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Abbreviations: 

 

AP, acute pancreatitis 

CP, chronic pancreatitis  

ER, endoplasmic reticulum 

UPR, unfolded protein response  

EPI, exocrine pancreatic insufficiency  

PC, pancreatic cancer  

DM, diabetes mellitus   

CLDN2, clauding 2 

CTRB1, chymotrypsin B1  

CTRB2, chymotrypsin B2 
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ALDH2, aldehyde dehydrogenase-2  

ADH1B, alcohol dehydrogenase-1B   

ALD, alcoholic liver disease   

ALT, alanine aminotransferase  

AST, aspartate aminotransferase   

LPS, lipopolysaccharides  

CPA1, carboxypeptidase A1 

TPP, thiamine pyrophosphate   

ROS, reactive oxygen species  

CFTR, cystic fibrosis transmembrane conductance regulator  

IRE1, inositol-requiring kinase 1    

PERK, protein kinase-like ER kinase  

GRP78, 78-kDa glucose regulated protein   

eIF2, eukaryotic translation initiation factor-2 

XBP1, X box-binding protein 1  

ERAD, ER-associated degradation  

RIDD, IRE1-dependent RNA decay 

ATF6, activating transcription factor 6 

ATF4, activating transcription factor 4   

CHOP, C/EBP homologous protein  

GADD34, growth arrest and DNA damage-inducible protein 34 

MANF, mesencephalic astrocyte-derived neurotrophic factor   

hPAC, human pancreatic acinar cells   

ERAD, ER-associated degradation   

4-PBA, sodium phenylbutyrate  

UDCA, ursodeoxycholic acid   
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TUDCA, tauroursodeoxycholic acid   

CCK-8, cholecystokinin-8 

GA, guanabenz acetate  

TZD, trazodone  

DBM, dibenzoylmethane  

ALS, amyotrophic lateral sclerosis  

OPMD, oculopharyngeal muscular dystrophy  

HSPs, hereditary spastic paraplegias  

SCI, spinal cord injury  

AA 147, compound 147  

AA 263, compound 263   

CRAC, calcium release-activated calcium channel 

AAV, adeno-associated virus 

DA, nigral dopamine   
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Abstract 

Pancreatitis and alcoholic pancreatitis are serious health concerns, and there is an urgent 

need for effective treatment strategies.  Alcohol is a known etiological factor for pancreatitis, 

including acute pancreatitis (AP) and chronic pancreatitis (CP).  Excessive alcohol consumption 

induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) 

stress and adaptive unfolded protein response (UPR).  ER stress results from the accumulation 

of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic 

pancreatitis.  Here we summarize the possible mechanisms by which ER stress contributes to 

alcoholic pancreatitis.  We also discuss potential approaches targeting ER stress and UPR for 

developing novel therapeutic strategies for the disease.  

 

Acute and chronic pancreatitis  

Pancreatitis is a common inflammatory disorder of the pancreas and is associated with 

high mortality and healthcare burdens worldwide 1, 2.  It mainly consists of two forms: acute 

pancreatitis (AP) and chronic pancreatitis (CP).  AP is the most frequent cause of gastrointestinal 

disorders requiring hospitalization in the US, and its associated inpatient care cost is about $2.6 

billion annually 2-4.  Although less frequent, CP also causes significant morbidity and financial 

burden 3.  Additionally, the incidence of pancreatitis differs with age and gender.  The risk of 

developing AP increases with age 5, 6, whereas CP is more common in middle-aged people 2.  

Furthermore, AP does not appear to differ between men and women 6, but CP is more common 

in men than women 2, 7.  AP and CP share a significant portion of clinical manifestations and 

phenotypes but also have distinct morphological and imaging features.   

AP is characterized by sudden abdominal pain, elevated levels of pancreatic enzymes in 

the blood, and imaging evidence of pancreatic inflammation 8, 9.  Depending on the clinical 

features, AP can be classified into mild, moderate, or severe forms.  The most common form of 

AP is mild AP, which can be self-healed within weeks.  However, the moderate and severe forms 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2021                   doi:10.20944/preprints202111.0384.v1

https://doi.org/10.20944/preprints202111.0384.v1


can progress into necrotizing pancreatitis, which has a 20-40% mortality rate 10.  A variety of long-

term sequelae have been reported that can persist beyond hospital admission of AP.  AP may 

increase the risk of other pancreatic disorders, including CP, exocrine pancreatic insufficiency 

(EPI), pancreatic cancer (PC) and diabetes mellitus (DM).  17% of AP patients are re-admitted 

after the first episode for recurrent pancreatitis, and about 8% of patients progress to CP 11, 12.  

Approximately one quarter to one third of AP patients develop EPI during the follow-up period 13, 

14. The prevalence of EPI following AP is higher with the severe form than with the mild form, and 

it is higher in patients with an etiology of alcohol than one of gallstones 14.  AP patients often 

develop prediabetes and/or DM after being discharged from the hospital 15, 16.  The diagnosis of 

AP increases the risk of PC, and a higher risk of PC is associated with an increased number of 

recurrent episodes of AP 17, 18.   

CP is believed to result from the recurrence of AP, which leads to chronic pain, pancreatic 

atrophy, duct strictures and calcifications 19, 20.  Although less common than AP, CP significantly 

affects patients’ quality of life due to irreversible and debilitating injuries to the function of the 

pancreas.  CP is also associated with other pancreatic diseases.  It has been reported that CP 

increases the risk of EPI 21, 22, PC 23, 24 and DM 25, 26.  The high disease burden of AP and CP 

underscores the importance of identifying predisposing factors, understanding pathogenesis and 

developing therapeutic intervention for these diseases.   

