Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2021 d0i:10.20944/preprints202111.0421.v1

Article

Adaptive Integral Sliding Mode based Path Following Control of
Unmanned Surface Vehicle

José Antonio Gonzilez-Prieto *{*, Carlos Pérez-Collazo '*” and Yogang Singh 2

Defense University Center at the Spanish Naval Academy, Plaza de Espafia, s/n, Marin 36920, Galicia,
Spain

Industrial Systems Engineering (ISyE)-FlandersMake@Ghent University, Graaf Karel de Goedelaan 2B,
Geb.A, Kortrijk 8500 , Belgium.

*  Correspondence: jose.gonzalez@cud.uvigo.es

Abstract: This paper investigates the path following control problem for a unmanned surface
vehicle (USV) in the presence of unknown disturbances and system uncertainties. The simulation
study combines two different types of sliding mode surface based control approaches due to its
precise tracking and robustness against disturbances and uncertainty. Firstly, an adaptive linear
sliding mode surface algorithm is applied, to keep the yaw error within the desired boundaries
and then an adaptive integral non-linear sliding mode surface is explored to keep an account of
the sliding mode condition. Additionally, a method to reconfigure the input parameters in order
to keep settling time, yaw rate restriction and desired precision within boundary conditions is
presented. The main strengths of proposed approach is simplicity, robustness with respect to
external disturbances and high adaptability to static and dynamics reference courses without the
need of parameter reconfiguration.

Keywords: Unmanned Surface Vehicle; Guidance, Navigation and Control; Path Following;
Adaptive Sliding Mode

1. Introduction

With the growing advancement in the sensor technology and navigation aids, USVs
are becoming a popular tool in maritime domain for several applications ranging from
environmental monitoring, military surveillance to scientific surveying and data col-
lection. Mission oriented approach of USVs subject them to several types of maritime
environment comprising of wind, wave and sea surface currents leading to requirement
of designing and developing several autonomy levels for successful operation. Hence-
forth, design and development of approaches for Guidance, Navigation and Control
(GNC) of a USV is an important research area for constructing operational and tactical
approaches for seven different operational autonomy level of USVs as described by
International Maritime Organisation (IMO).

Guidance and control of USV plays an important role in motion control system
to manipulate the forces to enable a USV to follow a desired path whilst maintaining
the stability. Three approaches, namely, waypoint control, path following control and
trajectory tracking are generally considered in the domain of marine robotics to enable
a USV to follow a designated path [1,2]:

*  Waypoint control: In this strategy, Line of Sight (LOS) based approach is adopted
to follow a certain waypoints, generated heuristically, in the required maritime
environment.

¢  Path following control: In this strategy, a path generated through path planning
algorithms is used as a reference, to be followed with no temporal constraints. Here,
USV should converge and follow the desired path without any time constraints
and simultaneously satisfies its assigned velocity profile.
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*  Trajectory tracking: In this strategy, temporal constraints are enforced upon the
path generated using path planners. This is predominantly used with fully actuated
marine vehicles reasoned with better manoeuvring capabilities.

1.1. State of the Art

The problem of path following control is highly non-linear in nature and has been
studied from a perspective of observed disturbance control using sliding mode control
(SMC) approach. The SMC problem for USVs, subjected to, higher order non linear
operational disturbances, have been studied with varying control approaches like sliding
mode [4-7]; fuzzy sliding mode [9]; proportional derivative fuzzy [10]; backstepping
[11-14]; backstepping with adaptive radial basis function neural network [15]; sine
function-based non-linear feedback [16]; hyperbolic tangent based nonlinear control [17];
sigmoid based nonlinear control [18]; function adaptive neural path following control
[19]; model predictive control [20,21]; and non-linear feedback power functions [22].

