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Abstract: Tephra plumes can cause a significant hazard for surrounding towns, infrastructure, and 
air traffic. The current work presents the use of a small and compact X-band Multi-Parameter (X-
MP) radar for the remote tephra detection and tracking of two eruptive events at Merapi Volcano, 
Indonesia, in May and June 2018. Tephra detection was done by analysing the multiple parameters 
of radar: copolar correlation and reflectivity intensity. These parameters were used to cancel un-
wanted clutter and retrieve tephra properties, which are grain size and concentration. Real-time 
spatial and temporal forecasting of tephra dispersal was performed by applying an advection 
scheme (nowcasting) in the manner of Ensemble Prediction System (EPS). Cross-validation was 
done using field-survey data, radar observations, and Himawari-8 imagery. The nowcasting model 
computed both the displacement and growth and decaying rate of the plume based on the temporal 
changes in two-dimensional movement and tephra concentration, respectively. Our results with 
ground-based data, where the radar-based estimated grain size distribution fell within the range of 
in-situ data. The uncertainty of real-time forecasted tephra plume depends on the initial condition, 
which affects the growth-and decaying rate estimation. The EPS improves the predictability rate by 
reducing the number of missed and false forecasted events. Our findings and the method presented 
here are suitable for early warning of tephra fall hazard at the local scale.  

Keywords: tephra; ground-based weather radar; Bayesian approach; nowcasting; ensemble predic-
tion system. 
 

1. Introduction 
Tephra is the fragmented material produced during an explosive volcanic eruption. 

Once in the atmosphere, the mix of tephra, volcanic gases, and ambient air forms a vol-
canic plume. Tephra is classified according to its size as volcanic bombs or blocks (D ≥ 64 
mm or  ≤ − 6), lapilli (2 mm ≤ D < 64 mm or − 1 ≥  > − 6), coarse ash (64 μm ≤ D < 2 mm 
or 4 ≥  > − 1), and fine ash (D < 64 μm or  > 4), where D is the diameter of the particle 
and  ≡ − log 2D (mm). Tephra falls can damage buildings and cause disruption to human 
livelihoods, agricultural production, and other economic activities [1-3]. Because of the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 November 2021                   

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

doi:10.20944/preprints202111.0422.v1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202111.0422.v1


 

 

significance of the hazards posed by tephra fall, its timely detection and tracking in the 
atmosphere is very important.  

Tephra can be detected and tracked in the atmosphere with ground-based weather 
radars operating at various wavelengths [4-7]. Tephra properties (concentration, fall rate, 
and diameter) have been retrieved by radar using a microphysical model of atmospheric 
scattering theorem, which assumed that tephra particles have similar characteristics to 
raindrops [8-11]. One of the radar applications that has not been explored thoroughly is 
its use as an extension to an early-warning system of spatial and temporal tephra disper-
sal. Up to now, only one study has documented the use of weather radar for early-onset 
detection and tracking of tephra [6]. In this previous study, the detection of plume onset 
was achieved by coupling radar and an infrasound instrument. However, tracking of the 
plume excluded the sources and sink of radar observable [6]. As a result, the tephra 
plume's spatial movement (displacement) was monitored, but the observable radar values 
were constant through time, indicating a persistent presence of volcanic clouds in the at-
mosphere. A solution for this problem is applying a dynamic advection scheme, widely 
used for atmospheric precipitation forecasting [6], known as nowcasting [12-15]. Now-
casting is a spatial prediction method covering minutes to a few hours of rainfall forecast-
ing based on radar advection vectors. This approach can forecast the rotation and defor-
mation of the observed field and has been an essential prerequisite for real-time flash flood 
forecasting in operational hydrology [13].  

Recently, ensemble prediction system (EPS) has attracted the interest of modellers, 
as it can increase the robustness of forecasting results [14-16]. When applying the EPS, the 
nowcasting model is run multiple times from very slightly different initial conditions. This 
approach has been applied to the volcanic ash retrieval model to increase the predictabil-
ity score of volcanic cloud dispersal forecasting for the 2014 Kelud and 2015 Rinjani erup-
tions [17]. Their study found that poorer prediction skills could result from using shorter 
time steps and incorrect threshold of volcanic ash mass load. The later mentioned reason 
is related to the limitation of satellite monitoring, particularly at lower altitudes and in 
surrounding and overlying cloud features not involving ash, which could also account for 
the discrepancies in the low mass load regions. Moreover, the satellite based-volcanic ash 
retrieval model requires atmospheric condition data and eruptive source parameters 
(ESP), i.e., plume height, grain size distribution (GSD), and wind field. Those require-
ments can complicate the calculation process as they are often unknown until after the 
eruption. Contrarily, a weather radar provides atmospheric information near ground sur-
face level (< 3000 m height) and can directly estimate the GSD and concentration of tephra 
[8-11; 18-19], which can then be used as robust ESP for a radar nowcast model. 

This study presents the potency and uncertainty of real-time tephra plume detection 
and tracking applied to two eruption events at Merapi in 2018. First, we overcome previ-
ous limitations of unwanted clutter contaminating radar scanning data [19] by applying 
an automatic noise cancellation. Then, we coupled the modified tephra-radar retrieved 
model [8-9,18-19] with the EPS of radar nowcasting. The evaluation was done by compar-
ing the radar-based tephra properties (i.e., concentration and grain size) with ground-
based data and satellite imagery. Through this study, the integration of EPS forecast prod-
ucts can contribute to the potential use of weather radar monitoring in the tephra fall early 
warning system, which is beneficial for local people living nearby Merapi.   