  

Alcohol consumption and pancreatitis  

Alcohol exposure is a known etiological factor for both AP and CP.  Epidemiological 

studies have shown that excessive alcohol consumption is the second leading cause of AP after 

gallstones 1, 27 and is the most prevalent risk factor for CP 28.  Alcohol abuse is also a risk factor 

for the recurrence of AP and increases the chances of progression of AP to CP 11, 29.  Although 

alcohol can contribute to the initiation and progression of pancreatitis, only a small number of 
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heavy alcohol drinkers develop the disease, suggesting that other disposing factors are involved 

in the development of alcohol-related pancreatitis 30-33.     

The association between alcohol consumption and pancreatitis is evaluated 

predominantly by self-reported survey studies.  Corrao et al. conducted a meta-analysis of studies 

published between 1966 and 1995 and showed that the risk of pancreatitis monotonically 

increased with increasing alcohol consumption 34.  Consistent with this finding, Irving et al. 

analyzed research published between 1980 and 2008 and confirmed a monotonic dose-response 

relationship between alcohol consumption and the risk of pancreatitis, with a threshold of 4 drinks 

daily that significantly increased the risk of pancreatitis 35.  Similarly, more recent studies indicated 

that prolonged use of alcohol with a threshold level of 4-5 drinks per day was required for an 

increased risk of pancreatitis 19, 36-39.  In addition, the amount of recently-consumed alcohol was 

shown to determine the severity of the first episode of acute alcoholic pancreatitis 40.  In the 

absence of long-term use, binge drinking alone did not increase the incidence of AP 41.  Regular 

consumption of alcohol at lower levels, however, appeared to have an inconsistent effect on 

pancreatitis.  Some reported that low alcohol drinking (< 50 gram per day) increased the 

recurrence of AP and accelerated the progression of CP 42, 43.  Others even found that mild or 

moderate drinking was inversely associated with an increased risk of pancreatitis 44.    

In contrast to prolonged heavy alcohol consumption that has been known as a risk factor 

for pancreatitis, alcohol abstinence has been shown to slow down the progression of pancreatitis 

and reduce the recurrence of AP.  For example, withholding from drinking resolved abdominal 

pain and slowed the deterioration of pancreatic function in chronic heavy drinkers 45. Abstinence 

after the first episode of AP minimized the number of recurrent attacks of AP 46.  Similarly, in an 

effort to determine the risk factors associated with recurrent pancreatitis, Pelli et al. showed that 

abstinence from alcohol protected against recurrence of AP 47.   

Alcohol can also act as a co-factor to increase the sensitivity of the pancreas to the 

detrimental effect of other risk factors including environmental and dietary factors 48.  Cigarette 
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smoking is an independent risk factor for a number of pancreatic disorders, including AP 49, CP 50 

and PC 51, 52.  Alcohol drinking can accelerate the progression of cigarette smoking-related 

pancreatitis and vice versa, suggesting a synergistic interaction of alcohol and smoking in the 

development of the disease 53-56.  Hypertriglyceridemia, referring to an elevated blood level of 

triglycerides often resulting from high dietary fats, is another important cause for pancreatitis 57-59 

and is present in many alcoholics 60, 61.  Excessive alcohol consumption has been suggested to 

be associated with hypertriglyceridemia-induced pancreatitis 62, 63.    

The risk of alcohol pancreatitis can also be altered by genetic modifiers.  The CLDN2 

(Clauding 2) gene encodes a tight junction protein-regulating cation and water transport of 

epithelial cells, and it is normally expressed in pancreatic duct cells but not acinar cells 64, 65.  In a 

genome-wide study, a CLDN2 risk allele, which is associated with an abnormal expression of 

CLDN2 protein in pancreatic acinar cells, was identified as a risk factor that interacted with alcohol 

consumption to accelerate the progression of chronic pancreatitis 66.  In another genome-wide 

association study, an inversion of the CTRB1-CTRB2 (chymotrypsin B1 and B2) locus led to the 

imbalanced expression of CTRB1 and CTRB2 and an increased risk for both alcoholic CP and 

non-alcoholic CP 67.     

Racial/ethnic differences are another susceptibility factor that can alter the risk of alcoholic 

pancreatitis.  A population study using nationwide inpatient samples of the racially diverse US 

population between 1988 and 2004 demonstrated that Black people had the highest frequency of 

alcohol-related pancreatitis 68.  Another study using data collected by the North American 

Pancreatitis Study Group from 2000 to 2014 found that Black people were more likely to be 

diagnosed with CP than White people, likely because of alcohol consumption and smoking being 

more frequent in Black people 69.  In a number of studies conducted in the Asian population, a 

dose-response relationship between alcohol and pancreatitis was revealed 70-72.  The impact of 

ethnicity on the risk of alcoholic pancreatitis in these Asian studies was suggested to be related 

to the genetic polymorphism of alcohol metabolism enzymes; as genetic variant alleles of the 
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aldehyde dehydrogenase-2 gene (ALDH2*2) and alcohol dehydrogenase-1B gene (ADH1B*2), 

which are associated with the accumulation of toxic acetaldehyde after alcohol drinking, were 

predominantly found in East Asians 73-76.  

