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Abstract: Genome-wide association studies (GWAS) have identified and reproduced thousands of 

diseases associated loci but many of them are not directly interpretable due to the strong linkage 

disequilibrium among variants. Transcriptome-wide association studies (TWAS) incorporated ex-

pression quantitative trait loci (eQTL) cohorts as reference panel to detect associations with the phe-

notype at the gene level and were gaining popularity in recent years. For nicotine addiction, several 

important susceptible genetic variants were identified by GWAS, but TWAS that detected genes 

associated with nicotine addiction and unveiled the underlying molecular mechanism were still 

lacking. In this study, we used eQTL data from the Genotype-Tissue Expression (GTEx) consortium 

as reference panel to conduct tissue specific TWAS on cigarettes per day (CPD) over 13 brain tissues 

in two large cohorts: UK Biobank (UKBB; N=142,202) and the GWAS & Sequencing Consortium of 

Alcohol and Nicotine use (GSCAN; N=143,210), and then meta-analyzed the results across tissues 

while considering the heterogeneity across tissues. We identified three major clusters of genes with 

different meta-patterns across tissues consistent in both cohorts, including homogenous genes as-

sociated with CPD in all brain tissues, partially homogeneous genes associated with CPD in cortex, 

cerebellum and hippocampus tissues, and lastly the tissue-specific genes associated with CPD in 

only few specific brain tissues. Downstream enrichment analyses on each gene cluster identified 

unique biological pathways associated with CPD and provided important biological insights into 

the regulatory mechanism of nicotine dependence in the brain. 

Keywords: genome-wide association study; transcriptome-wide association study; meta-analysis; 

expression quantitative trait loci; nicotine addiction.  

 

1. Introduction 

The past decade has witnessed the explosion in Genome-wide association studies 

(GWAS) research, that identified thousands of robust reproducible genetic risk variants 

associated with complex diseases and traits [1, 2]. These findings have contributed to a 

better understanding of disease biology and the relative roles of genes vs. environment in 

disease risk [3, 4]. However, the loci identified by GWAS are not directly interpretable due 
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to the strong linkage disequilibrium (LD) that obscure the causal variants and GWAS data 

alone can hardly determine the causal genes and the underlying regulatory mechanism 

[5]. To fill this gap, transcriptome-wide association studies (TWAS) are developed to uti-

lize expression quantitative trait loci (eQTL) cohorts (e.g. Genotype-Tissue Expression 

(GTEx) [6]) which include both genotype and gene expression data as reference panel to 

infer association with a trait at the gene level [7]. In short, TWAS involve training a pre-

dictive model of expression from genotype in the reference panel, then using the trained 

model to predict the expression in the GWAS data, which are used to find the genes asso-

ciated with the trait [7, 8].Various statistical methods and computational tools for imple-

menting TWAS have been developed to date [9, 10]. Since gene expression and eQTL reg-

ulation are tissue-dependent, TWAS are usually conducted in tissue-specific manner. For 

example, PrediXcan [8] is the first ever TWAS tool that leverages the SNP-gene associa-

tions identified in a single tissue to infer gene-trait associations. S-PrediXcan [11] is an 

extension of PrediXcan that takes GWAS summary statistics as the input. Considering the 

similarity in transcription regulation across tissues, MultiXcan [12] and UTMOST [13] fit 

models to integrate the information of SNP-gene associations across multiple tissues to 

infer the gene-trait associations.     

To date, many genetic researches have revealed an important role of genetic factors 

on nicotine dependence [14, 15]. For example, GWAS have identified susceptible genetic 

variants located in nicotinic acetylcholine receptors (nAChRs) [16], metabolic enzyme en-

coded gene CYP2A6 [17] and lung-specific genes TENM2 [18] associated with nicotine 

addiction. But how these genetic compositions contribute to human nicotine dependence 

behaviors and the underlying molecular regulatory mechanism in the brain remained 

largely unknown. Palmer et al., [19] conducted a cross-species TWAS analysis of tobacco 

consumption through integrating human GWAS data from UK Biobank and mRNA ex-

pression references from brains of multiple animal species, and identified 10 homologous 

genes associated with cigarette per day in different animal models to illustrate the genetic 

mechanisms of human tobacco consumption. However, the heterogeneity among eQTL 

datasets and tissues-dependent nature of transcription regulation have impeded the abil-

ity of TWAS to provide further insights into the genetic basis of diseases [20].  

