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Abstract 22 
Climate change may cause organisms to seek thermal refuge from rising temperatures, either by shifting their ranges 23 
or seeking microrefugia within their existing ranges. We evaluate the potential for thermal stratification to provide 24 
refuge for two fish species in the San Francisco Estuary (SFE): Chinook Salmon (Oncorhynchus tshawytscha) and 25 
Delta Smelt (Hypomesus transpacificus). We compiled water temperature data from multiple monitoring programs 26 
to evaluate spatial, daily, hourly, intra-annual, and inter-annual trends in stratification using generalized additive 27 
models. We used our data and models to predict the locations and periods of time that the bottom of the water 28 
column could function as thermal refuge for salmon and smelt. Periods in which the bottom was cooler than surface 29 
primarily occurred during the peak of summer and during the afternoons, with more prominent stratification during 30 
warmer years. Although the SFE is often exceedingly warm for fish species and well-mixed overall, we identified 31 
potential for thermal refugia in a long and deep terminal channel for Delta Smelt, and in the periods bordering 32 
summer for Chinook Salmon. Thermal stratification may increase as the climate warms, and pockets of cooler water 33 
at depth, though limited, may become more important for at-risk fishes in the future. 34 

Introduction 35 
Estuaries are highly dynamic and diverse systems valuable to human populations due to the wide array of 36 

ecosystem services they provide (Barbier et al., 2011). Estuaries are also some of the most degraded ecosystems on 37 
the planet: tributary rivers have been dammed and diverted, food webs have been altered by invasive species, and 38 
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contaminants have been introduced into the waters (Lotze et al., 2006). Many of these anthropogenic impacts are 39 
exemplified in the San Francisco Estuary (SFE) of California, United States (Nichols et al., 1986; Brown & Bauer, 40 
2010). The SFE has lost a large portion of its historical tidal wetlands due to diking, freshwater flow is largely 41 
controlled by water control infrastructures, and multiple native fish species are in severe decline (Kimmerer, 2004). 42 
Some species, such as the estuary-endemic Delta Smelt (Hypomesus transpacificus) and the anadromous Chinook 43 
Salmon (Oncorhynchus tshawytscha) are of particular interest due to their listing under the federal and California 44 
Endangered Species Acts (Perry et al., 2016; Moyle et al., 2018). 45 

Water temperature is a key variable controlling the physiology, behavior, and distribution of fishes. 46 
Temperature can influence the growth rate, metabolism, and swimming activity of individual fish (Jobling, 1997; 47 
Breau et al., 2011; Jeffries et al., 2016; Davis et al., 2019a). These effects can impact fish species at a population 48 
level through increased predation-associated mortality or reduced spawning success (Rose et al., 2013; Davis et al., 49 
2019b; Michel et al., 2020). Shifts in water temperature can also alter the routing and timing of migration and, 50 
therefore, can change the distribution of fishes at large geographical scales (Munsch et al., 2019; Goertler et al., 51 
2021). Fish can exploit the spatial and temporal temperature variation within a system to optimize their 52 
bioenergetics (Bevelhimer & Adams, 1993; Neverman & Wurtsbaugh, 1994; Armstrong & Schindler, 2013; 53 
Armstrong et al., 2013). They can also seek refuge (whether cooler or warmer) in order to avoid thermal stress or 54 
potentially lethal conditions (Torgersen et al., 1999).  55 

Climate change is forecasted to increase water temperatures through atmospheric warming and in 56 
California, this will be exacerbated by declining snowpack in the wet season (i.e., winter) (Dettinger & Cayan, 57 
1995). In response to warming, marine fishes have been migrating towards higher latitudes while freshwater fishes 58 
have been migrating to higher elevations to seek better thermal conditions (Hickling et al., 2006; Comte & 59 
Grenouillet, 2013). However, some species with limited opportunities for dispersal (e.g., spring and lake-dwelling 60 
fishes, estuary-specialist species with narrow abiotic tolerances) or anadromous species that rely on thermally 61 
suitable migration corridors may have few options for avoiding warming conditions (Ray, 2005). Evidence suggests 62 
that water temperatures are already reaching stressful levels for thermally-sensitive fishes in some areas of the upper 63 
SFE and that climate change will continue to increase water temperature over time (Brown et al., 2013, 2016; 64 
Bashevkin et al., 2021; Nobriga et al., 2021). Although modeling studies (Vroom et al., 2017) and observational 65 
studies (Brown et al., 2016) suggest that significant vertical differences in water temperature are likely uncommon 66 
in the upper SFE, the hypothesis that such thermal stratification can act as temporary refuge for aquatic species has 67 
not been well tested. Furthermore, assessment of thermal heterogeneity in the landscape can help better understand 68 
the ecology and evolution of the estuary’s biota.    69 

Here we seek to evaluate existing discrete (e.g., boat-based surveys) and continuous (e.g., sondes) records 70 
of water temperature in the SFE to determine the timing, frequency, duration, and magnitude of differences between 71 
near-surface and near-bottom water temperature. We compiled thousands of discrete temperature data points that 72 
have been collected since 2011 and data from four continuous monitoring stations that have been collected since 73 
2012. These data were interpolated over space and time to identify patterns of thermal stratification. Our study 74 
questions are as follows: 1) Where on the landscape does thermal stratification occur?, 2) When during the day and 75 
over the course of the year does thermal stratification occur?, and 3) Can thermal stratification provide refuge for 76 
fish species of concern? We specifically consider two species of management concern in the SFE: Delta Smelt and 77 
Chinook Salmon. Delta Smelt is an example of an estuarine resident species with limited capability to disperse to 78 
other estuaries (Sommer & Mejia, 2013), while Chinook Salmon is an example of an anadromous species that relies 79 
on the SFE for only a part of its life cycle (Perry et al., 2016). Patterns of thermal stratification and its potential 80 
impacts to fish species described in this study can be instructive for other major estuaries around the world inhabited 81 
by thermally-sensitive and estuary-dependent fishes. 82 