 

Animal and cell culture models for alcoholic pancreatitis  

Epidemiologic studies have indicated that alcohol can act as a mild initiator or a robust 

modifier to sensitize the pancreas to the insult of other risk factors during the development of 

pancreatitis.  To understand the mechanisms underlying the pathogenesis of alcohol-related 

pancreatitis, many animal and cell culture models have been established.  These experimental 

models have recapitulated the clinical features of alcohol-related pancreatitis, facilitated our 

understanding of the pathology, and provided opportunities to test potential therapeutic 

treatments for the disease.  

Consistent with epidemiologic studies, alcohol alone, either by acute exposure 77 or by 

chronic feeding 78-80, is not sufficient to induce pancreatitis-like features in rodent models.  Recent 

studies have used chronic exposure combined with binge drinking and showed that alcohol, when 

acting as both the initiation and susceptibility factor, can cause pancreatic injuries which mimic 

pancreatitis.  Binge alcohol exposure by intragastric intubation for 10 consecutive days (5 

g/kg/day, 25% ethanol w/v) caused pancreatic edema, acinar cell death and moderate fibrosis in 

C57BL mice 81.  Mice receiving a liquid alcohol diet for two weeks followed by binge alcohol 

exposure by oral gavage for 3 days (5g/kg/day, 25% ethanol w/v) displayed more severe injuries 

and inflammation in the pancreas 82.  A 10-day feeding of a liquid alcohol diet plus a single binge 

ethanol exposure was found to lead to pancreatic edema and inflammation in C57Bl/6 mice 83, 84.  

The chronic plus binge model may be of clinical relevance because it is similar to the drinking 

pattern of many alcoholic patients who have a history of chronic alcohol consumption and tend to 

have heavy episodic drinking 85-87.  In fact, the chronic plus binge exposure has also been used 

in animal models for alcoholic liver disease (ALD), as it has been shown to cause significant 
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elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels 

and hepatic histological features, which bear a closer resemblance to the symptoms of early ALD 

patients, compared to chronic alcohol feeding or a single binge alone 83, 88, 89 

Alcohol can also act as a co-factor to sensitize the pancreas to the adverse effects of other 

susceptibility factors in the progression of pancreatitis.  One physiologically relevant animal model 

for alcohol-related pancreatitis is the co-exposure of cholecystokinin (CCK) analogs and alcohol.  

CCK is an intestine hormone and is one of the most commonly used models to induce mild AP in 

rats 90-93 and a more severe form in mice 94-97 at a dose that is at least 10 times higher than the 

physiological condition.  CCK analog-induced AP can recapitulate pathologic features of human 

AP caused by scorpion venom and cholinergic toxins 98-101.  The co-treatment of alcohol can either 

reduce the threshold concentration of CCK analogs that is required to elicit a pancreatitis 

response or intensify the pathologic response of the pancreas.  Pandol et al. (1999) demonstrated 

that alcohol exposure sensitized rats to pancreatitis induced by CCK-8 at the physiological 

concentration, which by itself did not cause pancreatitis 92.  Quon et al. (1992) showed that chronic 

feeding of an alcohol diet exacerbated CCK analog caerulein-induced pancreatitis in rats, marked 

by greater increases in serum lipase level, interstitial edema and acinar vacuolization compared 

to that of animals treated with caerulein alone 102.  Repeated use of caerulein over time induced 

pathological features of the pancreas in rodents that mimicked human CP 103-105.  Alcohol 

exposure accelerated the progression of  caerulein-induced CP in rats 105 and mice 106.     

Another clinically relevant animal model is lipopolysaccharides (LPS)-induced alcoholic 

pancreatitis in rodents 107.  LPS are endotoxins derived from gram negative bacteria in the gut, 

which can be released to the blood to cause LPS-associated toxicity 108.  There has been reported 

a higher plasma level of LPS in alcoholics 109, 110 and an association between plasma endotoxin 

concentrations and the severity of human AP 111.  In rat models, LPS and alcohol exposure have 

been shown to cause a more severe pancreatic injury than LPS alone 107, 112.  Withdrawal of 

alcohol after manifestation of LPS-induced pancreatitis in rats resulted in the resolution of 
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pancreatic lesions, including fibrosis and cell death, whereas continued alcohol administration 

aggravated the injury 113.  In a rat model of alcoholic AP, alcohol increased the expression of LPS-

induced proinflammatory factors in acinar cells, including TNFα, IL-6, IL-10 and IL-18 114.  The 

elevated expression of these inflammatory mediators was also observed in human AP and 

recurrent AP patient samples, suggesting an involvement of inflammation in alcoholic pancreatitis 

114.  

There are other susceptibility factors that have been identified in experimental models and 

have been shown to be associated with alcoholic pancreatitis.  Hyperlipidemia and pancreatic 

duct obstruction, which cause minimal pancreatic damage individually, induced clinically relevant 

pancreatitis in rats when combined with alcohol feeding 115. Genetic mutations, as exemplified by 

a pathogenic human p.N256K CPA1 (Carboxypeptidase A1) mutant when expressed in mice, 

caused protein misfolding, ER stress and progressive CP, which was aggravated by alcohol 

exposure 116.  A severe pancreatitis phenotype manifested in knock-out mice for nuclear factor 

erythroid 2 like 2 (NRF2), a regulator of cellular antioxidant response and ethanol metabolism, 

was worsened by acute binge alcohol exposure, suggesting an involvement of oxidative stress or 

ethanol metabolites in alcoholic pancreatitis 117.   

