 1.
Therefore,

(f((gh)g))(f3n−2) = −f(e1)g(e1)h(f3(n+1))g(e2) + f(e1)g(e2)h(f3(n+1))g(e1) = 0,

(f((gh)g))(f3n−1) = 0

for all f, g, h ∈ A∗.
This means f((gh)g) = 0 for all f, g, h ∈ A∗. Together with the identity ((xy)z)t = 0,

this proves that the Moufang identity (7) holds in A∗.
It is easy to check that (∆ ⊗ ∆)∆(a) = 0 for all a ∈ A. Therefore A∗ satisfies the

identity (xy)(zt) = 0.
Now we show that(A,∆) is not locally finite. Let B a subalgebra of (A,∆) generated

by f1, f2.
Suppose that fi ∈ B. If i = 3n − 1 or i = 3n − 2, then ∆(fi) ∈ B ⊗ B implies that

e1, e2, f3n ∈ B by Lemma 2. If i = 3n, then we get e1, e2, f3n+1, f3n+2 ∈ B. This implies
that B = C is infinite-dimensional. 2
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