2. Methods 

2.1 Radar Setting and study case 
A small-compact X-band dual-polarization Doppler weather Multi-Parameter (X-

MP) of WR2100 type radar, manufactured by Furuno Electric Co, was installed and oper-
ated at Merapi Museum (7.5 km SW from Merapi’s vent) in 2014-2019 (Figure 1). The main 
objective of the installation was for research in volcano hazards such as rain-triggered 
lahar [16, 20] and real-time tephra fallout rate [19]. Figure 1 presents the area covered by 
the 360 radar scan of plan position indicator (PPI) strategy. In PPI scanning mode, the 
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radar scans the volume of the atmosphere by changing the elevation angle in sequence 
every time it finishes one rotational scan. There were nine different elevation angles: 3, 5, 
7, 9, 11, 13, 15, 18, and 21. An entire volumetric scan sampled the atmosphere into 700 
sweeps (beam motion), and each sweep had 300 range gates with 150 m bin width. It re-
quires 2 min time intervals for a full volumetric PPI scan (all elevation angles). Radar data 
were heavily affected by ground clutter up to 13 elevation angle scan (Figure 1). While 
the default clutter cancellation routine by radar can recognize the beam blockage [20], 
ground clutter still occurred as the result of direct contact between surface and sidelobes 
due to the presence of Merapi and Turgo Hill in the SW sector (Figure 1, [19]). Sidelobes 
are unwanted returns from a direction outside the main lobe, which can bias the reflectiv-
ity intensity, Doppler velocity, and spectrum width estimates. 

Table 1 presents the specification of this small, compact, and light-weighted system. 
This ground-based weather radar is a dual-polarized system that transmits two different 
wavelength propagations: horizontal and vertical, giving multiple output parameters, 
listed in Table 1. Only two parameters were used in this study: the reflectivity intensity 
ZH and copolar correlation . Reflectivity intensity in horizontal copolar propagation ZH 
measures the efficiency of a target to reflect (absorb and re-radiate) radar energy. The co-
polar correlation , is the zero-lag correlation coefficient between horizontally (H) and 
vertically (V) transmitted and received copolar signals. This parameter shows the uni-
formity of the features being observed by the radar. Detailed explanations for each of the 
dual-polarized system's radar parameters have been discussed in [21]. Both ZH and  were 
used to remove unwanted clutter, and only the filtered ZH was used for tephra detection 
and tracking, explained in sections 2.2-2.3 and Appendix A. 

The selected study cases are two explosive events with the availability of X-MP radar 
data and in-situ tephra grain size information [23], on May 11, 2018 (M05) and June 01, 
2018 (M06). Following Merapi's last centennial explosive eruption in 2010, the volcano 
experienced six phreatic eruptions between 2012 and 2014. The M05 event was the first 
minor explosion after four years of quiescence, starting in 2014. It occurred at 0040 (time 
is expressed in hhmm UTC) and lasted for 5-mins. The Centre for Research and Technology 
of Geological Disasters (Balai Penyelidikan dan Pengembangan Teknologi Kebencanaan Geologi 
– BPPTKG) officially reported it as a phreatic eruption. Prior to the eruption, there were 
no unequivocal precursory signals, which is common for this type of eruption. The event 
produced a 5.5 km high (above its summit) eruption column with explosion energy of 17 
MJ [24]. 

 
Figure 1. Left panel (a) is a fixed observation area of the PPI scan mode. Centre panel (b) is the 3-D view of surface topography of 
the red square area in (a). Right panel (c) is the vertical profile of radar scan and topography, extracted along the blue arrow in (a). 
Identified are location of Yogyakarta city, Merapi summit, Merbabu, Turgo hill, and the location of X-MP radar, indicated by a red 
dot in (a) and (b). 
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Table 1. Radar specification used in the study [22] 

Parameter Description 
Transmitter Solid-state 200 W per channel (H, V) 
Polarity Dual polarimetric horizontal (H) and vertical (V) 
Pulses PRF 600-2500 Hz, Width 0.1-5.0 μs 
Antenna 0.75 m , 2.7° beam width 
Antenna gain 33.0 dBi 
Operating Frequency 9.47 GHz 
Wavelength  3.3 cm 
Peak Power 100 W 
Scan mode PPI, CAPPI, RHI 
Maximum distance display 50 km 
Maximum range fixed observa-
tion level 

30 km 

Data output 1) Reflectivity Intensity – ZH [dBZ],  
2) Doppler velocity – VD [m s-1],  
3) Doppler velocity spectrum width - WD [m s-1]  
4) Differential reflectivity –ZDR [dB],  
5) Specific differential phase shift – KDP [km-1] 
6) Copolar correlation coefficient -  
7) Rainfall intensity – R [mm h-1],  
8) Cross polarization difference phase - DP 

 
Merapi continued its eruptive activity between May 21–24, 2018, by producing mul-

tiple explosions. This series of short-lived eruptions ended on June 1, 2018, marked by 
three explosions that occurred on the same day. The M06 event was the first eruption on 
that day and had the greatest intensity of the three, occurring at 0120 UTC for a 2-mins 
duration [25]. The eruption produced a 6 km high eruption column with explosion energy 
of 46 MJ [24]. Subsequently, Merapi’s activities shifted to be more magmatic, marked by 
the appearance of a new lava dome in August 2018. 

Another reason for selecting these explosive events was the different spatial distri-
butions of the pyroclastic deposit. The deposit of tephra fall from M05 was found in the S 
sector, while M06 deposits were deposited in the NW sector from Merapi [23]. While being 
small in magnitude (Volcanic eruptive index, VEI-1), satellite images captured both cases 
(Appendix C: Figure C.1), meaning that the reliability of EPS results could be evaluated. 

We used a set of radar data of 56-mins, ranging from 4-mins before to 52-mins after 
the onset. Hence, it gave a range of time scans at 0036-0130 (M05) and 0116-0120 (M06). 
This time range selection was based on visual verification of tephra visibility on radar 
images. We also found that the plume was only detected at 13-21o elevation angles. 

2.2 Tephra detection 
The detection of the volcanic cloud was done by identifying radar echoes of the 

tephra from non-tephra echoes. Although both cases occurred during clear days, non-
tephra noises still occurred because of sidelobe contamination, anomalous propagation, 
and the presence of ground clutter. Anomalous propagation results from false radar ech-
oes during calm, stable atmospheric conditions, often associated with super refraction in 
a temperature inversion, which directs the radar beam toward the ground. We applied a 
clutter cancellation procedure based on Naïve Bayesian Classifier to solve the previously 
mentioned problems [26]. 

