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Abstract: The nonlocal boundary value problem, dfu(t) + Au(t) = f(t) 0 < p < 1,0 < t < T),
u(¢) = au(0) + ¢ (a is a constant and 0 < ¢ < T), in an arbitrary separable Hilbert space H with the
strongly positive selfadjoint operator A, is considered. The operator d; on the left hand side of the
equation expresses either the Caputo derivative or the Riemann-Liouville derivative; naturally, in the
case of the Riemann - Liouville derivatives, the nonlocal boundary condition should be slightly changed.
Existence and uniqueness theorems for solutions of the problems under consideration are proved. The
influence of the constant « on the existence of a solution to problems is investigated. Inequalities of
coercivity type are obtained and it is shown that these inequalities differ depending on the considered
type of fractional derivatives. The inverse problems of determining the right-hand side of the equation
and the function ¢ in the boundary conditions are investigated.

Keywords: Nonlocal problems, the Riemann-Liouville and the Caputo derivatives, subdiffusion equation,
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1. Introduction

Let H be a separable Hilbert space with the scalar product (-, -) and the norm || - || and A : H — H be
an arbitrary unbounded positive selfadjoint operator in H. Suppose that A has a complete in H system of
orthonormal eigenfunctions {7y} and a countable set of nonnegative eigenvalues A. It is convenient to
assume that the eigenvalues do not decrease as their number increases,ie. 0 < Ay < Ay -+ — +o0.

Using the definitions of a strong integral and a strong derivative, fractional analogues of integrals
and derivatives can be determined for vector-valued functions (or simply functions) & : R, — H, while
the well-known formulae and properties are preserved (see, for example, [1]). Recall that the fractional
integration of order ¢ < 0 of the function % (t) defined on [0, c0) has the form

t
oy L h(g)
A h(t) = F(—U)O/(tgf)‘”ldg' £>0, (1)

provided the right-hand side exists. Here I'(¢) is Euler’s gamma function. Using this definition one can
define the Riemann - Liouville fractional derivative of order p, 0 < p < 1, as

d p-1
afh(t):aaf h(t).
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If in this definition we interchange differentiation and fractional integration, then we get the definition of
the regularized derivative, that is, the definition of the fractional derivative in the sense of Caputo:

DYh(t) = af_l%h(t).
Note that if p = 1, then fractional derivatives coincides with the ordinary classical derivative of the
first order: 9;h(t) = Dih(t) = %h(t).
Let p € (0,1) be a fixed number and let C((a,b); H) stand for a set of continuous functions u(t) of
t € (a,b) with values in H.
The subject of this work is the following two nonlocal boundary value problems:

DYu(t) + Au(t) = f(t), 0<t<T; @
u(@ =au(©)+¢, 0<E<T
and
Hu(t) + Au(t) =g(t), 0<t<T;
- _ 3
oY Yu(t) = alim o} 1u(t)+4>, 0<¢<T, ©)
=g =0
where f(t),g(t) € C((0,T]; H), ¢,¢ € H and a is a constant. These problems are also called the forward
problems.

Definition 1. A function u(t) € C([0, T|; H) with the properties D u(t), Au(t) € C((0,T); H) and satisfying
conditions (2) is called the solution of the nonlocal problem (2).

The definition of the solution to the nonlocal problem (3) is introduced in a similar way.

If « =0 (and ¢ = T), then these problems are called the backward problems. The backward problems in
case (2) were studied in detail in [5] - [7]. The work [8] is devoted to the study of the backward problem in
case (3). Therefore, in what follows we only consider the case

a #0. 4)

The backward problems for the diffusion process are of great importance in engineering fields and
are aimed at determining the previous state of a physical field (for example, at t = 0) based on its current
information (see, for example, [6] and for the classical head equation see [9]). However, regardless of the
fact that the Riemann-Liouville or Caputo derivative is taken into the equation, this problem is ill-possed
in the sense of Hadamard. In other words, a small change of #(T) in the norm of space H leads to large
changes in the initial data. As can be seen from the main results of papers [5] - [7] and [8] (note, in these
works 0 < p < 1), the situation changes if we take sufficiently smooth function u(T). In the case p = 1
these problems are also called (see, for example, [9], p. 214) the inverse heat conduction problem with
inverse time (retrospective inverse problem). It should also be noted, that in this case even the smoothness of
the function u(T) does not guarantee the stability of the solution (see, for example, Chapter 8.2 of [9]).

The following nonlocal boundary value problem for the classical diffusion equation

©)

W)+ Au(t) = f(t), 0<t<T;
u(@) =u0)+¢, 0<¢<T
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in an arbitrary Banach space E with the strongly positive operator A, has been extensively studied by
numerous researchers (see, for example, A. O. Ashyralyev et al. [10] - [11]). As shown in these papers,
in contrast to the retrospective inverse problem, the problem (5) is coercively solvable in some spaces
of differentiable functions. It should also be noted that various nonlocal boundary value problems for
parabolic equations reduce to the boundary value problem (5) (see [12], Chapter 1).