Meta-analysis is a set of powerful statistical tools that combines multiple related stud-

ies for various biological purposes and has gained popularity in both GWAS and omics 

research in recent years [21, 22]. Traditional meta-analysis methods such as Fisher’s and 

Stouffer’s methods combine p-values from multiple studies without further exploring the 

association patterns across studies [23, 24]. New meta-analysis methods have been pro-

posed to account for the heterogeneity across studies and categorize biomarkers (e.g., 

genes) by their cross-study patterns while combining the studies [25-27]. In this study, we 

performed tissue-specific TWAS of nicotine addiction (measured by cigarettes per day 

(CPD)) for 13 brain tissues based on the GWAS data from UK Biobank (UKBB) [28] and 

GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) [29], using eQTL 

cohorts from GTEx (version 8) [6] as the reference panel. We then conducted meta-analysis 

of the TWAS results while considering the heterogeneity across tissues and clustered the 

nicotine addiction associated genes by their cross-tissue patterns. Such a procedure was 

shown to be more powerful than multi-tissue TWAS tool (e.g., S-MultiXcan) and detected 

novel clusters of genes with different meta-patterns across brain tissues. Downstream en-

richment analysis on the different clusters of genes identified important nicotine addiction 

related pathways in different brain tissues and provided more insights into the molecular 

regulatory mechanisms underlying nicotine dependence inside the brain. 

2. Materials and Methods 

2.1 Study cohorts 

In this study, we performed TWAS analysis on two large cohorts that include both 

genotype and nicotine addiction phenotype data: 
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1) UK Biobank (UKBB): a large prospective study that recruited ~500,000 participants 

aged between 40-69 years in 2006-2010 in 22 assessment centers throughout the UK and 

collected abundant phenotypic and genomic data [28]. We focused on N=142,202 individ-

uals with white ethnicity backgrounds (British, Irish, and any other white background) 

that had both genotype and nicotine dependence related smoking phenotypic data avail-

able.  

2) GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN): a meta-

analysis of up to 35 GWAS cohorts of European ancestry including around 1.2 million 

individuals (depending on traits) [29]. Smoking related phenotypes in the GSCAN were 

self-reported responses gathered by multiple teleconferences [29]. We used the GSCAN 

data excluding UKBB and 23andMe (“Minus23andMeUKBB” [refer to their website]; 

N=143,210) as a validation cohort. For GSCAN, only meta-analyzed GWAS summary data 

were available.  

2.2 Nicotine dependence related smoking phenotype 

Cigarettes per day (CPD) is one of the well-known traits related to nicotine addiction 

and widely used in many published studies [30, 31]. We used CPD as the phenotype of 

interest in our study. For UKBB cohort, CPD was defined as the average number of ciga-

rettes smoked per day by participants who were either current or past smokers using phe-

notype codes 2887 (number of cigarettes previously smoked daily), 3456 (number of ciga-

rettes currently smoked daily), and 6183 (number of cigarettes previously smoked daily 

(current cigar/pipe smokers)). The CPD values of participants who smoked less than one 

cigarette per day were recoded to 0; and CPD values of those who smoked more than 60 

cigarettes per day were recoded to 60. CPD was denoted as CigDay in GSCAN cohort. 

The detailed data processing procedure of the CigDay can be found in Liu et al., [29]. 