Methods 83 
Study system 84 

The SFE is the largest estuary on the Pacific Coast of the United States, stretching from the tidal saline San 85 
Francisco Bay to the tidal freshwater Sacramento-San Joaquin Delta (Delta) (Figure 1). This system has been highly 86 
altered by habitat modification, construction of water conveyance infrastructure, and species invasions (Nichols et 87 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2021                   doi:10.20944/preprints202111.0401.v1

https://doi.org/10.20944/preprints202111.0401.v1


al., 1986). Once composed of largely dendritic tidal wetlands and seasonal floodplains, the Delta of today is a 88 
network of diked channels bordered by levees built to protect agricultural tracts (Whipple et al., 2012). The Delta is 89 
managed to be mostly freshwater year-round, with some brackish water (1-2 parts per thousand salinity) intruding in 90 
the western Delta during the summer and fall of dry years. Salinity is managed through upstream reservoir releases, 91 
as well as adjustments to water exports at the pumping facilities in the southwestern Delta near Old and Middle 92 
Rivers. The SFE downstream of the Delta is dynamic in salinity and the low salinity zone between 1 and 6 ppt is of 93 
particular interest to managers due to the association of the endangered Delta Smelt with this habitat (Sommer & 94 
Mejia, 2013). The SFE has a Mediterranean climate with warm and dry conditions in the summer and fall (June-95 
October) and cold and wet conditions in winter and spring (November-May). The amount of precipitation and flow 96 
in the SFE varies considerably from year to year. This high interannual variability plays a significant societal and 97 
ecological role in California (Dettinger et al., 1998). Temperature in the SFE is typically highest in July and lowest 98 
in January. 99 

 100 

 101 

Figure 1. Map of the upper San Francisco Estuary, California, USA, along with sampling locations. Circles indicate 102 
locations where discrete water temperature measurements were taken and colored based on sample size. Red 103 
triangles represent the four continuous water temperature stations. Regions are shown by dark blue outlines and grey 104 
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outline denotes the legal Delta boundary. Note that region cutoffs were used only for data processing and 105 
visualization purposes (not for analyses). 106 
 107 
Data source 108 
Discrete dataset 109 
 We integrated water temperature data collected at discrete time points in the SFE from various boat-based 110 
monitoring programs and studies (Bashevkin, 2021). Further details on the data integration process and access to the 111 
data can be found in Bashevkin (2021). For this study, we only retained data with temperature measurements at both 112 
the surface and near-bottom of the water column (typically 0.5 m below the surface and 0.5 m above the bottom). 113 
Data containing both surface and bottom temperature information has limited spatial coverage prior to 2011. 114 
Therefore, we only used data from 2011 to 2019. We removed a few data points which appear to have been entered 115 
incorrectly (i.e., more than 8 °C difference between the surface and the bottom or data with spatial coordinates that 116 
are outside of the SFE’s water boundaries). We also excluded data from regions with limited sample size (i.e., 117 
regions with no station containing 25 or more sampling occasions; see Figure 1 for regional boundaries). To reduce 118 
spatiotemporal autocorrelation in the dataset, in cases where multiple samples were taken at a single location in a 119 
day, only a single sample was retained (the data point closest to 12 P.M. was chosen). The final discrete temperature 120 
dataset contained 9,463 data points from seven different SFE studies: the Fall Midwater Trawl survey (Stevens & 121 
Miller, 1983), the San Francisco Bay study (Armor & Herrgesell, 1985), the Summer Townet survey (Turner & 122 
Chadwick, 1972), the Environmental Monitoring Program (IEP et al. 2021), the Enhanced Delta Smelt Monitoring 123 
survey (USFWS et al. 2020), the U.S. Bureau of Reclamation’s Sacramento Deepwater Ship Channel survey 124 
(Bashevkin, 2021), and the U.S. Geological Survey’s San Francisco Bay survey (Schraga & Cloern, 2017).  125 

Continuous dataset  126 
We integrated continuous surface and bottom water temperature data from four stations monitored by the 127 

California Department of Water Resources. Stations included: Antioch (ANH) in the San Joaquin River, Mallard 128 
Island (MAL) in the confluence area of the Sacramento and San Joaquin Rivers, Martinez (MRZ) at Carquinez 129 
Strait, and Rough and Ready Island (RRI) in the San Joaquin River at the Port of Stockton (Figure 1). All bottom 130 
sensors were approximately 1 meter from the bottom of the riverbed, and all surface sensors were near the surface of 131 
the water column at a depth of approximately 3-4 meters. Surface temperature data were filtered for relevant stations 132 
from IEP et al. (2020). Bottom temperature data were standardized and quality checked as described by IEP et al. 133 
(2020), including filtering the 15-minute event data to hourly, and applying range, missing values, repeating values, 134 
anomaly, spike, and rate of change filters. Lastly, we filtered the dataset to a time period for which all stations had 135 
existing and paired surface and bottom temperature data. The final dataset contained 252,711 datapoints from 136 
November 2012 to October 2019.  137 

Data analysis 138 
Discrete dataset 139 
 We used generalized additive models (GAM) to analyze general spatiotemporal patterns of temperature 140 
stratification in the discrete dataset. We calculated surface-bottom temperature difference (surface temperature 141 
minus bottom temperature) and used it as a response variable. As such, negative values correspond to cooler 142 
temperatures towards the bottom and positive values correspond to warmer temperatures towards the surface. 143 
Covariates used include geographical coordinates (x, y) and day of year (1 for January 1st and 365 or 366 for 144 
December 31st dependent on whether it is a leap year). Because temperature stratification can be affected by changes 145 
in air temperature at the daily or interannual scale, we also included a “temperature anomaly” covariate that 146 
represents the variability of surface temperature relative to the expected daily temperature based on day of year and 147 
location. To calculate the temperature anomaly value, we first constructed a GAM to predict surface temperature 148 
based on day of year and geographical coordinates at a coarse level: 149 

S ~ te((x, y),(day of year)) 150 

where S is the surface temperature (°C), te is tensor product smooth, x and y are the geographical coordinates. 151 
Smooth terms were thin plate regression spline and cyclic cubic regression spline for spatial coordinates and day of 152 
year terms, respectively. The GAM parameter k, the basis dimension of each smoother, was set to 5 for day of year 153 
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and 10 for the spatial coordinates. These basis dimensions were set fairly low for the model because it was used 154 
mainly to remove collinearity between temperature, space, and time. To calculate the temperature anomaly value, 155 
we subtracted the observed temperature in our dataset by the predicted temperature from the temperature anomaly 156 
model. As such, the final temperature anomaly value provides us with the deviation of the surface temperature 157 
measurements from the general expectation based on their location and season within the SFE. 158 