In order to make control robust to disturbances and uncertainties, several ap-
proaches has been proposed in the SMC literature, see [23-33]. Some proposals of
advanced sliding manifolds include recursive nonlinear sliding manifolds [34,35], non
linear full order dynamics [36,37], sliding surfaces with adaptive damping parameters
[38—40] and, in the last years, a vast collection of homogeneity based works, see [41] for
instance. Applications of the properties of homogeneous systems is an important field
of study in the current development of analysis and design of nonlinear controllers and
observers. Homogeneity simplifies analysis and design of nonlinear control systems
since the homogeneous vector fields have many properties similar to linear one and
provides solutions with finite-time and fixed-time stability.

The dynamics generated by an homogeneous controller can be seen as a lineal
dynamic system with an adaptive gain that grows to co as |x(t)| — 0, generating the
well know singularity at the origin which is undesired for real applications. Nevertheless,
as commented in [42], the practical implementation of homogeneous dynamics system
designed in the continuous time domain prevents the use of explicit Euler discretization
scheme to achieve a mere copy of the continuous time approach due to its simplicity.
This type of discretization is considered inappropriate, especially when set-valued
functions has to be considering, causing numerical chattering and sensitivity to the
gains. As a result, without addressing the discretization issue, any comparison between
homogeneous based solutions and other types of proposals may potentially lead to
unfair conclusions

Based on the aforementioned results, in order to keep the discretization process
simple, an adaptive lineal sliding mode surface law, that includes a nested integral
sliding surface is introduced in this work. In this case, the dynamics flows with adaptive
and finite damper gain, avoiding the effects of the peaking transient response inherent to
linear systems and allowing fast responses at steady state, approximating the behaviour
obtained with homogeneous solutions.

1.2. Major Contributions

The paper makes following contributions to the current state of existing approaches
to SMC techniques for USVs:

*  The proposed adaptive control approach is reconfigurable, without parametric ad-
justment, for various input trajectories and environmental disturbances of maritime
environment, as it is shown through various simulation studies conducted in the
manuscript.

*  Because of the low-pass filtering properties related to the second order adaptive
linear dynamics generated at the sliding variable, the cross over frequency (w,)
of the system response can be used in the algorithm to estimate bound of the
disturbance derivative. This implies that frequencies over w, does not affect the
performance of the sliding variable response. From a practical implementation
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Figure 1. 6 DOF motion representation with North-East-Down coordinate system (green) and
body fixed reference frame (black).

perspective, this feature brings some advantages if the estimation of the maximum
value of the disturbance derivative is a difficult task to solve.

¢ The proposed adaptive profile generates a low /high gain variation that depend on
the absolute value of the error. This allows to avoid the saturation of the control
input when the error is large (gain is small) and to create responses at steady state
(gain is large) that generates fast disturbance compensation.

*  The use of an scheme based on the adaptive placement of two poles related to
a second order dynamical system with critical damped, allows to generate fast
overdamped responses that avoids the introduction of considerable overshoots.

This paper has been structured as follows. First, in Section 2 we present the nonlin-
ear dynamic model of the path following problem, the desired objectives to be achieved
and a theoretical stability tool that is used in the posterior analysis of the control algo-
rithm. Then, Section 3 describes the proposed adaptive integral sliding mode (AISM)
algorithm. Results from numerical simulations are then presented and discussed in
Section 4. Finally, conclusions are drawn in Section 5.

2. Problem Statement

The motion of the USV is shown in Figure 1, where a six degrees of freedom (DOF)
model is presented. The earth fixed Oo is an inertial reference frame fixed to the earth’s
surface and the body fixed with origin O is a moving coordinate frame that it is fixed to
the craft as in given in [1]. It is assumed an homogeneous mass distributed and xz-plane
symmetrical, such that origin of the body fixed reference frame is chosen to be coincident
with the center of the gravity. If we consider the path following problem the dynamics of
heave, roll, and pitch can be neglected, so that the reduced model dynamics are given as

m (it — or — x.r*) = X (Surge) 1)
m(0 4+ ur + x.#) =Y (Sway) (2)
L+ mx.(9+ ur) = N (Yaw) (©)]

where m is the mass, u is the surge velocity, v the sway velocity, r the yaw rate, I, the
rotational inertia with respect to z axis, x. is the x coordinate of the vehicle center in the
fixed body reference frame and X,Y and N are the external forces and moments with
respect to the surge, sway and yaw, respectively.
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Assumption of constant forward speed and using the ship’s Norrbin nonlinear
mathematical model, see [43], implies that the steering equations of motion can be
obtained as