In addition to animal models, many in vitro models have been proposed to address the 

mechanisms underlying the pathology of alcoholic pancreatitis.  The exocrine compartment of the 

pancreas is mainly composed of acinar and ductal cells.  The pancreatic acinar cells are the 

functional unit of exocrine pancreas, constituting about 80% of the pancreas.  Their function is to 

synthesize, store and secrete digestive enzymes.  Acinar cells are believed by many to be the 

initiation site of pancreatic injury, as molecular and cellular events linked to acinar cell dysfunction 

have been shown to occur early in pancreatitis 118-121.  Similar to animal models, pancreatic acinar 

cells when treated by alcohol alone, but not in combination with other stressors in vitro, appeared 

to display minimal damages.  Chronic alcohol exposure at a clinically relevant concentration (50 

mM equivalent to 230 mg/dl, 96 hours) reduced the cellular uptake of thiamine pyrophosphate 
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(TPP) in rat primary acini, rat pancreatic AR42J acinar cells 122 and mouse pancreatic 266-6 acinar 

cells 123, indicative of alcohol’s damaging effects on pancreatic thiamine-dependent functions 124-

126.  Alcohol exposure at the concentrations from 200 – 800 mg/dl for 6 hours caused mild 

apoptosis of AR42J cells and a minimal effect on the activity of lipase or amylase 127.  Lugea et 

al. (2017) showed alcohol treatment (50 mM equivalent to 230 mg/dl) for 4 days decreased the 

viability of AR42J cells only in combination with cigarette smoke extracts but not by itself 128.  In 

CCK-8-stimulated primary mouse pancreatic acini, alcohol treatment altered Ca2+ homeostasis 

129, increased reactive oxygen species (ROS) production 130 and reduced CCK-8-evoked amylase 

secretion 131.  In rat pancreatic acini, alcohol treatment exacerbated the pathological intra-acinar 

protease activation induced by muscarinic agonist carbachol 132.     

Pancreatic ductal cells, which are responsible for transporting the acini-produced digestive 

enzymes into the duodenum and secreting bicarbonate-rich fluid to neutralize stomach acid, have 

also been proposed to be involved in the pathology of pancreatitis 133-135.  Alteration of ductal cell 

function may cause insufficient transportation or precipitation of digestive enzymes in the ducal 

lumen, which may lead to obstruction and damage.  Sarles et al. (1965) showed the formation of 

mucoprotein plugs in the pancreatic ducts was an early lesion in the pathology of alcohol-induced 

chronic calcifying pancreatitis 136. Mutations in the cystic fibrosis transmembrane conductance 

regulator (CFTR), an ion channel protein highly expressed in pancreatic duct cells, was found to 

be associated with CP 137.  Maleth et al. (2015) showed ethanol exposure reduced the expression 

of CFTR, and disrupted the folding of CFTR at endoplasmic reticulum (ER) in a number of human 

pancreatic cell lines and pancreatic tissues of mice and guinea pigs 138.  In addition, CFTR 

knockout mice developed more severe pancreatitis when given ethanol than WT control mice 138. 

   

Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in alcohol-related 

pancreatitis 
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The endoplasmic reticulum (ER) is an intracellular compartment that plays a major role in 

protein folding and processing, and calcium storage and release, and it also serves as the first 

step of secretory pathway followed by the Golgi apparatus 139, 140.  Cellular stress factors, such as 

deficiencies in protein processing, disturbance in calcium level or the redox state, result in the 

accumulation of unfolded/misfolded proteins within the ER, which is known as ER stress and 

triggers an adaptive response known as unfolded protein response (UPR).  UPR can either 

resolve the ER stress when the stress is reversible or cause cell death when the stress is 

irreversible.  The pancreatic acinar cells are particularly vulnerable to ER stress because of their 

primary function, which is to synthesize and secrete digestive enzymes for food digestion, largely 

depending on ER functionality.  ER stress and UPR signaling have been shown to be activated 

in a variety of experimental models of pancreatitis, including arginine-induced AP 141, caerulein- 

and taurocholate-induced AP 142, and CP induced by repeated episodes of caerulein 143.  The 

occurrence of ER stress and the activation of UPR signaling during the initiation of pancreatitis 

suggest that ER stress plays an important role in the development of pancreatitis.  The 

involvement of ER stress in pancreatitis is also shown in the human studies as an autosomal 

dominant mutation (p. R116C) in human cationic trypsinogen gene, which is associated with 

hereditary pancreatitis, induces the accumulation of misfolded trypsinogen, ER stress and UPR 

signaling 144-147.  Although alcohol exposure only caused minimal pancreatic injury in animals with 

intact UPR functions 128, 148, loss of function of a UPR regulator X-box binding protein 1 (Xbp1) 

resulted in altered ER structure, acinar cell damage and pancreatitis-like features in alcohol-

exposed animals, pointing to a critical protective role of UPR in alcoholic pancreatitis 80, 149.      

UPR signaling is the major cellular response induced by ER stress, and it consists of three 

distinct but also interconnected intracellular signal transduction pathways (Fig. 1).  These 

pathways are initiated by three ER-resident transmembrane sensor proteins: inositol-requiring 

kinase 1 (IRE1 both α and β isoforms), protein kinase-like ER kinase (PERK) and activating 

transcription factor 6 (ATF6 both α and β isoforms)150-152.   These transmembrane sensor proteins 
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have an ER luminal sensor domain and a cytosolic effector domain, thereby transmitting the 

protein folding status inside ER to other cellular compartments via intracellular signaling pathways.  

In non-stressed cells, all the sensor proteins remain inactive by binding to an ER chaperone 78-

kDa glucose-regulated protein (GRP78) through their N-terminus 153, 154.  Under the conditions of 

ER stress, GRP78 dissociates from these sensor proteins to initiate their activation 153, 154.  The 

activated UPR signaling pathways attempt to stop improper translation, facilitate protein folding 

and therefore maintain ER homeostasis.  However, if the ER stress is not resolved, UPR triggers 

cell death 155-157.       