2. 3 Reference panel 

The reference panel of eQTL cohort used to perform TWAS analysis was obtained 

from the Genotype-Tissue Expression (GTEx) project (version 8) [6]. It included both gen-

otype data of 838 donors of mainly European ancestry and gene expression data of these 

donors in 13 brain tissues including amygdala, anterior cingulate cortex (BA24), caudate 

(basal ganglia), cerebellum, cerebellar hemisphere, cortex, frontal cortex (BA9), hippocam-

pus, hypothalamus, nucleus accumbens (basal ganglia), putamen (basal ganglia), spinal 

cord (cervical c-1) and substantia nigra. The single-tissue predicted weights and single-

/across-tissue LD reference files from GTEx used in S-PrediXcan [11] and S-MultiXcan [12] 

were provided by PredictDB (https://hakyimlab.org/post/2020/01/07/predictdb-transcrip-

tome-prediction-model-repository/) [32, 33] for use in our study. 

2.4 TWAS analysis  

In this study, we first conducted tissue-specific TWAS (TS-TWAS) of CPD for each 

of the 13 brain tissues by combining GWAS data with the eQTL reference panel and then 

performed meta-analysis to combine the TS-TWAS results and categorize the CPD asso-

ciated genes by their meta-patterns across the tissues (Figure 1). Below, we described the 

two steps of our analysis in details. 

2.4.1 Tissue-specific TWAS 

In the first step, we conducted TS-TWAS for each of the 13 brain tissues using S-

PrediXcan [11]. For UKBB, we first performed GWAS on CPD of 142,202 participants 

(Mean Age = 57.57 (7.83); 48.12% are Female) using PLINK (version 1.9, www.cog-ge-

nomics.org/plink/1.9/) [34] under an additive genetic model. We performed quality con-

trol and removed variants with minor allele frequency below 0.01, Hardy-Weinberg equi-

librium P-value below 0.001 and missing genotype rate at 5%, and to excluded individuals 

with more than 2% missing genotypes. The analysis was adjusted by the following varia-

bles: sex, age, body mass index (BMI), genotyping chip type and top ten principal compo-

nents of population admixture generated from PLINK (version 2.0, www.cog-ge-

nomics.org/plink/2.0/) [34]. For GSCAN, GWAS summary on CPD was directly obtained 

from the University of Minnesota library [29]. We integrated GWAS summary statistics of 
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both cohorts with the pre-trained prediction models over 13 brain tissues to obtain TS-

TWAS results using S-PrediXcan [11], an extension of PrediXcan [8] that used only sum-

mary level GWAS statistics to estimate Z-score of association between gene expression 

and trait. The tissue-specific Z-score for the g-th gene in s-th tissue can be estimated as 

follows:  

𝑧g𝑠 ≈ ∑ 𝑤𝑙𝑔𝑠

𝜎̂𝑙

𝜎̂g𝑠

𝛽̂𝑙

𝑠𝑒(𝛽̂𝑙)𝑙∈𝑀𝑜𝑑𝑒𝑙g𝑠

 

where 𝑀𝑜𝑑𝑒𝑙g𝑠  is the pre-trained prediction model from GTEx reference panel consisting 

of SNPs used to predict the gene expression for gth gene in sth tissue, 𝑤𝑙𝑔𝑠  is the pre-

dicted weight of 𝑙-th SNP on the g-th gene in s-th tissue in the pre-trained prediction 

model, directly obtained from PredictDB. 𝛽̂𝑙 is the GWAS estimate for 𝑙-th SNP; 𝑠𝑒(𝛽̂𝑙) 

is GWAS standard error of 𝛽̂𝑙; 𝜎̂𝑙 is the variance of 𝑙-th SNP and 𝜎̂g𝑠 is the variance of 

the predicted expression for g-th gene in s-th tissue. The SNP variance term (
𝜎̂𝑙

𝜎̂g𝑠
) calculated 

from 1000 Genomes data were also obtained from PredictDB. We computed the p-value 

for the g-th gene in s-th tissue as pgs = 2(1 − Φ(𝑧g𝑠)), where Φ(. ) is the cumulative den-

sity function of standard normal distribution.  