The Naïve Bayesian Classifier (NBC) is a supervised technique, which implements 
the classification based on the posterior probability that certain observed measurements 
correspond to a specific class. In the clutter cancellation process, the unwanted clutters 
were divided into three classes: the non-clutter data (c=0), clutter (c=1), and invalid data 
(c=-99). The third class was introduced based on the radar signal/beam blocking identified 
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by the Furuno default rain-map program [20]. For our study, only data corresponding to 
the non-clutter class was recognized as valid and used for tephra detection and tracking.  

The 2-D spatial data of reflectivity intensity ZH was used as the input parameter in 
the volcanic ash retrieval radar model (VARR, [8-9]). This method is a two-step stepwise 
approach radar microphysical model, using the scaled gamma distribution. The scattering 
of electromagnetic waves from tephra particles follows the Rayleigh theorem [8-9]. Only 
coarse ash to lapilli regimes were identified by this type of radar [18-19], resulting in two 
different tephra class regimes: fine (F) and coarse (C) particle. These two terms should be 
distinguished from finer ash and coarser ash regimes, mentioned in section 1, as our clas-
sification identified class F as a class for particle diameter ranging from 0.015 mm to 0.35 
mm and class C for particle diameter ranging from 0.35 mm to 6 mm. This range was 
generated based on the previous study [8-9, 18-19]. Table A.1 presents detailed infor-
mation about tephra classification. The clutter cancellation and radar-tephra retrieved 
model are discussed intensively in [26] and [8-9, 18], respectively; hence, only a brief de-
scription is presented in Appendix B for convenience. 

2.3 Nowcasting and ensemble prediction system 
Tracking of tephra was done by adopting the radar’s observable extrapolation model, 

originally known as the translation model [12]. In meteorology, radar’s Constant Altitude 
PPI (CAPPI) data are widely used to estimate the surface level of rainfall intensity. How-
ever, there is no agreement regarding which radar product should be used to estimate 
tephra properties. Essentially, CAPPI is the 3-Dimensional (3-D) interpolated data of PPI, 
and some studies have used this type of data to estimate the tephra fallout rate [19,27]. 
Meanwhile, other studies have used the lowest PPI elevation angle data to estimate the 
accumulated tephra deposit [28, 29]. In this study, we used the maximum aggregates of 
radar observable as suggested in [30]. The maximum reflectivity intensity is usually re-
lated to the densest concentration of tephra [29]. For each 2-mins time acquisition of the 
PPI scan, we calculated the maximum aggregate of tephra concentration across all eleva-
tion angle 13-21. This aggregate value was compiled as gridded 2-D (150 m mesh) spatial 
data. The use of a maximum aggregate was also used to tackle the problem of wavelength 
sensitivity, which caused the underestimation of retrieved tephra properties [19, 31]. Us-
ing the radar parameter, i.e., reflectivity intensity factor ZH, to estimate tephra concentra-
tion, we could simplify the forecast of tephra dispersion, as this approach did not require 
the atmospheric condition and ESP information. In this study, we used the estimated 
tephra concentration from the tephra detection framework to estimate the dynamic of its 
distribution along x and y directions and time t as follows 

𝜕𝐶௔

𝜕𝑡
+ 𝑚

𝜕𝐶௔

𝜕𝑥
+ 𝑚

𝜕𝐶௔

𝜕𝑦
= 𝑤 (1) 

where, 𝑚 = 𝑑𝑥/𝑑𝑡 and 𝑛 = 𝑑𝑦/𝑑𝑡  were radar advection vectors and w= 𝑑𝐶௔/𝑑𝑡 
was the radar echo growth and decaying rate (source/sink term). The spatial coordinate 
(x,y) represented easting and northing UTM, respectively. Variables m, n, and w were de-
fined in eqs. (2.1-2.3) 

𝑚(𝑥, 𝑦) =  𝑐ଵ𝑥 +  𝑐ଶ𝑦 + 𝑐ଷ 

𝑛(𝑥, 𝑦) =  𝑐ସ𝑥 +  𝑐ହ𝑦 + 𝑐଺ 

𝑤(𝑥, 𝑦) =  𝑐଻𝑥 +  𝑐଼𝑦 + 𝑐ଽ 

(2.1) 
(2.2) 
(2.3) 

Ensemble forecasting or EPS could help to get a feeling for the possibilities of pattern 
evolution. In eqs. (2.1)–(2.3), 𝑐ଵ– 𝑐ଽ parameters were optimized by linear least square us-
ing past estimated tephra concentration, whereas in this case, the first 4-8 minutes de-
tected plume captured in radar images. Nowcasting could be run according to different 
phenomena, which led to different ensemble member scenarios (Table 2). Considering the 
importance of the growth and decay rate to accommodate the sources and sinks of plume 
presence in the atmosphere, we selected phenomena 4 and 5 in Table 2. For each advection 
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phenomenon, the ensemble member was modelled by various sets of time-lagged fore-
casts starting at different initial times [32]. As the first visible plume on radar imageries 
occurred simultaneously as the eruption onset and considering the importance of past 
observed radar data in generating the advection scheme, the selected initial condition was 
then decided at 4, 6, and 8-mins after the reported onset. Thus, each case had six members, 
and its subsequent times were separated by 2-mins intervals. The nowcasting model was 
run up to 44-mins after the eruption onset, as it followed the presence of detected plume 
in observed radar data. The mean ensemble was obtained by calculating the mean of all 
members, using the time average of spatial data at each point (x,y). All results were pro-
jected and visualized in WGS 84 coordinate system by rgdal and ggmap libraries of RStu-
dio [33,34]. 