P(t) = f(r) +go(t) + d(t) 4)

where, {(t) is the yaw (orientation) angle, r(t) is the yaw rate, 6(t) is the rudder angle
(the control variable to be designed) and d(t) is an unknown term to be compensated
that includes parametric uncertainty and external disturbances (wind, waves, mobile
loads). The dynamics functions are given as

K
§=-7
f(r) = ~ZH)
H(r) =air+ a2r3 5)

where (K, T) are hydrodynamic coefficients and (a1, a,) are Norrbin coefficients.

In the path following problem it is required that the yaw angle ¢ follows a refer-
ence angle ¢, by means of the design of the rudder control signal §(¢). The following
assumptions are taking account in this work.

Assumption 1. d(t) in (4) satisfies the following restriction
|A(6)] < dimax
With dyay > 04 positive real number.

Assumption 2. Henceforth, it is assumed that a reference yaw establish the desired input to be
tracked, which can be obtained by means of path planning algorithms, that account for different
environment constraints as in [44—47].

A dynamic reference model is used, in this work, to generate the desired course (P, (t), P, (t), P, (£)).

The objective is to design a control law that creates overdamped responses with
minimal overshooting (undershooting) and robustness properties for response of the
yaw error, which is defined as

e(t) = 9(t) = r(t) (6)

In order to check the control performance of the proposed controller for the path
following problem, we consider the following performance analysis indices mentioned

in [12,14],
1 <)
MAE = / le()dt @)
to — to Jtg
MIA= 1 [ 1s)la ®)
to — to Jtg
MTV = — / 16() — 5(F — 7)|dt )
teo — to Jtg

where 7 is the sampling time used in the simulation.
Furthermore, to check out the robustness properties of the solution, we compare
the results with the algorithms proposed in [12,14] applying the following conditions:

e Asin[12,14], we test two problems that uses two different types of reference input
signals: step and sinusoidal.
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e The tests includes results without disturbances (d(t) = 0) and with disturbances
(@(t) #0).

®  The algorithm parameters are configured in the case of the step input reference
without disturbances, such that all solutions provide the same value of the MIA
index at the end of the test time.

¢ After that, the algorithms parameters are fixed and tested in the case of step with
disturbances and in the case of the sinusoidal input reference. In this way we check
the robustness of the solutions with respect to its capacity of adaptation to different
scenarios from a specific parameter configuration.

The following theorem is introduced in order to analyse the stability properties of
the AISM proposed solution.

Theorem 1. Consider the following cascade system

z1 = fi(tz1) + g1(t, 21, 22)22 (10)
zy = fa(t, z2) (11)
where z1 € R", z € R™, f1(t,21) is continuously differentiable in (t,z1), and f5(t,z1)

and g1 (t,z1,z) are continuous and locally Lipschitz in zp and (z1,zp), respectively.
The dynamics of (10) when zy = 0 are

21 = fi(t, z1) (12)

If systems (12) and (11) are globally uniformly asymptotically stable (GUAS) and we know
a C! Lyapunov function V(t,z1), two class-Ke functions ¢1 and ¢, a class-K ¢3 function and
a positive semidefinite function W (z1) such that

anlllaall) < V(t20) < ol 3

o+ e ilt) < W) 9
e1%

15511 < ¢ (15)

Besides, for each fixed z; there exists a continuous function { : R™ — R such that

sli_{r.}o {(s)=0 (16)
1%
15581820 22)ll < &[] )W (z1) (17)

Then we can conclude that the cascade system (10) and (11) is GUAS.

