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Abstract

We examine a family of linear partial differential equations both singularly perturbed in a complex param-
eter ε and singular in complex time t at the origin. These equations entail forcing terms which combine
polynomial and logarithmic type functions in time and that are bounded holomorphic on horizontal strips
in one complex space variable. A set of sectorial holomorphic solutions are built up by means of com-
plete and truncated Laplace transforms w.r.t t and ε and Fourier inverse integral in space. Asymptotic
expansions of these solutions relatively to t and ε are investigated and two distinguished Gevrey type
expansions in monomial and logarithmic scales are exhibited.
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1 Introduction

In this paper, we focus our attention on a family of singularly perturbed linear partial differential
equations with the shape

(1) Q(∂z)u(t, z, ε) = (εt)dD(t∂t)
δDRD(∂z)u(t, z, ε) + P (t, z, ε, t∂t, ∂z)u(t, z, ε) + f(t, z, ε)

for vanishing initial data u(0, z, ε) ≡ 0, where dD, δD ≥ 1 are integers, Q(X), RD(X) stand
for polynomials with complex coefficients and P (t, z, ε, V1, V2) represents a polynomial in the
arguments t, V1, V2 with holomorphic coefficients relatively to the perturbation parameter ε on
a disc Dε0 with radius ε0 > 0 centered at 0 and holomorphic w.r.t the space variable z on a
horizontal strip in C framed as Hβ = {z ∈ C/|Im(z)| < β}, for some given width 2β > 0.

The forcing term f(t, z, ε) involves coefficients that depend polynomially on the time variable
t, analytically on ε on Dε0 and holomorphically in z on Hβ. This term combines also logarithmic
type functions expressed as truncated Laplace transforms along a fixed segment [−a, 0] for some
radius a > 0 that count in the function 1/ log(εt). Its expression is chosen in a way that when
a > 0 is taken large, it becomes proximate to a general logarithmic type map f∞ in t, ε displayed
as polynomials in both εt and 1/ log(εt) with coefficients that are entire functions on the strip
Hβ, see (24). It is worth noticing that this radius a > 0 can be taken as large as desired provided
that the radius ε0 > 0 of Dε0 is chosen close enough to the origin. However, a > 0 cannot be set
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to be infinite (a 6= +∞). The explicit constraints relating these two quantities are given through
the technical bounds (79) and (89).

Observe that the main equation (1) involves powers of the basic differential operator of
Fuchsian type t∂t. For a conspicuous textbook about Fuchsian ordinary and partial differential
equations, we refer to [7]. However, under the sufficient conditions set on (1) listed in Subsection
2.2, it turns out that (1) will be reduced throughout the work to an auxiliary prominent equation,
stated in (41), that brings in only powers of basic differential operators of so-called irregular type
uk1+1

1 ∂u1 and u2
2∂u2 in two independent complex variables u1 and u2. The definition of irregular

type differential operators can be found in the classical textbook [1] in the framework of ordinary
differential equations and in the work [15] in the context of partial differential equations.

Remark that the limit map f∞ displayed in (24) (obtained from the forcing term as its
truncated Laplace radius a tends to +∞) is made up with pieces that separately solve explicit
nonlinear ordinary differential equations that are singularly perturbed and comprise first order
differential operators of irregular type, see (25).

In the present study, our objective is the construction of a set of holomorphic solutions
to (1) and the description of their asymptotic expansions as ε tends to 0 (stated in Theorem
1 of Subsection 4.3). We model these solutions as functions representable as double Laplace
transforms and Fourier integral. Such an approach has already been successfully applied in
the recent works [11], [12] by A. Lastra and the author and in [3] by G. Chen, A. Lastra and
the author in the analysis of singularly perturbed initial value problems in two complex time
variables. Under the list of conditions applied to the shape of (1), detailed in Subsection 2.2,
one can single out

• A set of suitably chosen bounded open sectors {Ep}p∈I1 for some finite set I1 ⊂ N and T
centered at 0.

• Appropriate directions dp ∈ R, p ∈ I1, for which a family of holomorphic solutions up(t, z, ε)
to (1) can be built up on the domains T ×Hβ ×Ep. Each solution up, p ∈ I1, is expressed
as a complete Laplace transform of some integer order k1 ≥ 1 in the monomial εt, a
truncated Laplace transform of order 1 in the logarithmic map 1/ log(εt) and an inverse
Fourier integral in the space variable z,

up(t, z, ε) =
k1

(2π)1/2

∫
Ldp

∫
[−a,0]

∫ +∞

−∞
ωp(τ1, τ2,m, ε)

× exp
(
− (

τ1

εt
)k1 − (log(εt)τ2)

)
eizm

dτ1

τ1

dτ2

τ2
dm

where the so-called Borel/Fourier map ωp(τ1, τ2,m, ε) stands for a function

– which is analytic near τ1 = 0 and for τ2 ∈ Da,

– with (at most) of exponential growth of order k1 on an infinite sector containing the

half line Ldp = [0,+∞)e
√
−1dp w.r.t τ1,

– continuous and under exponential decay w.r.t m on R,

– with analytic reliance on ε in the punctured disc Dε0 \ {0}.

According to the very structure of these solutions, the family {up}p∈I1 owns asymptotic expan-
sions of Gevrey type in two particular scales of functions.
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All the functions ε 7→ up(t, z, ε), p ∈ I1, share a common asymptotic formal expansion

û1(t, z, ε) =
∑
n≥0

G1
n(t, z, ε)

εn

n!

on Ep, in the scale of monomials {εn}n≥0, with bounded holomorphic coefficients G1
n on T ×Hβ×

Dε0 , where Dε0 is an open domain of Dε0 \ {0} given by (134). Furthermore, these asymptotic
expansions turn out to be of Gevrey order 1/k1 on every sectors Ep, meaning that constants
K1
p ,M

1
p > 0 can be chosen for which the error bounds

(2) |up(t, z, ε)−
N∑
n=0

G1
n(t, z, ε)

εn

n!
| ≤ K1

p(M1
p )N+1Γ(1 +

N + 1

k1
)|ε|N+1

hold for all integers N ≥ 0, all ε ∈ Ep, uniformly in t ∈ T and z ∈ Hβ. In Proposition 9, we show
that the coefficients G1

n are subjected to an explicit differential recursion relation w.r.t n ≥ 0
that may be useful for their effective computations.

For each p ∈ I1, the function (t, ε) 7→ up(t, z, ε) possesses a generalized asymptotic formal
expansion (in the sense defined in the classical textbooks [6], [18])

û2
p(t, z, ε) =

∑
n≥0

G2
n,p(t, z, ε)

(1/ log(εt))n

n!

on the domain T × Ep, in the scale of logarithmic functions {(1/ log(εt))n}n≥0, for bounded
holomorphic coefficients G2

n,p on T ×Hβ × Ep. These asymptotic expansions share the common
feature to be of Gevrey order 1 on the sectors Ep, giving rise to constants K2,M2 > 0 for which
the error estimates

(3) |up(t, z, ε)−
N∑
n=0

G2
n,p(t, z, ε)

(1/ log(εt))n

n!
| ≤ K2(M2)N+1Γ(N + 2)|1/ log(εt)|N+1

occur for all integers N ≥ 0, all ε ∈ Ep and t ∈ T , uniformly in z ∈ Hβ. In addition, the
coefficients G2

n,p are proved to fulfill some partial differential recursion relation in regard to
n ≥ 0 that may be helpful for their practical reckoning, see Proposition 10.

The functions up, p ∈ I1, are expressed in terms of maps Udp,π(t, u2, z, ε) in four complex
variables through

up(t, z, ε) = Udp,π(t,
1

log(εt)
, z, ε)

which turn out to be embedded into a larger family of maps Udp,dq(t, u2, z, ε) for all integers
(p, q) ∈ {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1} for some integers ς1, ς2 ≥ 2. These maps are bounded
holomorphic on products T × U2,dq ×Hβ × Ep where

• U2 = {U2,dq}0≤q≤ς2−1 is a set of bounded sectors with bisecting directions dq ∈ R forming
a good covering in C∗ (see Definition 5) with dq1 = π for some integer q1 ∈ {0, . . . , ς2− 1}.

• E = {Ep}0≤p≤ς1−1 stands for a set of bounded sectors, containing Ep for p ∈ I1, representing
a good covering in C∗.

Each map Udp,dq is modeled as a rescaled version of a bounded holomorphic map (u1, u2, z) 7→
Udp,dq(u1, u2, z, ε) by means of

Udp,dq(t, u2, z, ε) = Udp,dq(εt, u2, z, ε)
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on domains U1,dp×U2,dq×Hβ for all ε ∈ Dε0 \{0} where U1,dp are bounded sectors bisected by the
directions dp, described in Definition 6 of the work. These maps Udp,dq(u1, u2, z, ε) are shown to
solve a set of auxiliary linear partial differential equations given by (104) which combine powers
of the basic differential operators uk1+1

1 ∂u1 and u2
2∂u2 as brought to light in (41). This implies

in particular that the functions up, p ∈ I1, solve our main problem (1) on T ×Hβ × Ep.
The two asymptotic properties (2) and (3) for up stem from sharp exponential bound esti-

mates for the differences of neighboring maps Udp,dq reached in Proposition 7, for which a well
known criterion for the existence of asymptotic expansions of Gevrey type established by J-P.
Ramis and Y. Sibuya can be applied, see Subsection 4.2.

In the framework of linear partial differential equations of so-called Fuchsian type, the con-
struction of logarithmic type solutions is a well established subject. In the papers [19], [20],
H. Tahara considers so-called linear Fuchsian partial differential equations (introduced by M.
Baouendi and C. Goulaouic in [2]) with the shape

(4) tm∂mt u(t, x) +
m∑
j=1

Pj(t, x, ∂x1 , . . . , ∂xn)tm−j∂m−jt u(t, x) = 0

for linear differential operators Pj , with order less than j, with holomorphic coefficients near
t = 0 and x = (x1, . . . , xn) = 0. Under conditions of non resonance of the characteristic

exponents at x = 0, he has characterized the holomorphic solutions to (4) on ˜DT \ {0} × DR

for a prescribed disc DT (resp. DR) centered at t = 0 (resp. x = 0) with radius T > 0 (resp.

R > 0) where ˜DT \ {0} stands for the universal covering of DT \ {0}, which can be expressed as

(5) u(t, x) =

m∑
l=1

tλl(x)
+∞∑
j=0

tjul,j(t, x)

where ul,j(t, x) =
∑rl,j

k=1 ul,j,k(x)(log(t))k−1, for positive integers rl,j ≥ 1 and holomorphic maps
ul,j,k on DR, where λl(x) represent the characteristic exponents of the equation (4) at x. Later
on in the year 2000, T. Mandai was able to extend this important result to the general situation
without any assumption on the characteristic exponents by following a similar approach to the
method of Frobenius for ordinary differential equations with regular singularity at a point, see
[16].

In the context of linear partial differential equations of so-called irregular type in which
our present contribution falls, much less results are known and represents a promising trend for
upcoming research. Nevertheless, in that direction, we can mention the striking paper [23] by H.
Yamazawa published in 2017. Therein, the author examines linear partial differential equations
of the form

(6) Cl(t∂t, x)u(t, x) =
∑

j+|α|≤m

aj,α(t, x)(t∂t)
j∂α1
x1 · · · ∂

αn
xn u(t, x) + f(t, x)

for x = (x1, . . . , xn) ∈ Cn, with holomorphic coefficients aj,α and forcing term f near (t, x) =
(0, 0) ∈ Cn+1, for some monic polynomial ρ 7→ Cl(ρ, x) with holomorphic coefficients near x = 0
with degree 1 ≤ l < m. Under technical conditions set on a so-called Newton polygon related
to (6), the author constructs formal solutions with the shape û(t, x) = û1(t, x) + û2(t, log(t), x)
with

û1(t, x) =
∑
i≥1

ui(x)ti , û2(t, log(t), x) =

ν∑
p=1

tρp(x)
∑
i≥0,

0≤k≤mi

ϕi,k,p(x)ti(log(t))k
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where ρp(x) are the roots of ρ 7→ Cl(ρ, x) with positive real parts at x = 0 and ui(x), ϕi,k,p(x)
are holomorphic coefficients on some small disc DR, R > 0. The formal series in t, û1(t, x)
(resp. û2(t, y, x)) with holomorphic coefficients on the domain DR (resp. DR/τ × DR for any
fixed small parameter τ > 0) are divergent in general but are shown to be (multi)-summable in
several levels of Gevrey orders on suitable sectors (in the sense defined in the book [1]).

At last, we quote two compelling recent works that are somehow related to the result of the
present study.

In [21], H. Tahara investigates higher order analogs of nonlinear singular partial differential
equations of first order with so-called Briot-Bouquet type (see the textbook [7] by R. Gérard
and H. Tahara for the origin of this terminology). These equations are written in the form

(7) (t∂t)
mu(t, x) = F (t, x, {(t∂t)j∂α1

x1 · · · ∂
αn
xn u}j+|α|≤m,j<m)

for x = (x1, . . . , xn) ∈ Cn, under some restrictions of the analytic map F (t, x, Z) near the origin.
The author studies spaces of solutions u(t, x) to (7), that are holomorphic on a product S×DR

for some sector S centered at 0 and given disc DR with radius R > 0, restricted to upper bounds
of the form

(8) sup
|x|<R

|u(t, x)| ≤ C

| log(t)|a

for some constants C, a > 0 provided that t ∈ S. Sufficient conditions on the characteristic
exponents at x = 0 of (7) are given for which the bounds (8) imply the stronger bounds

sup
|x|<R

|u(t, x)| ≤ K|t|b

for some constants K, b > 0, whenever t ∈ S. As a consequence, the structure of all the solutions
u(t, x) of (7) subjected to (8) (and ressembling the one given by (5)) can be completely described
by a former result by R. Gérard and H. Tahara stated in [7], Chap. 8.

In [17], the authors study families of formal power series f(x) with real coefficients in double
scales of power and logarithmic functions with the shape

f(x) = λxα +
∑

β∈S,β>α

∑
k∈Z

aβ,kx
β(

1

log(x)
)k

where λ, α > 0 are real numbers and S is contained in a finitely generated additive semi-group
in (0,+∞). Given such an f , normal forms for the conjugacy class ϕ−1 ◦ f ◦ ϕ are completely
classified in that paper and a so-called embedding theorem is reached. These sets of formal
expansions extend the classical formal Dulac series

D(x) = c0x
λ0 +

∑
i≥1

xλiPi(log(x))

for c0 > 0, increasing sequences {λi}i≥0 of positive real numbers and polynomials Pi with real
coefficients, which appear to represent asymptotic expansions at the origin of Poincaré maps P
stemming from analytic planar vector fields.

2 Layout of the main initial value problem and tied up auxiliary
problems

2.1 Laplace transforms of order k and Fourier inverse maps

In this short subsection, we include a prefatory material about Laplace transforms and Fourier
inverse maps that will be used in the upcoming sections.
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Let k ≥ 1 be an integer. We recall the definition of the Laplace transform of order k as
introduced in [9].

Definition 1 We set Sd,δ = {τ ∈ C∗ : |d−arg(τ)| < δ} as some unbounded sector with bisecting
direction d ∈ R and aperture 2δ > 0 and Dρ as a disc centered at 0 with radius ρ > 0. Consider
a holomorphic function w : Sd,δ ∪Dρ → C that vanishes at 0 and withstands the bounds : there
exist C > 0 and K > 0 such that

(9) |w(τ)| ≤ C|τ | exp(K|τ |k)

for all τ ∈ Sd,δ. We define the Laplace transform of w of order k in the direction d as the
integral transform

Ldk(w)(T ) = k

∫
Lγ

w(u) exp(−(
u

T
)k)

du

u

along a half-line Lγ = [0,+∞)e
√
−1γ ⊂ Sd,δ ∪ {0}, where γ depends on T and is chosen in such

a way that cos(k(γ − arg(T ))) ≥ δ1, for some fixed real number δ1 > 0. The function Ldk(w)(T )
is well defined, holomorphic and bounded on any sector

Sd,θ,R1/k = {T ∈ C∗ : |T | < R1/k , |d− arg(T )| < θ/2},

where 0 < θ < π
k + 2δ and 0 < R < δ1/K.

We remind some useful property : if w(τ) represents an entire function w.r.t τ ∈ C with
the bounds (9), its Laplace transform Ldk(w)(T ) does not depend on the direction d in R and
represents a bounded holomorphic function on DR1/k whose Taylor expansion is represented by
the convergent series X(T ) =

∑
n≥1wnΓ(nk )Tn on DR1/k , where Γ(x) stands for the Gamma

function.

We remind the reader the definition of some family of Banach spaces used for the first time
by the author in [14] and introduced in [5].

Definition 2 Let β, µ ∈ R. We set E(β,µ) as the vector space of continuous functions h : R→ C
such that

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. The space E(β,µ) endowed with the norm ||.||(β,µ) becomes a Banach space.

Finally, we restate the definition of the inverse Fourier transform acting on the latter Banach
spaces and some of its close at hand formulas relative to derivation and convolution product as
expounded in [9].

Definition 3 Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is given by

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm

for all x ∈ R. The function F−1(f) extends to an analytic bounded function on the strips

(10) Hβ′ = {z ∈ C/|Im(z)| < β′}.

for all given 0 < β′ < β.
a) Define the function m 7→ φ(m) = imf(m) which belongs to the space E(β,µ−1). Then, the
next identity

∂zF−1(f)(z) = F−1(φ)(z)
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occurs.
b) Take g ∈ E(β,µ) and set

ψ(m) =
1

(2π)1/2

∫ +∞

−∞
f(m−m1)g(m1)dm1

as the convolution product of f and g. Then, ψ belongs to E(β,µ) and moreover,

F−1(f)(z)F−1(g)(z) = F−1(ψ)(z)

for all z ∈ Hβ.