2.4.2 Meta-analysis of TS-TWAS over 13 brain tissues and downstream analysis 

AW-Fisher’ method [25] is a meta-analysis method extending the conventional 

Fisher’s method that combines p-values from multiple studies while taking the study to 

study heterogeneity into account. In this paper, we treated different brain tissues as stud-

ies and applied AW-Fisher’s method to meta-analyze the TS-TWAS results from all S=13 

brain tissues. The null hypothesis in meta-analysis is commonly considered as  
H0: 𝜃g1 =  …  =  𝜃gS =  0,  

where 𝜃𝑔𝑠 is the gene effect of g-th gene in the s-th tissue. For alternative hypothesis, 

we aimed to detect genes associated with CPD in at least one tissue, i.e., Ha: 𝜃gs  ≠

 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  1 ≤  𝑠 ≤  𝑆. For AW-Fisher’s method,  

𝑈g(𝜔g) = − ∑ 𝜔g𝑠log(pgs),

𝑆

𝑠=1

 

where 𝑝𝑔𝑠 is the p-value of the g-th gene in the s-th tissue from TS-TWAS, 𝜔g𝑠 is the 0-1 

binary weight assigned to the s-th tissue and 𝜔g = (𝜔g1, … , 𝜔g𝑆). For a specific 𝜔g, the p-

value of the observed weighted statistic 𝑝𝑈 (𝑢g(𝜔g)) under the null hypothesis can be ob-

tained via permutation. The AW-Fisher’s statistic was defined as the minimal p-value 

among all possible weights. For inference, there is no closed-form distribution for AW-

Fisher’s statistics under the null, so permutation tests and importance sampling are used 

to obtain the p-values 𝑝𝑔
𝐴𝑊 and control the false discovery rate (FDR). More details can 

be found in the original AW-Fisher paper [25].  

After meta-analysis, we focused on genes passing FDR threshold of 0.05 in both co-

horts (i.e., take the intersection) and performed downstream analysis. We categorized the 

genes by their meta-patterns across brain tissues using hierarchical clustering with Ward 

linkage on -log10(𝑝𝑔𝑠). For each category of genes, we further performed pathway enrich-

ment analysis using three popular pathways datasets: Gene Ontology (GO) [35], Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [36] and Reactome [37]. Top enriched path-

ways (e.g., Fisher’s exact test p-value < 0.05) helped us understand the unique functions 

for each category of genes associated with nicotine addiction but with different cross-tis-

sue patterns. We also applied the S-MultiXcan method [12] for multi-tissue TWAS analy-

sis across 13 brain tissues as a comparison. 

3. Results 
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We first performed TS-TWAS and then meta-analyzed the TS-TWAS results over 13 

brain tissues by AW-Fisher’s method. The meta-analysis of TS-TWAS identified 48 genes 

significantly associated with CPD at FDR < 0.05 common in both UKBB and GSCAN co-

horts (Table 1). Comparing to S-MultiXcan and TS-TWAS, meta-analysis was overall more 

powerful in identifying more nicotine addiction associated genes (Table 1; Figure 2 high-

lighted in red, Figure S1), especially among genes with heterogeneous association patterns 

across tissues (Figure S1, Supplementary file 1). These included multiple nicotine addic-

tion associated genes reported in previous studies [17, 18, 31]. We focused on the 48 genes 

at FDR < 0.05 for biomarker categorization and downstream analysis.   

Gene categorization by meta-patterns identified three clusters of genes common to 

both cohorts (Figure 3): (i) homogeneous genes, which were associated with CPD in all 13 

brain tissues; (ii) partially homogeneous genes, which were associated with CPD in a ma-

jority of tissues but not significant in the rest; (iii) tissue-specific or heterogeneous genes, 

which had very unique association patterns in different tissues, reflecting a high degree 

of heterogeneity across tissues. The two cohorts had a large proportion of genes matched 

in each cluster (38 out of 48 genes in total; Table 1). The first cluster included 20 genes 

homogeneously associated with CPD in all brain tissues, including well-known smoking-

related genes CHRNA5, NCKIPSD and SIRT6. The second cluster consisted of 8 genes in-

cluding PSMA4 and RPRD2, which are highly expressed and associated with CPD in fore-

brain regions such as frontal cortex BA9 and anterior cingulate BA24 and hindbrain re-

gions including cerebellum and cerebellar hemisphere. The third cluster included 10 het-

erogeneous genes only associated with CPD in very few specific brain tissues. 