In the present paper we prove the existence and uniqueness theorems for solutions of problems (2) and
(3). Next, we will study the dependence of the existence of a solution on the value of the parameter «. We
will also prove, in contrast to the backward problems, the solutions of problems (2) and (3) continuously
depend on the right-hand side of the equation and on function ¢. Inequalities of coercivity type are
obtained and it is shown that these inequalities differ depending on the considered type of fractional
derivatives. The inverse problems of determining the right-hand side of the equation and function ¢ in the
boundary conditions are investigated.

The remainder of this paper is composed of four sections. In the next section, we introduce the Hilbert
space associated with the degree of operator A and recall some properties of the Mittag-Leffler functions.
Section 3 is devoted to the study of the nonlocal problem (2). Here, we first investigate problem (2) for
the homogeneous equation, and then move on to the main problem. In Section 4, we study the inverse
problem of determining the right-hand side of equation (2). In this case, we assume that the unknown
function f does not depend on . The next section is devoted to the study of the inverse problem for the
determination of the boundary function ¢. Since problems (2) and (3) are studied in a similar way, in
Section 6 we present only the main points of the proof of the theorem on the existence and uniqueness of
the solution to problem (3). Inverse problems for equation (3) are considered in the same way as inverse
problems for equation (2). Therefore, we omit these details.

2. Preliminaries

In this section, we introduce the Hilbert space of "smooth" functions related to the degree of operator
A and recall some properties of the Mittag-Leffler functions, which we will use in what follows.

Let T be an arbitrary real number. We introduce the power of operator A, acting in H according to the
rule .

ATh = Z /\]th?)k,
k=1
where hy, is the Fourier coefficients of a function h € H: hy = (h, v;). Obviously, the domain of this operator
has the form -
D(A")={heH:) AFT || < oo}
k=1

For elements of D(A") we introduce the norm

[IBl12 = Y2 AF el = [| A2,
k=1

and together with this norm D (A7) turns into a Hilbert space.

For 0 < p < 1 and an arbitrary complex number y, by E, ,(z) we denote the Mittag-Leffler function

with two parameters:
[ee)

Eppu(z) = Z Ton T ) (6)

If the parameter y = 1, then we have the classical Mittag-Leffler function: E,(z) = E,1(z).
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In what follows we need the asymptotic estimate of the Mittag-Leffler function with a sufficiently
large negative argument. The well known estimate has the form (see, for example, [13], p. 136)

C
E - < — 7
|Epu( t)|_1+t' t>0, ()

where y is an arbitrary complex number. This estimate essentially follows from the following asymptotic
estimate (see, for example, [13], p. 134):
¢! )
Epu(—t) = =— +0(t 7). (8)
o f—p O
For the Mittag-Leffler function with two parameters E, ,(—t) one can get a better estimate than (7).
Indeed, using the asymptotic estimate (see, for example, [13], p. 134)

Epp(—t) = — +0(t73), )

[(=p)
and the fact that E, ,(t) is real analytic, we can obtain the following inequality [8]

C
|Epp(—t)| < 11 t>0. (10)

We will also use a coarser estimate with positive number A and 0 < e < 1:

Ctf 1
T E, (—At0)] <

T3 ()2 < CAELgEe—1 1>, (11)

which is easy to verify. Indeed, let f’A < 1, then t < A~1/P and
=1 — po—eppep—1 < A& 101
If tPA > 1, then A~1 < t° and
A72t7p71 — /\*1+£A7178t7p71 < Asfltspfl.

Proposition 1. Let 0 < p < 1. Then

d

Ep(x) > 0, %

Es(x) > 0, xeR. (12)
Proof. For x > 0 this is obvious; estimates (12) follow from definition (6).
For x < 0 we use the integral representation (see, for example, [2], p. 54)
sin o7t T
) 1+ 2P cos prt + 2P

eft|x|1/f’

E,(x) = #dt > 0,

Then

. e}
sin p71

prc 1+ 210 cos prt + 3¢

e—t\x\l/f’

d

- ot ge > 0.
dx =

Eo(x) = |x|(1—p)/p.
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O

Using Proposition 1, by virtue of estimates (12) and equality E,;(0) = 1, we arrive at (see [2], p. 47).

Proposition 2. The Mittag-Leffler function of negative argument E,(—x) is monotonically decreasing function for
all0 < p < land
0<Ep(—x) <1 (13)

Proposition 3. Let p > 0and A > 0. Then for all positive t > 0 one has [6]

t

_ 1
/77" "Epp(—Anf)d = - (1= Ep(—AtF)).
0

Proof. First, we calculate the derivative of the Mittag-Leffler function

—Ate)r—1 k+1) —AtP)k
75 AtP) AtP—1 = oAty o T
o(— =P n; T(on+1) Z ok+1)+1)
(since T'(x +1) = xT'(x))
> /\tP
—Ae1 = —AMPTLIE, o (—AtP).