We set up four candidate models with smoother terms based on hypotheses (see models 1-4 in Table 1). A 159 
conventional thin-plate regression spline GAM with geographical coordinates as predictors would extrapolate the 160 
model across space without regards to geographical boundaries (e.g. prediction of water temperature over land). To 161 
minimize potential bleedover of information between distinct water bodies that are within a short distance of each 162 
other (e.g., eastern end of Suisun Marsh and western end of Cache and Lindsey Sloughs) (Figure 1), we applied a 163 
fourth model with a soap-film smoother (Wood et al., 2008) using the same covariates as the best fitting model out 164 
of the original four (Table 1). Because of the number of islands and channels that exist in the upper SFE, and the 165 
inability of the soap-film smoother to handle exceedingly complex boundaries, we ran our soap-film smoother 166 
model with a simplified boundary that represents just the outline of our study area (i.e., without islands) 167 
(Supplementary Information Figure S3). Because water temperature in the upper SFE is primarily driven by air 168 
temperature (Wagner et al., 2011; Vroom et al., 2017), a relatively simple boundary should have provided accurate 169 
results.  170 

Prior to model selection, we conducted a preliminary analysis to select the best basis dimensions (k) for 171 
each covariate. We selected k of 5 for the day of year term based on visual inspection of the temperature anomaly 172 
calculation model and the general seasonal pattern of the system. For the spatial coordinates term (x,y), we 173 
constructed GAMs with surface-bottom temperature difference as the response variable and the tensor product 174 
smooth of the spatial coordinates as predictors with varying k. We constructed models from k = 10 to k = 50 at 175 
increments of 5, resulting in a total of nine models. We evaluated changes in adjusted R2 and Akaike information 176 
criterion for limited sample size (AICc) across the different k values to select the best k. We selected k = 20 for the 177 
spatial coordinates term based on the incremental change with subsequent increase of k (Supplementary Information 178 
Figure S1). We followed a similar procedure to select k for the temperature anomaly term, but the GAMs for this 179 
were constructed with the tensor product smooth of both spatial coordinates and temperature anomaly. A total of 180 
eight models were constructed with varying k for the temperature anomaly term from k = 3 to k = 10, with k for the 181 
spatial coordinates term set at 20. We selected a low k at 3 for the temperature anomaly term based on visual 182 
inspection of changes in adjusted R2 and AICc, and to also ease the interpretation subsequent model output 183 
(Supplementary Information Figure S2).   184 

Table 1. Description and justification of the four candidate GAMs used to evaluate patterns in thermal stratification 185 
using the discrete dataset. Models are ordered by increasing complexity. T is the surface-bottom temperature 186 
difference, te is tensor product smooth, x and y are the spatial coordinates, day is day of year, and ta is temperature 187 
anomaly. For smooth terms, tp is thin plate regression spline, cc is cyclic cubic regression spline, and so is soap-film 188 
smooth.  189 

Candidate 
model 
number 

Model structure Smooth terms Interpretation and hypothesis 

1 T ~ te(x, y) x, y = tp Thermal stratification varies across 
space, but not by season 

2 T ~ te((x, y),(day)) x, y = tp, day = cc Thermal stratification varies by space 
and season 

3 T ~ te((x, y),(day),(ta)) x, y = tp, day = cc, ta = tp Thermal stratification varies by space, 
season, and surface temperature 
anomaly 

4 T ~ te((x, y),(day),(ta)) x, y = so, day = cc, ta = tp Thermal stratification varies by space, 
season, and surface temperature 
anomaly. Water boundaries are also 
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important in understanding 
stratification patterns. 

 190 

We assessed relative model fit of the four candidate models by using adjusted R2 and AICc (Table 1). To 191 
further evaluate the performance of the models, we conducted 10-fold cross validations with randomly assigned 192 
folds to the dataset (but same across models). We assessed the results of this 10-fold cross validation process by 193 
calculating the root mean square error (RMSE) and Pearson’s correlation coefficient (r) between the out-of-sample 194 
predictions and observations. Global RMSE across folds was calculated by dividing the sum of squares of RMSE 195 
from the various folds by the number of folds (10), and then taking the square root of this value. We also calculated 196 
the proportion of predictions from the 10-fold cross validation that had the same sign as the observed value (e.g., 197 
whether the model predicted a negative value when the observation has a negative value and vice versa). For this 198 
calculation, actual observations with identical bottom and surface temperatures (zero difference) were removed. To 199 
assess the degree of residual spatiotemporal autocorrelation, we calculated the spatiotemporal variogram on the best 200 
model’s residuals (Pebesma, 2004). 201 

To visualize our results, we first generated a 150 x 150 grid of cells over the spatial extent of our dataset. 202 
We then removed any points outside of the SFE water boundaries, and subsequently generated predictions from our 203 
best fitting model based on the specified covariate values. All analyses for the discrete dataset were conducted in R 204 
version 3.8.2 (R Core Team, 2021) using the “mgcv” package for GAM construction (Wood, 2011), “cvTools” for 205 
k-fold cross-validation process (Alfons, 2012), “gstat” for spatiotemporal variogram (Gräler et al., 2016), and 206 
“ggplot2”, “ggpubr”, and “sf” package for plotting and visualization (Wickham, 2016; Pebesma, 2018; Kassambara, 207 
2020). 208 

Continuous dataset  209 
 Our discrete dataset was collected only during daytime and each site was rarely sampled more than a few 210 
times in a given month. As such, we used the continuously collected data in our study to better understand the 211 
changes in temperature stratification throughout a diel cycle and across months. We calculated surface-bottom 212 
temperature difference in a similar manner as the discrete dataset (surface temperature minus bottom temperature 213 
for each time period). To evaluate how surface-bottom temperature differences varied across a diel cycle, we 214 
organized time of day into 3 categories based on hour (Pacific Standard Time): Early (00:00-07:59), Middle (08:00-215 
15:59), and Late (16:00-23:59). To assess changes across months we plotted surface-bottom temperature differences 216 
by day of the year with gam smooths constructed in ggplot in R with the formula: 217 

 y~s(x, k = 5, bs = “cc”)  218 

where y represents the surface-bottom temperature differences, x represents the day of the year, k represents the 219 
GAM basis dimension, and bs=”cc” defines a cyclical smooth type. We observed that substantial differences 220 
occurred only at two of our stations: RRI and MRZ (Figure 2). For this reason, we focused on RRI and MRZ 221 
stations for subsequent analysis.  222 
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 223 

Figure 2. Results from preliminary analysis showing overall relative temperature difference between surface and 224 
bottom readings at four continuous water temperature stations: Antioch (ANH), Mallard Island (MAL), Martinez 225 
(MRZ), and Rough and Ready Island (RRI). Lines represent modeled temperature differences by day of year using 226 
GAM, and results are displayed for three time of day categories: Early (00:00 to 07:59), Mid (08:00-15:59), Late 227 
(16:00-23:59).  228 