Table 2. Combinations of advection vectors parameter, adopted from different rainfall phenomena 
[15] 

No Phenomena 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕 𝒄𝟖 𝒄𝟗 
1 Parallel translation   X   X    
2 Parallel translation and rotation X X X X X X    
3 Rotation  X X  X X     
4 Parallel translation, growth-decay   X   X X X X 
5 Parallel translation, rotation, 

growth-decay 
X X X X X X X X X 

2.4 Evaluation 
The reliability of a predictive approach that considers uncertainty was examined, vis-

ually and quantitatively, through the verification of those members and observation from 
radar and Himawari-8. The observed concentration was derived from the valid ZH data, 
i.e., the filtered data after removing unwanted clutter. Himawari-8 is a satellite operated 
by Japan Meteorological Agency (JMA) since 2014, which observes the earth from 80°E to 
160°W and between 60°N and 60°S. The Advanced Himawari Imager (AHI) is an optical 
radiometer onboard the Himawari-8. Its full-disk observation covers 16 spectral bands 
from visible to infrared (IR) wavelengths. The spatial and temporal resolutions are 2 km 
and 10-mins, respectively [35]. We assumed this setting caused the Himawari-8 data to be 
at least 10-mins behind radar data or real-time. The standard Himawari-8 data were re-
trieved from the P-Tree system, managed by the Japan Aerospace Exploration Agency 
(JAXA) Earth Observation Research Centre (EORC) and JMA. This study used the tem-
perature band difference of band 13 (BTDB13) as the red beam of BTDB13-B15 was found to 
be effective for detecting dust and volcanic ash [36]. The identified tephra plume was de-
fined by lower than 285 K cloud temperature above the coordinates of Merapi, which is 
the temperature at 3-5 km asl height. The 2-D gridded data of Himawari-8 was then trans-
formed into a polygon to delineate the fraction of cloud identified as tephra plume. 

Two widely used dichotomous indices were applied: the critical success index (CSI) 
and the probability of detection (POD). They were given by the following formulas (eqs. 
3-4), along with a confusion matrix presented in Table 3. Here, 𝑁௛௜௧  is the number of hit 
events from the contingency table, 𝑁௠௜௦௦  is the number of miss events, and 𝑁௙௔௟௦௘  is the 
number of false events as defined in Table 2. The values of these indices have the range 
0–1, where “1” represents a perfect forecast.  

𝐶𝑆𝐼 =
𝑁௛௜௧

𝑁௛௜௧ + 𝑁௠௜௦௦ + 𝑁௙௔௟௦௘

 (3) 

𝑃𝑂𝐷 =
𝑁௛௜௧

𝑁௛௜௧ + 𝑁௠௜௦௦

 (4) 
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Table 3. The 2 x 2 confusion matrix [37] 

2  2 Confusion Matrix 
 

Event Observed 
YES NO 

Event Forecast YES Hit Miss 
NO False Hit 

Regarding probabilistic prediction, to date, the most common metric for assessing 
accuracy is the Brier score [38]:  

𝐵𝑆 =
1

𝑛
෍(𝑦௞ − 𝑜௞)ଶ

௡

௞ୀଵ

 (5) 

where y is the fraction of members that forecast the event, o is the actual outcome of the 
event (“1” if it occurs and “0” if it does not occur), and n is the number of forecasting pairs 
that are spatial. The score of a perfect forecast was “0”. This index was applied to assess 
probabilistic tephra concentration nowcasting that was equal or greater than 0.01 g/m3. 

3. Results 

3.1. Volcanic ash detection 
Figure 2 shows the results of the Bayesian classifier for tephra detection on M05 and 

M06 at 2-mins after the onset. All used reflectivity intensity data were cleaned from un-
wanted clutter by NBC, given by some examples presented in Figure A.1. The spatial and 
temporal evolution of estimated tephra particles at selected time stamps are given in Fig-
ures C.2 and C.3. For both M05 and M06, plumes were identified from 0-min after reported 
onset up to more than 40-mins and 20-mins after onset, respectively. All particle size clas-
ses (ash and lapilli) were identified at the onset of the eruption.  

 
Figure 2. Tephra detection using modified VARR model (Appendix A and B) for M05 (first row) and M06 (bottom row) 
at 2-mins after the reported eruption onset. From the left, first column (a and d) is reflectivity intensity, second column 
(d and e) is tephra classes, and third column (c and f) is tephra concentration. Tephra classes (d and e) of 1-3 represent 
coarse class (C) of light, moderate, and intense concentration, respectively. Tephra classes of 4-6 represents the same 
tephra concentration, but for finer class (F).  
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Figure 3. Left panel (a) is the location of in-situ sampling points of grain size () for both event cases, digitized from [23]. 
Available data in [23] are Q-01, Q-09, P-01, and P-09 as presented in the cumulative frequency of GSD in (b), where M05 
is given by P-01 and P-09, and M06 is given by Q-01 and Q-09 (M06). The cumulative frequency of GSD in (c) is extracted 
from radar retrieved model for M05: P-01, P-02, P-03, P-04, and P-05; and M06: Q-01, Q-02, Q-07, Q-08, Q-09. The frequency 
cumulative GSD in (d) is extracted from radar retrieved GSD for Q-01 and Q-09 (M06). 

Grain size distributions (in ) of the tephra deposits at sample sites near the volcano 
[23] and the extracted from the radar retrieved model are presented in Figure 3. Notice 
that the in-situ sampling points in Figure 3(a) were ground-based data, while radar data 
represents the elevation angles 13-21scans. Hence, some in-situ data points [23] did not 
align with temporal radar images. For M05, the in-situ data points in [23] were available 
at P-01 and P-09. Unfortunately, the nowcasting results for this case did not produce any 
data from these two points. The retrieved concentration was probably eliminated follow-
ing the unwanted clutter removal (Figure 3c-d). However, we could retrieve GSD from P-
02 to P-05 and aggregate their values to represent the GSD for M05. Using nowcasting 
radar images, we could retrieve tephra concentration and GSD at P02 to P05. P-02 to P-04 
were located close to P-01, and P-05 was located a few km distant from P-01. The aggre-
gated GSD could help give the characteristic of M05 GSD. Figure 3 concluded that de-
tected tephra radar retrieved of M05 produced coarser particle distribution than M06. 

3.2. Forecasting of plume dispersion  
Figures 4 and 5 present the 2-D nowcasting tephra concentration results of plume 

dispersion. Figures C.4-C.5 in Appendix C present the ensemble members of nowcasting 
scenarios of M05 and M06, respectively. 
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Figure 4. The retrieved tephra concentration on M05 from observed radar (a-d) compared to the mean-EPS (e-d) at different 
time steps, as indicated on top-left corner. The mean-EPS uses a threshold of tephra concentration ≥ 0.01 g/m3. In each 
image, x-axis is longitude and y-axis is latitude. 