Note that here the series is termwise differentiable in R.
Now, by virtue of the equality

we get the required result. [

Proposition 4. Let 0 < p < 1and A > 0. Then

d

7 [t EPPH(—MP)} >0, t>0,

ie. tFE, o 11(—AtF) strictly increases as a function of t > 0.

Proof. Using (6) and term-by-term integration we arrive at (see [2], formula (4.4.4))

t
[ 1P Epp (= A0y = #Eg 1 (A1), (14)
0
or by Proposition 3,
1

It remains to apply Proposition 1. [
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Proposition 5. Let 0 < p < 1and A > 0. Then for all positive t one has
~1{ 0—
oY (tP 1Ep,p(—AtP)) = Eo(—AtP).

Proof. By definition of the fractional integration (1) we have

1
a’t)l(tplEp/p(—?\fp)) 1— /CP Epp Aép)dé—

t

2 (—)) &= 1+pJ
- ta=p Leren ] -

,ﬂfm+90

L

tP]/sp eI (1 — ) ~Pds.
I'(pj +P

On the other hand, using the properties of Euler’s beta function B(a, b), we obtain
1

: 14pf _ T(p+pj)T(1 -
MP+Mﬂ—p%=/#’HWO—S)%s: @F&QJ” p).
0

By virtue of the definition of the Mittag-Leffler function E,(z) this implies the statement of the
proposition. [

3. Well-posedness of the problem (2)

To solve problem (2), we divide it into two auxiliary problems:

{m@m+Awm:fm,o<tgn 15)
w(0)=0
and
Dfw(t) + Aw(t) =0, 0<t<T; 16
w(l)=aw0)+y, 0<&<T,

where i € H is a given vector.

Problem (16) is a special case of problem (2), and the solution to problem (15) is defined similarly to
Definition 1.

If p = ¢ —w(¢) and w(t) and w(t) are the corresponding solutions, then it is easy to verify that
function u(t) = w(t) + w(t) is a solution to problem (2). Therefore, it is sufficient to solve the auxiliary
problems.

For problem (15) we have the following statement.
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Theorem 1. Let f(t) € C(]0, T]; D(A?)) for some ¢ € (0,1). Then problem (15) has a unique solution and this
solution has the representation

g /’7P YEp o (—Akf) fie(t = 1)dip | o (17)

Moreover, there is a constant C, > 0 such that the following coercive type inequality holds:

Do)+ o)1 < Cc max IIfIIL 0<¢<T. (19)

Proof of Theorem 1. It is not hard to verify that the series (17) is a formal solution to problem (15)
(see, for example, [2], p. 173). In order to prove that function (17) is actually a solution to the problem,
it remains to substantiate this formal statement, i.e. to show that the operators A and Df can be applied
term-by-term to series (17).

Let S;(t) be the partial sum of series (17). Then

]' t
AS(t) = kz [/ 1P Ep o (—Akn?) fie(t — ’7)d77] Ak (19)
=1 |;

Due to the Parseval equality we may write

2

145;(8)|? = zAz / 1 Epp (=Nen? ) filt = )y

0

Then, by inequality (11) for 0 < & < 1 one has

15t ||2<cz [/vfp PRI >|dn]2,

or, by virtue of the generalized Minkowski inequality,

t 1 2
I|AS;(1)]]* < c{o/nsﬂ‘l( Z [ALfi(t —1)] ) d’?} <Ce max F(O)]1Z.

k=1

Hence, we obtain Aw(t) € C([0, T|; H) and in particular w(t) € C([0, T]; H).
i
Further, from equation (2) one has D{'S;(t) = —AS;(t) + ¥ fi(t)vy, t > 0. Therefore, from the above
k=1

reasoning, we have Dfw(t) € C((0, T]; H) and

IDfS;(1)]1* < Ce max |[f(1)I[F +|If(1)I?, t>0.
t€[0,T]

Thus, we have completed the rationale that (17) is a solution to problem (15). The last two inequalities
imply the estimate (18).

The uniqueness of the solution can be proved by the standard technique based on completeness of
the set of eigenfunctions {v;} in H (see, for example, [8]).
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Theorem 1 is completely proved.
If f does not depend on ¢, then the statement of Theorem 1 is true for all f € H.
Corollary 1. Let f € H. Then problem (15) has a unique solution and this solution has the representation
@l8) = T2 ft g (o 0
Moreover, there is a positive constant C such that the following coercive type inequality holds:
IDfw O+ [lw()]F < ClIfIF, 0<t<T. (21)

Proof. Since f does not depend on t, then we have the following form for the Fourier coefficients of w (see