For models of RRI and MRZ, we first calculated surface temperature anomaly, similar to that described for 229 
the discrete dataset, to provide context about how relative temperature differences varied during cooler or warmer 230 
days. For each station, a GAM examining the interactive effect of day of year and hour on surface temperature was 231 
run. The basis dimension of each smoother, k, was set to a low k-value of 5 for both day of year and hour, and we 232 
used a cyclic cubic regression spline for both hour and day of year due to the cyclic nature of day of year and hour: 233 

S ~ te(day of year, hour) 234 

The anomaly was then extracted from the response residuals of the model. Next, we ran separate models for RRI and 235 
MRZ examining the interactive effect of hour, day of year, and surface temperature anomaly on surface-bottom 236 
temperature difference (T) using a tensor product smooth model. We recognized that there was temporal 237 
autocorrelation not accounted for in these models; however, we used the models primarily to visualize observed 238 
patterns. Basis dimension (k) values were selected based on our expectations and uses of this GAM model for 239 
visualization. We chose lower basis dimensions for hour and anomaly (7 and 6 respectively) because we expected 240 
simple curves and were only interested in the broader relationships. We chose a k-value of 14 for day-of-year to 241 
roughly reflect the monthly time-scale we were most interested in. We used a cyclic cubic regression spline for hour 242 
and day of year, and a thin plate regression spline for temperature anomaly (ta): 243 

T~te(day of year, hour, ta) 244 

Model fit was assessed by visualizing residual patterns. We visualized model results by predicting model results for 245 
all combinations of hour (1-24), day of year (1-365 or 366), and surface temperature anomalies of -1.5 °C, 0 °C, and 246 
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+1.5 °C, and plotting rasters of the results for each anomaly. Analysis for the continuous dataset was done in R 247 
version 4.0.1 (R Core Team, 2021). GAMs were run using the “bam” function in the “mgcv” package (Wood, 2011) 248 
and visualizations were displayed using the “ggplot2,” “ggpubr”, “grid” and “gridExtra” packages (Wickham, 2016; 249 
Auguie, 2017; Pebesma, 2018). 250 

Species temperature metrics 251 
To put our results in the context of species’ habitat, we evaluated our data and model output using key 252 

temperature thresholds based on the existing literature for Delta Smelt and Chinook Salmon, two fish species of high 253 
conservation concern in the SFE. Delta Smelt is an endemic, annual forage fish species that spends the entirety of its 254 
life cycle in the upper SFE (i.e., estuary-dependent). High water temperatures in summertime can negatively impact 255 
Delta Smelt survival (Mac Nally et al., 2010; Polansky et al., 2020). Catch of Delta Smelt generally declines starting 256 
at 20 °C and they are rarely seen when water temperature reaches >25 °C (Nobriga et al., 2008). Temperature of 25 257 
°C and above is generally believed to cause high Delta Smelt mortality (Swanson et al., 2000; Brown et al., 2013, 258 
2016), and therefore, we chose 25 °C as our temperature cutoff for the species. Chinook Salmon is an anadromous 259 
fish species of high commercial and recreational interest that is native to the Pacific coast of North America. Adult 260 
Chinook Salmon spawn in rivers and juveniles mostly rear for a few months in streams and estuaries before making 261 
their way into the ocean. Juvenile Chinook Salmon face rising water temperature as they outmigrate, which results 262 
in increased predation risk. Mortality can be near 100% at or above 20 °C due to predation (Nobriga et al., 2021) so 263 
we chose 20 °C as our temperature metric for this species. 264 

With the final models we constructed from our discrete dataset, we created surface and bottom temperature 265 
predictions that were converted to different suitability categories depending on the species (i.e., suitable 266 
temperatures at both surface and bottom, suitable only in the bottom of the water column, unsuitable overall). For 267 
Delta Smelt, we plotted temperatures during a typical condition (temperature anomaly = 0) for July 15th, as this 268 
would generally be the hottest time of the year. For Chinook Salmon, we plotted temperatures during a typical 269 
condition (temperature anomaly = 0) for June 15th because this is the tail-end of the juvenile Chinook Salmon 270 
outmigration season and when they would experience the warmest conditions. We also constructed suitability plots 271 
with the continuous dataset for the two stations with substantial amount of stratification: MRZ and RRI. Continuous 272 
data allow us to better understand the true daily and seasonal pattern of temperature stratification that these at-risk 273 
fish species experience. We selected the year 2015 for the plots as this was the warmest average year in the dataset, 274 
representative of future conditions, with a relatively complete dataset for both MRZ and RRI stations. We calculated 275 
the proportion of each day that was below a threshold of 25 °C for Delta Smelt and below 20 °C for Chinook 276 
Salmon. We also subtracted the proportion of suitable hours at the surface by the proportion of suitable hours at the 277 
bottom to show when the bottom might provide refuge from the surface at each threshold temperature. While we 278 
acknowledge that these thresholds are somewhat arbitrary and that in truth a continuum of suitable temperatures 279 
exist for each species, a broad illustration of the thermal landscapes for each species during their warmest months 280 
can assist management agencies with identifying areas for potential recovery actions (e.g., supplementation, 281 
restoration, etc.).  282 

Results 283 
Discrete dataset 284 
 In the discrete temperature dataset, surface temperatures ranged from 5.6 to 29.6 °C with a mean of 18.1 °C 285 
and median of 19.2 °C, while bottom temperatures ranged from 5.6 to 29.9 °C with a mean of 17.9 °C and median of 286 
19 °C. Temperature difference (surface temperature minus bottom temperature) in the discrete dataset ranged from -287 
7.4 to 6.5 °C with a mean of -0.2 °C (standard deviation of 0.6) and median of -0.1 °C. About 15% of the data had 288 
zero difference between surface and bottom temperatures. The surface temperature GAM constructed to calculate 289 
the temperature anomaly value followed our general expectations, with surface temperatures being highest in July 290 
and August and lowest in January (Supplementary Information Figs. S4-S6). Although there was some variability in 291 
the spatial pattern across seasons, surface temperatures were generally higher towards the Sacramento River Ship 292 
Channel to the north and the southern portion of the Delta (Figure 1, Figure 3).  293 
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 294 

Figure 3. Model predictions of surface temperature and surface-bottom temperature differences over the waterways 295 
of the SFE with the discrete dataset. The surface temperature model outputs used to calculate the temperature 296 
anomaly are shown on the left panel, while the final soap-film smooth model results (model 4 in Table 1) are shown 297 
on the right panel. Rows are the dates that are used to represent the different seasons. Columns within each panel 298 
represent three different scenarios based on temperature anomaly values: cool conditions (-1.5 °C from expected 299 
surface temperatures), average conditions (0 temperature anomaly, predicted surface temperatures), and warm 300 
conditions (+1.5 °C from expected surface temperatures). To avoid extrapolation, only regions with data that match 301 
the categories (season and temperature anomaly group) are shown for each plot. Note that the color-temperature 302 
scale changes among seasons. 303 