We then performed pathway analysis to each cluster of identified genes. Cluster 1 of 

homogeneous genes (e.g. CHRNA5) were mainly enriched in pathways related to presyn-

aptic and postsynaptic nicotinic acetylcholine receptors (Figure 4, see the full pathway 

analysis results in Supplementary file 2), that play versatile roles in neuronal apoptosis 

[38] and neurotransmission (e.g., Ca2+ signaling [39] and dopamine [40]). Cluster 2 of par-

tially homogeneous genes (e.g. PSMA4) were enriched in pathways related to proteasomal 

activity (e.g., KEGG Proteasome), intercellular bivalent cations Mg2+ (e.g., GO:MF mag-

nesium ion binding) and chromosome segregation (e.g., GO:BP chromosome segregation) 

that can be highly impacted by cigarette smoking to inhibit proteasomal activity, cause 

mental disorders disease and induce segregation anomalies separately reported in the 

previous studies [41-43]. Cluster 3 of heterogeneous genes (e.g., CHRNA3) were enriched 

in pathways GO:MF acetylcholine-activated cation-selective channel activity and GO:CC 

acetylcholine-gated channel complex. Genes with different meta-patterns across tissues 

were functionally specific that are worth further investigation in future studies.  
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Figure 1. Study scheme. We integrated GWAS summary statistics with eQTL reference panel from GTEx to conduct tissue-specific 

TWAS analysis (TS-TWAS) for each of the 13 brain tissues using S-PrediXcan. We then performed meta-analysis of the TS-TWAS 

results across tissues using AW-Fisher’s method and clustered the genes by their meta-patterns across tissues. We additionally 

performed downstream analysis (e.g., pathway enrichment analysis) to each category of genes with unique meta-pattern. 

Table 1. Summary of number of CPD-associated genes detected by meta-analysis and S-MultiXcan and in each category of unique 

meta-pattern in both UKBB and GSCAN cohorts and their intersection. 

Cohort UKBB GSCAN Intersection 

S-MultiXcan (FDR < 0.05) 60 13 8 

Meta-analysis by AW-Fisher's method (FDR < 0.05) 245 217 48 

Meta-pattern categorization (48 

genes in intersection at FDR<0.05) 

Cluster 1 (homogeneous genes) 24 22 20 

Cluster 2 (partially homogeneous genes) 12 12 8 

Cluster 3 (tissue-specific or heterogeneous 

genes) 
12 14 10 
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Figure 2. Manhattan plots of meta-analysis of TS-TWAS results across all 13 brain tissues for both UKBB (A) and GSCAN 

(B). Y-axis is the -log10(𝑝𝑔
𝐴𝑊) from AW-Fisher. Results from S-MultiXcan are used for comparison. The blue line indicates 

an FDR cutoff of 0.05. Genes passing Bonferroni cutoff (i.e., p<0.05/#genes) were labeled and genes detected by meta-

analysis but not by S-MultiXcan were red highlighted.  
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Figure 3. The heatmap included the 38 genes (Cluster 1: 20; Cluster 2: 8; Cluster 3: 10) with the same clustering patterns 
and passing meta-analysis FDR<0.05 threshold in both cohorts and was colored by -log10(𝑝𝑔𝑠) of TS-TWAS in each brain 

tissue (on columns) from both cohorts (Panel (A) for UKBB and Panel (B) for GSCAN). On the rows, the genes were clus-

tered into three categories common to two cohorts: cluster 1 was homogeneous genes, cluster 2 was partially homogeneous 

genes and cluster 3 was tissue-specific or heterogeneous genes.  
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Figure 4. Top five pathways enriched by each cluster of genes identified sorted by both p-value and pathway size. The p-

value is from the Fisher’s exact test.   