(17))

t
wi(t) = fk/ﬂp_lEprp(—Akﬂp)dﬂ- (22)
0
Application of formula (14) to the integral shows that the formal solution to problem (15) has the form
(20).
Let S; (t) be the partial sum of series (20). Then by virtue of estimate (7), we get

2

0
M |” < oy

1+ /\ktp

j
lasi ol < c & \
=1

Now, using this estimate and repeating the arguments similar to the proof of Theorem 1, it is easy to
check that (20) is indeed a solution to problem (15) and estimate (21) holds true.
O

We now turn to problem (16). In accordance with the Fourier method, we will look for a solution to
problem (16) in the form of a series:

w(t) = Y Te(t)oe
k=1

where Ti(t), k > 1, are solutions of the nonlocal problems:

DT () + M Ti(H) =0, 0<t<T;
{tk() Kk Ti (1) < 23)

T(¢) = aTi(0) + ¥,
where 1y, is the Fourier coefficients of function ¢ € H.
Let us denote Ty (0) = bg. Then the unique solution to the differential equation (23) with this initial

condition has the form Ty (t) = bxE,(—Akt?) (see, for example, [2], p.174, [3], [4], p. 17). From the nonlocal
conditions of (23) we obtain the following equation to find the unknown numbers by:

beEp(=AkGP) = abi + Py (24)
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By virtue of property (13) of the Mittag-Leffler function, E,(—A¢f) # a foralla > 1and a < 0 (note,
¢ > 0and A, > 0). Therefore, from (24) we have

- e < > >
by = E,(—Al?) —a |bg] < Calyg], k>1, and a>1 or a<0, (25)
here and below, by Cg we will denote a constant depending on 8, not necessarily the same one.

If « = 0, then E,(—A4¢P) # 0, but the Mittag-Leffler function can asymptotically tend to zero (see (8)).
Therefore, in this case one has:

Yk
by = ———~, |be| < CoArlP |l
= B A) |be| < CoAxG? | x|

This case, as noted above (see (4)), has been studied in detail in [5] - [7].

Let 0 < & < 1. Then according to Proposition 2, there is a unique Ag > 0 such that E,(—Ao¢) = a. If
Ax £ Ag for all k > 1, then the estimate in (25) holds with some constant C, > 0.

Thus, if & ¢ (0,1) ora € (0,1), but Ay # Ag for all k > 1, then the formal solution of problem (16) has
the form

c- Yk
w(t) = T Ep(— A t?) 0. (26)
0= L B g —atr )

Finally, let 0 < & < 1and Ay = Ag fork = ko, ko + 1, ..., ko + po — 1, where pg is the multiplicity of the
eigenvalue Ay, . Then the nonlocal problem (23) has a solution if the boundary function ¥(x) satisfies the
following orthogonality conditions

Pr = (P, ve) =0, k € Ko; Ko = {ko, ko+1,..... ko + po — 1}, (27)

and for these k € Ky arbitrary numbers by are solutions of equation (24). For all other k we have

o ow
by = Ep(—AP) —a |b| < Caltil, k& & Ko. 28)

Thus, the formal solution of problem (16) in this case has the form

_ 2
w(t) = ké{é W o (— Akt v + ke% bkEp(—Axt?) . (29)

Throughout what follows we will assume that whenever 0 < a < 1 and A; = Ay, then orthogonality
condition (27) is satisfied.

Let us show that the operators A and Df can be applied term-by-term to series (26); for series (29)
this question is considered in a completely similar way.

Let S;(t) be the partial sum of series (26). Then

AS;(t) = ’gAkW o (= Axt?)vy. (30)
Due to the Parseval equality we may write
2
|AS;(1)]]* < 21/\2 Tf’% Eo(—Agt?)


https://doi.org/10.20944/preprints202111.0453.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2021 d0i:10.20944/preprints202111.0453.v1

11 of 21

Using estimates (7), (25) and (28) we obtain

2

Pk
14 At

j j
|AS; ()] < Ca ) AR < Cat Y (il (31)
k=1 k=1

Therefore if ¥ € H, then Au(t) € C((0, T]; H). From equation (16) one has D{u(t) = —Au(t), t > 0, and
the above estimates imply

j
[IDYw(t)|[* < Cat ™20 Y |, (32)
k=1

which means DYw(t) € C((0,T}; H).
For §;(t), taking into account estimate (7), we obtain

j
|@@ng;ww. (33)
=1

Hence w(t) € C([0, T]; H), which was required by the definition of the solution to problem (16).
Let us investigate the uniqueness of the solution to problem (16). Suppose we have two solutions:
wy (t), wa(t) and set w(t) = wy(t) — wo(t). Then we have

Diw(t) + Aw(t) =0, 0<t<T; 39)
w(f) =aw(0), 0<¢<T.
Let wy(t) = (w(t), vg). Since the operator A is self-adjoint, one has
Dfw(t) = (Dfw(t), vr) = —(Aw(t), v) = —(w(t), Avy) = —Agawg(t) (35)
and the nonlocal condition implies
wi(8) = awi(0). (36)