 Of the four models we constructed with the discrete dataset (Table 1), model 4 with the soap-film smoother 304 
had the best fit overall with the best performance across all metrics except for percent of predictions with correct 305 
sign (Table 2). The temperature anomaly, which could be due to either diel or interannual changes in air 306 
temperature, appears to be an important variable for predicting surface-bottom temperature difference based on the 307 
substantial jump in R2, AICc, RMSE, and r between model 2 and model 3. The addition of the soap-film smoother 308 
in model 4 provided only a modest improvement from model 3 based on the same metrics and negligible change in 309 
model accuracy based on % of correctly predicted directions of surface-bottom temperature difference (+ or -). The 310 
spatiotemporal variogram of model 4 showed some autocorrelation for sites within 1 km of each other sampled on 311 
the same day, but no consistent patterns for other time frames or distance within a two-week span (Supplementation 312 
Information Fig S7). There was a slight increase in autocorrelation for data collected four weeks apart 313 
(Supplementation Information Fig S8), likely due to the nature of the long-term monitoring programs that produced 314 
the dataset where sampling occurs roughly once a month. 315 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2021                   doi:10.20944/preprints202111.0401.v1

https://doi.org/10.20944/preprints202111.0401.v1


Table 2. Summary of model fit metrics for the four candidate GAMs constructed with the discrete dataset as 316 
described in Table 1. Adjusted R2 and Akaike information criterion for limited sample size (AICc) were calculated 317 
from the full model. Root mean squared error (RMSE), Pearson’s correlation coefficient (r) and % of predictions 318 
with correct sign (+/-; observations of zero temperature difference removed) were calculated from the out-of-sample 319 
data through the 10-fold cross-validation process. 320 

Candidate 
model 
number R2 AICc RMSE r 

% of 
predictions 
with correct 
sign (+/-) 

1 0.206 7856.6 0.510 0.511 74.7% 
2 0.269 7013.9 0.487 0.569 76.1% 
3 0.493 5602.5 0.402 0.708 77.3% 
4 0.498 5571.9 0.388 0.731 77.3% 

  321 

 Both raw data and results from the soap-film model indicated that considerable differences (>0.5 °C) 322 
between surface and bottom temperatures are rare (Figure 4). Surface-bottom temperature difference tend to be 323 
negative (cooler in the bottom of the water column relative to surface), though conditions where bottom temperature 324 
is warmer than surface do occur in winter and spring. We observed the highest temperature differences between 325 
surface and bottom at the warmest conditions: during the peak of summer and as the temperature anomaly became 326 
more positive (Figure 3, Supplementary Information Figures S4-S6). Although the fall season saw lower magnitude 327 
temperature differences overall relative to summer, cooler temperatures in the bottom are more widespread than 328 
other seasons (Figure 4). Thermal stratification is the most prominent and consistent in the Sacramento River Ship 329 
Channel towards the northern end of the Delta, especially towards the northern tip of this dead-end channel. The 330 
Sacramento Ship Channel is where we observed the maximum temperature difference between surface and bottom 331 
in the discrete dataset at -7.4 °C, and where the soap-film model predicted the highest difference overall with over 3 332 
°C cooler temperatures in the bottom during the summer months. Although infrequent, the soap-film model 333 
indicates that warmer bottom temperatures can be observed relatively often at the western end of Suisun Bay during 334 
the coldest months and during more negative temperature anomaly conditions.  335 
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 336 

Figure 4. Model results for the discrete dataset showing areas with significant difference in temperature between 337 
surface and bottom (p < 0.01) to aid interpretation of results. Red areas indicate warmer temperature in the bottom 338 
relative to surface, while blue areas indicate cooler temperature in the bottom relative to surface. Rows are the dates 339 
that are used to represent the different seasons. Columns within each panel represent three different scenarios: cool 340 
conditions (-1.5 °C from expected surface temperatures), average conditions (0 temperature anomaly, predicted 341 
surface temperatures), and warm conditions (+1.5 °C from expected surface temperatures). Only regions with data 342 
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that match the categories (season and temperature anomaly group) are shown for each plot. The predicted mean 343 
magnitude of difference can be found in Figure 2. 344 

Continuous dataset 345 
For the entire continuous dataset, surface temperatures ranged from 6.6 to 28.8 °C with a mean of 17.1 °C 346 

and median of 17.6 °C, while bottom temperatures ranged from 6.8 to 27.3 °C with a mean of 17.0 °C and a median 347 
of 17.5 °C. ANH, MAL and MRZ had similar surface temperature ranges, while RRI had the greatest range and 348 
reached the highest temperatures of any station by several degrees (Table 3). ANH and MAL had more moderate 349 
surface-bottom differences, while MRZ and RRI exhibited greater negative values and variability in their surface-350 
bottom differences (Figure 2; Table 3). For all stations, the highest temperature differences between surface and 351 
bottom usually occurred in the summer (June, July, August). Furthermore, median maximum temperatures occurred 352 
either during the 15th or 16th hour (3:00 or 4:00 PM in the afternoon).  353 

Table 3. Temperature ranges for continuous stations. 354 

Station Surface Range 
(°C) 

Bottom Range 
(°C)  

Surface-Bottom 
Difference Range 
(°C) 

Surface-Bottom Difference Mean 
± SD 

Antioch (ANH) 6.7-25.2 6.8-25.1 -1.9-2.4 -0.01 ± 0.14 
Mallard Island 
(MAL) 

7.1-24.2 7.1-24.2 -2.2-3.3 0.01 ± 0.14 

Martinez (MRZ) 6.9-25.2 7.7-23.7 -5-4.4 -0.08 ± 0.53 
Rough and 
Ready Island 
(RRI) 

7.2-28.8 7.3-27.3 -4-0.6 -0.27 ± 0.45 

 355 

Results from the GAMs further indicate that for RRI and MRZ, bottom temperatures can be several degrees 356 
cooler than surface temperatures, especially during the summer (July – early September), and in the afternoon, 357 
(14:00 -19:00) (Figure 4, Figure 5). These differences, where bottom is cooler than surface, occur for 35% and 23% 358 
of predicted values in RRI and MRZ, respectively, but differences more negative than -1 °C occur in only 3.4% and 359 
4.7% of predicted values in RRI and MRZ, respectively. During cooler times of year, and the early and late hours of 360 
the day, we often observe no surface-bottom temperature difference, or the surface being slightly warmer than the 361 
bottom (up to 0.3 °C at RRI and 0.7 °C at MRZ).  362 