2.2 The main problem outlined

In this subsection, we disclose the principal linear initial value problem under study in this
paper. It is stated as follows,

(11) Q(∂z)u(t, z, ε) = (εt)dD(t∂t)
δDRD(∂z)u(t, z, ε)

+
D−1∑
l=1

ε∆ltdl(t∂t)
δlal(z, ε)Rl(∂z)u(t, z, ε) + f(t, z, ε)

where D ≥ 2 is some integer, for vanishing initial data u(0, z, ε) ≡ 0.
The constants dD,δD,∆l, dl and δl for 1 ≤ l ≤ D− 1 are positive integers that are submitted

to the next list of technical constraints:
1. There exists an integer k1 ≥ 1 such that

(12) dD = δDk1 , dl > δlk1

for all 1 ≤ l ≤ D − 1.
2. The next three inequalities

(13) ∆l > 0 , ∆l > δlk1 , k1δD − 1 ≥ k1δl

hold for all 1 ≤ l ≤ D − 1.
The maps Q(X), RD(X) and Rl(X) are polynomials with complex coefficients that are sub-

jected to the next two restrictions:
3. The next bounds

(14) deg(Q) ≥ deg(RD) ≥ deg(Rl)

hold, for all 1 ≤ l ≤ D − 1, where deg(P ) denotes the degree of a polynomial P (X).
4. One can select an unbounded sectorial annulus

SQ,RD = {z ∈ C∗/rQ,RD < |z| , |arg(z)− dQ,RD | ≤ ηQ,RD}

with bisecting direction dQ,RD ∈ R, aperture ηQ,RD > 0 and inner radius rQ,RD > 0 (prescribed
later on in the work), for which the next inclusion

(15) { Q(im)

RD(im)
/m ∈ R} ⊂ SQ,RD

holds true.
The coefficients al(z, ε), 1 ≤ l ≤ D− 1, are built up in the following way. For 1 ≤ l ≤ D− 1,

let m 7→ Al(m, ε) be maps
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• that belong to the Banach space E(β,µ), for some given real numbers β > 0 and µ > 1 that
fulfills the restriction

(16) µ > deg(Rl) + 1

for all 1 ≤ l ≤ D − 1.

• that depend analytically on ε on a disc Dε0 centered at 0 in C with radius ε0 > 0 and for
which a constant Al,ε0 > 0 can be be singled out with

(17) sup
ε∈Dε0

||Al(m, ε)||(β,µ) ≤ Al,ε0 .

We set
al(z, ε) = F−1(m 7→ Al(m, ε))(z)

for all 1 ≤ l ≤ D − 1. According to Definition 3, the maps (z, ε) 7→ al(z, ε) represent bounded
holomorphic maps on the product Hβ′ ×Dε0 , for any prescribed 0 < β′ < β.

The forcing term f(t, z, ε) is constructed in the next manner. Let J1, J2 be given finite
subsets of the positive integers N∗. For j1 ∈ J1, j2 ∈ J2, we denote m 7→ Fj1,j2(m, ε) maps

• that appertain to the Banach space E(β,µ), for β > 0, µ > 1 given above.

• that rely analytically on ε on the disc Dε0 , with a constant Fj1,j2,ε0 such that

(18) sup
ε∈Dε0

||Fj1,j2(m, ε)||(β,µ) ≤ Fj1,j2,ε0 .

We introduce the next polynomial

(19) F(τ1, τ2,m, ε) =
∑

j1∈J1,j2∈J2

Fj1,j2(m, ε)τ j11 τ
j2
2

in the variables τ1, τ2, with coefficients in E(β,µ) that depends analytically in ε on Dε0 . We
consider some given real number a > 0 and we set

(20) Fπ,a(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ld1

∫
Lπ,a

∫ +∞

−∞
F(τ1, τ2,m, ε) exp

(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

where Ld1 = [0,∞)e
√
−1d1 stands for a halfline in direction d1 ∈ R, which depends on τ1 in a

way that cos(k1(d1− arg(u1))) remains strictly positive and where Lπ,a = [0, a]e
√
−1π stands for

the segment [−a, 0].
Owing to Definition 1, the map Fπ,a can be written in the form of a polynomial in u1,

(21) Fπ,a(u1, u2, z, ε) =
∑
j1∈J1

Fπ,a,j1(u2, z, ε)Γ(
j1
k1

)uj11

whose coefficients (u2, z, ε) 7→ Fπ,a,j1(u2, z, ε) are holomorphic on C∗ × Hβ × Dε0 . Notice that
the expression Fπ,a does not depend on the choice of the direction d1. An explicit expression of
the maps Fπ,a,j1 will be disclosed later on in the work (see Section 5, Proposition 10, Lemma 6).
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Due to Definition 1, we observe that when the radius a > 0 tends to infinity, each partial map
u2 7→ Fπ,a,j1(u2, z, ε) becomes close to the polynomial in u2,∑

j2∈J2

F−1(m 7→ Fj1,j2(m, ε))(z)Γ(j2)uj22

with bounded holomorphic coefficients on Hβ′ × Dε0 , for any 0 ≤ β′ < β, provided that the
variable u2 satisfies

arg(u2) ∈ (−π,−π
2
− δ) ∪ (

π

2
+ δ, π] mod(2π)

for some small δ > 0. The forcing term f(t, z, ε) is defined by the logarithmic type function

(22) f(t, z, ε) = Fπ,a(εt,
1

log(εt)
, z, ε).

Here log(z) stands for the principal value of the logarithm, namely log(z) = ln |z|+
√
−1arg(z)

with arg(z) ∈ (−π, π). By construction, we notice that

(23) arg(
1

log(z)
) = −arg(log(z)) ∈ (−π,−π

2
− δ) ∪ (

π

2
+ δ, π] mod(2π)

provided that |z| is small enough with z /∈ (−∞, 0], for any given small δ > 0.
As a result, from the expansion (21), one checks that f(t, z, ε) represents a holomorphic

function in z ∈ Hβ′ and t, ε for t ∈ D (some small disc centered at 0) and ε ∈ Dε0 \{0}, provided
that εt /∈ (−∞, 0] and as long as ε0 > 0 is taken small enough. Furthermore, from the discussion
above, when the radius a > 0 is taken large enough, the forcing term f(t, z, ε) becomes proximate
to the explicit logarithmic type function in t, ε

(24) f∞(t, z, ε) =
∑

j1∈J1,j2∈J2

F−1(m 7→ Fj1,j2(m, ε))(z)Γ(
j1
k1

)Γ(j2)(εt)j1(
1

log(εt)
)j2 .

Notice that each single piece ψj1,j2(t, ε) = (εt)j1/(log(εt))j2 , for j1 ∈ J1, j2 ∈ J2 solves an explicit
nonlinear ordinary differential equation which is both singularly perturbed in the parameter ε
and possesses a differential operator of first order with irregular type, namely

(25) εj1/j2t
1+

j1
j2 ∂tψj1,j2(t, ε) = j1ε

j1/j2tj1/j2ψj1,j2(t, ε)− j2(ψj1,j2(t, ε))
1+ 1

j2

for all t, ε ∈ C such that εt /∈ (−∞, 0]. The reason for which we need to restrict ourselves to
a truncated Laplace transform in the variable u2 for the expression (20) instead of a complete
Laplace integral (a = +∞) will be expounded later on in the work.

2.3 A family of related initial value problems

In this subsection, we reduce the study of the main problem (11) to the analysis of a set of
auxiliary problems which involves four independent complex variables.

We plan to seek for solutions u(t, z, ε) to the equation (11) with vanishing initial data at
t = 0 of the form

(26) u(t, z, ε) = Uπ(εt,
1

log(εt)
, z, ε)

for some expression Uπ(u1, u2, z, ε) in the four independent variables u1, u2, z and ε.
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Following the usual chain rule (applied at a formal level at this stage of the work), the next
computation holds

(27) t∂tu(t, z, ε) = t(∂t(εt))(∂u1Uπ)(εt,
1

log(εt)
, z, ε) + t∂t(

1

log(εt)
)(∂u2Uπ)(εt,

1

log(εt)
, z, ε)

=
(
(u1∂u1 − u2

2∂u2)Uπ
)
(εt,

1

log(εt)
, z, ε).

As a result, the expression u(t, z, ε) (formally) solves the equation (11) with vanishing data at
t = 0 if the expression Uπ(u1, u2, z, ε) solves the next equation

(28) Q(∂z)Uπ(u1, u2, z, ε) = udD1 (u1∂u1 − u2
2∂u2)δDRD(∂z)Uπ(u1, u2, z, ε)

+
D−1∑
l=1

ε∆l−dludl1 (u1∂u1 − u2
2∂u2)δlal(z, ε)Rl(∂z)Uπ(u1, u2, z, ε) + Fπ,a(u1, u2, z, ε)

for given vanishing initial data Uπ(0, 0, z, ε) ≡ 0. Here the symbol (u1∂u1 − u2
2∂u2)h stands for

the h−iterate of the differential operator u1∂u1 − u2
2∂u2 for any given integer h ≥ 1.

In order to be able to build genuine solutions to (11) and furthermore to study their asymp-
totic properties as ε tends to 0, we need to examine a more general family of related problems
stated as follows.

For any given direction d2 ∈ R, we define

(29) Fd2,a(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ld1

∫
Ld2,a

∫ +∞

−∞
F(τ1, τ2,m, ε) exp

(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

where the direction d1 ∈ R depends on τ1 in a way that cos(k1(d1 − arg(u1))) remains strictly

positive and where Ld2,a = [0, a]e
√
−1d2 stands for a segment of length a in direction d2. Owing

to Definition 1, we notice that the expression Fd2,a does not rely on the direction d1.
We consider the next equation

(30) Q(∂z)Ud2(u1, u2, z, ε) = udD1 (u1∂u1 − u2
2∂u2)δDRD(∂z)Ud2(u1, u2, z, ε)

+
D−1∑
l=1

ε∆l−dludl1 (u1∂u1 − u2
2∂u2)δlal(z, ε)Rl(∂z)Ud2(u1, u2, z, ε) + Fd2,a(u1, u2, z, ε)

with prescribed vanishing initial data Ud2(0, 0, z, ε) ≡ 0.

3 Construction of analytic solutions to the set of related initial
value problems

In this section, we plan to construct a family of analytic solutions Ud1,d2(u1, u2, z, ε) to the
auxiliary problem (30) obtained for well chosen directions d1 ∈ R, for any given direction d2 ∈ R.
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3.1 The shape of the analytic solutions and associated convolution equation

For any given direction d2 ∈ R, we search for a family of solutions to (30) in the form of a double
Laplace transform and inverse Fourier integral

(31) Ud1,d2(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ld1

∫
Ld2,a

∫ +∞

−∞
ωd1(τ1, τ2,m, ε) exp

(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm.

Here, we assume that the so-called Borel-Fourier map ωd1 belongs to a Banach space of functions
denoted F d1(ν,β,µ,k1,ρ,a,ε)

described in the next definition.

Definition 4 Let ε0, β, µ, k1, a be the constants prescribed in Subsection 2.2. Let ε ∈ Dε0 \ {0}
and ν, ρ > 0 be given real numbers. We set as Sd1 an unbounded sector centered at 0 with
bisecting direction d1 ∈ R. We denote F d1(ν,β,µ,k1,ρ,a,ε)

the vector space of all continuous maps

(τ1, τ2,m) 7→ h(τ1, τ2,m) on (Sd1 ∪Dρ)×Da ×R, holomorphic w.r.t τ1, τ2 on (Sd1 ∪Dρ)×Da,
such that the norm

||h(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

= sup
τ1∈Sd1∪Dρ,τ2∈Da

m∈R

(1 + |m|)µ exp(β|m|)| ε
τ1
| exp

(
− ν|τ1

ε
|k1
) 1

|τ2|
|h(τ1, τ2,m)|

is finite. The vector space F d1(ν,β,µ,k1,ρ,a,ε)
equipped with the norm ||.||(ν,β,µ,k1,ρ,a,ε) becomes a

Banach space.

Remark. Similar Banach spaces that involve functions with two complex and one real
variables have been recently introduced in the works [11], [12] by A. Lastra and the author.

Our main task within this subsection is to derive some convolution equation fulfilled by the
Borel-Fourier map ωd1 .

We recall some features of the Laplace transform under the action of multiplication by a
monomial and differential operators already stated in our foregoing work [9]. A detailed proof
of the formulas stated in the forthcoming lemma can be found in the work [10], Lemma 2.

Lemma 1 Let us assume that the map ωd1 appertains to the space F d1(ν,β,µ,k1,ρ,a,ε)
. Then, the

next identities hold.
1. The action of the differential operator uk1+1

1 ∂u1 on the integral representation (31) writes

(32) uk1+1
1 ∂u1Ud1,d2(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ld1

∫
Ld2,a

∫ +∞

−∞
{k1τ

k1
1 ωd1(τ1, τ2,m, ε)} exp

(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm.

2. Let m′ ≥ 1 be an integer. The multiplication by um
′

1 acting on (31) is expressed through

(33) um
′

1 Ud1,d2(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ld1

∫
Ld2,a

∫ +∞

−∞

{
τk11

Γ(m
′

k1
)

∫ τ
k1
1

0
(τk11 − s1)

m′
k1
−1
ωd1(s

1/k1
1 , τ2,m, ε)

ds1

s1

}

× exp
(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm.
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3. The differentiel operator u2∂u2 applies on (31) by means of

(34) u2
2∂u2Ud1,d2(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ld1

∫
Ld2,a

∫ +∞

−∞
{τ2ωd1(τ1, τ2,m, ε)} exp

(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm.

In the next steps, we plan to express all the differential operators acting on the variables u1, u2

that appear in the related initial value problem (30) by the agency of the basic operator listed
in the above lemma.

At first, since the operators u1∂u1 and u2
2∂u2 commute to each other, one can rewrite (30)

by way of the classical binomial formula as

(35) Q(∂z)Ud2(u1, u2, z, ε) = udD1

×
∑

p1+p2=δD

δD!

p1!p2!
(u1∂u1)p1(−1)p2(u2

2∂u2)p2RD(∂z)Ud2(u1, u2, z, ε)

+
D−1∑
l=1

ε∆l−dludl1 ×
∑

p1+p2=δl

δl!

p1!p2!
(u1∂u1)p1(−1)p2(u2

2∂u2)p2al(z, ε)Rl(∂z)Ud2(u1, u2, z, ε)

+ Fd2,a(u1, u2, z, ε)

for given initial data Ud2(0, 0, z, ε) ≡ 0.
In a second step, we apply a useful lemma already stated in the previous work of A. Lastra

and the author, [13] which provide expansions for the iterations of the basic fuchsian operator
u1∂u1 .

Lemma 2 For all integer p1 ≥ 1, there exist positive integers aq,p1 ≥ 1, for 1 ≤ q ≤ p1, such
that

(u1∂u1)p1 =

p1∑
q=1

aq,p1u
q
1∂

q
u1

with a1,p1 = ap1,p1 = 1.

By dint of this lemma, we can recast the last equation (35) in the form

(36) Q(∂z)Ud2(u1, u2, z, ε) = udD1 ×
[
(−1)δD(u2

2∂u2)δDRD(∂z)Ud2(u1, u2, z, ε)

+
∑

p1+p2=δD
1≤p1≤δD

δD!

p1!p2!

( p1∑
q=1

aq,p1u
q
1∂

q
u1

)
(−1)p2(u2

2∂u2)p2RD(∂z)Ud2(u1, u2, z, ε)
]

+

D−1∑
l=1

ε∆l−dludl1 ×
[
(−1)δl(u2

2∂u2)δlal(z, ε)Rl(∂z)Ud2(u1, u2, z, ε)

+
∑

p1+p2=δl
1≤p1≤δl

δl!

p1!p2!

( p1∑
q=1

aq,p1u
q
1∂

q
u1

)
(−1)p2(u2

2∂u2)p2al(z, ε)Rl(∂z)Ud2(u1, u2, z, ε)
]
+Fd2,a(u1, u2, z, ε)

In a last undertaking, we bring into play a helpful formula introduced in the work [22]
and which appears in many papers of the author and his colleagues, going back to its earliest
occurrence in [9], that is stated as follows.
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Lemma 3 Let k1, δ ≥ 1 be integers. One can single out real numbers Aδ,p, for 1 ≤ p ≤ δ − 1
such that

(37) u
δ(k1+1)
1 ∂δu1 = (uk1+1

1 ∂u1)δ +
∑

1≤p≤δ−1

Aδ,pu
k1(δ−p)
1 (uk1+1

1 ∂u1)p

where, by convention, we assume that the sum
∑

1≤p≤δ−1[...] vanishes when δ = 1 in (37).

Owing to the conditions (12) imposed on the integers k1 and dl, δl, for 1 ≤ l ≤ D, we deduce
the next decompositions. First, we rewrite the equality in (12), as

(38) dD + δD = δD(k1 + 1)

from which we deduce the existence of integers dD,q ≥ 1, for 1 ≤ q < δD such that

(39) dD + q = q(k1 + 1) + dD,q

as long as 1 ≤ q < δD. Furthermore, the inequality in (12) gives rise to integers dl,q ≥ 1, for
1 ≤ l ≤ D − 1, 1 ≤ q ≤ δl for which

(40) dl + q = q(k1 + 1) + dl,q

whenever 1 ≤ l ≤ D − 1, 1 ≤ q ≤ δl. These last three formulas (38), (39), (40) together with
(37) beget the next final remodeling of (30) defined as

(41) Q(∂z)Ud2(u1, u2, z, ε) = udD1 (−1)δD(u2
2∂u2)δDRD(∂z)Ud2(u1, u2, z, ε)

+
∑

p1+p2=δD
1≤p1<δD

δD!

p1!p2!