Let us denote wy(0) = by. Then the unique solution to the differential equation (35) with this initial
condition has the form wy (t) = bxEp(—Atf) (see, for example, [2], p.174, [3], [4], p. 17). From the nonlocal
conditions of (36) we obtain the following equation to find the unknown numbers by:

brEp(—AkCP) = aby. (37)

Let firsta ¢ (0,1) ora € (0,1), but Ay # Ag forall k > 1. Then E,(—A¢FP) # a for all k. Consequently,
in this case all by are equal to zero (therefore wy(t) = 0), and by virtue of completeness of the set of
eigenfunctions {vy}, we conclude that w(t) = 0. Thus, problem (16) in this case has a unique solution.

Now suppose that « € (0,1) and Ay = Ao, k € Ko. Then E,(—AlP) = a, k € Ko and therefore
equation (37) has the following solution: by = 0if k ¢ Ky and by, is an arbitrary number for k € Ky. Thus,
in this case, there is no uniqueness of the solution to problem (16).

Thus we obtain the following statement:

Theorem 2. Let i € H.
Ifa & (0,1) ora € (0,1), but Ay # Ag forall k > 1, then problem (16) has a unique solution and this solution
has the form (26).
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Ifa € (0,1) and Ay = Ao, k € Ko, then we assume that the orthogonality conditions (27) are satisfied. The
solution of problem (16) has the form (29) with arbitrary coefficients by, k € K.
Moreover, there is a constant C, > 0 such that the following coercive type inequality holds:

IDfw(D]]? + [Jw(t)|F < Cat™[|p]I>, 0<t<T. (38)

Note that the proof of the coercive type inequality (38) follows from the estimates (31) and (32).

Now let us move on to solving the main problem (2). Let ¢ € H and f(t) € C([0, T]; D(A?)) for some
e € (0,1). As noted above, if we put ¢ = ¢ — w({) € H and w(t) and w(t) are the corresponding solutions
of problems (15) and (16), then function u(t) = w(t) + w(t) is a solution to problem (2). Therefore, if
a ¢ (0,1)ora € (0,1), but Ay # Ag forall k > 1, then

v [ e —wi(©)
u(t) = ; {Ep(k}\kgﬁ)“ Eo(—Agt) + wi(t) | oy, (39)

where
t

Wit = [ 17 Epp (=M flt = ).
0

The uniqueness of the function u(t) follows from the uniqueness of the solutions w(t) and w(t).
If & € (0,1) and Ay = Ag, k € Ko, then

_ Pr — wk(‘:) AP . 0
u(t) ngKO |:Ep(—/\k§p) i Ep( Met?) + wi (b)) | v + keZKO bkEp( Art?) vy (40)

The corresponding orthogonality conditions have the form
(¢, vr) = (w(&),vx), k € Ko; Ko = {ko,ko+1,..... ko + po—1}. (41)
In particular, if
(p,vk) =0, (f(t),v) =0, forall t >0, k € Ko; Ko = {ko, ko +1,..... ko + po — 1}, (42)

then the orthogonality conditions (41) are satisfied.
Thus we have proved the main result of this section:

Theorem 3. Let ¢ € Hand f(t) € C([0, T|; D(A®?)) for some e € (0,1).

Ifa & (0,1) ora € (0,1), but Ay # Ag for all k > 1, then problem (2) has a unique solution and this solution
has the form (39).

Ifa € (0,1) and Ay = Ao, k € Ky, then we assume that the orthogonality conditions (42) are satisfied. The
solution of problem (16) has the form (40) with arbitrary coefficients by, k € K.

Moreover, there are constants Cy, > 0 and C, > 0 such that the following coercive type inequality holds:

IDFu()]? + [Ju(t)|[F < Cat™¢]|g]* + C [max IfllE, 0<t<T. (43)
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4. Inverse problem of determining the heat source density

The inverse problems of determining the right-hand side (the heat source density) of various
subdiffusion equations have been considered by a number of authors (see, e.g. [14] - [26] and the
bibliography therein). Let us mention only some of these works. The case of subdiffusion equations, the
elliptic part A of which is an ordinary differential expression, considered in [14] - [20]. Authors of the
papers [21] - [25], considered subdiffusion equations, in which the elliptic part A is either the Laplace
operator or a second-order operator. The paper [26] studied the inverse problem for the subdiffusion
equation (2) with the Cauchy condition. In this article [26] and most other articles, including [21] - [24], the
Caputo derivative is used as a fractional derivative. The recent article [27] - [28] is devoted to the inverse
problem for the subdiffusion equation with Riemann-Liouville derivatives. In [15] and [25], the fractional
derivative in the subdiffusion equation is a two-parameter generalized Hilfer fractional derivative; this
type of fractional derivative contains a parameter belonging to the interval [0, 1], and its extreme values
correspond to the Caputo and Riemann-Liouville derivatives. Various models of applied problems leading
to Hilfer fractional derivatives are investigated in [29]. Note also that the papers [15], [21], [24] contain a
survey of papers dealing with inverse problems of determining the right-hand side of the subdiffusion
equation.