Figure 1: Alcohol exposure and ER stress.  Alcohol and its metabolites may cause ER stress 

and induce a cellular adaptive response known as the unfolded protein response (UPR) in the 

pancreas.  UPR is controlled by three transmembrane sensor proteins: inositol-requiring enzyme 

1α (IRE1α), protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6 

(ATF6).  Under non-stressed conditions, these sensor proteins bind to GPR78 and possibly MANF 

in a calcium-dependent manner.  Alcohol exposure results in the accumulation of unfolded or 
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misfolded proteins in the ER, which in turn causes the release of GRP78/MANF to activate UPR.  

The activation of UPR regulates transcriptional and translational programs to either restore protein 

folding, promote protein degradation, or induce cell death. 

 

IRE1 is the most evolutionarily conserved ER stress sensor protein with dual protein 

kinase and RNase activities 158-160. At the onset of ER stress, dissociation of GRP78 activates 

IRE1, which involves dimerization and trans-autophosphorylation of IRE1 kinase domains, 

followed by the activation of the RNase domain in the cytosol.  Activated IRE1 regulates the 

splicing of transcription factor X box-binding protein 1  (XBP1) to generate a more stable and 

active form known as Xbp1s 161.  XBP1s translocates to the nucleus and mediates the expression 

of a group of target genes in protein folding, ER-associated degradation (ERAD) and phospholipid 

synthesis, thereby acting as an adaptive response that promotes the folding capacity of ER to 

alleviate ER stress 151, 162, 163.  In addition, activated IRE1 also regulates a subset of RNAs leading 

to cell death through a process known as IRE1-dependent RNA decay (RIDD) 164-166.  Both IRE1 

and XBP1 are essential in secretory cells, including pancreatic acinar cells 167, 168.  IRE1α 

conditional knock-out mice have lower pancreas mass and abnormally structured pancreatic 

acinar cells but showed no difference in the level of amylase expression and secretion 168.  

Conditional disruption of Xbp1 caused decreased production of digestive enzymes and zymogen 

granules, altered ER structure and extensive apoptosis in mouse pancreatic acinar cells 167, 169.  

In a mouse model for alcoholic pancreatitis, alcohol exposure activated IRE1/Xbp1-mediated UPR 

and only caused minimal pancreas damage in WT mice, while Xbp1+/- mice displayed significant 

acini necrosis, inflammation and reduction in zymogen granules and amylase levels, indicative of 

a protective role of XBP1 against alcohol-induced damages in the exocrine pancreas 170.    

PERK is an ER-resident kinase that is composed of cytosolic and kinase domains 171, 172.   

Similar to IRE1, the activation of PERK also involves dimerization and trans-autophosphorylation.  

Activated PERK phosphorylates the α-subunit of the translation initiation factor eIF2 (eukaryotic 
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translation initiation factor-2) to reduce global protein synthesis 171-173.  This reduces the amount 

of protein entering the ER and alleviates ER stress. The phosphorylation of eIF2α by PERK also 

results in the selective translation of activating transcription factor 4 (ATF4), which regulates the 

expression of genes involved in protein folding, amino acid metabolism and autophagy 174, 175.  

ATF4 also modulates the expression of proapoptotic molecules, including the transcription factor 

C/EBP homologous protein (CHOP) and growth arrest and DNA damage-inducible protein 

(GADD34) 176-178.  GADD34 plays a role in a feedback loop to dephosphorylate eIF2α by 

interacting with protein phosphatase 1 (PP1), which reverses translational inhibition and induces 

cell death 156, 179.  PERK is highly expressed in a number of tissues, including the exocrine and 

endocrine pancreas 180.  PERK knock-out (Perk-/-) mice displayed reduced expression of major 

digestive enzymes, abnormal ER morphology and apoptosis of acinar cells and increased number 

of stellate cells 180, 181.  The loss of acinar cells and proliferative response of stellate cells in Perk-

/- mice are also often observed in patients with chronic alcoholic pancreatitis 182.  In addition, the 

pancreatic acinar cell-specific Perk knock-out mice exhibit AP-like features, such as cell death 

and the inflammatory response 183.   

ATF6 is an ER-localized membrane-bound transcription factor.  Under ER stress, ATF6 is 

translocated to Golgi and cleaved proteolytically to release the transcriptionally active N-terminal 

domain, which enters the nucleus and activates the transcription of several UPR-related genes, 

including GRP78, Xbp1 and CHOP 161, 184, 185.  ATF6 has been shown to play an essential role in 

modulating the ER function particularly in chronic stress 186, 187.  High expression levels of ATF6, 

CHOP and Xbp1 have been observed in human CP pancreatic tissues, together with histological 

and cellular characteristics of CP, suggesting that ATF6/Xbp1/CHOP signaling may be involved 

in the development of CP 188.  In a CP model induced by caerulein injection in PRSS1 transgenic 

mice, ATF6 was shown to regulate the apoptosis of pancreatic acinar cells and the progression 

of CP 188.     
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The timing and intensity of the activation of the three UPR signaling pathways are different 

in response to a particular ER stressor 157, 189, 190.  Alcohol exposure can cause ER stress and 

induce UPR in pancreas of animals and cultured pancreatic cells (Fig. 1).  Depending on the 

experimental models and the paradigm of alcohol exposure, the three pathways of UPR are 

differentially impacted.  For example, acute alcohol exposure increased UPR components, 

including GRP78, p-IRE1α, XBP1 and CHOP in human pancreatic acinar cells (hPACs) in a 

concentration-dependent manner 191.  Prolonged exposure of alcohol increased GRP78 and 