While RRI and MRZ exhibit similar patterns by day of year and hour, we observed differences in patterns 363 
in relation to surface temperature anomaly. MRZ exhibits similar trends as those observed in the discrete dataset: 364 
surface-bottom temperature differences are greater during warmer than expected surface temperatures (greater 365 
anomaly), reaching differences of -2.3 °C in the summer at a positive anomaly of +1.5 °C (Figure 5).  For RRI, we 366 
observe the greatest surface-bottom temperature difference (-2.5 °C) during cooler than expected surface 367 
temperatures (anomaly of -1.5 °C), followed by warmer than expected surface temperatures (-1.4 °C difference at an 368 
anomaly of +1.5 °C) (Figure 5).  369 
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 370 

 371 

Figure 5. Model results for the continuous dataset showing trends in surface-bottom temperature difference by time 372 
of day (hour) and time of year (day of year) at RRI (top row) and MRZ (bottom row). Red areas indicate surface is 373 
cooler than bottom, and blue areas indicate bottom is cooler than surface. Columns within each panel represent three 374 
different scenarios based on temperature anomaly values: cool conditions (-1.5 °C from expected surface 375 
temperatures), average conditions (0 temperature anomaly, predicted surface temperatures), and warm conditions 376 
(+1.5 °C from expected surface temperatures). 377 

Species temperature metrics 378 
Based on our surface temperature model and soap-film model results from the discrete dataset, the 379 

Sacramento River Ship Channel and the southern portion of the Delta are two regions that can pose thermal risk to 380 
both juvenile Chinook Salmon and Delta Smelt for the average June and July conditions (Figure 6). Parts of the 381 
Sacramento River (Middle Sacramento River region) towards the northeastern portion of our study region also seem 382 
to be relatively warm; however, we have low sample sizes for June and July for this area (N = 9). Water 383 
temperatures were generally cooler at the bottom and may provide refuge in portions of the Sacramento Deepwater 384 
Ship Channel and the upper Sacramento River, representing habitat for Delta Smelt and key migration corridor for 385 
Chinook Salmon, respectively. Meanwhile, the southern edge of the Delta seems to offer little reprieve for both 386 
species with high temperatures above our thresholds for both surface and bottom of the water column during June 387 
and July of the average year.  388 

The continuous dataset provided a similar picture, where the bottom of the water column can be cooler and 389 
more suitable for both at-risk species at different times of year (Figure 7). While both the surface and bottom are at 390 
temperatures likely unsuitable for both species throughout July-September for MRZ, and May-October for RRI, the 391 
bottom may provide periods of refuge during the months bordering these hottest months, such as in June and 392 
October for MRZ, and May and November for RRI (Figure 7). Juvenile Chinook Salmon will likely be downstream 393 
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of Suisun Bay by July (MRZ), so the species would not be too affected by the warm temperatures in July-394 
September. However, Chinook Salmon may be affected by warmer temperatures in April in RRI, as this overlaps 395 
with their outmigration period from the San Joaquin River. As such, Chinook Salmon could take advantage of 396 
available bottom refuge during this period. Delta Smelt are unlikely to stay in MRZ all year due to the typical 397 
increases in salinity during the drier months, but they could be present during earlier parts of the summer and take 398 
advantage of available bottom refuge at this time. While both MRZ and RRI stations remained below 25 °C 399 
throughout the summer of 2015, Delta Smelt can experience stress at temperatures lower than 25 °C and may take 400 
advantage of cooler bottom temperatures when available.  401 

 402 
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Figure 6. Temperature suitability maps for juvenile Chinook Salmon (A, C) and Delta Smelt (B, D) based on the 403 
warmest month that each species generally encounters in the upper SFE. For each species, the thermal landscape is 404 
plotted for average temperature conditions (plots A and B) and for warmer than average conditions (plots C and D). 405 
Plots were created with model predictions from the soap film model fit to the discrete dataset. Photo credit: Naoaki 406 
Ikemiyagi. 407 

 408 

Figure 7. Temperature suitability heat map plots for Delta Smelt and juvenile Chinook Salmon in 2015. Data are 409 
from two continuous monitoring stations (MRZ and RRI) that demonstrated considerable thermal stratification. 410 
Plots display proportion of each day that is suitable based on thresholds of 20 °C for Chinook Salmon and 25 °C for 411 
Delta Smelt. For each species, surface and bottom suitability are plotted (A for Chinook Salmon, C for Delta Smelt). 412 
Surface-bottom suitability difference (B for Chinook Salmon, D for Delta Smelt) shows the difference between 413 
surface suitability and bottom suitability. Negative values (darker blues) indicate more hours of suitable bottom 414 
temperatures compared to the surface.  415 

Discussion 416 
 Evidence of climate change and its impacts on biodiversity continues to accumulate. However, these 417 
impacts will not be uniform across space and time, and the spatial and temporal variability in temperature 418 
stratification within estuaries may provide an important thermal refuge to key fish species. Our study shows that the 419 
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upper SFE, while mostly well-mixed, shows episodic thermal stratification at certain locations, seasons, and times of 420 
day that may provide thermal refugia for at-risk species. Cooler water towards the bottom can be observed more 421 
often when overall temperatures are the highest: summer and fall months, warmer than average years, and the 422 
warmest time of the day. Our study also provides some insights into thermal stratification patterns that could be 423 
occurring in other estuarine systems with similar climate and geomorphology: during winter when freshwater 424 
outflow is high, warmer waters towards the bottom could occur (possibly related to salinity stratification), while 425 
deep terminal channels may result in a fairly consistent thermally-stratified water body throughout the year. 426 
Moreover, we took a statistical and empirical approach in this study that not only allows for a better understanding 427 
of the variability of thermal stratification, but also provides support and validation for mechanistic physical models.  428 

Water temperature dynamics 429 
Although it is generally well-understood that overall water temperatures are rising due to climate change, 430 

the thermal landscape may be complex. Results from our spatially-intensive discrete dataset indicate that thermal 431 
stratification varies considerably across space and time. When thermal stratification occurs, it often results in cooler 432 
temperatures in the bottom layer of the water column relative to the surface (Figure 4, Figure 5), as would be 433 
predicted from studies of other estuaries (Strange, 2013; Weinke & Biddanda, 2019). Warmer water is less dense, so 434 
it rises in the water column. In addition, surface water is exposed to more sunlight and warm air temperatures 435 
compared to deeper water (Simpson et al., 1990).  436 