In [30] the authors of this paper considered an inverse problem for the simultaneous determination
of the order of the Riemann-Liouville fractional derivative and the source function in the subdiffusion
equations. Using the classical Fourier method, the authors proved the uniqueness and existence theorem
for this inverse problem.

In [31] - [32], the authors investigated the inverse problem of determining the order of the fractional
derivative in the subdiffusion equation and in the wave equation, respectively.

It should be noted that in all of the listed works, the Cauchy conditions in time are considered. In the
present paper, for the best of our knowledge, inverse problems for subdiffusion equations with nonlocal
conditions in time are considered for the first time.

Let us consider the inverse problem

Diu(t)+ Au(t)=f, 0<t<T; )
u@) =au(0)+¢, 0<g<T,

with the additional condition
u(t) =¥, 0<t<T, T#G, (45)

in which the unknown element f € H, characterizing the action of heat sources, does not depend on t and
Y, ¢ € H are given elements, « is an arbitrary given constant.

Note that if T = ¢, then the nonlocal condition in (44) coincides with the Cauchy condition #(0) = ¢
(see (4)). In this case, this inverse problem was studied in [26].

Definition 2. A pair {u(t), f} of function u(t) € C([0, T]; H) and f € H with the properties D{u(t), Au(t) €
C((0, T); H) and satisfying conditions (44), (45) is called the solution of the inverse problem (44), (45).

In what follows we shall deal only with the case « > 1, since in this case the uniqueness of the solution
is relatively easy to prove.
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Theorem 4. Let ¢, ¥ € D(A) and « > 1.If T> % (T # ), then the inverse problem (44), (45) has a unique
solution {u(t), f} and this solution has the following form

a — Ep(—AyGP)

/= k; |:EP(_)‘kT‘O)§‘OEp,p+1<_/\k§‘o) + TPEppr1 (= M) [ — Ep(—AkGP)] Tet (#6)
+ Ep(_/\kfp) }v
Eo(—ATP) & Ep i1 (—AlP) + TP Eppit (— AP [ — Ep(— )] 7%
i E, (—AstP
u(t) = k; [m [@x — fil” Epp+1(—=MGP)] +fktpEp,p+l()thp):| Vg (47)

Remark 1. It obviously follows from the proof of uniqueness that if T < % , then the uniqueness of the function f
will not hold for all « > 1. For example, if T = %, then the uniqueness of the function f does not hold for & = 1.

Proof of Theorem 4. Existence. If f is known, then the unique solution of problem (44) has the form
(39), and since f does not depend on t, then, thanks to formulas (22) and (14), it is easy to verify that the
formal solution of problem (44) has the form (47).

By virtue of additional condition (45) and completeness of the system {vy } we obtain:

Ep(_/\kTp)

B () —a [x — fil Eppr1(=MGE)] + fit’ Eppr1 (—ATF) = Yie

After simple calculations, we get

f _ & — EP(_Akgp) Y, 4 (48)
T Ep(—AkTP)EPEp i1 (—AkP) + TP Ep o1 (—AkP) [ — Ep(—Ax2P)]
Ep(~eT?) Pk = fr1 + fro-

_|_
Ep ( _/\kTp)ngp,erl (—AxGP) + TP Epp+1 (=MtP) [ — Ep (—AxkgP)]
With these Fourier coefficients we have the above formal series (46) for the unknown function f: f =

Lz (fix + fr2) k-
Let us show the convergence of series (46). If F; the partial sums of series (46), then by virtue of the
Parseval equality we may write

j j j
IEIP = Y [fea+ fioP <2Y ff1+2) fip =2 j+2D). (49)
=1 =1 P

Since ¢ > 0, then E,(—Ax1?)GPEy p11(—AkGFP) > 0. Therefore,

. 2 .
: & — Ep(—AxGr) . Fil?

his Dl emt e een| L 7
k=1 0,041 (= AkTP) [ — Ep(—AxGP)] k=1 | TPEp p1(—ATP)|

Using the asymptotic estimate (see (8))

Eppi1(—t) =t 14+0(t?), (50)
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we get
A2
< E | k|
(14 0((=Ae) 1))
Since T > 0 and E,(—Ax&P) # a, then T7E, 5 11 (—AxTP)[1 — Eo(—AP)] > 0. Therefore,

<C Z?\ [Fel? < ClIYIE

: 2
: Ep(=Ak7”) | Pl

L. < 4 2 _ k .

2 kzzl Eo(=Axt?)EPEp p1(—AkF) 9l k; |GPEy p1 (—i0)|?

By virtue of (50),
/ Atloxl?