( p1∑
q=1

aq,p1u
dD,q
1

[
(uk1+1

1 ∂u1)q +
∑

1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)p
])

× (−1)p2(u2
2∂u2)p2RD(∂z)Ud2(u1, u2, z, ε) +

δD−1∑
q=1

aq,δDu
dD,q
1

[
(uk1+1

1 ∂u1)q

+
∑

1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)p
]
RD(∂z)Ud2(u1, u2, z, ε)+

[
(uk1+1

1 ∂u1)δD +
∑

1≤p≤δD−1

AδD,pu
k1(δD−p)
1 (uk1+1

1 ∂u1)p
]
RD(∂z)Ud2(u1, u2, z, ε)

+

D−1∑
l=1

ε∆l−dl

[
udl1 (−1)δl(u2

2∂u2)δlal(z, ε)Rl(∂z)Ud2(u1, u2, z, ε)

+
∑

p1+p2=δl
1≤p1≤δl

δl!

p1!p2!

( p1∑
q=1

aq,p1u
dl,q
1

[
(uk1+1

1 ∂u1)q +
∑

1≤p≤q−1

Aq,pu
k1(q−p)
1 (uk1+1

1 ∂u1)p
]

× (−1)p2(u2
2∂u2)p2al(z, ε)Rl(∂z)Ud2(u1, u2, z, ε)

)]
+ Fd2,a(u1, u2, z, ε)

for prescribed vanishing data Ud2(0, 0, z, ε) ≡ 0.
On the basis of the identities displayed in Definition 3 and Lemma 1, this last way (41) of

rephrasing (30) allows us to reach the following statement.
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The map Ud1,d2(u1, u2, z, ε) given by (31) solves the equation (41) under the additional van-
ishing condition Ud1,d2(0, 0, z, ε) ≡ 0 if the Borel map ωd1(τ1, τ2,m, ε) fulfills the next convolution
equation

(42) Q(im)ωd1(τ1, τ2,m, ε)

=
τk11

Γ(dDk1 )

∫ τ
k1
1

0
(τk11 − s1)

dD
k1
−1
τ δD2 (−1)δDRD(im)ωd1(s

1/k1
1 , τ2,m, ε)

ds1

s1

+
∑

p1+p2=δD
1≤p1<δD

δD!

p1!p2!

(
p1∑
q=1

aq,p1

[ τk11

Γ(
dD,q
k1

)

∫ τ
k1
1

0
(τk11 − s1)

dD,q
k1
−1(

k1(s
1/k1
1 )k1

)q
ωd1(s

1/k1
1 , τ2,m, ε)

ds1

s1

+
∑

1≤p≤q−1

Aq,p
τk11

Γ(
dD,q+k1(q−p)

k1
)

∫ τ
k1
1

0
(τk11 −s1)

dD,q+k1(q−p)
k1

−1(
k1(s

1/k1
1 )k1

)p
ωd1(s

1/k1
1 , τ2,m, ε)

ds1

s1

])

×(−1)p2τp22 RD(im)+

δD−1∑
q=1

aq,δD

[ τk11

Γ(
dD,q
k1

)

∫ τ
k1
1

0
(τk11 −s1)

dD,q
k1
−1(

k1(s
1/k1
1 )k1

)q
ωd1(s

1/k1
1 , τ2,m, ε)

ds1

s1

+
∑

1≤p≤q−1

Aq,p
τk11

Γ(
dD,q+k1(q−p)

k1
)

∫ τ
k1
1

0
(τk11 − s1)

dD,q+k1(q−p)
k1

−1(
k1(s

1/k1
1 )k1

)p
ωd1(s

1/k1
1 , τ2,m, ε)

ds1

s1

]
×RD(im) + (k1τ

k1
1 )δDRD(im)ωd1(τ1, τ2,m, ε)

+
∑

1≤p≤δD−1

AδD,p
τk11

Γ(k1(δD−p)
k1

)

∫ τ
k1
1

0
(τk11 −s1)

k1(δD−p)
k1

−1(
k1(s

1/k1
1 )k1

)p
ωd1(s

1/k1
1 , τ2,m, ε)

ds1

s1
RD(im)

+

D−1∑
l=1

ε∆l−dl

[
τk11

Γ( dlk1 )

∫ τ
k1
1

0
(τk11 − s1)

dl
k1
−1
τ δl2 (−1)δl

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ωd1(s

1/k1
1 , τ2,m1, ε)dm1

)ds1

s1
+

∑
p1+p2=δl
1≤p1≤δl

δl!

p1!p2!

( p1∑
q=1

aq,p1

×
[ τk11

Γ(
dl,q
k1

)

∫ τ
k1
1

0
(τk11 − s1)

dl,q
k1
−1

(−1)p2τp22 (k1(s
1/k1
1 )k1)q

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ωd1(s

1/k1
1 , τ2,m1, ε)dm1

)ds1

s1
+

∑
1≤p≤q−1

Aq,p
τk11

Γ(
dl,q+k1(q−p)

k1
)

×
∫ τ

k1
1

0
(τk11 − s1)

dl,q+k1(q−p)
k1

−1
(−1)p2τp22 (k1(s

1/k1
1 )k1)p

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ωd1(s

1/k1
1 , τ2,m1, ε)dm1

)ds1

s1

])]
+ F(τ1, τ2,m, ε)

3.2 Action of linear convolution operators

In this subsection, we investigate continuity properties of two useful linear convolutions operators
acting on the Banach spaces given in Definition 4 and appearing in the above equation (42).

Proposition 1 Let γ1 ≥ 0, γ3 ≥ −1 be integers and set γ2 ∈ R. Let Sd1 be an unbounded sector
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centered at 0 with bisecting direction d1 ∈ R and set ρ > 0 a positive real number.
Let aγ1(τ1,m) be a continuous map on the closure (Sd1 ∪ Dρ) × R subjected to the upper

bounds

(43) |aγ1(τ1,m)| ≤ Mγ1

(1 + |τ1|)γ1

for all τ1 ∈ Sd1 ∪Dρ, all m ∈ R, for some constant Mγ1 > 0. Assume that

(44) γ1 ≥ k1(γ3 + 1) , γ2 > −1 , γ2 + γ3 +
1

k1
+ 1 ≥ 0

Then, a constant C1 > 0 (relying on γ1, γ2, γ3, k1 and ν) can found with

(45) ||aγ1(τ1,m)τk11

∫ τ
k1
1

0
(τk11 − s1)γ2sγ31 f(s

1/k1
1 , τ2,m)ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1Mγ1 |ε|k1(γ2+1)||f(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

for all f ∈ F d1(ν,β,µ,k1,ρ,a,ε)
.

Proof Let f be an element of F d1(ν,β,µ,k1,ρ,a,ε)
. By definition, the next bounds

(46) |f(τ1, τ2,m)| ≤ ||f ||(ν,β,µ,k1,ρ,a,ε)
∣∣τ1

ε

∣∣ exp
(
ν
∣∣τ1

ε

∣∣k1)|τ2|(1 + |m|)−µe−β|m|

hold whenever τ1 ∈ Sd1 ∪ Dρ, τ2 ∈ Da, all m ∈ R. These latter bounds together with the
assumption (43) enable the next estimates

(47) A(τ1, τ2,m)

:=
∣∣∣aγ1(τ1,m)τk11

∫ τ
k1
1

0
(τk11 − s1)γ2sγ31 f(s

1/k1
1 , τ2,m)ds1

∣∣∣ ≤ Mγ1 ||f ||(ν,β,µ,k1,ρ,a,ε)
(1 + |τ1|)γ1

× |τ1|k1
∫ |τ1|k1

0
(|τ1|k1 − h1)γ2hγ31

h
1/k1
1

|ε|
exp

(
ν
h1

|ε|k1
)
dh1|τ2|(1 + |m|)−µe−β|m|

provided that τ1 ∈ Sd1 ∪ Dρ, τ2 ∈ Da and m ∈ R. We further make the change of variable
g1 = h1/|ε|k1 inside the integral appearing in the righthandside of the above inequality and get

(48) A(τ1, τ2,m) ≤
Mγ1 ||f ||(ν,β,µ,k1,ρ,a,ε)

(1 + |τ1|)γ1
|τ1|k1

×
∫ |τ1|

k1

|ε|k1

0

( |τ1|k1
|ε|k1

− g1

)γ2gγ3+ 1
k1

1 eνg1dg1|ε|k1(γ2+γ3+1)|τ2|(1 + |m|)−µe−β|m|

as long as τ1 ∈ Sd1 ∪Dρ, τ2 ∈ Da and m ∈ R.
We consider the map

G(x) =

∫ x

0
(x− g1)γ2g

γ3+ 1
k1

1 eνg1dg1

for all x ≥ 0. Notice that G(x) is well defined for all x ≥ 0, according to (44), since we can
recast its expression by means of the change of variable g1 = xg2 for 0 ≤ g2 ≤ 1 in the form

G(x) = x
γ2+γ3+ 1

k1
+1
∫ 1

0
(1− g2)γ2g

γ3+ 1
k1

2 eνxg2dg2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2021                   doi:10.20944/preprints202111.0495.v1

https://doi.org/10.20944/preprints202111.0495.v1


16

for all x ≥ 0. According to the sharp bounds reached in Proposition 1 of the paper [10], we can
single out a constant K1 > 0 (depending on the constants γ2, γ3, k1, ν) for which

(49) G(x) ≤ K1x
γ3+ 1

k1 eνx

for all x ≥ 1.
Two cases arise.
A) Assume first that τ1 ∈ Sd1 ∪Dρ is chosen such that

(50)
|τ1|k1
|ε|k1

> 1.

Then, under the condition (44), one finds a constant C1.1 > 0 (relying on γ1, γ3, k1,K1) such
that

(51) A(τ1, τ2,m) ≤
Mγ1 ||f ||(ν,β,µ,k1,ρ,a,ε)

(1 + |τ1|)γ1
|τ1|k1 |ε|k1(γ2+γ3+1)K1

( |τ1|
|ε|
)k1(γ3+ 1

k1
)

× exp
(
ν
|τ1|k1
|ε|k1

)
|τ2|(1 + |m|)−µe−β|m| ≤ C1.1Mγ1 |ε|k1(γ2+1)||f ||(ν,β,µ,k1,ρ,a,ε)

×
∣∣τ1

ε

∣∣ exp
(
ν
∣∣τ1

ε

∣∣k1)|τ2|(1 + |m|)−µe−β|m|

for all τ1 ∈ Sd1 ∪Dρ, under the constraint (50), all τ2 ∈ Da and m ∈ R.
B) Take for granted that τ1 ∈ Sd1 ∪Dρ fufills

(52) 0 ≤ |τ1|k1
|ε|k1

≤ 1.

Then, owing to (48), there exists a constant C1.2 > 0 (leaning on γ2, γ3, k1) with

(53) A(τ1, τ2,m) ≤
Mγ1 ||f ||(ν,β,µ,k1,ρ,a,ε)

(1 + |τ1|)γ1
|τ1|k1

∫ |τ1|
k1

|ε|k1

0

( |τ1|k1
|ε|k1

− g1

)γ2gγ3+ 1
k1

1 dg1

× exp
(
ν
|τ1|k1
|ε|k1

)
|ε|k1(γ2+γ3+1)|τ2|(1 + |m|)−µe−β|m| ≤ ||f ||(ν,β,µ,k1,ρ,a,ε)

∣∣τ1

ε

∣∣ exp
(
ν
|τ1|k1
|ε|k1

)
|τ2|

× (1 + |m|)−µe−β|m| ×
[
C1.2Mγ1 |τ1|k1−1|ε|k1(γ2+1)|ε|1+k1γ3

]
≤ C1.2Mγ1ε

k1(γ3+1)
0 |ε|k1(γ2+1)||f ||(ν,β,µ,k1,ρ,a,ε) ×

∣∣τ1

ε

∣∣ exp
(
ν
∣∣τ1

ε

∣∣k1)|τ2|(1 + |m|)−µe−β|m|

for all τ1 ∈ Sd1 ∪Dρ submitted to (52), all τ2 ∈ Da and m ∈ R.
At last, the collection of the upper bound (47) coupled with (51) and (53) spawns the awaited

estimates (45). 2

Proposition 2 Let Q(X), R(X) ∈ C[X] be polynomials submitted to the constraints

(54) deg(R) ≥ deg(Q) , R(im) 6= 0 , µ > deg(Q) + 1

for all m ∈ R. Then, one can select a constant C2 > 0 (depending on Q,R, µ) such that

(55) || 1

R(im)

∫ +∞

−∞
f(m−m1)Q(im1)g(τ1, τ2,m1)dm1||(ν,β,µ,k1,ρ,a,ε)

≤ C2||f(m)||(β,µ)||g(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

whenever f ∈ E(β,µ) and g ∈ F d1(ν,β,µ,k1,ρ,a,ε)
.
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Proof We take g in F d1(ν,β,µ,k1,ρ,a,ε)
. From the very definition of the norms displayed in Definitions

2 and 4, we arrive at

(56) |g(τ1, τ2,m1)| ≤ ||g||(ν,β,µ,k1,ρ,a,ε)
∣∣τ1

ε

∣∣ exp
(
ν
∣∣τ1

ε

∣∣k1)|τ2|(1 + |m1|)−µe−β|m1|

provided that τ1 ∈ Sd1 ∪Dρ, τ2 ∈ Da and m1 ∈ R together with

(57) |f(m)| ≤ ||f(m)||(β,µ)(1 + |m|)−µe−β|m|

for all m ∈ R. These two bounds (56) and (57) allow the next estimates

(58) |B(τ1, τ2,m)| :=
∣∣ 1

R(im)

∫ +∞

−∞
f(m−m1)Q(im1)g(τ1, τ2,m1)dm1

∣∣
≤ ||f(m)||(β,µ)||g(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

∣∣τ1

ε

∣∣ exp
(
ν|τ1

ε
|k1
)
|τ2|(1 + |m|)−µe−β|m|C2.1

where

C2.1 = (1 + |m|)µeβ|m| 1

|R(im)|

∫ +∞

−∞

e−β|m−m1|

(1 + |m−m1|)µ
|Q(im1)|

(1 + |m1|)µ
e−β|m1|dm1.

According to the triangular inequality, we know that |m| ≤ |m−m1|+ |m1| for all real numbers
m,m1 ∈ R and by construction of the polynomials R,Q asked to fulfill (54), two constants
Q,R > 0 can be singled out such that

|Q(im1)| ≤ Q(1 + |m1|)deg(Q) , |R(im)| ≥ R(1 + |m|)deg(R)

whenever m,m1 ∈ R. Thereby, we come to the upper bounds

(59) C2.1 ≤
Q

R
sup
m∈R

(1 + |m|)µ−deg(R)

∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ−deg(Q)
dm1

whose right handside is a finite quantity under the restrictions (54), owing to Lemma 2.2 from
[5] or Lemma 4 of [14].

Eventually, gathering (58) and (59) yields the foretold bounds (55). 2

3.3 Solving the associated convolution equation

In this subsection we uniquely solve the auxiliary convolution equation reached in (42) within the
Banach spaces displayed in Definition 4 by means of the properties of the convolution operators
obtained in Subsection 3.2.

Our strategy consists in recasting (42) into a fixed point equation (stated later on in (91)).
In the process, we need to perform a division by the next parameter depending polynomial

(60) Pm(τ1) := Q(im)−RD(im)kδD1 τk1δD1

provided that τ1 ∈ Sd1 ∪Dρ. Crucial lower bounds are stated in the next lemma.

Lemma 4 For a suitable choice of the inner radius rQ,RD > 0 and aperture ηQ,RD > 0 of
the sector SQ,RD set up in (15), there exist unbounded sectors Sd1 centered at 0 with bisecting
direction d1 ∈ R and a small enough radius ρ > 0 for which the next lower estimates hold. One
can select a constant CP > 0 with

(61) |Pm(τ1)| ≥ CP (rQ,RD)
1

k1δD |RD(im)|(1 + |τ1|)k1δD−1

provided that τ1 ∈ Sd1 ∪Dρ, for all m ∈ R.
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Proof Since the complex roots ql(m), 0 ≤ l ≤ k1δD − 1 of τ1 7→ Pm(τ1) are explicit, we can
factorize the polynomial as follows

(62) Pm(τ1) = −RD(im)kδD1 Πk1δD−1
l=0 (τ1 − ql(m))

where

ql(m) =
( |Q(im)|
|RD(im)|kδD1

) 1
k1δD exp

(√
−1(arg

( Q(im)

RD(im)kδD1

) 1

k1δD
+

2πl

k1δD
)
)

for all 0 ≤ l ≤ k1δD − 1, for any τ1 ∈ C and m ∈ R.
We single out an unbounded sector Sd1 centered at 0, a small disc Dρ and we arrange the

sector SQ,RD given in (15) in a way that the next two features hold:
1) A constant M1 > 0 can be found such that

(63) |τ1 − ql(m)| ≥M1(1 + |τ1|)

for all 0 ≤ l ≤ k1δD − 1, all m ∈ R, whenever τ1 ∈ Sd1 ∪Dρ.
2) There exists a constant M2 > 0 with

(64) |τ1 − ql0(m)| ≥M2|ql0(m)|

for some 0 ≤ l0 ≤ δDk1 − 1, all m ∈ R, all τ1 ∈ Sd1 ∪Dρ.
We now provide some explanations for the two above bounds.