 
Figure 5. The retrieved tephra concentration on M06 from observed radar (a-d) compared to the mean-EPS (e-d) at different 
time step, as indicated on top-left corner. The mean-EPS uses a threshold of tephra concentration ≥ 0.01 g/m3. In each image, 
x-axis is longitude and y-axis is latitude. 

3.3. Evaluation 
The predictability scores are presented by CSI, POD, and BS. Both CSI and POD are 

given in Figure 6, while BS is shown in Figure 7. In the case of BS, we also calculated the 
score by comparing the ensemble members with Himawari-8 data. The area of volcanic 
ash identified by Himawari-8 overlying the mean EPS results is presented in Figure 8. 
Predictability indices generally agree that the highest uncertainty was given by the pair 
of onset+8-min and Sc5 members. The value of BS decreased through time but then in-
creased, indicating the failure estimation of correct growth and decaying rate of some 
members. 
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Figure 6. Spaghetti plots of CSI (left) and POD (right) for both study cases. (a) and (b) are for M05, while (c) and (d) are for 
M06. The ensemble member was named based on IC: onset+i_Scj, where i and j represent the time in minutes and advection 
phenomena (Table 2), respectively. 

 
Figure 7. Brier score of tephra plume tracking by EPS of M05 and M06 based on the pair analysis with (a) radar and (b) 
Himawari-8. Each of EPS were generated using six members.  
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Figure 8. Mean ensemble of tephra concentration and area of detected tephra cloud by Himawari-8 (given by black polygons). 
The study cases and time stamps are indicated at top-left corner. The detected area of Himawari-8’s tephra cloud was trans-
formed into polygon using cloud temperature < 285 K. The ground-based data points are also presented in each map, given 
by black dots. In each image, x-and y-axis are longitude and latitude, respectively. 

4. Discussion and Conclusions 

4.1. Tephra Detection 
Applying unwanted clutter cancellation is an important step in radar data pro-

cessing. Here, we presented a simple procedure that could be easily included in the radar 
processing routine. In Table A.3, elevation angle 18 had the highest probability of mis-
classification (p = 0.3), while other elevation angles performed relatively better (p≤ 0.1). 
The misclassification can reduce numbers of 𝑍ுs associated with tephra. As presented in 
Figure A.1, a significant number of 𝑍ு pixels in the SW and NW sectors of M06 were 
removed at elevation angles 15and 18 after applying the NBC. Aggregating the 𝑍ு 
(max) from elevation angles 13-21 helped restore most of the data in the NW but was still 
unable to reserve the echoes in the SE sector (Figure 2). This limitation is the consequence 
of a higher frequency of clutter in the SE sector. When the radar was pointing to Merapi 
vent, the sidelobes have contact with the hill side of Merapi (Turgo Hill, Figure 1), pro-
ducing unwanted radar noises in this sector. 

 The radar-retrieved tephra had particle diameters ranging from 0.02 to 2.3 mm or  
1.7 to -0.37 (Figures C.2 and C.3), indicating the limitation of the used X-MP radar in de-
tecting larger and finer particle regimes. Particles larger than 2 mm (lapilli regime) were 
retrieved from 𝑍ு until up to 4-mins after the onset, as they formed part of the eruptive 
mixture in the early development stages [39]. The limitation in radar-retrieved GSD is 
related to radar specification (e.g., antenna gained, wavelength, radar sensitivity, scan-
ning speed). Larger tephra particles fall faster, and such speed might be unmonitored by 
the 2-mins temporal resolution of scanning radar. Moreover, based on the microphysical 
model of radar used in the tephra retrieved model, higher tephra concentrations can also 
be associated with greater amounts of finer tephra slower-falling particles within a sam-
pling volume. 

As noted earlier, we failed to extract radar estimates of GSD for M05 at two radar 
sampling points with available information of in-situ data (P-01, P-09, Figure 3). We could 
only extract the radar retrieved GSD at some points near P-01. While this study confirmed 
the incomparability between atmospheric and surface level data, we could use ground-
based tephra grain size data to constrain and compare the range of grain sizes inferred 
from radar. Point Q-01 and Q-09 are close and distal to the vent, respectively, and thus 
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reflect the end members of the GSD for the whole sample region. However, based on con-
clusion in [23], there was no significant difference between the sortation in both points, 
where they categorized the GSD to be moderately well sorted. On the other hand, the 
extracted radar retrieved GSD have limited distribution ranging from This lim-
itation is related to the Rayleigh scattering theorem used in this study, which limits the 
3.3 cm wavelength of radar to be associated with ~2 mm mean particle diameter.  

While the estimated GSD from radar retrieved model was slightly greater than the 
in-situ data (for M06), the majority of retrieved radar GSD fell within the range observed 
in [23] (Figure 3). More importantly, the radar retrieved model could capture the spatial 
change in GSD, where the number of coarser particles decrease at a distant point from 
radar (Q-09, Figure 3b). Radar-retrieved estimates of particle size also agreed with the 
conclusion of [23], that the tephra from M05 had coarser grain size than M06 (Figure 3b). 
The difference between GSD for the two case study events can be attributed to the level 
of the eruption’s explosivity and surface energy consumption. An eruption with lower 
explosion energy (M05) produced coarser grain pyroclastic deposits than the higher ex-
plosion energy (M06) [40, 41]. However, it should be noted that the prediction of GSD by 
radar/from explosion energy is still an active area of research, and the variety of fragmen-
tation processes and magma properties makes it difficult to construct a general relation 
between GSD and energy balance [41]. 