=1 (L O((=MgP) ! )
Thus, if ¢, ¥ € D(A), then from estimates of I; ; and (49) we obtain f € H.
After finding the unknown function f € H, the fulfillment of the conditions of Definition 2 for
function u(t), defined by the series (47) is proved in exactly the same way as with Corollary 1 and Theorem
2.

2/\ loxl? < Cllol 3.

Uniqueness. Suppose we have two solutions: {u1(t), f1} and {uz(t), f}. It is required to prove
u(t) = uy(t) —ux(t) =0and f = f; — fo = 0. Since the problem is linear, to determine u(t) and f we
have the problem:

DYu(t) + Au(t) = f, t>0; (51)
u(@) =au(0), 0<&<T, (52)
wT) =0, > g (T £8). (53)

Let u(t) be a solution to this problem and uy(t) = (u(t), v¢). Then, by virtue of equation (51) and the
selfadjointness of operator A,

Diuy(t) = (Dfu(t), vg) = —(Au(t),vx) + (f, 0x) = —(u(t), Avg) + (f, o) = (54)

—(u(t), dog) + fr = —A(ult), vp) + fr = =M (t) + fr, £ >0.

Thus, taking into account (53), we have the following problem
DYup(t) + Agug(t) + fr =0, t>0; u(t)=0.

If t > 7, then the solution to this problem has the form (see, for example, [2], p.174, [3], [4], p. 17)

t

welt) = fic [ (£ =8 Epp(—Mult = )2 = fi [ 1" Eppl(—Ai®),
0

T

or (see (14))
ur(t) = fi- (t—=1)F Ep,p+1(_)‘k(t —1)°).
Ift <1, then

t

ug(t) = —fk/(C — £)P T Epp (—A(E = 1)P)dE = fi- (T — )P Ep i1 (—Ak(T — £)P).

T
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Therefore, the nonlocal condition (52) implies:
fk [|T — §|pEp,p+1<_/\k|T — §|P) — D(TpEp,erl(—)\kT‘D)] =0, g <271, a > 1.

Since T > g, then |7 —¢| < 7. Hence, due to the monotonicity of the Mittag-Leffler function t*E,, , , 1 (—At°),
t > 0 (see Proposition 4), one has fy = 0, for all k > 1. Therefore, from the completeness of the system of
eigenfunctions {vy}, we finally obtain f = 0 and u(t) = 0, as required.

5. The inverse problem of determining the boundary function ¢

Consider the problem (2) and assume that, together with function u(t), function ¢ in the nonlocal
condition u(&) = au(0) + ¢ is also unknown. To solve this inverse problem, we need an additional condition,
and as such we again take the condition that was used in the previous inverse problem:

u(t)=%, 0<t<T, T#¢ (55)

If T = ¢, then the nonlocal condition u(¢) = au(0) + ¢ coincides with the Cauchy condition #(0) = ¢
(see (4)) and we have the inverse problem, considered in [5] - [7].

Definition 3. A pair {u(t), ¢} of function u(t) € C([0,T]; H) and ¢ € H with the properties D u(t), Au(t) €
C((0,T); H) and satisfying conditions (2), (55) are called the solution of the inverse problem (2), (55).

Again, as in the previous inverse problem, an additional condition is imposed on &, which simplifies
the proof of the uniqueness of the solution.

Theorem 5. Let ¥ € D(A), f € C([0,T]; D(A®?)) for some ¢ € (0,1) and E,(—AklFP) # a for all k. Then the
inverse problem (2), (55) has a unique solution {u(t), ¢} and this solution has the form

T E {WW" —w(T)] + wk(é)} ks (56)
u(t) = i []m Eo(—Axt?) +wk(t)} Uk, (57)

where
t

Wit = [ 17 Epp (=) it = ).
0

Proof of Theorem 5. Existence. If ¢ is known, then the solution of problem (3) has the form (57) (see
Theorem 3). Condition (55) implies:

u(t) = ko_il {m Ep(—Ait?) + wi(7) | v = Y.

Let us expand the function ¥ € H in a Fourier series in the system {vy}. Then
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" Ep(— )
_ oo\ TS “ g
k= ", () [Yi = wi(T)] + wi(9)-
Therefore, equality (56) is formally established. It remains to prove that ¢ € H.
Let ®; be the partial sum of series (56). Then due to Parseval’s equality
1 Ep(—AkEP) — 2
112 = S\ ) TR _ <
|1y k; E, (— A <) (¥ — wr(D)] + wi(8)] < (58)

)\kﬁ ) —
—A TP)

<321[

Since |Ep(—AxGP) — a| < C, then by virtue of the asymptotic estimate (8) we obtain

e+ (o)) + |wk<c>|2} =0+ B+ P

i AZTT2(1 — p)
—1 (14+O((—AgtP)~1))

q’}é 5 Yk |2<CZ?\|‘1’k|2<C|l‘I’H1

Similarly, by virtue of estimate (11) and the definition of wy, we have

- 2

/ 1P Epp(—Akn®) fi(T — 1)dy
0

[ 212 (1-p)
2 < k
PF < 2

= (14 0((=At)~1))?