The cooler bottom layer of water is the most consistent and widespread in the warm summer-fall months 437 
when freshwater input to the system is typically at its lowest. In highly stratified estuaries with a salt wedge, 438 
freshwater flow can intensify stratification by forming a buoyant layer on top of higher-density and colder salt water 439 
(Simpson et al., 1990). However, in shallower, fresher estuaries such as the Delta, freshwater flow may increase 440 
mixing. This pattern has also been seen in the Chesapeake Bay, where high freshwater flows can cause mixing and 441 
breakdown of stratification (Xu et al., 2012).  442 

The bottom layer of the water column also becomes cooler relative to the surface as overall surface 443 
conditions become warmer (as proxied by the positive temperature anomaly value), possibly because thermoclines 444 
tend to form more frequently during periods of low wind, which often coincide with warmer air temperature. 445 
Surface water temperatures are also generally warmer in spring and summer during droughts, which can potentially 446 
increase thermal stratification (Bashevkin & Mahardja, 2021). Conversely, warmer conditions towards the bottom of 447 
the water column can occur during cool conditions. The SFE typically experiences higher freshwater outflow in 448 
winter-spring relative to summer-fall, and longer exposure of the freshwater surface layer to cold air during 449 
wintertime may explain this phenomenon. Observations of warmer water in the bottom relative to surface are most 450 
common at the most downstream location of our study area during wintertime of colder years (Figure 4), likely a 451 
byproduct of salinity stratification that can take place in this more marine-influenced region (Vroom et al., 2017).  452 

In concordance with previous studies (Kimmerer, 2004; Vroom et al., 2017), the magnitude of temperature 453 
difference from thermal stratification in the SFE is low in general (within 0.5 °C). The sole exception to this is the 454 
Sacramento River Ship Channel, a man-made channel built in 1963 to allow large vessel access to the port of West 455 
Sacramento, located towards the northern end of the Delta. The Sacramento River Ship Channel is a deep (~11 456 
meters) and long (~40 kilometers) dead-end slough with high residence time and low water exchange with the rest 457 
of the system (Gross et al., 2019). However, the Sacramento River Ship Channel is also tidally influenced towards 458 
its downstream portion, resulting in unique hydrodynamics relative to the rest of the Delta and a strong thermocline 459 
throughout most of the year (roughly between 0.6 to 3.5 °C cooler towards the bottom, with a maximum of 7.4 °C 460 
based on our dataset). It is important to note that our discrete dataset can only demonstrate the broad spatiotemporal 461 
patterns and cannot capture the short-term variability in thermal stratification due to tides and winds. Thermal 462 
stratification in the Sacramento River Ship Channel is more prevalent during ebb tides when warm water from the 463 
northern end moves south at the surface layer level (RMA, 2021). Meanwhile wind can break down thermal 464 
stratification due to vertical mixing at the Sacramento River Ship Channel (Lenoch et al., 2021). Changes to wind 465 
patterns due to climate change could impact where and when we see thermal stratification in the future. It is possible 466 
that the declining wind speed observed in the estuary (Bever et al., 2018) may have further amplified the 467 
thermocline seen at the Sacramento River Ship Channel. Wind has been well-documented in breaking down 468 
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stratification in other estuaries, including the Chesapeake Bay (Xu et al., 2012), Great Lakes (Weinke & Biddanda, 469 
2019), and the York estuary (Scully et al., 2005).  470 

The temporally-intensive, but spatially limited continuous water temperature data provides an important 471 
counterpoint to our spatially-intensive discrete data set. We found the potential for greater average temperature 472 
differences at two of the continuous site sites than the discrete data would suggest, possibly because it captures more 473 
data from the warmest part of the day (~14:00-16:00). These stations also gave us a window into nighttime 474 
temperature patterns, which are not captured during discrete water quality sampling runs. Higher stratification 475 
during warmer times of day is not surprising, but the difference between the four continuous stations was 476 
unexpected, and provides insight into the range of potential thermal landscapes. Station MRZ was furthest to the 477 
west, more subject to ocean influence, and had the highest range of difference between surface and bottom 478 
temperatures. There were even periods of early mornings during the winter when bottom temperatures were warmer 479 
than surface temperatures, potentially due to an interaction between thermal stratification and salinity stratification 480 
(Cloern et al., 2017). RRI was furthest to the east, but in a much smaller channel. High stratification was observed at 481 
this site as well, particularly in the summer in the afternoon. The moderate amount of thermal stratification observed 482 
at RRI may due it being a deep channel with low water velocity for large parts of the year (Vroom et al., 2017). 483 
ANH and MAL were midway between these two end points, and these two stations had very little thermal 484 
stratification. We do not have sufficient sample size to speculate on which conditions are controlling these patterns, 485 
but the contrast between these four stations indicates more paired surface/bottom continuous temperature sensors 486 
can help better understand the thermal landscape of the estuary. 487 

Another interesting observation from the continuous temperature sensors was that while surface-bottom 488 
temperature difference increased with temperature anomaly at MRZ, as expected from surface warming, we did not 489 
observe this pattern at RRI. The increased stratification during cooler years may be related to inflow and water year 490 
type, as the coolest years observed at this station also happen to be the wettest years (2017, 2019), and similarly, the 491 
warmest years also happen to be some of the driest years in our study period (2014-2016) (Supplementary 492 
Information Figures S12, S13). Meanwhile, the decreased stratification during warmer periods may be due the 493 
interaction between inflow and the exceptional longitudinal dispersion observed in the San Joaquin River where RRI 494 
station is located (Monismith et al., 2009). This phenomenon may also be related to the Stockton Deep Water Ship 495 
Demonstration Dissolved Oxygen Aeration Facility (Aeration Facility) pumping that occurs at RRI during warmer 496 
years and during times of lower levels of dissolved oxygen, which may increase vertical mixing. The intake for the 497 
Aeration Facility is at the same location as the RRI water quality station and the diffuser location is approximately 498 
0.2 miles downstream of RRI (ICF International, 2010). Pumps or “bubblers” are commonly used to mitigate local 499 
occurrences of low dissolved oxygen levels and have been found to disrupt stratification of temperature and salinity 500 
in other systems (e.g., Hamilton et al., 2001). 501 