CHOP expression in AR42J cells 191.  In AR42J cells and mouse primary acini, the co-treatment 

of cigarette smoke extract and alcohol induced cell death, which was accompanied by PERK 

activation and increased expression of CHOP 128.  In animal models, it appears that a single 

episode of alcohol exposure is not sufficient to induce pancreatitis.  Therefore, repeated exposure 

by binge drinking or combined binge and chronic alcohol exposure have been used and shown 

to cause pancreatitis.  For example, repeated alcohol binge exposure (25% ethanol w/v, 5 

g/kg/day for 10 days by oral gavage) resulted in pancreatitis-like features in male C57BL6 mice, 

including inflammation, increased UPR markers (ATF6, GRP78, p-PERK, p-eIF2α and CHOP), 

elevated expression of amylase and apoptosis 192.  A paradigm of chronic (5% ethanol diet for 2 

weeks) plus binge alcohol exposure (5 g/kg, 25% ethanol w/v for 3 days) induced the expression 

of p-eIF2α, XBP-1, CHOP, ATF-6 and PERK; amylase secretion; pancreatic inflammation and 

apoptotic cell death in the mouse pancreas 82.  

   

Potential treatment of alcoholic pancreatitis by targeting ER stress and UPR  

Based on the aforementioned evidence and our own findings, we hypothesize that ER 

stress plays an important role in the etiology of alcoholic pancreatitis (Fig. 2).  Although alcohol 

exposure alone may not directly result in pancreatitis, it works together with other pathological 

conditions, such as genetic alterations and cellular stressors, to initiate the pathogenesis of 

pancreatitis. Alcohol may promote pancreatitis through the following mechanisms: 1) Since 
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alcohol exposure causes ER stress in the pancreas, pre-existing imbalance of ER homeostasis 

or ER dysfunction may exacerbate alcohol-induced ER stress, which is beyond UPR’s ability to 

restore and results in severe pancreatic damages and pancreatitis; 2) The genetic mutations or 

protein alterations in key components of UPR or ER-associated degradation (ERAD) pathways 

may already impair pancreatic cells’ ability to alleviate ER stress. Upon alcohol exposure, 

sustained and severe ER stress results in cell death, inflammation, and other pancreatic damages; 

3) Reversely, alcohol exposure, especially chronic and heavy alcohol consumption, may disrupt 

ER homeostasis or impair UPR or ERAD systems, which sensitizes pancreatic cells to other 

genetic or environmental stressors. As a result, alcohol abusers are more susceptible to 

etiological initiators of pancreatitis.  

 

Figure 2: Possible etiology of alcohol-related pancreatitis. 1) A pre-existing ER 

condition resulting from stressors other than alcohol (tobacco, high-fat diet etc.) is further 

exacerbated by alcohol exposure, which causes irreversible damage of the ER and subsequent 

cell death. 2) Genetic mutations in UPR or ERAD compromise the ability of ER to dealing with 

unfolded/misfolded proteins, and therefore sensitize the ER to alcohol-induced damages, which 
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leads to severe ER stress and pancreatic damages. 3) Pre-exposure to alcohol compromises the 

ability of ER to maintain its homeostasis and makes the ER to be susceptible to subsequent 

alcohol exposure or other ER stressors, resulting in severe pancreatic damages.   

 

Since ER stress plays an important role in the pathogenesis of alcoholic pancreatitis, 

pharmacological modulations that target ER stress may be an effective strategy for therapy (Fig. 

3).  Small molecules that can regulate ER homeostasis and the UPR/ERAD system have drawn 

great attention for this purpose.  In addition, repurposing existing drugs in a new pharmacology 

class is the safest and cheapest option for disease intervention.  Although there are currently no 

drugs approved by the FDA for alcoholic pancreatitis, a number of FDA-licensed drugs that exert 

therapeutic effects through controlling ER homeostasis and mitigating ER stress can be 

repurposed and tested for the disease 193-195.  

 

 

Figure 3: Potential pharmacological intervention for alcoholic pancreatitis targeting 

ER homeostasis.  It is of great potential to identify specific molecules or strategies targeting ER 
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stress and different UPR components.  One of the most direct pharmacological approaches to 

alleviate ER stress is to use chemical chaperones, such as 4-PBA and TUDCA to facilitate protein 

folding and alleviate ER stress.  Another effective approach is to use specific small molecule 

inhibitors or activators to modulate different UPR components. Among the three arms of UPR, 

PERK/eIF2α is the most important in controlling the protein translation and the transition to 

apoptotic cell death and has been drawn greater attention.   A number of small molecules targeting 

this pathway have been shown to have protective effects against ER stress-induced damages.  

Recently, several FDA-approved drugs that can affect some UPR components exhibit potential 

benefits to alleviate ER stress and reduce pancreatic damages.  One of potential mechanisms for 

alcohol-induced ER stress is the perturbation of ER calcium homeostasis.  Small molecules 

targeting calcium channels have therapeutic potential for ER stress-induced pancreatic damages. 

Antioxidants, such as vitamin C and vitamin E have been shown to alleviate ER stress and may 

be useful to treat alcoholic pancreatitis. Gene therapy using recombinant viruses, such as Adeno-

associated viruses (AAVs) is becoming an attractive strategy to deliver active UPR components 

to specific tissues to mitigate ER stress.  AAV delivery of several key UPR proteins, such as 

GRP78 and MANF demonstrates promising benefits to treat ER stress-related tissue damages.  