• Concerning the first point 1), we observe that under the hypothesis (15), the roots ql(m)
are bounded from below and satisfy |ql(m)| ≥ 2ρ for all m ∈ R, all 0 ≤ l ≤ δDk1 − 1 for a
suitable choice of the radii rQ,RD , ρ > 0. Furthermore, for all m ∈ R, all 0 ≤ l ≤ δDk1− 1,
these roots remain inside an union Q of unbounded sectors centered at 0 that do not cover
a full neighborhood of 0 in C∗ whenever the aperture ηQ,RD > 0 of SQ,RD is taken small
enough. Therefore, we may choose a sector Sd1 such that

Sd1 ∩Q = ∅.

Such sector satisfies that for all 0 ≤ l ≤ δDk1− 1, the quotients ql(m)/τ1 lay outside some
small disc centered at 1 in C for all τ1 ∈ Sd1 , all m ∈ R. As a consequence, (63) follows.

• We select the sector Sd1 and disc Dρ as above. The second point 2) follows from the fact
that for any fixed 0 ≤ l0 ≤ δDk1 − 1, the quotient τ1/ql0(m) stays apart a small disc
centered at 1 in C for all τ1 ∈ Sd1 ∪Dρ, all m ∈ R.

Departing from the factorization (62) and taking benefit from the two lower bounds (63), (64)
reached overhead, we arrive at

(65) |Pm(τ1)| ≥Mk1δD−1
1 M2|RD(im)|kδD1

( |Q(im)|
|RD(im)kδD1

) 1
k1δD (1 + |τ1|)k1δD−1

≥ CP (rQ,RD)
1

k1δD |RD(im)|(1 + |τ1|)k1δD−1

as long as τ1 ∈ Sd1 ∪Dρ, for all m ∈ R. 2
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We introduce the next linear map

(66) Hε(ω(τ1, τ2,m))

:=
τk11

Pm(τ1)Γ(dDk1 )

∫ τ
k1
1

0
(τk11 − s1)

dD
k1
−1
τ δD2 (−1)δDRD(im)ω(s

1/k1
1 , τ2,m)

ds1

s1

+
∑

p1+p2=δD
1≤p1<δD

δD!

p1!p2!

(
p1∑
q=1

aq,p1

[ τk11

Pm(τ1)Γ(
dD,q
k1

)

∫ τ
k1
1

0
(τk11 − s1)

dD,q
k1
−1
kq1s

q
1ω(s

1/k1
1 , τ2,m)

ds1

s1

+
∑

1≤p≤q−1

Aq,p
τk11

Pm(τ1)Γ(
dD,q+k1(q−p)

k1
)

∫ τ
k1
1

0
(τk11 − s1)

dD,q+k1(q−p)
k1

−1
kp1s

p
1ω(s

1/k1
1 , τ2,m)

ds1

s1

])

× (−1)p2τp22 RD(im) +

δD−1∑
q=1

aq,δD

[ τk11

Pm(τ1)Γ(
dD,q
k1

)

∫ τ
k1
1

0
(τk11 − s1)

dD,q
k1
−1
kq1s

q
1ω(s

1/k1
1 , τ2,m)

ds1

s1

+
∑

1≤p≤q−1

Aq,p
τk11

Pm(τ1)Γ(
dD,q+k1(q−p)

k1
)

∫ τ
k1
1

0
(τk11 − s1)

dD,q+k1(q−p)
k1

−1
kp1s

p
1ω(s

1/k1
1 , τ2,m)

ds1

s1

]
×RD(im)

+
∑

1≤p≤δD−1

AδD,p
τk11

Pm(τ1)Γ(δD − p)

∫ τ
k1
1

0
(τk11 − s1)δD−p−1kp1s

p
1ω(s

1/k1
1 , τ2,m)

ds1

s1
RD(im)

+
D−1∑
l=1

ε∆l−dl

[
τk11

Pm(τ1)Γ( dlk1 )

∫ τ
k1
1

0
(τk11 − s1)

dl
k1
−1
τ δl2 (−1)δl

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)ds1

s1
+

∑
p1+p2=δl
1≤p1≤δl

δl!

p1!p2!

( p1∑
q=1

aq,p1

×
[ τk11

Pm(τ1)Γ(
dl,q
k1

)

∫ τ
k1
1

0
(τk11 − s1)

dl,q
k1
−1

(−1)p2τp22 kq1s
q
1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)ds1

s1
+

∑
1≤p≤q−1

Aq,p
τk11

Pm(τ1)Γ(
dl,q+k1(q−p)

k1
)

×
∫ τ

k1
1

0
(τk11 − s1)

dl,q+k1(q−p)
k1

−1
(−1)p2τp22 kp1s

p
1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)ds1

s1

])]
+
F(τ1, τ2,m, ε)

Pm(τ1)

In the next proposition, we show that Hε represents a 1/2−Lipschitz map on some suitable
ball of the Banach space introduced in Definition 4.

Proposition 3 We select an appropriate inner radius rQ,RD > 0 and aperture ηQ,RD > 0 of the
sector SQ,RD defined in (15), together with an unbounded sector Sd1 and a radius ρ that fulfill
the requirements of Lemma 4. Then, one can choose a radius ε0 > 0 small enough and a fitting
radius $ > 0 in a way that for all ε ∈ Dε0 \ {0}, the map Hε carries the next two features
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• The inclusion

(67) Hε(B̄$) ⊂ B̄$

holds, where B̄$ stands for the closed ball of radius $ > 0 centered at 0 in the space
F d1(ν,β,µ,k1,ρ,a,ε)

.

• The shrinking condition

(68) ||Hε(ω1)−Hε(ω2)||(ν,β,µ,k1,ρ,a,ε) ≤
1

2
||ω1 − ω2||(ν,β,µ,k1,ρ,a,ε)

occurs whenever ω1, ω2 ∈ B̄$.

Proof We focus on the first item heralding the inclusion (67). We fix some real number $ > 0
and we take some ω(τ1, τ2,m) that belongs to F d1(ν,β,µ,k1,ρ,a,ε)

, for ε ∈ Dε0 \ {0}, such that

||ω||(ν,β,µ,k1,ρ,a,ε) ≤ $.

In the sequel, we provide bounds estimates for each piece of the map Hε.
In the next six estimates, we make use of the bounds obtained in Proposition 1 and Lemma

4. Namely, owing to the equality in (12) we get

(69) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD
k1
−1
τ δD2 (−1)δDRD(im)ω(s

1/k1
1 , τ2,m)

ds1

s1
||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

aδD |ε|dD ||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

aδDεdD0 $.

Besides, we check that

(70) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q
k1
−1

(−1)p2τp22 RD(im)sq−1
1 ω(s

1/k1
1 , τ2,m)ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

ap2 |ε|dD,q ||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q
0 $

holds for 1 ≤ q ≤ δD − 1, along with

(71) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q+k1(q−p)
k1

−1
(−1)p2τp22

×RD(im)sp−1
1 ω(s

1/k1
1 , τ2,m)ds1||(ν,β,µ,k1,ρ,a,ε) ≤

C1

CP (rQ,RD)
1

k1δD

ap2 |ε|dD,q+k1(q−p)

× ||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε) ≤
C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q+k1(q−p)
0 $
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for all 1 ≤ p ≤ q − 1 and 1 ≤ q ≤ δD − 1.
Furthermore, we observe that

(72) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q
k1
−1
sq−1

1 RD(im)ω(s
1/k1
1 , τ2,m)ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

|ε|dD,q ||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε) ≤
C1

CP (rQ,RD)
1

k1δD

ε
dD,q
0 $

provided that 1 ≤ q ≤ δD − 1, together with

(73) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q+k1(q−p)
k1

−1
sp−1

1 RD(im)ω(s
1/k1
1 , τ2,m)ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

|ε|dD,q+k1(q−p)||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε) ≤
C1

CP (rQ,RD)
1

k1δD

ε
dD,q+k1(q−p)
0 $

whenever 1 ≤ p ≤ q − 1, 1 ≤ q ≤ δD − 1 and

(74) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)δD−p−1RD(im)sp−1

1 ω(s
1/k1
1 , τ2,m)ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

|ε|k1(δD−p)||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε) ≤
C1

CP (rQ,RD)
1

k1δD

ε
k1(δD−p)
0 $

as long as 1 ≤ p ≤ δD − 1.
In the upcoming next three upper bounds, we apply both Propositions 1, 2 and Lemma 4.

Indeed, on the basis of the inequality in (12) and the first inequality in (13) combined with (14),
(16) and (17), we get

(75) ||ε∆l−dl τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dl
k1
−1
τ δl2 (−1)δls−1

1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

= ||ε∆l−dlRD(im)

Pm(τ1)
× τk11

∫ τ
k1
1

0
(τk11 − s1)

dl
k1
−1
τ δl2 (−1)δls−1

1

×
( 1

(2π)1/2RD(im)

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

|ε|∆l−dl |ε|dlaδl

× || 1

(2π)1/2RD(im)

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(τ1, τ2,m1)dm1||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

|ε|∆laδl ||Al(m, ε)||(β,µ)||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l
0 aδlAl,ε0$.
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Moreover, assumed from the second and third inequalities of (13) together with (14), (16) and
(17), we reach

(76) ||ε∆l−dl τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dl,q
k1
−1

(−1)p2τp22 sq−1
1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

= ||ε∆l−dlRD(im)

Pm(τ1)
τk11

∫ τ
k1
1

0
(τk11 − s1)

dl,q
k1
−1

(−1)p2τp22 sq−1
1

×
( 1

(2π)1/2RD(im)

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

|ε|∆l−dl |ε|dl,qap2

× || 1

(2π)1/2RD(im)

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(τ1, τ2,m1)dm1||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

|ε|∆l−qk1ap2 ||Al(m, ε)||(β,µ)||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−qk1
0 ap2Al,ε0$

provided that 1 ≤ q ≤ δl along with

(77) ||ε∆l−dl τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dl,q+k1(q−p)
k1

−1
(−1)p2τp22 sp−1

1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

= ||ε∆l−dlRD(im)

Pm(τ1)
τk11

∫ τ
k1
1

0
(τk11 − s1)

dl,q+k1(q−p)
k1

−1
(−1)p2τp22 sp−1

1

×
( 1

(2π)1/2RD(im)

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(s

1/k1
1 , τ2,m1)dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

|ε|∆l−dl |ε|dl,q+k1(q−p)ap2

× || 1

(2π)1/2RD(im)

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)ω(τ1, τ2,m1)dm1||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

|ε|∆l−pk1ap2 ||Al(m, ε)||(β,µ)||ω(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−pk1
0 ap2Al,ε0$

whenever 1 ≤ p ≤ q − 1 and 1 ≤ q ≤ δl.
At last, we need to control the norm of the last term of the map Hε. Indeed, according to
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the upper and lower bounds (18), (61), we achieve

(78) ||F(τ1, τ2,m, ε)

Pm(τ1)
||(ν,β,µ,k1,ρ,a,ε) = sup

τ1∈Sd1∪Dρ,τ2∈Da
m∈R

∣∣∣ 1

Pm(τ1)

∑
j1∈J1,j2∈J2

Fj1,j2(m, ε)τ j11 τ
j2
2

∣∣∣
× (1 + |m|)µeβ|m|| ε

τ1
| exp

(
− ν|τ1

ε
|k1
) 1

|τ2|
≤ 1

CP (rQ,RD)
1

k1δD

1

minm∈R |RD(im)|

×
∑

j1∈J1,j2∈J2

||Fj1,j2(m, ε)||(β,µ) sup
τ1∈Sd1∪Dρ

|ε|j1 |τ1

ε
|j1−1 exp

(
− ν|τ1

ε
|k1
)
aj2−1

≤ 1

CP (rQ,RD)
1

k1δD

1

minm∈R |RD(im)|
∑

j1∈J1,j2∈J2

Fj1,j2,ε0ε
j1
0 sup
x≥0

xj1−1 exp(−νxk1)aj2−1.

Now, we select ε0 > 0 close enough to 0 and take suitably $ > 0 in a way that the next inequality

(79)
C1

CP (rQ,RD)
1

k1δD

1

Γ(dDk1 )
aδDεdD0 $ +

∑
p1+p2=δD
1≤p1<δD

δD!

p1!p2!

(
p1∑
q=1

|aq,p1 |

×
[ 1

Γ(
dD,q
k1

)

C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q
0 kq1$

+
∑

1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)
kp1

C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q+k1(q−p)
0 $

])

+

δD−1∑
q=1

|aq,δD |
[ 1

Γ(
dD,q
k1

)
kq1

C1

CP (rQ,RD)
1

k1δD

ε
dD,q
0 $

+
∑

1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)
kp1

C1

CP (rQ,RD)
1

k1δD

ε
dD,q+k1(q−p)
0 $

]
+

∑
1≤p≤δD−1

|AδD,p|
1

Γ(δD − p)
kp1

C1

CP (rQ,RD)
1

k1δD

ε
k1(δD−p)
0 $

+
D−1∑
l=1

[
1

Γ( dlk1 )

C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l
0 aδlAl,ε0$

+
∑

p1+p2=δl
1≤p1≤δl

δl!

p1!p2!

( p1∑
q=1

|aq,p1 |
[ kq1

Γ(
dl,q
k1

)

C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−qk1
0 ap2Al,ε0$

+
∑

1≤p≤q−1

|Aq,p|
kp1

Γ(
dl,q+k1(q−p)

k1
)

C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−pk1
0 ap2Al,ε0$

])]

+
1

CP (rQ,RD)
1

k1δD

1

minm∈R |RD(im)|
∑

j1∈J1,j2∈J2

Fj1,j2,ε0ε
j1
0 sup
x≥0

xj1−1 exp(−νxk1)aj2−1 ≤ $

holds.
Eventually, the collection of the ten above bounds (69), (70), (71), (72), (73), (74), (75),

(76), (77), (78) under the restriction (79) prompt the due inclusion (67).
We turn to the second item addressing the 1/2−Lipschitz feature (68). Let ω1, ω2 be elements

of the closed ball B̄$ in F d1(ν,β,µ,k1,ρ,a,ε)
where the radius $ has been fixed in the first item.
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We display norm estimates for each block of the difference Hε(ω1) − Hε(ω2). Drew on the
above nine upper bounds (69), (70), (71), (72), (73), (74), (75), (76), (77), we deduce the next
list of inequalities

(80) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD
k1
−1
τ δD2 (−1)δDRD(im)

×
(
ω1(s

1/k1
1 , τ2,m)− ω2(s

1/k1
1 , τ2,m)

)ds1

s1
||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

aδDεdD0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

and

(81) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q
k1
−1

(−1)p2τp22 RD(im)sq−1
1

×
(
ω1(s

1/k1
1 , τ2,m)− ω2(s

1/k1
1 , τ2,m)

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q
0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

for 1 ≤ q ≤ δD − 1 along with

(82) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q+k1(q−p)
k1

−1
(−1)p2τp22

×RD(im)sp−1
1

(
ω1(s

1/k1
1 , τ2,m)− ω2(s

1/k1
1 , τ2,m)

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q+k1(q−p)
0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

provided that 1 ≤ p ≤ q − 1 and 1 ≤ q ≤ δD − 1 and

(83) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q
k1
−1
sq−1

1 RD(im)

×
(
ω1(s

1/k1
1 , τ2,m)− ω2(s

1/k1
1 , τ2,m)

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

ε
dD,q
0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

for 1 ≤ q ≤ δD − 1 together with

(84) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dD,q+k1(q−p)
k1

−1
sp−1

1 RD(im)

×
(
ω1(s

1/k1
1 , τ2,m)− ω2(s

1/k1
1 , τ2,m)

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

ε
dD,q+k1(q−p)
0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)
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whenever 1 ≤ p ≤ q − 1, 1 ≤ q ≤ δD − 1 and

(85) || τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)δD−p−1RD(im)sp−1

1(
ω1(s

1/k1
1 , τ2,m)− ω2(s

1/k1
1 , τ2,m)

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1

CP (rQ,RD)
1

k1δD

ε
k1(δD−p)
0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

for all 1 ≤ p ≤ δD − 1. Furthermore,

(86) ||ε∆l−dl τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dl
k1
−1
τ δl2 (−1)δls−1

1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)

×
(
ω1(s

1/k1
1 , τ2,m1)− ω2(s

1/k1
1 , τ2,m1)

)
dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l
0 aδlAl,ε0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

holds as well as

(87) ||ε∆l−dl τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dl,q
k1
−1

(−1)p2τp22 sq−1
1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)(

ω1(s
1/k1
1 , τ2,m1)− ω2(s

1/k1
1 , τ2,m1)

)
dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−qk1
0 ap2Al,ε0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

provided that 1 ≤ q ≤ δl and

(88) ||ε∆l−dl τk11

Pm(τ1)

∫ τ
k1
1

0
(τk11 − s1)

dl,q+k1(q−p)
k1

−1
(−1)p2τp22 sp−1

1

×
( 1

(2π)1/2

∫ +∞

−∞
Al(m−m1, ε)Rl(im1)

×
(
ω1(s

1/k1
1 , τ2,m1)− ω2(s

1/k1
1 , τ2,m1)

)
dm1

)
ds1||(ν,β,µ,k1,ρ,a,ε)

≤ C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−pk1
0 ap2Al,ε0 ||ω1(τ1, τ2,m)− ω2(τ1, τ2,m)||(ν,β,µ,k1,ρ,a,ε)

whenever 1 ≤ p ≤ q − 1 and 1 ≤ q ≤ δl.
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We prescribe ε0 > 0 small enough allowing the next inequality

(89)
C1

CP (rQ,RD)
1

k1δD

1

Γ(dDk1 )
aδDεdD0 +

∑
p1+p2=δD
1≤p1<δD

δD!

p1!p2!