<

2
i CA2

PN fi(T = )|y
S (14 0((=Agte) k

<

2

2
NY < 2
/n ( Al >|> dn| < Comax [IfII

For the sum QD? one has

2
j
<z / TEpo(~ )l )y <
¢ . 1 2
j 2
<c O/ ! (};1|fk<c—n>|2> dy| <C max IfIF

Thus, it is shown that ¢ € H (see (58)).

Fulfillment of the conditions of Definition 3 for function u(t), defined by the series (57) is proved in
exactly the same way as with Theorem 3.

Uniqueness. Let us prove that if {u(t), ¢} is a solution to the homogeneous problem:

DVu(t) + Au(t) =0,  t>0; (59)

u(@) =u(0)+ap, 0<g<T, (60)
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u(t)=0, 0<t<T, T#G, (61)

then u(t) = 0and ¢ = 0.
Let u(t) be a solution to this problem and let uy(t) = (u(t), v;). Then

DYug(t) + Muge(t) =0, £>0;  wp(&) = aug(0) + .
The solution to this problem has the form (this is the same problem as (23))

Ep(—Agtf)
ug(t) = m Pk-

Condition (61) implies
Ep ( - /\kTp)

() —a P

ug(t) =

Since Ey(—Agf) # a for all k > 1, then by virtue of the properties of the Mittag-Leffler functions (see
Proposition 2) we have ¢, = 0 for all k. This, in turn, means u,(t) = 0 for all k. Therefore, due to the
completeness of the system of eigenfunctions {vy }, we have ¢ = 0 and u(t) = 0, as required.

Theorem 5 is completely proved.

Remark 2. If f does not depend on t, then the statement of Theorem 5 is true for all f € H,and ¥ € D(A).

Using Corollary 1, this statement can be proved in the same way as above.

6. Well-posedness of the problem (3)

In the case of fractional Riemann-Liouville derivatives, we consider only the forward problem for the
homogeneous subdiffusion equation. The inhomogeneous equations and inverse problems considered
above are studied in exactly the same way as in the case of the Caputo derivatives.

Consider the forward problem:

Hu(t)+ Au(t) =0, 0<t<T;
(62)

Flu(r)| = a}igéaf_lu(t) +¢, 0<E<T,
=2

where ¢ € H and the number « are given.
We will only consider the case E,(—A&f) # a for all k > 1, other cases are treated similarly.

Theorem 6. Let ¢ € H and E;,(—AiCP) # « for all k > 1. Then problem (62) has a unique solution and this
solution has the form

_ - 4)k o—1 _ 0
u(t) ,;—Ep(—AkCP)—«xt Epp(—Axtf)vy. (63)

Moreover, there is a constant Cg > 0 such that the following coercive type inequality holds:

107u(B) 1} + [[u(t)|IF < Cet 2 2[|pl?, 0<t<T. (64)
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Proof. As in the case of problem (2), we will seek a solution to problem (62) in the form of a series:

Y. Ti(t)vy, where Ty(t) is a solution of the problem:
k=1
HTe(t) + MTi(H) =0, 0<t<T; (65)

AT (t)

—vchmap Te(t)+ ¢, 0<ELT. (66)
t=¢

Let us denote 1in(1) o 71Tk(t) = by. Then the unique solution to the differential equation (65) with this
—

initial condition has the form Ty (t) = byt? ’1Ep,p(—/\ktp) (see, for example, [2], p.173, [4], p. 16 and [33]).
Proposition 5 implies
1

3 Ti(t)

= brEp(—AigP)
t=¢

Then from the nonlocal conditions (66) we find the unknown numbers by:

b, — Px
T E (M) —a

Hence, function u(t) defined by series (63) is a formal solution to problem (62).
Now let us show that series (63) is indeed a solution. To do this we denote by S;(¢) the partial sum of
series (63). Then

A —tp’lE — At (67)
; kEp )\kgp) P/P( )
Due to the Parseval equality we may write
(ST o] AT S— A SNl
J k=1 kEp( Aké(p) - P

Estimate (10) of function E, ,(—t) implies (note, E,(—Ax5f) # «)

1A%S;()|* < Ctzp - 2 2 < Cpt™272 i p|? < Cet =272 9|2
o — Ep(—M&P) 2 7 |1 +A2t2P = L1l = e P
Thus A%u(t) € C((0,T]; H) (and even more so Au(t) € C((0, T]; H)).
Since Ad{u(t) = —A%u(t), then from the above estimate we have

[19Fu(B)|IF < Cat=272[|g]|>

Thus, (63) is a solution to problem (62). The coercivity inequality follows from the last two estimates.
The uniqueness is proved in the same way as in the proof of Theorem 2. [
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