Implications for species of concern 502 
Identifying thermal refugia for key species under a warming climate is a critical issue for conservation 503 

biology (Keppel et al., 2012). In the SFE, two declining fish species play a substantial role in water management and 504 
are of high interest: Chinook Salmon and Delta Smelt. Chinook Salmon is an ecologically and economically 505 
important species throughout the Pacific coast of North America, with two federally-listed runs under the 506 
Endangered Species Act within the SFE (NMFS, 2019). Meanwhile, the Delta Smelt is an annual, forage pelagic 507 
fish endemic to the SFE that is also federally listed and may be nearly extinct in the wild (Hobbs et al., 2017). Both 508 
fish species are considered sensitive to warm water temperatures (>20 °C) often seen in the SFE (Myrick & Cech, 509 
2004; Moyle et al., 2016). Based on our results, the northern and southern edges of the Delta already pose thermal 510 
risk in late-spring and summer for both Chinook Salmon and Delta Smelt based on the average conditions from the 511 
past decade (Figure 6). However, the impacts of these high temperature conditions and stratification differ 512 
considerably between the two species given their distinct life histories. 513 

Chinook Salmon are most sensitive to temperature stress at their juvenile life stage, as they migrate from 514 
their spawning grounds in the upper watershed through the Delta on their way to the ocean. This stage in their 515 
migration is generally characterized by high mortality, even during good conditions (Buchanan et al., 2018). If they 516 
reach the Delta when temperatures are too warm, they may experience increased predation, physiological stress 517 
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(Marine & Cech, 2004), low dissolved oxygen (Jassby & Van Nieuwenhuyse, 2005), synergistic impacts of toxins 518 
(Dietrich et al., 2014), and other barriers to successful migration. Salmon have been shown to use differences in 519 
water temperature to optimize their growth and feeding in other estuaries (Armstrong & Schindler, 2013). Therefore, 520 
juvenile Chinook Salmon may make use of thermal stratification as they migrate from the relatively warm 521 
Sacramento River (Figure 6a) and San Joaquin River (Figure 7a, see RRI station on the San Joaquin River) towards 522 
the cooler downstream parts of the SFE, whether it is based on season, location, or time of day (Figures 3,5). 523 
Juvenile Chinook Salmon are almost never found in the often stratified Sacramento River Ship Channel (Mahardja 524 
et al., 2021); however, they can often be routed towards the large water export facilities at the southwest end of the 525 
Delta where water can be unsuitably warm in June (Kimmerer, 2008). The unsuitably warm waters around the Delta 526 
water export facilities suggest that during warmer parts of the years, there may be high mortality rates for Chinook 527 
Salmon prior to their entrainment into the facilities (Jahn & Kier, 2020). We found the most consistent thermal 528 
stratification in the warmer months of June-September (Supplementary Information Figures S9-S11), when few 529 
salmon are migrating through the region; however, the increase in temperatures projected under climate change may 530 
extend the period of thermal stratification earlier into the spring or later into the fall (Brown et al. 2016), making 531 
cooler depths important for early or late migrants.  532 

In contrast to Chinook Salmon, the endangered Delta Smelt reside within SFE year-round. Delta Smelt are 533 
spawned in freshwater and largely migrate towards the low salinity zone around summertime, but parts of their 534 
population can reside in freshwater year-round in the northern portion of the Delta that includes the Sacramento 535 
River Ship Channel (Hobbs et al., 2019). Semi-anadromous Delta Smelt that migrate into the low salinity zone can 536 
experience relatively cool waters in the Suisun Bay in the summer (Figure 3); however, freshwater resident Delta 537 
Smelt have to contend with high and occasionally lethal temperatures in the north Delta (Mahardja et al., 2019; 538 
Young et al., 2020). Given the sensitivity of Delta Smelt to high temperature and the considerable amount of 539 
temperature stratification in the Sacramento River Ship Channel, it seems likely that Delta Smelt would take 540 
advantage of the cooler, deeper water at this location. However, we note that further research is needed to better 541 
understand Delta Smelt movement behavior and swimming performance relative to temperature regulation and 542 
depth. The relatively high turbidity and food density in the Sacramento River Ship Channel preferred by Delta Smelt 543 
help explain why this area hosts the last few remaining Delta Smelt populations over the past couple of years 544 
(USFWS et al., 2020). Brown et al. (2016) predicted water temperature in the Sacramento River Ship Channel under 545 
several climate change scenarios and found the region may be too warm for Delta Smelt by mid-century, however 546 
Brown et al.’s study was based on surface water temperature. If refugia are available in deeper areas of the channel 547 
as our results suggest and Delta Smelt is indeed capable of conducting vertical migration, then the Sacramento River 548 
Ship Channel may remain a refuge into the future and this suggests that recovery efforts, such as supplementation of 549 
hatchery Delta Smelt into the wild, should not exclude the Sacramento River Ship Channel as a release site.  550 

An important caveat to our results is that the thermal limits of both species are likely to be much more 551 
dynamic than what we presented here. For example, high temperatures can reduce Delta Smelt’s survival in the 552 
summer and fall (Mac Nally et al., 2010; Polansky et al., 2020), spawning timing (Brown et al., 2016), sub- and 553 
whole-organism physiology (Komoroske et al., 2015; Jeffries et al., 2016), and behavior (Davis et al., 2019b). The 554 
25 °C threshold we presented for Delta Smelt is likely too conservative, given that at above 20 °C, Delta Smelt 555 
behavior starts to change as they exhibit sub-lethal stress (Davis et al., 2019b) and their growth rates start to decline 556 
steeply (Lewis et al., 2021). We have concentrated on surface-depth variation in the context of providing thermal 557 
refugia for fishes. However, temperature stratification may have other implications yet to be investigated in this 558 
system. Many lakes and estuaries have found interactions between zooplankton vertical migration and the depth of 559 
the thermocline, impacting peak densities of both phytoplankton and zooplankton (Berger et al., 2010; Carstensen et 560 
al., 2015; Leach et al., 2018). Stratification may also impact rates of nutrient transport and transformation (Sharp et 561 
al., 1986; Testa & Kemp, 2008), as well as dissolved oxygen levels (Murphy et al., 2011).  562 

Conclusions 563 
Our investigation confirmed previous findings that the SFE is a well-mixed estuary lacking widespread 564 

thermal stratification. However, we found that thermal stratification associated with cooler waters towards the 565 
bottom can become stronger, more consistent, and spatially extensive when overall conditions are the warmest (i.e., 566 
summer-fall period, warmer than average years, warmest time of the day). We also found that deep, terminal 567 
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channels and other areas with low water velocity show more consistent thermal stratification. Given these results, 568 
we expect that thermal stratification will become more common as temperatures continue to rise, flows shift earlier 569 
in the year, and droughts become more frequent due to climate change. Climate change is a global, intractable issue, 570 
and it remains to be seen if species of conservation concern such as Chinook Salmon and Delta Smelt in the SFE can 571 
adapt to the rapidly changing thermal landscape. Nevertheless, conservation efforts can be focused towards areas 572 
with largest potential to be refugia to provide these species with the best chance to succeed. 573 
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