(
p1∑
q=1

|aq,p1 |

×
[ 1

Γ(
dD,q
k1

)

C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q
0 kq1

+
∑

1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)
kp1

C1

CP (rQ,RD)
1

k1δD

ap2ε
dD,q+k1(q−p)
0

])

+

δD−1∑
q=1

|aq,δD |
[ 1

Γ(
dD,q
k1

)
kq1

C1

CP (rQ,RD)
1

k1δD

ε
dD,q
0

+
∑

1≤p≤q−1

|Aq,p|
1

Γ(
dD,q+k1(q−p)

k1
)
kp1

C1

CP (rQ,RD)
1

k1δD

ε
dD,q+k1(q−p)
0

]
+

∑
1≤p≤δD−1

|AδD,p|
1

Γ(δD − p)
kp1

C1

CP (rQ,RD)
1

k1δD

ε
k1(δD−p)
0

+
D−1∑
l=1

[
1

Γ( dlk1 )

C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l
0 aδlAl,ε0

+
∑

p1+p2=δl
1≤p1≤δl

δl!

p1!p2!

( p1∑
q=1

|aq,p1 |
[ kq1

Γ(
dl,q
k1

)

C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−qk1
0 ap2Al,ε0

+
∑

1≤p≤q−1

|Aq,p|
kp1

Γ(
dl,q+k1(q−p)

k1
)

C1C2

(2π)1/2CP (rQ,RD)
1

k1δD

ε∆l−pk1
0 ap2Al,ε0

])]
≤ 1/2

to hold.
The combination of the nine above bounds (80), (81), (82), (83), (84), (85), (86), (87), (88)

subjected to (89) triggers the shrinking property (68) of the map Hε.
At last, we choose $ > 0 as in the first item and ε0 > 0 conforming to both (79) and

(89). For these given values, the map Hε enjoys conjointly both properties (67) and (68) for all
ε ∈ Dε0 \ {0}. The proposition follows. 2

The next proposition provides a solution to the associated convolution equation displayed in
(42) within the Banach space given in Definition 4.

Proposition 4 Let us choose an appropriate inner radius rQ,RD > 0 and aperture ηQ,RD > 0
of the sector SQ,RD defined in (15), together with an unbounded sector Sd1 and a radius ρ that
conform the requirements of Lemma 4.

Then, a small radius ε0 > 0 and a constant $ > 0 can be singled out in a manner that for
all ε ∈ Dε0 \ {0}, a unique solution ωd1(τ1, τ2,m, ε) of (42) exists such that

• the map (τ1, τ2,m) 7→ ωd1(τ1, τ2,m, ε) belongs to F d1(ν,β,µ,k1,ρ,a,ε)
under the constraint

(90) sup
ε∈Dε0\{0}

||ωd1(τ1, τ2,m, ε)||(ν,β,µ,k1,ρ,a,ε) ≤ $
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• the partial map ε 7→ ωd1(τ1, τ2,m, ε) represents an analytic map from Dε0 \ {0} into C, for
any given τ1 ∈ Sd1 ∪Dρ, τ2 ∈ Da and m ∈ R.

Proof We select ε0 > 0 and$ > 0 as in Proposition 3. We set the closed ball B̄$ ⊂ F d1(ν,β,µ,k1,ρ,a,ε)

which represents a complete metric space for the distance d(x, y) = ||x − y||(ν,β,µ,k1,ρ,a,ε). The
proposition 3 claims that Hε induces a contractive map from (B̄$, d) into itself. Then, according
to the classical Banach fixed point theorem, Hε possesses a unique fixed point ωd1(τ1, τ2,m, ε),
meaning that

(91) Hε(ωd1(τ1, τ2,m, ε)) = ωd1(τ1, τ2,m, ε)

that belongs to the ball B̄$ for all ε ∈ Dε0 \ {0}. Furthermore, the map ωd1(τ1, τ2,m, ε) relies
holomorphically on ε since Hε does on the domain Dε0 \ {0}.

Moving the term (k1τ
k1
1 )δDRD(im)ωd1(τ1, τ2,m, ε) from the right to the left handside of (42),

we observe by dividing by the function Pm(τ1) defined in (60) that the convolution equation
(42) can be exactly rearranged as the equation (91) above. As a result, the unique fixed point
ωd1(τ1, τ2,m, ε) ofHε obtained in B̄$ precisely solves the equation (42). This yields the statement
of Proposition 4. 2

In the ensuing proposition, we come up with analytic solutions to the auxiliary problem (30).

Proposition 5 For all unbounded sectors Sd1 with bisecting directions d1 ∈ R and radius ρ > 0
that obey the requirements of Lemma 4, for all directions d2 ∈ R, we define the partial map

(92) (u1, u2, z) 7→ Ud1,d2(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ld1,u1

∫
Ld2,a

∫ +∞

−∞
ωd1(τ1, τ2,m, ε) exp

(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

for all ε ∈ Dε0 \ {0}, where ωd1(τ1, τ2,m, ε) is the Borel map built up in Proposition 4 that
solves the convolution equation (42), where ε0 > 0 is a small radius chosen in agreement with
Proposition 4 and the direction d1,u1 ∈ R is properly chosen and described below.

The map (92) enjoys the next two features:

• It defines holomorphic function bounded by a constant not relying on ε on the product
U1,d1 ×U2,d2 ×Hβ′, where Uj,dj stand for bounded open sectors centered at 0 with bisecting
directions dj, for j = 1, 2 and for any given 0 < β′ < β,

• it solves the auxiliary problem (30) with prescribed initial data Ud1,d2(0, 0, z, ε) ≡ 0.

Furthermore, the sectors U1,d1 and U2,d2 are submitted to the next technical constraints:

• There exists a positive real number ∆1 > 0 such that for all u1 ∈ U1,d1, one can select a
direction d1,u1 ∈ R (relying on u1) such that

(93) exp(
√
−1d1,u1) ∈ Sd1 , cos(k1(d1,u1 − arg(u1)) > ∆1.

• The radius rU1,d1
> 0 of U1,d1 suffers the next upper bounds

(94) 0 < rU1,d1
< ∆

1/k1
1

|ε|
(ν + ∆̃1)1/k1

for some positive real number ∆̃1 > 0 and where ∆1 > 0 is defined in the above item.
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• There exists some positive real number ∆2 > 0 such that

(95) cos(d2 − arg(u2)) > ∆2

for all u2 ∈ U2,d2.

Proof We focus on the first item of the proposition. We consider the map ωd1(τ1, τ2,m, ε)
built up in Proposition 4 and we select two bounded sectors U1,d1 and U2,d2 fulfilling the above
prerequisite (93), (94) and (95). We set uj ∈ Uj,dj , for j = 1, 2 and take

τ1 = r1 exp(
√
−1d1,u1) ∈ Ld1,u1 , τ2 = r2 exp(

√
−1d2) ∈ Ld2,a

for given real numbers r1 ≥ 0, r2 ∈ [0, a]. Then, a constant $ > 0 can be found for which the
next bounds hold

(96) |ωd1(τ1, τ2,m, ε)|| exp
(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
||eizm| 1

|τ1||τ2|

≤ $(1 + |m|)−µe−β|m| 1

|ε|
exp

(
ν(
r1

|ε|
)k1
)

exp
(
− (

r1

|u1|
)k1 cos(k1(d1,u1 − arg(u1))

)
× exp

(
− (

r2

|u2|
cos(d2 − arg(u2))

)
e−mIm(z)

≤ $(1 + |m|)−µe−(β−β′)|m| 1

|ε|
exp

(
ν(
r1

|ε|
)k1
)

exp
(
− (

r1

|u1|
)k1∆1

)
exp

(
− (

r2

|u2|
∆2

)
≤ $(1 + |m|)−µe−(β−β′)|m| 1

|ε|
exp

(
− (

∆̃1

|ε|k1
rk11

)
exp

(
− (

r2

rU2,d2

∆2

)
for all r1 ≥ 0, r2 ∈ [0, a] and all m ∈ R, where rU2,d2

> 0 stands for the radius of U2,d2 . As a
result, we reach the next upper bounds

(97) |Ud1,d2(u1, u2, z, ε)| ≤
k1$

(2π)1/2

∫ +∞

0

1

|ε|
exp

(
− (

∆̃1

|ε|k1
rk11

)
dr1

×
∫ +∞

−∞
e−(β−β′)|m|dm

∫ a

0
exp

(
− r2

rU2,d2

∆2

)
dr2

=
k1$

(2π)1/2

∫ +∞

0
exp(−∆̃1r

k1
2 )dr2

∫ +∞

−∞
e−(β−β′)|m|dm

∫ a

0
exp

(
− r2

rU2,d2

∆2

)
dr2

provided that uj ∈ Uj,dj , j = 1, 2, z ∈ Hβ′ and all ε ∈ Dε0 \ {0}, by the change of variable
r2 = r1/|ε| in the integral. The right handside of (97) turns out to be a constant unconstrained
to ε on Dε0 \ {0}. The first item follows.

Concerning the second item, we depart from the Borel map wd1(τ1, τ2,m, ε) which is shown to
solve the associated convolution equation (42) in Proposition 4. According to the computations
performed in Subsection 3.1, we deduce that for any ε ∈ Dε0 \ {0}, the holomorphic map
Ud1,d2(u1, u2, z, ε) given by the expression (92) solves the equations (41), (36), (35) and finally
(30) on the domain U1,d1 × U2,d2 × Hβ′ , for prescribed initial data Ud1,d2(0, 0, z, ε) ≡ 0. This
yields the second item. 2
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4 A finite set of holomorphic solutions to the main initial value
problem and their Gevrey asymptotic expansions in power
and logarithmic scales

4.1 Construction of a finite set of genuine solutions to a properly chosen
finite set of related initial value problems

We first need to refresh the reader’s memory of the definition of a good covering in C∗ as stated
in the reference text book [8], Section XI-2.

Definition 5 Let ς ≥ 2 be an integer. For all 0 ≤ p ≤ ς − 1, we set Up as open bounded sectors
centered at 0 that share the next three qualities

1. The intersection Up ∩ Up+1 of two consecutive sectors Up and Up+1 is not empty for any
0 ≤ p ≤ ς − 1, where Uς = U0 by convention.

2. The intersection of any three sectors Up ∩ Uq ∩ Ur is empty for distinct integers p, q, r ∈
{0, . . . , ς − 1}.

3. The union of all the sectors Up, 0 ≤ p ≤ ς − 1, covers some punctured neighborhood of 0
in C∗, that is

ς−1⋃
p=0

Up = U \ {0}

for some neighborhood U of 0 in C. Such a set U = {Up}0≤p≤ς−1 of sectors is labelled a
good covering in C∗.

Furthermore, we introduce a notion of fitting finite sets of sectors.

Definition 6 We consider three families of bounded open sectors centered at 0,

U1 = {U1,dp}0≤p≤ς1−1 , U2 = {U2,dq}0≤q≤ς2−1 , E = {Ep}0≤p≤ς1−1

for integers ςj ≥ 2, j = 1, 2 and a bounded sector T centered at 0 that are submitted to the next
list of constraints:

1. For all 0 ≤ p ≤ ς1−1 and any fixed ε ∈ Dε0 \{0}, for some given radius ε0 > 0, the sectors
U1,dp with bisecting direction dp ∈ R is subjected to the next three conditions

• For each direction dp ∈ R, 0 ≤ p ≤ ς1 − 1, one can single out an unbounded sector
Sdp centered at 0 with bisecting direction dp that satisfies the requirements of Lemma
4 (namely for which the lower bounds (63) and (64) hold)

• For each 0 ≤ p ≤ ς1 − 1, there exists a positive real number ∆p > 0 such that for all
u1 ∈ U1,dp, one can choose a direction dp,u1 ∈ R (depending on u1) such that

(98) exp(
√
−1dp,u1) ∈ Sdp , cos(k1(dp,u1 − arg(u1)) > ∆p.

• The radius rU1,dp
> 0 of U1,dp is submitted to the next upper bounds

(99) 0 < rU1,dp
< ∆1/k1

p

|ε|
(ν + ∆̃p)1/k1

for some positive real number ∆̃p > 0 and where ∆p > 0 is defined in the above item.
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2. The radius rT > 0 of the sector T is subjected to the bounds

(100) rT <
∆

1/k1
p

(ν + ∆̃p)1/k1

where ∆p, ∆̃p > 0 are defined in 1., for all 0 ≤ p ≤ ς1 − 1. Besides, the sectors Ep share a
common radius given by ε0, for 0 ≤ p ≤ ς1 − 1.

3. For all 0 ≤ p ≤ ς1 − 1, the sectors Ep and T satisfy the next feature

(101) εt ∈ U1,dp

for all ε ∈ Ep, all t ∈ T .

4. The set E represents a good covering in C∗. Furthermore, the aperture of the sector T is
taken close enough to 0 in a way that the set

(102) I1 = {p ∈ {0, . . . , ς1 − 1}/εt /∈ (−∞, 0], for all ε ∈ Ep, all t ∈ T }

is not empty.

5. For all 0 ≤ q ≤ ς2 − 1, the sectors U2,dq with bisecting direction dq ∈ R obey the next
constraint : there exists some positive real number ∆̌q > 0 such that

(103) cos(dq − arg(u2)) > ∆̌q

for all u2 ∈ U2,dq . Furthermore, we assume the existence of an index q1 ∈ {0, . . . , ς2 − 1}
such that dq1 = π.

6. The set U2 forms a good covering in C∗.

We say that the sets sectors U1, U2, E and T are fitting.

In the coming proposition, we build up a finite family of analytic solutions to auxiliary
problems (30) with well chosen forcing terms.

Proposition 6 Consider sets of sectors U1, U2, E and a sector T that are fitting (in the sense
of Definition 6). For each 0 ≤ q ≤ ς2 − 1, the equation

(104) Q(∂z)Udq(u1, u2, z, ε) = udD1 (u1∂u1 − u2
2∂u2)δDRD(∂z)Udq(u1, u2, z, ε)

+
D−1∑
l=1

ε∆l−dludl1 (u1∂u1 − u2
2∂u2)δlal(z, ε)Rl(∂z)Udq(u1, u2, z, ε) + Fdq ,a(u1, u2, z, ε)

where the forcing term Fdq ,a is given by the expression (29), possesses a finite set of holomorphic
solutions (u1, u2, z) 7→ Udp,dq(u1, u2, z, ε), for 0 ≤ p ≤ ς1 − 1, on the domain U1,dp ×U2,dq ×Hβ′,
for all ε ∈ Dε0 \ {0}, where ε0 > 0 is taken small enough, for any 0 < β′ < β, that fulfills the
constraint Udp,dq(0, 0, z, ε) ≡ 0. These maps own the next two important features.

• For all 0 ≤ p ≤ ς1−1, 0 ≤ q ≤ ς2−1, the maps (u1, u2, z) 7→ Udp,dq(u1, u2, z, ε) are bounded
by a constant, that is independent of ε on Dε0 \ {0}, on the product U1,dp × U2,dq ×Hβ′.
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• For all 0 ≤ p ≤ ς1 − 1, 0 ≤ q ≤ ς2 − 1, the maps Udp,dq are represented as Fourier inverse
and Laplace transforms,

(105) Udp,dq(u1, u2, z, ε)

=
k1

(2π)1/2

∫
Ldp,u1

∫
Lddq,a

∫ +∞

−∞
ωdp(τ1, τ2,m, ε) exp

(
− (

τ1

u1
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

where the Borel maps (τ1, τ2,m) 7→ ωdp(τ1, τ2,m, ε) belong to the Banach space F
dp
(ν,β,µ,k1,ρ,a,ε)

with bounds

(106) sup
ε∈Dε0\{0}

||ωdp(τ1, τ2,m, ε)||(ν,β,µ,k1,ρ,a,ε) ≤ $p

for some well chosen constants $p > 0 and radius ρ > 0, for all ε ∈ Dε0 \ {0}.

Proof This proposition is a straight consequence of Proposition 5 and the definition of the
fitting sectors chosen overhead in the proposition. 2

In the next proposition we study a finite set of maps related to the analytic solutions (105)
to the problems (104) stated in Proposition 6. In particular we are interested in the control
of their consecutive differences which turns out to be a crucial information for reaching their
asymptotic features (see Subsection 4.2).

Proposition 7 We prescribe a sets of sectors U1, U2, E and a sector T that are fitting (in the
sense of Definition 6). For each 0 ≤ p ≤ ς1 − 1, 0 ≤ q ≤ ς2 − 1, we introduce the map

(107) Udp,dq(t, u2, z, ε) := Udp,dq(εt, u2, z, ε)

where Udp,dq is built up in Proposition 6. The next properties hold.

• For all 0 ≤ p ≤ ς1− 1, 0 ≤ q ≤ ς2− 1, the maps Udp,dq(t, u2, z, ε) are bounded holomorphic
on the product T × U2,dq ×Hβ′ × Ep.

• Let q = q0 ∈ {0, . . . , ς2 − 1} be a given integer. For all 0 ≤ p ≤ ς1 − 1, one can find two
constants Mp,1,Kp,1 > 0 such that

(108) |Udp+1,dq0
(t, u2, z, ε)− Udp,dq0 (t, u2, z, ε)| ≤Mp,1 exp

(
− Kp,1

|ε|k1
)

for all t ∈ T , all ε ∈ Ep+1 ∩ Ep, all u2 ∈ U2,dq0
, all z ∈ Hβ′, where by convention dς1 = d0.