 

One of the most direct pharmacological approaches to alleviate ER stress is to use small 

molecules that function as chemical chaperones to facilitate protein folding 196.  There are several 

chemical chaperones, including FDA-licensed drugs such as sodium phenylbutyrate (4-PBA) and 

ursodeoxycholic acid (UDCA) that can be readily repurposed for the treatment of alcoholic 

pancreatitis (Fig. 3).  4-PBA has been approved by the FDA for the treatment of patients with urea 

cycle disorders by acting as an ammonia scavenger 197, 198.  4-PBA can also act as an ER stress 

inhibitor and has been suggested to modulate the restoration of ER homeostasis in many 

pathological conditions 8, 199-201.  Hong et al. (2018) showed that 4-PBA attenuated tissue injury 

which was accompanied by reduction of the expression of ER stress markers, inflammatory 
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response and cell death in sodium taurocholate-induced AP in rats 202.  In addition, the trypsin 

activation, UPR signaling and apoptosis of rat pancreatic acini induced by the supraphysiological 

cholecystokinin were suppressed by 4-PBA 203.  UDCA, also known as ursodiol, is a bile acid that 

has been approved by the FDA as a therapy for gallstone and liver diseases 204-206.  UDCA 

appears to have beneficial effects in treating idiopathic pancreatitis 207, 208.  However, due to its 

poor absorption, people have recently shifted their attention to tauroursodeoxycholic acid 

(TUDCA), a more readily absorbed form that also has the same cytoprotective properties as 

UDCA.  TUDCA is an ER chaperone that has been shown to attenuate ER stress and reduce 

intracellular trypsin activation, edema formation and the inflammatory reaction of pancreatic tissue 

in a caerulein-induced AP rat model 209.  Pretreatment of TUDCA suppressed ER stress 

responses and alleviated ER stress-associated apoptosis in cholecystokinin (CCK-8)-stimulated 

rat pancreatic acini 210.  

Another approach to relieve ER stress is to manipulate the UPR pathways by using small 

molecule inhibitors or repurposed FDA-licensed drugs (Fig. 3). Among the three arms of UPR, 

PERK/eIF2α is the most important in controlling the protein translation and the transition to 

apoptotic cell death 211, 212.  Chemicals that can reduce the protein translation by modulating the 

PERK/eIF2α pathway are of therapeutic potential.  Salubrinal is a selective inhibitor of eIF2α 

phosphatases that was initially identified in a screen for small molecules that protect the rat 

pheochromocytoma cell line PC12 from ER stress-induced apoptosis 213.  A recent study showed 

that salubrinal ameliorated pancreatic injuries by inhibiting the dephosphorylation of eIF2α in 

caerulein/LPS-induced-AP in mice 214.  However, increased eIF2α phosphorylation by salubrinal 

was proapoptotic in pancreatic beta cells and exacerbated the toxicity of ER stressors such as 

the free fatty acids oleate and palmitate, which makes salubrinal an unfavorable drug candidate 

to treat pancreatic disorders like alcoholic pancreatitis 215. There are several FDA-approved drugs, 

including guanabenz acetate (GA), trazodone (TZD) and dibenzoylmethane (DBM), that have 

been shown to target different components of the PERK/eIF2α pathway and can mitigate ER 
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stress. GA is an FDA-approved anti-hypertensive drug. Trazodone is a licensed anti-depressant. 

DBM is a curcumin analogue that has anti-cancer properties 216. These drugs have outstanding 

pharmacokinetics and are considered safe.  GA has been shown to attenuate ER stress and play 

a beneficial role in several models of neurological diseases, including amyotrophic lateral 

sclerosis (ALS), oculopharyngeal muscular dystrophy (OPMD), hereditary spastic paraplegias 

(HSPs) and spinal cord injury (SCI) 217-220.  However, It has also been reported that GA sensitizes 

pancreatic β cells to fatty acid-induced ER stress and apoptosis through PERK/eIF2α signaling 

221.  TZD and DBM have been shown to provide neuroprotection and cognitive improvement by 

reducing protein accumulation in models of prion disease and frontotemporal dementia, with no 

overall toxicity 193.  In a small-molecule screening for the treatment of diabetes, TZD has been 

identified as a stimulator for the proliferation of pancreatic β cells 222.  Despite its short-term benefit 

in alcohol withdrawal syndrome 223, 224, TZD may increase alcohol consumption and worsen the 

drinking outcomes when stopped 225.  The effects of these drugs in alcoholic pancreatitis, 

therefore, need to be evaluated in the preclinical models first.   

IRE1α/XBP1 signaling pathway is another UPR arm that has been implicated in 

experimental models for alcohol-induced pancreatitis 170, 226.  There are two classes of small 

molecule inhibitors for IRE1α that have been developed to modulate IRE1α/XBP1 signaling in ER 

stress-mediated diseases 227.  The first group binds to the RNase domain of IRE1a and inhibits 

its RNase activity.  These inhibitors, including toyocamycin, 3-Ethoxy-5,6-dibromosalicylaldehyde, 

STF-083010 and 2-Hydroxy-1-naphthaldehyde, have been shown to induce apoptosis in a 

number of pancreatic tumor cell lines 228.  Of note, STF-083010 has been shown to protect mouse 

pancreatic 266-6 acinar cells from alcohol-induced cytotoxicity in vitro 229 (Fig. 3).  Another 

inhibitor which also belongs to the first group, MKC-3946, was shown to cause cell death in rat 

pancreatic AR42J acinar cells, primary mouse and human acinar cells in vitro 128.  The second 

class of IRE1α inhibitors targets its kinase domain to exert allosteric control of IRE1α RNase 

activity.  One of the IRE1α kinase inhibitors, kinase-Inhibiting RNase-Attenuator 6 (KIRA6), was 
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recently developed and shown to promote the viability and function of the pancreatic beta cells in 

ER-stress-induced diabetic mice 230 (Fig. 3).  Given the opposite effects that IRE1 inhibitors exert 

on cellular survival and function in different disease models, one should take precautions when 

repurposing them for alcoholic pancreatitis and examine their effects in experimental models on 

a case-by-case basis.   