4. Discussion 

In this study, we used eQTL reference panel from GTEx to conduct meta-analysis of 

TS-TWAS on nicotine addiction over 13 brain tissues in two large cohorts, UKBB and 

GSCAN. The meta-analysis was shown more powerful than multi-tissue TWAS method 

implemented in S-MultiXcan by detecting more nicotine addiction associated genes while 

accounting for the heterogeneity across multiple brain tissues. In addition to detecting 

more associated genes, gene categorization by meta-patterns identified three novel clus-

ters of genes common to both cohorts, including 20 genes homogeneously associated in 

all brain tissues, 8 genes partially homogeneously associated mainly in cortex and cere-

brum, and 10 genes with tissue-specific association. Several well-known nicotine addic-

tions associated genes including CHRNA5, PSMA4 and CHRNA3, were identified and 

their cross brain tissue association patterns were revealed. To the best of our knowledge, 

our study was the first comprehensive meta-analysis of TWAS on nicotine addiction 

across 13 major brain tissues, investigated and validated in two large-scale epidemiologi-

cal cohorts UKBB and GSCAN. 

The first cluster of genes were enriched in pathways related to presynaptic and 

postsynaptic nicotinic acetylcholine receptors, as marked by the gene CHRNA5. Previous 

GWAS have identified multiple reproducible variants in the CHRNA5 [31, 44], which were 

attributed to functions in both enhancement and aversion of nicotine intake [45]. We fur-

ther showed in our study CHRNA5 was highly expressed in all brain tissues and its asso-

ciation with CPD was consistent throughout the brain. The second cluster was marked by 

the proteasome gene PSMA4, which was identified the association with CPD mainly in 

the frontal lobe (e.g., frontal cortex BA9 and anterior cingulate BA24), cerebellum/cerebel-

lar hemisphere and hippocampus tissues. The enriched biological pathways were driven 

by PSMA4, playing a central role in decreasing neuronal proteasome activity [46]. Another 

nicotinic acetylcholine receptor gene CHRNA3 was observed in the third cluster with tis-

sue-specific association with CPD only in putamen basal ganglia and nucleus accumbens 

basal ganglia. The elevated dopamine activity in the basal ganglia region of cigarette 

smoker have been identified for the enriched pathways driven by CHRNA3 in the previ-

ous studies [47, 48]. These findings showed the strength of our comprehensive meta-anal-

ysis of TWAS on CPD that identified novel clusters of genes with unique meta-patterns 

across tissues, inferring different biological function. 

TWAS are getting popular over recent years as a promising complement to GWAS 

by incorporating the functional annotation information and analyzing association with 

the trait at the gene level. Despite the foreseen success, most TWAS methods to date are 
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tissue specific and ignore the similarity in transcription regulation across tissues, and usu-

ally have limited effective sample size thus underpowered [13]. Our study performed the 

meta-analysis of TS-TWAS across 13 brain tissues on nicotine addiction and categorized 

the identified genes by their meta-patterns across tissues. Such a meta-analytical frame-

work can also be widely applicable to analyze the other traits through targeting at other 

tissues and eQTL reference panels (e.g., blood [49] and lung [50]). One of the main chal-

lenges of TWAS approach is hard to prioritize causal genes due to co-regulation [7]. A 

Mendelian randomization framework incorporated into the TWAS for identification of 

putative causal inference need to be conducted to carve out this issue [10, 51, 52]. Further 

studies such as the application of fine-mapping methods (e.g., FOCUS [53]) will be needed 

to confirm our meta-TWAS results and to distinguish the causal genes for nicotine addic-

tion, which can improve our understanding of the genetic basis of brain related disorders.   

Supplementary Materials: Figure S1: Manhattan plots of the tissue-specific (TS-TWAS) results from 

UKBB cohort. Y-axis is the -log10(pgs) from S-PrediXcan. An FDR cutoff of 0.05 was shown as a blue 

line. Genes passing this FDR cutoff were labeled in black color. Supplementary file 1: A comparison 

of brain tissue-specific genes between the associations with nicotine dependence (e.g., CPD) from 

both UKBB cohort and GSCAN cohort. Supplementary file 2: Full output of pathway enrichment 

analysis for each our detected meta-pattern category.   
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