• Let p = p0 ∈ {0, . . . , ς1 − 1} be a prescribed integer. For any 0 ≤ q ≤ ς2 − 1, two constants
Mq,2,Kq,2 > 0 can be singled out for which

(109) |Udp0 ,dq+1(t, u2, z, ε)− Udp0 ,dq(t, u2, z, ε)| ≤Mq,2 exp
(
− Kq,2

|u2|
)

holds, provided that t ∈ T , ε ∈ Ep0, all u2 ∈ U2,dq+1 ∩ U2,dq , all z ∈ Hβ′, where the
convention dς2 = d0 is taken.
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Proof The first item follows directly from the properties of the maps Udp,dq stated in Proposition
6 and from the features of the sectors Ep and T listed in the points 2. and 3. of Definition 6.

The second item needs more effort and uses a path deformation argument. Let us fix q =
q0 ∈ {0, . . . , ς2 − 1} and take p ∈ {0, . . . , ς1 − 1}. For any given τ2 ∈ Da, m ∈ R, ε ∈ Dε0 \ {0},
the partial maps τ1 7→ ωdj (τ1, τ2,m, ε), j = p, p+ 1, are analytic continuation on the sector Sdj
of a common analytic map denoted τ1 7→ ω(τ1, τ2,m, ε) on the disc Dρ.

For any fixed ε ∈ Ep+1 ∩ Ep and t ∈ T , we deform the oriented path Ldp+1,εt −Ldp,εt into the
union of three oriented pieces

• Two halflines

Ldp+1,εt;ρ/2 = [ρ/2,+∞) exp(
√
−1dp+1,εt) , −Ldp,εt;ρ/2 = −[ρ/2,+∞) exp(

√
−1dp,εt).

• An arc of circle centered at 0 with radius ρ/2 that rely the above two halflines

Cp,p+1,εt;ρ/2 = {ρ
2
e
√
−1θ/θ ∈ (dp,εt, dp+1,εt)}.

By means of the classical Cauchy’s theorem, we recast the next difference as a sum of three
terms

(110) Udp+1,dq0
(t, u2, z, ε)− Udp,dq0 (t, u2, z, ε)

=
k1

(2π)1/2

∫
Ldp+1,εt,ρ/2

∫
Ldq0 ,a

∫ +∞

−∞
ωdp+1(τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

− k1

(2π)1/2

∫
Ldp,εt,ρ/2

∫
Ldq0 ,a

∫ +∞

−∞
ωdp(τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

+
k1

(2π)1/2

∫
Cp,p+1,εt;ρ/2

∫
Ldq0 ,a

∫ +∞

−∞
ω(τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

Upper bounds are provided for the first building block of (110),

I1 =
∣∣∣ k1

(2π)1/2

∫
Ldp+1,εt,ρ/2

∫
Ldq0 ,a

∫ +∞

−∞
ωdp+1(τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm
∣∣∣.

Based on the bounds (96) and (106) together with the requirements described in Definition 6,
we arrive at

(111) I1 ≤
$p+1k1

(2π)1/2

(∫ a

0
exp

(
− (

r2

|u2|
)∆̌q0

)
dr2

)(∫ +∞

−∞
e−(β−β′)|m|dm

)
×
(∫ +∞

ρ/2

1

|ε|
exp

(
− ∆̃p+1

|ε|k1
rk11

)
dr1

)
≤ $p+1k1

(2π)1/2

[
− |u2|

∆̌q0

exp
(
− ∆̌q0

|u2|
r2

)]a
0
× 2

∫ +∞

0
e−(β−β′)mdm

×
∫ +∞

ρ/2

1

|ε|
{ |ε|k1

∆̃p+1

1

k1r
k1−1
1

}(∆̃p+1

|ε|k1
k1r

k1−1
1 exp

(
− ∆̃p+1

|ε|k1
rk11

))
dr1

≤ $p+1k1

(2π)1/2

|u2|
∆̌q0

(
1− exp

(
− ∆̌q0

|u2|
a
)) 2

β − β′
|ε|k1−1

∆̃p+1

1

k1(ρ/2)k1−1

[
− exp

(
− ∆̃p+1

|ε|k1
rk11

)]+∞

ρ/2

≤ $p+1k1

(2π)1/2

|u2|
∆̌q0

2

β − β′
|ε|k1−1

∆̃p+1

1

k1(ρ/2)k1−1
exp

(
− ∆̃p+1

|ε|k1
(ρ/2)k1

)
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provided that ε ∈ Ep+1 ∩ Ep, t ∈ T , u2 ∈ U2,dq0
and z ∈ Hβ′ .

In a similar manner, we can exhibit explicit upper bounds for the second constituent of (110),

I2 =
∣∣∣ k1

(2π)1/2

∫
Ldp,εt,ρ/2

∫
Ldq0 ,a

∫ +∞

−∞
ωdp(τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm
∣∣∣

in the form

(112) I2 ≤
$pk1

(2π)1/2

|u2|
∆̌q0

2

β − β′
|ε|k1−1

∆̃p

1

k1(ρ/2)k1−1
exp

(
− ∆̃p

|ε|k1
(ρ/2)k1

)
for all ε ∈ Ep+1 ∩ Ep, t ∈ T , u2 ∈ U2,dq0

and z ∈ Hβ′ .
At last, we control the integral along the arc of circle appearing in (110)

(113) I3 =∣∣∣ k1

(2π)1/2

∫
Cp,p+1,εt;ρ/2

∫
Ldq0 ,a

∫ +∞

−∞
ω(τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm
∣∣∣.

As a consequence of the bounds (106), we get that

(114) |ω(τ1, τ2,m, ε)| ≤ sup($p, $p+1)(1 + |m|)−µe−β|m| ρ/2
|ε|
|τ2| exp

(
ν

(ρ/2)k1

|ε|k1
)

for all τ1 ∈ Cp,p+1,εt;ρ/2, τ2 ∈ Ldq0 ,a
, m ∈ R and ε ∈ Ep+1 ∩ Ep. Furthermore, in view of the

restrictions displayed in Definition 6, it turns out that

(115) cos
(
k1(θ − arg(εt))

)
> ∆p,p+1 := min(∆p,∆p+1)

for all t ∈ T , ε ∈ Ep ∩ Ep+1, provided that the angle θ belongs to (dp,εt, dp+1,εt) or (dp+1,εt, dp,εt).
Hence, by virtue of (114) and (115), we come up with some constant ∆̃p,p+1 > 0 with

(116) I3 ≤
k1

(2π)1/2
sup($p, $p+1)

(∫ a

0
exp

(
− (

r2

|u2|
)∆̌q0

)
dr2

)(∫ +∞

−∞
e−(β−β′)|m|dm

)
×
∣∣∣ ∫ dp+1,εt

dp,εt

1

|ε|
exp

(
ν

(ρ/2)k1

|ε|k1
)

exp
(
− (ρ/2)k1

|εt|k1
∆p,p+1

)ρ
2
dθ
∣∣∣

≤ k1

(2π)1/2
sup($p, $p+1)

|u2|
∆̌q0

2

β − β′
|dp+1,εt − dp,εt||

1

ε
| exp

(
− ∆̃p,p+1

|ε|k1
(ρ/2)k1

)ρ
2

for all ε ∈ Ep+1 ∩ Ep, t ∈ T , u2 ∈ U2,dq0
and z ∈ Hβ′ . Besides, based on (116) and bearing in

mind the classical bounds
sup
x≥0

xm1e−m2x = (
m1

m2
)m1e−m1

for any real numbers m1 ≥ 0, m2 > 0, the next bounds

(117) I3 ≤
k1

(2π)1/2
sup($p, $p+1)

|u2|
∆̌q0

2

β − β′
|dp+1,εt − dp,εt|

ρ

2
|1
ε
| exp

(
− ∆̃p,p+1

2|ε|k1
(ρ/2)k1

)
× exp

(
− ∆̃p,p+1

2|ε|k1
(ρ/2)k1

)
≤ k1

(2π)1/2
sup($p, $p+1)

|u2|
∆̌q0

2

β − β′
|dp+1,εt − dp,εt|

ρ

2
Ck1,ρ,∆̃p,p+1

exp
(
− ∆̃p,p+1

2|ε|k1
(ρ/2)k1

)
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where

Ck1,ρ,∆̃p,p+1
= sup

x≥0
x1/k1 exp

(
− ∆̃p,p+1

2
(ρ/2)k1x

)
=
( 1/k1

∆̃p,p+1(ρ/2)k1/2

)1/k1e−1/k1

provided that ε ∈ Ep+1 ∩ Ep, t ∈ T , u2 ∈ U2,dq0
and z ∈ Hβ′ . In summary, the splitting (110)

along with the bounds (111), (112), (117) breed the awaited estimates (108).
The third item leads to comparable bounds as the ones reached in the second item and

leans again on a path deformation argument. Indeed, we set p0 ∈ {0, . . . , ς1 − 1} and take
q ∈ {0, . . . , ς2 − 1}. For any prescribed τ1 ∈ Sdp0 , m ∈ R and ε ∈ Ep0 , the partial map
τ2 7→ ωdp0 (τ1, τ2,m, ε) is analytic on the disc Da. As a result, we may bend the oriented path
Ldq+1,a − Ldq ,a into the union of three oriented basic geometrical loci

• two segments

Ldq+1,a,a/2 = [a/2, a] exp(
√
−1dq+1) , −Ldq ,a,a/2 = −[a/2, a] exp(

√
−1dq).

• An arc of circle centered at 0 with radius a/2,

Cq,q+1,a/2 = {a
2
e
√
−1θ/θ ∈ [dq, dq+1]}

joining the above two segments.

By dint of the classical Cauchy’s theorem, we can reorganize the following difference as a sum
of three contributions

(118) Udp0 ,dq+1(t, u2, z, ε)− Udp0 ,dq(t, u2, z, ε)

=
k1

(2π)1/2

∫
Ldp0,εt

∫
Ldq+1,a,a/2

∫ +∞

−∞
ωdp0 (τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

− k1

(2π)1/2

∫
Ldp0,εt

∫
Ldq,a,a/2

∫ +∞

−∞
ωdp0 (τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

+
k1

(2π)1/2

∫
Ldp0,εt

∫
Cq,q+1,a/2

∫ +∞

−∞
ωdp0 (τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm

We plan to upper bound the first part of (118), namely

(119) J1

=
∣∣∣ k1

(2π)1/2

∫
Ldp0,εt

∫
Ldq+1,a,a/2

∫ +∞

−∞
ωdp0 (τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm
∣∣∣

Drew on the bounds (96) and (106) along with the requirements described in Definition 6 and
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by means of the change of variable s1 = r1/|ε| in the integral, we deduce that

(120) J1 ≤
$p0k1

(2π)1/2

(∫ a

a/2
exp

(
− (

r2

|u2|
)∆̌q+1

)
dr2

)(∫ +∞

−∞
e−(β−β′)|m|dm

)
×
(∫ +∞

0

1

|ε|
exp

(
− ∆̃p0

|ε|k1
rk11

)
dr1

)
≤ $p0k1

(2π)1/2

∫ +∞

0
exp(−∆̃p0s

k1
1 )ds1

2

β − β′
|u2|

∆̌q+1

(
exp

(
− ∆̌q+1

|u2|
a

2

)
− exp

(
− ∆̌q+1

|u2|
a
))

≤ $p0k1

(2π)1/2

∫ +∞

0
exp(−∆̃p0s

k1
1 )ds1

2

β − β′
|u2|

∆̌q+1

(
1− exp

(
− ∆̌q+1

|u2|
a

2

))
exp

(
− ∆̌q+1

|u2|
a

2

)
≤ $p0k1

(2π)1/2

∫ +∞

0
exp(−∆̃p0s

k1
1 )ds1

2

β − β′
|u2|

∆̌q+1

exp
(
− ∆̌q+1

|u2|
a

2

)
provided that ε ∈ Ep0 , t ∈ T , u2 ∈ U2,dq+1 ∩ U2,dq and z ∈ Hβ′ .

Much the same as above, the second piece of the decomposition (118),

(121) J2

=
∣∣∣ k1

(2π)1/2

∫
Ldp0,εt

∫
Ldq,a,a/2

∫ +∞

−∞
ωdp0 (τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm
∣∣∣

can be upper controled as

(122) J2 ≤
$p0k1

(2π)1/2

∫ +∞

0
exp(−∆̃p0s

k1
1 )ds1

2

β − β′
|u2|
∆̌q

exp
(
− ∆̌q

|u2|
a

2

)
as long as ε ∈ Ep0 , t ∈ T , u2 ∈ U2,dq+1 ∩ U2,dq and z ∈ Hβ′ .

The closing block of (118),

(123) J3

=
∣∣∣ k1

(2π)1/2

∫
Ldp0,εt

∫
Cq,q+1,a/2

∫ +∞

−∞
ωdp0 (τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (

τ2

u2
)
)
eizm

dτ1

τ1

dτ2

τ2
dm
∣∣∣

can be measured as follows. Owing to the lower bounds (103) set up in Definition 6, we check
that

(124) cos(θ − arg(u2)) > ∆̌q,q+1 := min(∆̌q, ∆̌q+1)

provided that u2 ∈ U2,dq+1 ∩ U2,dq , whenever the angle θ belongs to (dq, dq+1) or (dq+1, dq). On
the basis of the bounds (96), (106) and (124) together with the requirements stemming from
Definition 6 and by means of the change of variable s1 = r1/|ε| in the integral, we reach

(125) J3 ≤
$p0k1

(2π)1/2

(∫ +∞

−∞
e−(β−β′)|m|dm

)(∫ +∞

0

1

|ε|
exp

(
− ∆̃p0

|ε|k1
rk11

)
dr1

)
×
∣∣∣ ∫ dq+1

dq

exp
(
− a/2

|u2|
∆̌q,q+1

)a
2
dθ
∣∣∣

≤ $p0k1

(2π)1/2

∫ +∞

0
exp(−∆̃p0s

k1
1 )ds1

2

β − β′
|dq+1 − dq|

a

2
exp

(
− a/2

|u2|
∆̌q,q+1

)
for all ε ∈ Ep0 , t ∈ T , u2 ∈ U2,dq+1 ∩ U2,dq and z ∈ Hβ′ .

Eventually, the bounds (120), (122) and (125) reached above for the quantities J1, J2 and
J3 applied to the splitting of the difference (118) beget the forecast bounds (109). 2
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4.2 Gevrey asymptotic expansions for the related maps to the analytic solu-
tions of (104).

We first remind the reader a result known as the Ramis-Sibuya theorem in the literature, see
Lemma XI-2-6 in [8]. It represents a prominent tool in the proof of our main result stated in
the next subsection.

Theorem (R.S.) Let (F, ||.||F) be a Banach space over C and we consider a good covering
{Up}0≤p≤ς−1 in C∗ as described in Definition 5. For all 0 ≤ p ≤ ς − 1, we set Gp : Up → F as
holomorphic functions that are subjected to the next two constraints

1. The maps Gp are bounded on Up for all 0 ≤ p ≤ ς − 1.

2. The difference Θp(u) = Gp+1(u) − Gp(u) defines a holomorphic map on the intersection
Zp = Up+1 ∩ Up which is exponentially flat of order k, for some integer k ≥ 1, meaning
that one can select two constants Cp, Ap > 0 for which

||Θp(u)||F ≤ Cp exp(− Ap
|u|k

)

holds provided that u ∈ Zp, for all 0 ≤ p ≤ ς − 1. By convention, we set Gς = G0 and
Uς = U0.

Then, one can single out a formal power series Ĝ(u) =
∑

n≥0Gnu
n with coefficients Gn

belonging to F, which is the common Gevrey asymptotic expansion of order 1/k relatively to u
on Up for all the maps Gp, for 0 ≤ p ≤ ς − 1. It means that two constants Kp,Mp > 0 can be
pinpointed with the error bounds

(126) ||Gp(u)−
N∑
n=0

Gnu
n||F ≤ KpM

N+1
p Γ(1 +

N + 1

k
)|u|N+1

for all integers N ≥ 0, all u ∈ Up, all 0 ≤ p ≤ ς − 1.

In the next proposition, we come up with asymptotic expansions of Gevrey type for the maps
Udp,dq(t, u2, z, ε), built up in Proposition 7, relatively to each variable ε and u2.

Proposition 8 1) Let q = q0 ∈ {0, . . . , ς2 − 1} be a given integer. We denote F2,q0,β′,T the
Banach space of bounded holomorphic functions on the product T × U2,dq0

×Hβ′ with values in
C equipped with the sup norm. Then, there exists a formal power series

(127) Ĝ1,q0(ε) =
∑
n≥0

G1
n,q0(t, u2, z)

εn

n!

with coefficients G1
n,q0, n ≥ 0, belonging to F2,q0,β′,T that fulfill the next asymptotic features. For

all 0 ≤ p ≤ ς1 − 1, one can select two constants K1
p ,M

1
p > 0 such that

(128)
∣∣∣Udp,dq0 (t, u2, z, ε)−

N∑
n=0

G1
n,q0(t, u2, z)

εn

n!