Proof. See [48]. O

3. Adaptive Integral Sliding Mode Surface Control Design
Derivation of e(t) in (6) leads to

é(t) = r(t) — (1) (18)
An adaptive sliding surface s(t) variable is defined as
s(t) =é(t) + Ae)e(t) (19)

with A(e) a real positive time varying parameter.
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Consider the integral term 5(t)
t
5(t) = /O s(t)dt 20)
Let’s choose the control law as
1 . , - - -
6(t) = g(—f(r) +r(8) — Ale)e(t) — Ale)e(t) —a(s,5)s(t) —r(e)s(t))  (21)
with A(e) defined as
Amax — Amin
AMe) = max(Amin, Amax — () le(£)]) (22)
(0)]
, the variable z(t), related a new sliding surface, defined as
2(F) = s(t) + %§(t) (23)
and with the parameters «a(s,3), v(a) and é(e) given as
i(s,5) = k|z|° sign(z) sign(s) (24)
a2
v(@) =7 (25)
3(e) = (P ()] 4y el
[e(0)] "
Derivation of 7y(«) and A(e) are given as
. o,
#a) = S @)
/\max*/\min . 5 3 .
M) = |~ signe(t)elt) A > A o8
0 ifA < Ayin

The control algorithm is designed by an appropriate selection of the parameters
Mmaxs Amins €(0), €, Spax and 8,5, as it will be introduced in the numerical simulations
section.

Theorem 2. Consider the ship course dynamics described in (4) that complies with assumption
1. The application of the control law (21) to dynamic system (4) implies that the closed compact
set Q) defined as

= q(e é 2 e S é K
00 = {(e(t), (1)) € B 1e(0)] < roriraimran O] < Teos@ oo @

ol dm,lx
H= \/ » (30)

6 = atan(A) (31)
) (32)

is GUAS with y, 6 and ¢ given as

N| >

¢ = atan(
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Proof. Application of control law (21) to dynamic system (4) creates the following
cascade system.

é(t) = —Ae(t) +s(t) (33)
$(t) = —as(t) — y5(t) +d(t) (34)

The dynamics of é(t) when s(t) = 0 (dynamics of the yaw error at the sliding
condition) are

é(t) = —Ae(t) (35)

with A > 0. Therefore system (35) is GUAS, with exponential convergence.
Derivation of $(t) leads to

§(t) +as(t) +s(t) +as(t) +45(t) +d(t) =0

From (25), (27) and (23) it is obtained
a? -
5(f) +as(t) + Zs(t) +az(t) +d(t) =0
Substitution of & from (24) implies that the second order dynamics equation related
to s(t) is

§(t) +as(t) + “Zzs(t) + k2| sign(s) + d(t) =0 (36)

Applying assumption 1, |z| > °*{/ d’”% implies that
|**sign(s) +d = p.s (37)

K|z

with p, > 0. Therefore the characteristic polynomial of (36) is Hurwitz for all z(t) ¢ Q.
where

Q. ={z(t) e R: |z(t)| < u} (38)

with p defined in (30).

This implies that (34) is GUAS with respect to the closed set (2,. Note that dynamics
in (36) can be viewed as a second order linear dynamics with adaptive critical damping
(exponential convergence related to the fastest response with no overshooting), being
perturbed by the overestimation p,s caused by the compensation of the unknown term.

Inside (), we have that

s(5)+35(8)] <

which geometrically entails:

= H
1 < ey 9)

H

—_— 4
50| < [otiay (40)
with ¢ defined in (32).
Inside ) we have that
H
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Following the previous approach implies that:
H
e()| < oA (41)
O T i)
; i
0] < Teos (@) Tcos(®) &2
with 6 defined in (31).
Applying Theorem 1 with

W(e) = kye?
V(e) = %ez
ks

) =
¢ kylel

where k; < 0.5, k; > 0.5, k3 > 1.0, k4 < A and ks > 1.0, entails that cascade system
given in (33) and (34) is GUAS with respect to the closed compact sets (), and ()5,
respectively. [

Let’s note that

®  The size of ()., ()5 and (), depend on adaptive values of A, « and ¢.
e |z(#)| — 0 implies that & — 0, so the value of « is stabilised at the steady-state of
z(t), that is, inside Q.