4.1. Forecasting the dispersal of tephra  
Spatially, the mean EPS could track elevated tephra concentrations estimated by ob-

served and valid ZH. The initial conditions used have a significant role in the estimated 
tephra dispersal, where the longest and shortest time windows tend to have poorer pre-
dictive skills. The shortest time window (onset+4) members show the tendency of the 
tephra cloud to elongate in the y-direction (N-S), as it could not estimate the correct hori-
zontal u-wind component (parallel to the x-axis: E-W), as presented in Figures C.5–C.6. 
This signature is more visible in M05 than M06, where the forecasted plume elongated in 
the NS direction (Figures 4 and 8). The plume expansion in the NS direction could also be 
attributed to the vertical growth or decaying rate as it showed the change of altitude along 
with the range distance. As the radar is located in the SW sector, the altitude of the radar 
scan increases with radar's range in the N sector. The aggregated maximum ZH from dif-
ferent elevation angles (13-21) may represent the actual growing or decaying rate at a 
different height. The ejected material with a higher concentration would have reached a 
higher altitude before expanding horizontally within a shorter period (onset+4). This re-
sult explained the more intense concentration estimates in the NW sector for both cases. 
Hence, the translation model might have calculated an increasing trend of ZH along the y-
direction (NS), resulting in the NS elongated orientation of plume expansion. On the other 
hand, the most extended time window (onset+8) members showed an expansion of the 
plume to the u-wind component, indicating underestimation of growth and decaying rate 
(Figures C.5-C.6). At this time window, the identified plume had lost most of the intense 
ZH (> 45 dBZ), causing an exaggeration of horizontal expansion.  

Additionally, unlike precipitation, the advection vectors that determine the rotation 
and translation of tephra displacement were generated from fewer sample points, result-
ing in a higher error rate. Despite these limitations, this method has confirmed the time-
dependent plume evolution exhibited in short-lived Vulcanian eruptions [42]. We can also 
recommend using onset+6 as the initial condition on time-lagged nowcasting of short-
lived volcanic plume. This study presents that onset+6 can be the proper initial time to 
run the nowcasting model following an explosive event. It can cover both the plume ex-
pansion (related to the energy release and ESP) and wind components. In the future, ap-
plying this method to larger magnitude eruptions will be valuable to determine the opti-
mum lead time for nowcasting application in the volcanic ash dispersal. A plume gener-
ated from a larger scale and longer duration eruption event may last longer in the atmos-
phere and cover a broader area in radar's azimuth display. A longer time window, which 
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is not so soon after the start of the eruption (up to 6-hr), was recommended in the satellite-
based ensemble prediction of volcanic ash dispersal from the VEI-4 Kelud eruption [13]. 
This longer time window is not applicable for our study cases, as they are short-lived 
plumes. 

In general, both CSI and POD show a typical behaviour of nowcasting, where it de-
creases following the time increase. The mean EPS can reduce the uncertainty of fore-
casted tephra track, spatially and temporally (Figures 4-7). As presented in Figures 7 and 
C.6, some ensemble members of M05 and M06 show poorer skill with increased time. 
However, the CSI and POD of the mean EPSs are always maintained at greater than 0.99. 
In general, M05 has a better predictability rate than M06. The shorter duration but greater 
magnitude of M06 has a higher rate of tephra dispersion, indicated by its short-lived vis-
ibility on radar images. This result can be attributed to two reasons: first, M06 may pro-
duce higher growth and decaying rate that cannot be estimated correctly by the nowcast-
ing model; second, the plume exceeds the radar's observable elevation angles. Combining 
the model's parallel translation, rotation, and growth and decaying rate produced the 
poorest forecasts as the dispersion of the small size plume is mainly related to wind-vec-
tors and not by a mesoscale rotational motion, such as the case of a tropical cyclone. How-
ever, it should be noted that the higher predictability score given by CSI and POD is based 
on large numbers of zero-valued pixels. The observed radar range was fixed at 30 km 
(Table 1) with 150 m mesh resolution, resulting in significant 𝑁௛௜௧  generated from pairs 
of zero-valued pixels. Visual verification is crucial to conclude if each ensemble member 
can correctly imitate the tephra plume's movement and expansion. 

Brier score (BS) provides more reliable results for predictability rate as it only counts 
pairs of occurrence and non-occurrence events (Eq. 5). The cross-validation of the ob-
served radar involving all ensemble members increases the predictability rate until 40-
mins after the onset, with BS ranging at 0.4 to 0.2. After 40-mins, the model performance 
becomes significantly poorer because of the accumulated error of incorrect growth decay-
ing rate given by some ensemble members. Although all the predictability rate parameters 
indicate the tendency of skill to decrease with time, we still highlight the importance of 
EPS in improving the accuracy of the tephra forecast.  

Comparing the temporal and spatial of mean EPS to Himawari-8 data (Figures 7b-8) 
gives the impression that the use of weather radar is limited in detecting the finest regime 
of the plume. In Figure 7b, the cross-validation of the ensemble members with cloud tem-
perature (Himawari-8) gives BS ranging from 0.85 to 0.90 within the first 20-mins after the 
onset. The BS became poorer after 30-mins (> 0.95). Such poor BS is understandable due 
to the different spatial patterns of the ash cloud seen by the two sensors because of the 
attenuation of different particle size sensitivity [31]. Himawari-8 infrared observation ( = 
10.4 m for BTD13) is more sensitive to capture finer particle than the X-band radar obser-
vation ( = 3.3 cm). The difference is more noticeable for M06, as the undetected tephra 
plume of Himawari-8 by the EPS model occurred in the S sector, which has the lowest 
elevation scanned by radar. Hence, the nowcasting could not capture the advection vec-
tors and growth and decaying rate in this area (S sector).   

Generally, finer particles are easily transported to higher elevations and dispersed 
farther away from the volcano. Hence, the detected tephra observed by radar was more 
likely to fall close to the volcano. This assumption is supported by the spatial distribution 
of forecasted radar-retrieved concentrations to have better agreement with in-situ sam-
pling points than the Himawari-8 images (Figure C.3). Hence, this study reveals the ben-
efit of the X-band radar for a local early warning system in tephra hazard management, 
which is essential for the nearby population. Even though the comparison between 
Himawari-8 and estimated radar tephra concentration is not directly comparable due to 
different resolution, sensor’s wavelength, and parameters observed, the comparison is 
still important. It helps differentiate parts of the plume that will fall earlier (ground-based 
radar) and parts of the finer ash regimes within a plume that may be transported at higher 
altitude and potentially cause disruption to aviation (satellite). Moreover, the estimated 
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tephra concentration from the radar is essential information for the characteristic of the 
plume in the lower altitude, which cannot be retrieved from the satellite data [17].  