∣∣∣ ≤ K1
p(M1

p )N+1Γ(1 +
N + 1

k1
)|ε|N+1

for all integers N ≥ 0, all ε ∈ Ep, provided that t ∈ T , u2 ∈ U2,dq0
and z ∈ Hβ′.
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2) We set p = p0 ∈ {0, . . . , ς1 − 1} as a prescribed integer. We denote F1,p0,β′,T the Banach
space of bounded holomorphic functions on the product T × Hβ′ × Ep0 which are C−valued,
endowed with the sup norm. Then, a formal power series

(129) Ĝ2,p0(u2) =
∑
n≥0

G2
n,p0(t, z, ε)

un2
n!

can be singled out, whose coefficients G2
n,p0, n ≥ 0, are located in F1,p0,β′,T that is subjected to

the following error bounds. For all 0 ≤ q ≤ ς2−1, two constants K2
q ,M

2
q > 0 can be chosen with

(130)
∣∣∣Udp0 ,dq(t, u2, z, ε)−

N∑
n=0

G2
n,p0(t, z, ε)

un2
n!

∣∣∣ ≤ K2
q (M2

q )N+1Γ(N + 2)|u2|N+1

for all integers N ≥ 0, all u2 ∈ U2,dq , as long as t ∈ T , z ∈ Hβ′ and ε ∈ Ep0.

Proof We discuss the first point 1). For all 0 ≤ p ≤ ς1 − 1, let us introduce the maps G1,p :
Ep → F2,q0,β′,T defined by

G1,p(ε) := (t, u2, z) 7→ Udp,dq0 (t, u2, z, ε).

According to the first two items of Proposition 7, we observe that for all 0 ≤ p ≤ ς1 − 1,

• The maps G1,p are bounded holomorphic on the sector Ep.

• The differences Θ1,p(ε) = G1,p+1(ε)−G1,p(ε) are submitted to the bounds

||Θ1,p(ε)||F2,q0,β
′,T ≤Mp,1 exp

(
− Kp,1

|ε|k1
)

for the constants Mp,1,Kp,1 > 0 introduced in (108), whenever ε ∈ Ep+1 ∩ Ep. As above,
we take the convention that G1,ς1 = G1,0 and Eς1 = E0.

As a result, the requirements 1. and 2. of Theorem (R.S.) are fulfilled for the set of maps
{G1,p}0≤p≤ς1−1 and we deduce the existence of the formal power series (127) which is the common
Gevrey asymptotic expansion of order 1/k1 relatively to ε on Ep for all the maps G1,p, 0 ≤ p ≤
ς1 − 1. In other words, the bounds (128) hold true.

We turn our attention to the second point 2). For each 0 ≤ q ≤ ς2 − 1, we set up the maps
G2,q : U2,dq → F1,p0,β′,T as

G2,q(u2) := (t, z, ε) 7→ Udp0 ,dq(t, u2, z, ε).

According to the first and last items of Proposition 7, we notice that for each 0 ≤ q ≤ ς2 − 1,

• The map G2,q is bounded holomorphic on the sector U2,dq .

• The difference Θ2,q(u2) = G2,q+1(u2)−G2,q(u2) is exponentially flat of order 1, with

||Θ2,q(u2)||F1,p0,β
′,T ≤Mq,2 exp

(
− Kq,2

|u2|
)

for the constants Mq,2,Kq,2 > 0 reached in (109), provided that u2 ∈ U2,dq+1 ∩U2,dq . Here
again, the convention that dς2 = d0 holds.

Thereupon, the claims 1. and 2. of Theorem (R.S.) are scored for the family of maps
{G2,q}0≤q≤ς2−1 and the existence of the formal power series (129) which represents the common
Gevrey asymptotic expansion of order 1 relatively to u2 on U2,dq for all the maps G2,q, 0 ≤ q ≤
ς2 − 1 is ensured. Videlicet, the errors bounds (130) are warranted. 2
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4.3 Statement of the main result

In this subsection, we build up a family of holomorphic solutions to the main initial value
problem (11) under study in this work which is set up in Subsection 2.2. These solutions possess
asymptotic expansions in two different scales that turn out to be of Gevrey type.

The next statement represents the main achievement of our work.

Theorem 1 We consider sets of bounded sectors U1, U2, E and a sector T that are fitting in
the sense of Definition 6.

Then, under the conditions (12), (13), (14), (15), (16), (17), (18), (20) and (22) listed in
Subsection 2.2, the equation

(131) Q(∂z)u(t, z, ε) = (εt)dD(t∂t)
δDRD(∂z)u(t, z, ε)

+
D−1∑
l=1

ε∆ltdl(t∂t)
δlal(z, ε)Rl(∂z)u(t, z, ε) + f(t, z, ε)

possesses a finite set of holomorphic solutions (t, z, ε) 7→ up(t, z, ε), for all p ∈ I1, where I1 is the
subset of {0, . . . , ς1 − 1} introduced in (102), on the domain T ×Hβ′ × Ep, provided that ε0 > 0
is taken close enough to 0, for any 0 < β′ < β, for vanishing initial data up(0, z, ε) ≡ 0.

For each p ∈ I1, the solution up can be expressed as Fourier inverse and double Laplace
transforms

(132) up(t, z, ε) = Udp,π(t,
1

log(εt)
, z, ε)

=
k1

(2π)1/2

∫
Ldp,εt

∫
Lπ,a

∫ +∞

−∞
ωdp(τ1, τ2,m, ε) exp

(
− (

τ1

εt
)k1 − (log(εt)τ2)

)
eizm

dτ1

τ1

dτ2

τ2
dm

where the Borel maps (τ1, τ2,m) 7→ ωdp(τ1, τ2,m, ε) belong to the Banach space F
dp
(ν,β,µ,k1,ρ,a,ε)

under the constraint

(133) sup
ε∈Dε0\{0}

||ωdp(τ1, τ2,m, ε)||(ν,β,µ,k1,ρ,a,ε) ≤ $p

for some well chosen constants $p > 0 and radius ρ > 0, for all ε ∈ Dε0 \ {0}.
The family {up(t, z, ε)}p∈I1 enjoys asymptotic expansions of Gevrey type in two distinguished

scales of functions. Namely,

• Let us introduce the open set

(134) Dε0 = {ε ∈ Dε0 \ {0}/εt /∈ (−∞, 0], for all t ∈ T }.

Then, there exists a formal power series

(135) û1(t, z, ε) =
∑
n≥0

G1
n,q1(t,

1

log(εt)
, z)

εn

n!

whose coefficients (t, z, ε) 7→ G1
n,q1(t, 1

log(εt) , z) are bounded holomorphic maps on T ×Hβ′×
Dε0, which represent the common asymptotic expansion of Gevrey order 1/k1 in the scale
of monomials {εn}n≥0 of the maps up relatively to ε on every sectors Ep, for all p ∈ I1.
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In other words, for each p ∈ I1, one can select two constants K1
p ,M

1
p > 0 for which the

next error bounds

(136)
∣∣∣up(t, z, ε)− N∑

n=0

G1
n,q1(t,

1

log(εt)
, z)

εn

n!

∣∣∣ ≤ K1
p(M1

p )N+1Γ(1 +
N + 1

k1
)|ε|N+1

hold for all integers N ≥ 0, all ε ∈ Ep, provided that t ∈ T and z ∈ Hβ′.

• For each p ∈ I1, there exists a formal series

(137) û2
p(t, z, ε) =

∑
n≥0

G2
n,p(t, z, ε)

(1/ log(εt))n

n!

with bounded holomorphic coefficients (t, z, ε) 7→ G2
n,p(t, z, ε) on T × Hβ′ × Ep, which

stands for the asymptotic expansion of Gevrey order 1 in the scale of logarithmic func-
tions {(1/ log(εt))n}n≥0 of the map up on the domain T ×Ep. It means that two constants
K2
q1 ,M

2
q1 > 0 can be pinpointed with

(138)
∣∣∣up(t, z, ε)− N∑

n=0

G2
n,p(t, z, ε)

(1/ log(εt))n

n!

∣∣∣ ≤ K2
q1(M2

q1)N+1Γ(N + 2)|1/ log(εt)|N+1

for all integers N ≥ 0, all ε ∈ Ep and t ∈ T , whenever z ∈ Hβ′.

Proof According to the point 5. of Definition 6, we select the index 0 ≤ q1 ≤ ς2 − 1 such that
dq1 = π. By definition of the principal value of the logarithm log(z) = ln |z| +

√
−1arg(z) for

arg(z) ∈ (−π, π), we notice that

(139)
1

log(εt)
∈ U2,dq1

= U2,π , lim
t→0

1

log(εt)
= 0

provided that ε ∈ Dε0 (given by (134)), where ε0 > 0 is taken small enough, for all t ∈ T .
For all p ∈ I1, where the set I1 is introduced in (102), we define

(140) up(t, z, ε) := Udp,π(t,
1

log(εt)
, z, ε)

where the map Udp,π is set up in Proposition 7. As a result of the definition of the set I1 and
owing to the first item of Proposition 7, we check that the map up(t, z, ε) represents a bounded
holomorphic function on the product T ×Hβ′ × Ep.

According to Proposition 6, we know that for all ε ∈ Dε0 \ {0}, the map (u1, u2, z) 7→
Udp,π(u1, u2, z, ε) represents a solution of the equation (104) which reduces to the equation (28)
on the domain U1,dp×U2,π×Hβ′ . On the basis of the computations (27) made in Subsection 2.3,
we deduce that up(t, z, ε) stands for a solution to the main equation (11) restated as (131) in The-
orem 1, on the domain T ×Hβ′×Ep, for all p ∈ I1. Moreover, since Udp,π(0, 0, z, ε) ≡ 0, we come
up with the vanishing initial data up(0, z, ε) ≡ 0. Besides, the representation (132) as Fourier
Laplace transforms stems from a similar representation for the auxiliary map Udp,π(u1, u2, z, ε)
in (105).

At last, the two items dealing with the asymptotic expansions properties of the maps up
in the two distinguished scales {εn}n≥0 and {(1/ log(εt))n}n≥0 are direct consequences of the
expansions (128) and (130) reached for the auxiliary maps Udp,dq1 (t, u2, z, ε) in Proposition 8,
for p ∈ I1, where the variable u2 is merely replaced by the logarithmic function 1/ log(εt) with
ε ∈ Ep and t ∈ T . 2
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5 Computational aspects of the formal power series asymptotic
expansions

In this section, we state that the formal power series (127) and (129), built up in Proposition
8, which represent asymptotic expansions of Gevrey type for the maps Udp,dq(t, u2, z, ε) actually
solve some linear partial differential equations. On the way, we observe that their coefficients
G1
n,q and G2

n,p fulfill recursion relations that may be useful for practical purpose.

Proposition 9 Let q = q0 ∈ {0, . . . , ς2 − 1} be a prescribed integer. Then, the formal power
series

Ĝ1,q0(ε) =
∑
n≥0

G1
n,q0(t, u2, z)

εn

n!

with coefficients G1
n,q0, n ≥ 0 in the space F2,q0,β′,T , constructed in Proposition 8 1), match the

next partial differential equation

(141) Q(∂z)Ĝ1,q0(ε) = (εt)dD
∑

p1+p2=δD

δD!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2RD(∂z)Ĝ1,q0(ε)

+

D−1∑
l=1

ε∆ltdl ×
∑

p1+p2=δl

δl!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2al(z, ε)Rl(∂z)Ĝ1,q0(ε) + Fdq0 ,a

(εt, u2, z, ε).

Furthermore, the coefficients G1
n,q0(t, u2, z), for n ≥ 0, are subjected to the recursion relation

(145).

Proof We first display the partial differential equation that the map Udp,dq0 (t, u2, z, ε) introduced
in (107) turns out to fulfill. The usual chain rule allows the next computation

t∂tUdp,dq0 (t, u2, z, ε) = (u1∂u1Udp,dq0 )(εt, u2, z, ε)

to hold for all 0 ≤ p ≤ ς1 − 1, 0 ≤ q0 ≤ ς2 − 1, provided that t ∈ T , u2 ∈ U2,dq0
, z ∈ Hβ′

and ε ∈ Ep. As a consequence, since the partial map (u1, u2, z) 7→ Udp,dq0 (u1, u2, z, ε) solves
the equation (35) (where d1 = dp and d2 = dq0) on the domain U1,dp × U2,dq0

×Hβ′ , whenever
ε ∈ Dε0 \ {0}, we deduce that the maps Udp,dq0 (t, u2, z, ε) satisfy the next equation

(142) Q(∂z)Udp,dq0 (t, u2, z, ε)

= (εt)dD
∑

p1+p2=δD

δD!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2RD(∂z)Udp,dq0 (t, u2, z, ε)

+

D−1∑
l=1

ε∆ltdl ×
∑

p1+p2=δl

δl!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2al(z, ε)Rl(∂z)Udp,dq0 (t, u2, z, ε)

+ Fdq0 ,a
(εt, u2, z, ε).

as long as t ∈ T , u2 ∈ U2,dq0
, z ∈ Hβ′ and ε ∈ Ep.

Besides, we remind the reader the next classical result relating the existence of asymptotic
expansions for holomorphic maps f with the continuity of their n−th order derivatives,

Proposition ([1], Proposition 8, p. 66) Let f : G 7→ F be a holomorphic function from a bounded
open sector G centered at 0 into a complex Banach space F equipped with a norm ||.||F. The
following two statements are equivalent
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• There exists a formal power series f̂(z) =
∑

n≥0 fnz
n/n! with coefficients fn in F subjected

to the next feature. For all closed subsector S of G centered at 0, there exists a sequence
(c(N,S))N≥0 of positive real numbers such that

||f(z)−
N−1∑
n=0

fnz
n/n!||F ≤ c(N,S)|z|N

for all z ∈ S, all integers N ≥ 1.

• All derivatives of order n, f (n)(z) are continuous at the origin and

lim
z→0,z∈G

||f (n)(z)− fn||F = 0

for all integers n ≥ 0.

According to the errors bounds (128), the above proposition gives rise to the next limits

(143) lim
ε→0,

ε∈Ep

sup
t∈T ,u2∈U2,dq0

z∈Hβ′

|∂mε Udp,dq0 (t, u2, z, ε)−G1
m,q0(t, u2, z)| = 0

for all integers m ≥ 0. Now, we go back to (142) and take the derivative of order m ≥ 0 of its
left and right handside. Owing to the Leibniz rule, we get

(144) Q(∂z)∂
m
ε Udp,dq0 (t, u2, z, ε) =

∑
m1+m2=m

m!

m1!m2!
(∂m1
ε εdD)tdD

×
∑

p1+p2=δD

δD!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2RD(∂z)∂

m2
ε Udp,dq0 (t, u2, z, ε)

+

D−1∑
l=1

∑
m1+m2+m3=m

m!

m1!m2!m3!
(∂m1
ε ε∆l)tdl

×
∑

p1+p2=δl

δl!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2∂m2

ε al(z, ε)Rl(∂z)∂
m3
ε Udp,dq0 (t, u2, z, ε)

+ ∂mε Fdq0 ,a
(εt, u2, z, ε)

for all m ≥ 0, all t ∈ T , u2 ∈ U2,dq0
, z ∈ Hβ′ and ε ∈ Ep.

We let ε tend to 0 on the sector Ep in the equality (144). According to the limits (143)
and owing that the maps Udp,dq0 (t, u2, z, ε) and G1

m,q0(t, u2, z) are holomorphic relatively to

(t, u2, z) ∈ T ×U2,dq0
×Hβ′ , we get the next recursion relation for the coefficients G1

m,q0 displayed
as

(145) Q(∂z)G
1
m,q0(t, u2, z) =

∑
m1+m2=m

m!

m1!m2!
(∂m1
ε εdD)(0)tdD

×
∑

p1+p2=δD

δD!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2RD(∂z)G

1
m2,q0(t, u2, z)

+
D−1∑
l=1

∑
m1+m2+m3=m

m!

m1!m2!m3!
(∂m1
ε ε∆l)(0)tdl

×
∑

p1+p2=δl

δl!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2(∂m2

ε al)(z, 0)Rl(∂z)G
1
m3,q0(t, u2, z)

+ ∂mε Fdq0 ,a
(εt, u2, z, ε)|ε=0
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for all m ≥ 0, provided that t ∈ T , u2 ∈ U2,dq0
and z ∈ Hβ′ . It is worth noticing that the

differential relation (145) represents actually a recursion for the following reason. Observe that

(∂m1
ε εdD)(0)

m1!
=

{
0 if m1 6= dD

1 if m1 = dD
,

(∂m1
ε ε∆l)(0)

m1!
=

{
0 if m1 6= ∆l

1 if m1 = ∆l

for all 1 ≤ l ≤ D−1. Therefore, for the summation
∑

m1+m2=m inside (145), the indices m2 ≥ 0
for which non vanishing terms occur satisfy m2 = m −m1 = m − dD < m. Moreover, for the
summation

∑
m1+m2+m3=m, the indices m3 ≥ 0 for which non vanishing terms take place are

subjected to m3 = m−m2 −m1 = m−m2 −∆l < m. As a result, through the relation (145),
each term G1

m,q0 is expressed by means of lower terms G1
m′,q0

with m′ < m for all integers m ≥ 1.

On the other hand, we know that the maps ε 7→ εdD , ε 7→ ε∆l , ε 7→ al(z, ε) together with
ε 7→ Fdq0 ,a

(εt, u2, z, ε) are analytic on the disc Dε0 . Their convergent Taylor expansions at 0 are
expressed as follows on Dε0 ,

(146) εdD =
∑
m≥0

(∂mε ε
dD)(0)

m!
εm , ε∆l =

∑
m≥0

(∂mε ε
∆l)(0)

m!
εm , al(z, ε) =

∑
m≥0

(∂mε al)(z, 0)

m!
εm,

Fdq0 ,a
(εt, u2, z, ε) =

∑
m≥0

∂mε Fdq0 ,a
(εt, u2, z, ε)|ε=0

m!
εm,

from which the next plain computations are deduced:

(147) (εt)dD(t∂t)
p1(−1)p2(u2

2∂u2)p2RD(∂z)Ĝ1,q0(ε)

= tdD
∑
m≥0

( ∑
m1+m2=m

(∂m1
ε εdD)(0)

m1!
(t∂t)

p1(−1)p2(u2
2∂u2)p2RD(∂z)

G1
m2,q0(t, u2, z)

m2!