4. Numerical simulations

In this section we introduce numerical simulations of the path following problem
with parameters given in Table 1 and being executed under the following assumption.

Assumption 3. The numerical simulations are executed using the explicit Euler method with
fixed sampling time T = 0.1 s.

Parameter Value
K 0.21
T 107.76
m 13.17
a, 16323.46

Table 1: Model parameters.

4.1. Constant yaw reference

This test is presented in [14] with a required a change in the yaw orientation angle
from zero initial condition up to 50 degrees assuming that d(t) = 0. Table 2 show the
parameters used in [14]. Based on this results the parameter a, of the synergetic controller

Parameter  Value
kq 0.0017
w 0.6000

Table 2: Nonlinear concise backstepping controller parameters.
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presented in [12] is changed to achieve the same MIA at the end of the simulation. Table
3 show the parameters used with this algorithm.

Parameter  Value

0 0.090
ar 1.891
T, 28.000

Table 3: Synergetic controller parameters.

The parameters of the AISM algorithm are obtained as follows

* Consider a settling time t; = 150s, a maximum desired yaw rate ry,y = %

degrees per second and a required precision € = 1.0e — 3.
e The value of #(0) is obtained assuming an exponential convergence of the error
from initial condition e(0) to desired precision € with a desired settling time

1 e
w(0) = o8 {atay) _ 0.0451 (43)

S

*  Thevalue of A, is related to the initial conditions of the problem and the maximum
desired yaw rate as

Ymax
Apin = =0.014 44
min |€(O)| 0.0 (44)

and A,y is calculated as
Amax = 2.0A,,, = 0.028 (45)

*  The value of x must be higher than dyay in order to obtain a small value for .
Because of the low-pass filtering properties of (36), the value of dax can be further
refined by estimating the cross over frequency w,(t) of the second order system
related to s(f)

Wc(t) = (46)

a(t)

Therefore « is calculated as an adaptive gain that takes account of w, and the desired
precision

(47)

*  The values of J,,;, and 4 are related by means of the condition 60y = 2.06,,i;,.
The value of J,,;,, is adjusted with simulations such that the value of the performance
index MIA is equal, at the end of test time, to the value obtained with benchmark
selected controllers. This choice leads to the following numerical values of J,,;, and

5max

Sin = 1.76952 (48)
Smax = 3.53904 (49)

This condition generates an adequate adaption of the value of § that allows to obtain
the desired low /high gain profile with respect to the absolute value of e(t).

States and control effort are provided in Figure 2 where it is observed that all the
solutions provide a similar setting time. Although the evolution of the yaw error is
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Desired and obtained yaw angle (9)
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Figure 2. Constant yaw reference test with d(¢) = 0. States and control. Cyan line : Reference ;
Red line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line:
Adaptive sliding mode (Gonzalez-Prieto et al.)

similar, it can be observer in the detail of the control effort that the evolution of the
rudder angle is quite different compared with previous algorithms.

Time evolution of performance indices are shown in Figure 3, with a detailed view
of MIA performance index at the end of the test, and final numerical values in Table 4.
Figure 4 shows the evolution of the adaptive parameters used at the proposed AISM

algorithm.
Algorithm MAE MIA MTV
Concise Backstepping [14] 0.042227 0.011348 3.6396e-5
Synergetic [12] 0.035641 0.011348 6.4436e-5
AISM 0.038557 0.011348 4.6133e-5

Table 4: Constant yaw reference test with d(t) = 0. Performance indices.

Next, in order to test the robustness of the algorithms, the following disturbance is
considered in (4)

d(t) = D[cos(wyt) + 0.83sin(3.29w,t — 0.14)
+1.23 cos(8.12wgyt + 0.26)
+ 0.65sin(1.37wgyt + 0.36)e 08(221wat+0.13)) (50)

with
D = 0.0025 (1)

d
Wy = 0.0703% (52)
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Figure 3. Constant yaw reference test with d(t) = 0. Performance indices evolution.Cyan line :

Reference ; Red line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et
al.); Black line: Adaptive sliding mode (Gonzélez-Prieto et al.)