While more work is needed to apply the remote sensing approach of tephra tracking 
using ground-based weather radar, this study has presented the potential use of weather 
radar to forecast the dispersal of tephra. In order to overcome the limitation of observing 
only part of the volcanic plume with ground-based weather radar [18,19], future work 
will extrapolate the estimated tephra concentration from a radio-wave sensor of radar into 
IR satellite data. Such a study will solve the classical problem of not detecting fine ash by 
radar observation while simultaneously improving the efficiency of the volcanic plume 
estimation by satellite data. This multisensory approach may allow tephra properties to 
be retrieved from satellites without acquiring ESP information. It can reduce the complex-
ity of tephra plume dispersion modelling and improve the reliability of its real-time fore-
casting using remote sensing techniques. 

Supplementary Materials: Tephra radar retrieved algorithms and its 2-D visualization are coded in 
RStudio scripts and published on GitHub (https://github.com/irasyarif1906/TephraRadar.git).  
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Appendix A Naïve Bayesian Classifier 
A general expression of Bayes classifier is given in eq. (A.1). The classification is per-

formed by applying the Bayes rule to calculate the probability of class c, given a particular 
set of input measurements, and the prediction is  

𝑝൫𝑐ఈห𝑥ଵ, … , 𝑥ఉ൯ =
𝑝൫𝑥ଵ, … , 𝑥ఉห𝑐ఈ൯𝑝(𝑐ఈ)

𝑝൫𝑥ଵ, … , 𝑥ఉ൯
 (A.1)

In eq. (A.1) 𝑝൫𝑐ఈห𝑥ଵ, … , 𝑥ఉ൯ is the joint probability model, which can be simplified by 
assuming that all the input measurements are conditionally independent given the class 
label c. Subscript 𝛽 denotes number of parameters, which are 5 and 1 for clutter and 
tephra class classification respectively. 𝑝(𝑐ఈ) is the probability of the class label and sub-
script  have 3 and 6 classes for clutter cancelation and tephra detection, respectively. 

Five input measurements for clutter classification were presented in Table A.1. They 
are reflectivity intensity 𝑍ு and its standard deviation 𝜎(𝑍ு), altitude z, copolar correla-
tion 𝜌ு௏, and Frequency clutter map Pc. Pc was calculated by analysing a sufficient num-
ber of scans during a clear sunny day, which in this study was 210 sets data for each nine 
elevation angles. These data were obtained from 1 July 2018 (0700-1200 UTC) and 31 May 
2018 (2200-2400 UTC). Every pixel in each scan had a probability of occurrence of being 
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clutter in the range of 0-1. For instance, if a particular pixel was detected as an echo in 
clear conditions without prior information of rainfall or eruptive events 100 times out of 
200, then the pixel has a 𝑃𝑐 = 0.5. 𝑃𝑐 was calculated in a similar way for every elevation 
angle. 

Table A.1 Input measurements of clutter classification 

𝑍ு 𝜎(𝑍ு) 𝑧 
𝜌ு௏ 𝑃𝑐  

 
Training and test data for clutter classification were taken randomly from radar scan-

ning data on 26-30 January 2018. Here, we assumed valid rainfall echo is similar to tephra. 
Figure A.1 presents an example of clutter cancellation results for elevation angles 15o and 
18o.  

The tephra classification relied on a single input measurement of ZH. The classifica-
tion of tephra used six sets of synthetic data to train and test the Bayesian classifier. The 
synthetic data were generated using Gaussian distribution and the statistical parametri-
zation presented in Table A.2. Two of the parameters were considered in generating the 
synthetic data: particle size and concentration. The synthetic data were generated with the 
assumption that the standard deviation was proportional to 20 % and 50% from the mean 
values of particle diameter and concentration, respectively. Table contingency errors for 
clutter and tephra classification are given in Table A.3 and A.4, respectively. The total 
probability along a column is always equal to one, whereas the input classes are listed in 
the columns. These tables are coloured to identify the probability of correct classification 
easily. In the tables, red represents probability of  0.90, blue represents values of 0.70 to 
< 0.90, green is 0.10 to <0.70, and yellow  0.10. 

Table A.2. Statistical properties of synthetic tephra (modified from [9]) 

Concentration 
(g/m3) 

Diameter of particle classes (mm) 
Fine class (F) Coarse Class (C) 

Mean Range Mean Range 
0.10 0.015-0.35 1.00 0.35- 6 

Light (L) Mean 0.10 0.10 
Range 0.01-0.50 0.01-0.50 

Moderate (M) Mean 1.00 1.00 
Range 0.50-2.00 0.50-2.00 

Intense (I) Mean  5.00 5.00 
Range 2.00-10.00 2.00-10.00 
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Table A.3. Contingency table of clutter classification by NBC 

Class Clutter Non-Clutter Invalid 
Elevation angle 3o Clutter 0.90 0.06 0.00 

Non-Clutter 0.10 0.94 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 5o Clutter 0.96 0.04 0.00 
Non-Clutter 0.04 0.96 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 7o Clutter 0.98 0.04 0.00 
Non-Clutter 0.02 0.96 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 9o Clutter 0.98 0.03 0.00 
Non-Clutter 0.02 0.97 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 11o Clutter 0.99 0.03 0.00 
Non-Clutter 0.01 0.97 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 13o Clutter 1.00 0.03 0.00 
Non-Clutter 0.00 0.97 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 15o Clutter 0.95 0.02 0.00 
Non-Clutter 0.05 0.98 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 18o Clutter 0.99 0.30 0.00 
Non-Clutter 0.01 0.70 0.00 
Invalid 0.00 0.00 1.00 

Elevation angle 21o Clutter 1.00 0.10 0.00 
Non-Clutter 0.00 0.90 0.00 
Invalid 0.00 0.00 1.00 

 