)
εm

and

(148) ε∆ltdl(t∂t)
p1(−1)p2(u2

2∂u2)p2al(z, ε)Rl(∂z)Ĝ1,q0(ε)

= tdl
∑
m≥0

( ∑
m1+m2+m3=m

(∂m1
ε ε∆l)(0)

m1!
(t∂t)

p1(−1)p2(u2
2∂u2)p2

× (∂m2
ε al)(z, 0)

m2!
Rl(∂z)

G1
m3,q0(t, u2, z)

m3!

)
εm

At last, the recursion (145) together with the formal expansions (147), (148) prompt the forecast
partial differential equation (141). 2

Proposition 10 Let p = p0 ∈ {0, . . . , ς1 − 1} be a given integer. Then, the formal power series

Ĝ2,p0(u2) =
∑
n≥0

G2
n,p0(t, z, ε)

un2
n!

with coefficients G2
n,p0, n ≥ 0, taken in the space F1,p0,β′,T , arising in Proposition 8 2), is

submitted to the next partial differential equation

(149) Q(∂z)Ĝ2,p0(u2) = (εt)dD
∑

p1+p2=δD

δD!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2RD(∂z)Ĝ2,p0(u2)

+

D−1∑
l=1

ε∆ltdl ×
∑

p1+p2=δl

δl!

p1!p2!
(t∂t)

p1(−1)p2(u2
2∂u2)p2al(z, ε)Rl(∂z)Ĝ2,p0(u2) + F̂2,a(u2),
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with forcing term F̂2,a(u2) representing a formal power series displayed in (167). Moreover, the
coefficients G2

n,p0(t, z, ε), for n ≥ 0, fulfill the recursion relation (166).

Proof In the first instance, we state a lemma that will play an essential role in the proof.

Lemma 5 For any given integer p2 ≥ 1, the expansion

(150) (u2
2∂u2)p2 =

p2∑
j=0

aj,p2(u2)∂ju2

holds for monomials aj,p2(u2), 0 ≤ j ≤ p2, with the shape

(151) aj,p2(u2) = βj,p2u
p2+j
2

for suitable integers βj,p2 ≥ 0 with the constraints β0,p2 = 0, βp2,p2 = 1, for all p2 ≥ 1.

Proof The existence of polynomials aj,p2(u2) warranting the equality (150) is obtained by in-
duction. On the way, it can be shown that the set aj,p2(u2), 0 ≤ j ≤ p2 is asked to fulfill the
next recursions

(152) aj,p2+1(u2) = u2
2(∂u2aj,p2(u2)) + u2

2aj−1,p2(u2), a0,p2+1(u2) = u2
2∂u2a0,p2(u2),

ap2+1,p2+1(u2) = u2
2ap2,p2(u2)

for all integers p2 ≥ 1, 1 ≤ j ≤ p2.
Since a0,1(u2) = 0, we deduce that a0,p2(u2) ≡ 0, for all p2 ≥ 1 and observing that a1,1(u2) =

u2
2, we come up with ap2,p2(u2) = u2p2

2 , for all p2 ≥ 1. Furthermore, by plugging the expression
(151) into the relations (152), we get that the integers βj,p2 are queried to satisfy the next
recursion

βj,p2+1 = βj,p2(p2 + j) + βj−1,p2 , β0,p2 = 0, βp2,p2 = 1

for all integers p2 ≥ 1, 1 ≤ j ≤ p2. The result follows. 2

In order to be able to handle higher order derivatives relatively to u2 of the maps Udp0 ,dq , for
some fixed 0 ≤ q ≤ ς2 − 1, we remodel the equation (142) by means of the above lemma in the
next form

(153) Q(∂z)Udp0 ,dq(t, u2, z, ε)

= (εt)dD
∑

p1+p2=δD
p2≥1

δD!

p1!p2!
(t∂t)

p1(−1)p2 ×
p2∑
j=1

aj,p2(u2)∂ju2RD(∂z)Udp0 ,dq(t, u2, z, ε)

+ (εt)dD(t∂t)
δDRD(∂z)Udp0 ,dq(t, u2, z, ε)

+
D−1∑
l=1

ε∆ltdl ×
∑

p1+p2=δl
p2≥1

δl!

p1!p2!
(t∂t)

p1(−1)p2 ×
p2∑
j=1

aj,p2(u2)∂ju2al(z, ε)Rl(∂z)Udp0 ,dq(t, u2, z, ε)

+
D−1∑
l=1

ε∆ltdl(t∂t)
δlal(z, ε)Rl(∂z)Udp0 ,dq(t, u2, z, ε) + Fdq ,a(εt, u2, z, ε)
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as long as t ∈ T , u2 ∈ U2,dq , z ∈ Hβ′ and ε ∈ Ep0 . Besides, by dint of Proposition ([1], Proposition
8, p.66) stated in the proof of Proposition 9 and according to the error bounds (130), we deduce
the next uniform limits

(154) lim
u2→0,

u2∈U2,dq

sup
t∈T ,ε∈Ep0
z∈Hβ′

|∂mu2Udp0 ,dq(t, u2, z, ε)−G2
m,p0(t, z, ε)| = 0

for all integers m ≥ 0.
We take the derivative of order m ≥ 0 relatively to u2 on the left and right handside of (153).

With the help of the Leibniz rule, we arrive at

(155) Q(∂z)∂
m
u2Udp0 ,dq(t, u2, z, ε)

= (εt)dD
∑

p1+p2=δD
p2≥1

δD!

p1!p2!
(t∂t)

p1(−1)p2 ×
p2∑
j=1

∑
m1+m2=m

m!

m1!m2!
∂m1
u2 aj,p2(u2)

× ∂m2+j
u2 RD(∂z)Udp0 ,dq(t, u2, z, ε) + (εt)dD(t∂t)

δDRD(∂z)∂
m
u2Udp0 ,dq(t, u2, z, ε)

+

D−1∑
l=1

ε∆ltdl ×
∑

p1+p2=δl
p2≥1

δl!

p1!p2!
(t∂t)

p1(−1)p2 ×
p2∑
j=1

∑
m1+m2=m

m!

m1!m2!
∂m1
u2 aj,p2(u2)

× al(z, ε)Rl(∂z)∂m2+j
u2 Udp0 ,dq(t, u2, z, ε) +

D−1∑
l=1

ε∆ltdl(t∂t)
δlal(z, ε)Rl(∂z)∂

m
u2Udp0 ,dq(t, u2, z, ε)

+ ∂mu2Fdq ,a(εt, u2, z, ε)

for all m ≥ 0, provided that t ∈ T , u2 ∈ U2,dq , z ∈ Hβ′ and ε ∈ Ep0 .
In order to allow the variable u2 become close to the origin on the sector U2,dq in the above

relation, the next lemma is needed

Lemma 6 There exists a sequence {F2,a,m(t, z, ε)}m≥0 of bounded holomorphic maps on the
product T ×Hβ′ × Ep0 such that

(156) lim
u2→0,

u2∈U2,dq

sup
t∈T ,ε∈Ep0
z∈Hβ′

|∂mu2Fdq ,a(εt, u2, z, ε)− F2,a,m(t, z, ε)|

for all integers m ≥ 0.

Proof From the expansion (19) with coefficients Fj1,j2(m, ε) subjected to (18), we can recast
the double Laplace and inverse Fourier representation (29) of Fdq ,a(εt, u2, z, ε) as a sum

(157) Fdq ,a(εt, u2, z, ε) =
∑
j1∈J1

Fdq ,a,j1(u2, z, ε)Γ(
j1
k1

)(εt)j1

where

Fdq ,a,j1(u2, z, ε) =
∑
j2∈J2

Fj1,j2(z, ε)

∫
Ldq,a

τ j22 exp
(
− τ2

u2

)dτ2

τ2

with

Fj1,j2(z, ε) =
1

(2π)1/2

∫ +∞

−∞
Fj1,j2(m, ε)eizmdm
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for all integers j1 ∈ J1, j2 ∈ J2, where t ∈ T , u2 ∈ U2,dq , z ∈ Hβ′ and ε ∈ Ep0 . Using the
parametrization τ2 = ρ2 exp(

√
−1dq) for 0 ≤ ρ2 ≤ a, we can rewrite

(158)

∫
Ldq,a

τ j2−1
2 exp

(
− τ2

u2

)
dτ2 = (exp(

√
−1dq))

j2

∫ a

0
ρj2−1

2 exp
(
− ρ2

exp(
√
−1dq)

u2

)
dρ2

At this stage, we observe that this last integral can be explicitely computed. Indeed, the next
recursion relation

(159) Im,1/A = −Ae−a/Aam +AmIm−1,1/A , I0,1/A = A(1− e−a/A)

holds for the truncated Laplace integral Im,1/A =
∫ a

0 x
me−x/Adx, for any given positive real

number a > 0, non vanishing complex number A ∈ C∗ and all integers m ≥ 1. We deduce the
existence of polynomials P1

a,j2−1(X) and P2
a,j2−1(X) with real coefficients relying on a, j2 such

that

(160) Fdq ,a,j1(u2, z, ε) =
∑
j2∈J2

Fj1,j2(z, ε)(exp(
√
−1dq))

j2

×
(
P2
a,j2−1(u2 exp(−

√
−1dq)) + P1

a,j2−1(u2 exp(−
√
−1dq)) exp

(
− aexp(

√
−1dq)

u2

))
provided that u2 ∈ U2,dq , z ∈ Hβ′ and ε ∈ Ep0 .

For this reason, for any prescribed integer m ≥ 0, all j2 ∈ J2 and given a > 0, a polynomial
P2
a,j2−1,m(X) ∈ R[X] and a rational function Q1

a,j2−1,m(X) ∈ R(X) with one single pole at X = 0
can be singled out such that

(161) ∂mu2Fdq ,a,j1(u2, z, ε) =
∑
j2∈J2

Fj1,j2(z, ε)(exp(
√
−1dq))

j2

×
(
P2
a,j2−1,m(u2 exp(−

√
−1dq)) + Q1

a,j2−1,m(u2 exp(−
√
−1dq)) exp

(
− aexp(

√
−1dq)

u2

))
whenever u2 ∈ U2,dq , z ∈ Hβ′ and ε ∈ Ep0 .

In the sequel, we set

(162) F2,a,m(t, z, ε) =
∑
j1∈J1

( ∑
j2∈J2

Fj1,j2(z, ε)(exp(
√
−1dq))

j2P2
a,j2−1,m(0)

)
Γ(
j1
k1

)(εt)j1

which represents a bounded holomorphic map on the product T × Hβ′ × Ep0 , for all integers
m ≥ 0. As a result, the next bounds

(163) sup
t∈T ,ε∈Ep0
z∈Hβ′

|∂mu2Fdq ,a(εt, u2, z, ε)− F2,a,m(t, z, ε)| ≤
∑
j1∈J1

( ∑
j2∈J2

sup
z∈Hβ′
ε∈Ep0

|Fj1,j2(z, ε)|

×
[
|P2
a,j2−1,m(u2 exp(−

√
−1dq))− P2

a,j2−1,m(0)|

+ |Q1
a,j2−1,m(u2 exp(−

√
−1dq)) exp

(
− aexp(

√
−1dq)

u2

)
|
])

Γ(
j1
k1

)(ε0rT )j1

hold for all u2 ∈ U2,dq . By continuity at the origin, we notice that

(164) lim
u2→0

u2∈U2,dq

|P2
a,j2−1,m(u2 exp(−

√
−1dq))− P2

a,j2−1,m(0)| = 0
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and according to the growth rate comparison between polynomials and exponential functions,
we check that

(165) lim
u2→0

u2∈U2,dq

|Q1
a,j2−1,m(u2 exp(−

√
−1dq)) exp

(
− aexp(

√
−1dq)

u2

)
| = 0

since (103) holds provided that u2 ∈ U2,dq . The lemma 6 follows at last from the gathering of
(163), (164) and (165). 2

We let u2 tend to 0 on the sector U2,dq in the equality (155). Keeping in mind the uniform
limits (154) along with (156) and the fact that both maps Udp0 ,dq(t, u2, z, ε) and G2

m,p0(t, z, ε)
are holomorphic w.r.t (t, z) ∈ T ×Hβ′ , we arrive at the next recursion relation for the coefficients
G2
m,p0 written in the form

(166) Q(∂z)G
2
m,p0(t, z, ε)− (εt)dD(t∂t)

δDRD(∂z)G
2
m,p0(t, z, ε)

−
D−1∑
l=1

ε∆ltdl(t∂t)
δlal(z, ε)Rl(∂z)G

2
m,p0(t, z, ε) = (εt)dD

∑
p1+p2=δD
p2≥1

δD!

p1!p2!
(t∂t)

p1(−1)p2

×
p2∑
j=1

∑
m1+m2=m

m!

m1!m2!
(∂m1
u2 aj,p2)(0)RD(∂z)G

2
m2+j,p0(t, z, ε)

+
D−1∑
l=1

ε∆ltdl ×
∑

p1+p2=δl
p2≥1

δl!

p1!p2!
(t∂t)

p1(−1)p2 ×
p2∑
j=1

∑
m1+m2=m

m!

m1!m2!
(∂m1
u2 aj,p2)(0)

× al(z, ε)Rl(∂z)G2
m2+j,p0(t, z, ε) + F2,a,m(t, z, ε)

for all m ≥ 0, whenever t ∈ T , z ∈ Hβ′ and ε ∈ Ep0 .
We need to explain the reason for which the relation (166) turns out to be a recursion.

Indeed, according to Lemma 5, we remark that

(∂m1
u2 aj,p2)(0)

m1!
= βj,p2

(∂m1
u2 u

p2+j
2 )(0)

m1!
=

{
0 if m1 6= p2 + j

βj,p2 if m1 = p2 + j

for all integers p2 ≥ 1 and 1 ≤ j ≤ p2. Hence, inside the summation
∑

m1+m2=m blocks
from (166), the indices m2 ≥ 0 for which non vanishing terms appear are required to satisfy
m2 + j = m−m1 + j = m− p2 < m since p2 ≥ 1. Consequently, by dint of the relation (166),
each term G2

m,p0 can be expressed through lower terms G2
m′,p0

, with m′ < m for all integers
m ≥ 1.

Besides, we set up the next formal series

(167) F̂2,a(u2) =
∑
m≥0

F2,a,m(t, z, ε)
um2
m!

with coefficients F2,a,m(t, z, ε) that are built up in Lemma 6 and belong to the Banach space
F1,p0,β′,T (defined in Proposition 8 2)). For all integers p2 ≥ 1 and 1 ≤ j ≤ p2, the monomials
u2 7→ aj,p2(u2) are analytic on C and their Taylor expansions are expressed through

(168) aj,p2(u2) =
∑
m≥0

(∂mu2aj,p2)(0)

m!
um2
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according to which the next trifling computation

(169) aj,p2(u2)∂ju2Ĝ2,p0(u2) =
∑
m≥0

( ∑
m1+m2=m

(∂m1
u2 aj,p2)(0)

m1!

G2
m2+j(t, z, ε)

m2!

)
um2

can be obtained. Hence, on account of the recursion (166) along with the formal expansions
(169), we come up with the next partial differential equation solved by the formal series Ĝ2,p0(u2),

Q(∂z)Ĝ2,p0(u2) = (εt)dD ×
∑

p1+p2=δD
p2≥1

δD!

p1!p2!
(t∂t)

p1(−1)p2 ×
p2∑
j=1

aj,p2(u2)∂ju2RD(∂z)Ĝ2,p0(u2)

+ (εt)dD(t∂t)
δDRD(∂z)Ĝ2,p0(u2)

+
D−1∑
l=1

ε∆ltdl ×
∑

p1+p2=δl
p2≥1

δl!

p1!p2!
(t∂t)

p1(−1)p2 ×
p2∑
j=1

aj,p2(u2)∂ju2al(z, ε)Rl(∂z)Ĝ2,p0(u2)

+

D−1∑
l=1

ε∆ltdl(t∂t)
δlal(z, ε)Rl(∂z)Ĝ2,p0(u2) + F̂2,a(u2)

which is tantamount to the foreseen equation (149) by means of Lemma 5. 2

References

[1] W. Balser, Formal power series and linear systems of meromorphic ordinary differential
equations. Universitext. Springer-Verlag, New York, 2000. xviii+299 pp.

[2] M. S. Baouendi, C. Goulaouic, Cauchy problems with characteristic initial hypersurface.
Comm. Pure Appl. Math. 26 (1973), 455–475.

[3] G. Chen, A. Lastra, S. Malek, Parametric Gevrey asymptotics in two complex time variables
through truncated Laplace transforms. Adv. Difference Equ. 2020, Paper No. 307, 31 pp.

[4] O. Costin, S. Tanveer, Existence and uniqueness for a class of nonlinear higher-order partial
differential equations in the complex plane. Comm. Pure Appl. Math. 53 (2000), no. 9, 1092–
1117.

[5] O. Costin, S. Tanveer, Short time existence and Borel summability in the Navier-Stokes
equation in R3, Comm. Partial Differential Equations 34 (2009), no. 7-9, 785–817.
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