Evolution of parameter a(t)
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Figure 4. Constant yaw reference test with d(t) = 0. Adaptive parameters evolution.
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Desired and obtained yaw angle (2)
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Rudder angle (9)
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Figure 5. Constant yaw reference test with d(t) # 0. States and control.Cyan line : Reference ; Red
line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line:
Adaptive sliding mode (Gonzalez-Prieto et al.)

States and control effort are provided in Figure 5 where it is clear that the proposed
AISM cancels the effect of the external disturbance, keeping the desired performance at
steady-state generating a rudder angle control that provides fast response attenuation
without generation of overshooting. Figure 6 shows the evolution of the sliding variable
s(t) and the external disturbance d(t) introduced to test robustness properties of the
compared algorithms.

4.2. Sinusoidal yaw reference

In this case, as in [14], the yaw reference to follow is a sinusoidal signal defined as

50 . 2m
“i = 1500 ™ 5000 53)
where the initial yaw angle is
107
¥(0) = 1300 (54)

States and control effort are provided in Figure 7 where it is clear that AISM is capa-
ble to follow the yaw reference with no appreciable delay keeping the desired settling
time. As in the previous test, results with sinusoidal reference are tested introducing
disturbance (50). Figure 8 shows the states and control effort obtained in this case,
where, as in the constant reference test, the steady-state performance and the settling
time obtained with AISM are preserved despite the presence of the external unknown
disturbance.

5. Conclusions and future works

In this work we have proposed an approach to develop an adaptive integral sliding
mode procedure to design a nonlinear controller for the path following of surface
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5 X 1073 Adaptive sliding mode surface variable
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Figure 6. Constant yaw reference test with d(t) # 0. Sliding mode variable s(¢) and external

disturbance d(t).
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Figure 7. Sinusoidal yaw reference test with d(t) = 0. States and control.Cyan line : Reference ;
Red line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line:
Adaptive sliding mode (Gonzélez-Prieto et al.)


https://doi.org/10.20944/preprints202111.0421.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2021 d0i:10.20944/preprints202111.0421.v1

14 of 17

Desired and obtained yaw angle (2)
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Figure 8. Sinusoidal yaw reference test with d(#) # 0. States and control.

vehicles. The solution has been proposed based on the application of adaptive gains that
changes the dumping properties of the sliding surfaces and derives in a low /high gain
profile such that it allows to overcome the use of large control inputs at initial conditions,
keeping a desired higher gain at steady state.

The results obtained in the numerical simulations shows that the proposed AISM
algorithm achieves the desired performance with fixed and time varying references
cancelling the effect of the external disturbances. The performance is evaluated with
a fixed parameter configuration that can be obtained from a settling time, maximum
allowable yaw rate and steady state precision. The algorithm achieves the desire response
without the need of develop a new parameter configuration for each type of test, showing
its robustness properties.

An advantage of the method is its robustness with respect to an overestimation
of dyay: the performance is not highly degraded if this bound is not accurately known.
However, choosing an overly large value might cause oscillations in the response of the
estimation error.

Another important aspect about the presented solution is its practical approach,
such that a desired precision value of the yaw error at steady state is integrated in the
design procedure in order to configure control parameters.

A deepest research of the functions that can be used to define the adaptive values of
A(e) and é(e) is an interesting open problem that can be analysed from the perspective
of model predictive control in order to integrate an optimal point of view in the design
of the adaptive parameters.

The extension of this procedure with the assumption of partial state feedback will
be addressed in future researches by means of the application of an adaptive integral
sliding mode observers.
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Abbreviations

The following abbreviations are used in this manuscript:

Uusv Unmanned Surface Vehicle

IMO International Maritime Organisation
LOS Line of Sight

SMC Sliding Mode Control

AISM  Adaptive Integral Sliding Mode

GUAS  globally uniformly asymptotically stable
MAE Mean Absolute Error

MIA Mean Integral Absolute

MTV Mean Total Variation
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