Table A.4. Contingency table of tephra classification by NBC 

Class F C 

L M I L M I 
F 

(Fine class) 
L 0.94 0.19 0.04 0.02 0.00 0.00 
M 0.06 0.78 0.18 0.05 0.01 0.00 
I 0.00 0.04 0.76 0.14 0.02 0.01 

C 
(Coarse class) 

L 0.00 0.00 0.02 0.71 0.22 0.07 
M 0.00 0.00 0.00 0.08 0.72 0.21 
I 0.00 0.00 0.00 0.00 0.04 0.72 
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Figure A.1. An example of clutter cancellation results. Presented are for elevation angle 15 and 18o. The cases and time 
stamps are given in the top left corner. (a) and (d) are the observed radar reflectivity intensity ZH, (b) and (e) are the 
filtered ZH after applying the clutter cancellation procedure, and (c) and (f) are the frequency clutter map Pc for the 
given elevation angles. In each image, x-axis is longitude and y-axis is latitude. 

Appendix B Microphysical radar model of tephra retrieval  
The GSD of tephra is indicated by 𝑁௔(𝐷), where 𝐷 [mm] is the particle diameter. 

The gamma GSD as a general scaled form of 𝑁௔(𝐷)) [m-3/mm] is formally expressed as 

𝑁௔(𝐷) = 𝑁௡ ൬
𝐷

𝐷௡
൰

ఓ

𝑒
ିஃ೙ቀ

஽
஽೙

ቁ
ഔ

 (B.1)

Where 𝐷௡ [mm] is the number-weighted mean diameter, 𝑁௡ [m-3/mm] is the inter-
cept; 𝛬௡ is the slope; 𝜇 is the shape factor; 𝜐 is the slope factor. The normalization 
is such that 𝑁௡ and Λ௡ are related to the mean diameter 𝐷௡ and tephra concentra-
tion Ca, and have physical dimensions independent of 𝜇 and 𝜐. The GSD form fol-
lows the scaled gamma distribution, which is derived from the analogue form estab-
lished for raindrops. The scaled gamma GSD NsG assumes that 𝜐 = 1, and follows an 
equation similar to eq. (B.1): 

𝑁ௌீ൫𝐷; 𝜇, 𝐷௡,𝐶௔൯ = 𝑁௡ீ ൬
𝐷

𝐷௡
൰

ఓ

𝑒
ି௸೙ಸ(

஽
஽೙

) (B.2)

where the intercept parameter 𝑁௡ீ and the slope parameter Λ௡ீ  were scaled using eq. 
(B.3) and the tephra mass concentration was expressed in eq. (B.4) 

ቐ
𝑁௡ீ = 𝐶௔

6𝐷௡
ఓ

𝜋𝜌௔(3 + 𝜇)!
ቈ
(𝜇 + 1)!

𝐷௡(𝜇!)
቉

ଷାఓାଵ

Λ௡ீ =  𝜇 + 1

 (B.3)
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𝐶௔ =
𝜋

6
𝜌௔𝑚ଷ (B.4)

The n-th moment of gamma distribution is given by 

𝑚௡ = න 𝐷௡
஽మ

஽భ

𝑁௔(𝐷)𝑑𝐷 (B.5)

Assuming 𝜇 = 1, then an explicit expression of the complete moment of gamma distribu-
tion (i.e., when 𝐷ଵ=0 and 𝐷ଶ =) can be written as follows 

𝑚௡ீ =
𝑁௡ீ

(Λ௡ீ)௡ାଶ
𝐷௡

௡ାଶିఓ
Γ(𝑛 + 2) (B.8)

Here Γ is the gamma function. 𝑁௡ீ  and Λ௡ீ  are derived from equation (B.3). In the Ray-
leigh scattering assumption, the radar reflectivity intensity 𝑍ு is given by the sixth mo-
ment of gamma distribution in equation (B.9). 𝑍ு can be expressed in mm/m6 or dBZ, 
which is 10log10 (𝑍ு[mm/m6]). 

𝑍ு = න 𝐷଺𝑁௔

஽೘ೌೣ

஽೘೔೙

(𝐷)𝑑𝐷 = 𝑚଺ (B.9)

The generated synthetic 𝑍ு was fitted against synthetic 𝐶௔ to formulate a statis-
tical parametric model of 𝐶௔-𝑍ு as follow 

𝐶መ௔
(௖)

= 𝛾[𝑍ு]ఋ (B.10)

where γ and δ are the constants and the law-exponents. The apex (^) indicates esti-
mated quantity, and superscript (c) indicates six classes of tephra (Table A.2). 

Appendix C Spatio-temporal forecasting of tephra evolution and cross validation 

 

Figure C.1 The Bright temperature difference of band-13 (BTD13) of Himawari-8. Presented here is for M05 (left) and M06 
(right), 30 minutes after reported eruption onset, as indicated on top left corner. 
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Figure C.2 First row is the spatial distribution of estimated radar retrieved mean diameter of M05 at different time stamps. 
Second row is the correspond cumulative grain size for each time stamp. In each image on the first row, x-axis is longitude 
and y-axis is latitude. 

 

Figure C.3 First row is the spatial distribution of estimated radar retrieved mean diameter of M06 at several time stamps. 
Second row is the correspond cumulative grain size for each time stamp. In each image on the first row, x-axis is longitude 
and y-axis is latitude. 
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Figure C.4 Some examples of the ensemble members (row) at different time step output (column). Presented is the nowcasting of 
M05. Each of ensemble member was named based on initial condition: onset+i_Scj, where i and j represent the time in minutes and 
advection scenario (Table 3), respectively. In each image, x-axis is longitude and y-axis is latitude. 

 

Figure C.5 Some examples of the ensemble members (row) at different time step output (column). Presented is the nowcast-
ing of M06. Each of ensemble member was named based on initial condition: onset+i_Scj, where i and j represent the time 
in minutes and advection scenario (Table 3), respectively. In each image, x-axis is longitude and y-axis is latitude. 
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Figure C.6 Number of missed and false events of ensemble members and the mean ensemble for M05 (a) and M06 (b).  
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