The modulators of ATF6 are few due to the unavailability of the crystal structure of the 

ATF6 protein, which presents challenges for the identification of druggable binding sites 231.  Using 

a cell-based assay, Gallagher identified ceapins as a class of ATF6- specific inhibitors by 

preventing the translocation of ATF6 from the ER to the Golgi upon ER stress 232.  The effect of 

ceapins on the viability or function of pancreatic acinar cells, however, has not been tested in 

pancreatic inflammatory contexts.  Melatonin is another ATF6 selective inhibitor.  In a rat model 

for intracerebral hemorrhage, melatonin has been shown to exert neuroprotective effects via the 

suppression of the ATF6 pathway 233.  Melatonin was also shown to attenuate inflammation in 

LPS-induced AP in AR42J cells and in taurocholate-induced AP in rats 234, 235.  Interestingly, 

pharmacologic ATF6 activation has also been shown to be protective in many diseases, including 

ischemic heart disease, and diabetes and neurodegenerative disorders 236-240.  Through reporter-

based assays, Bix, compound 147 (AA 147) and 263 (AA 263) have been identified and 

specifically activate the ATF6 arm of the UPR 241-243.  Bix has been shown to exert beneficial 

effects in experimental models for multiple disease conditions, such as stroke and kidney injury 

243, 244.  In a mouse model of ischemic heart disease, AA 147 was shown to exert a protective 

effect in multiple tissues, including heart, brain, kidney and liver 236.  These selective ATF6-

activating compounds are ready to be tested in experimental models for alcoholic pancreatitis. 

ER stress can also result from perturbations of calcium level, as ER resident chaperones 

and folding enzymes have calcium-binding sites and calcium-dependent functions 245.  Alcohol 

and its metabolites can deplete calcium level in the ER by activating inositol trisphosphate 

receptors, calcium release channels located in the ER, to induce ER stress and pancreatic acinar 
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cell death and inflammation in experimental models for alcohol-related pancreatitis 246, 247.  The 

release of calcium from the ER would elevate the calcium level in the cytosol, which in turn would 

activate calcium release-activated calcium (CRAC) channels on the plasma membrane to 

promote the uptake of extracellular calcium, which would further increase the concentration of 

intracellular calcium.  The pathological elevation of cytosolic calcium and the activated CRAC can 

further augment cell death and inflammation in the pancreas 133, 248-251.  Small molecules targeting 

calcium channels have therapeutic potential for ER stress-related disorders like alcoholic 

pancreatitis. For example, two small molecule inhibitors of CRAC channels (Orai1), GSK-7975A 

and CM_128 (also known as CM4620), have been shown to inhibit the activation of ORAI1 and 

prevent cell death and inflammation in thapsigargin-treated human pancreatic acinar cells and 

mouse models of AP induced by alcohol and palmitoleic acid 249(Fig. 3).  In addition to acinar cells, 

CM4620 has also been shown to target pancreatic stellate cells and immune cells, block calcium 

entry and reduce pancreatitis features and severity in experimental AP models 252.  In fact, 

CM4620 has reached Phase I clinical trials for treating AP due to its adequate specificity and low 

toxicity 253.    

Alcohol can also cause ER stress and pancreatic acinar cell injury by altering the redox 

state of the ER. Many experimental models of alcohol-related pancreatitis have shown that 

alcohol exposure leads to oxidative stress in the ER through its oxidative metabolites/by-products 

or the generation of ROS 82, 128, 192, 254.  Curcumin is a natural antioxidant extracted from turmeric 

that has been shown to protect the pancreas by lowering the severity and inflammatory response 

in a rat pancreatitis model induced by alcohol and a low-dose of CCK 255 and non-alcoholic 

pancreatitis models 255-257.  Because of its safeness, tolerability and low toxicity, curcumin has 

been tested in clinical trials for numerous diseases 258, both alone or in combination with other 

reagents, and it has been shown to be protective against alcohol intoxication 259 and pancreatic 

cancer 260-262.  Therefore, curcumin is a promising candidate for the treatment of alcoholic 

pancreatitis. Other therapeutical antioxidant candidates are vitamins that have antioxidant 
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properties, such as vitamin C and E.  Both vitamins are significantly low in the dietary intakes of 

patients with idiopathic CP 263 or low in the blood of patients with alcoholic AP 264 or CP 265.  

Supplementation of vitamin C or vitamin E have been shown to exert anti-inflammatory and other 

beneficial effects in AP patients 266 and in a rat model of alcoholic CP 267. 

Gene therapy using recombinant viruses is becoming an attractive strategy to deliver 

active UPR components to specific tissues. This method avoids the pleiotropic effects of systemic 

and chronic administration of ER stress-targeting compounds.  Adeno-associated viruses (AAVs) 

are the current choice to deliver therapeutic genes because of their safety profile demonstrated 

in pilot clinical trials 268.  GRP78 is an important ER chaperone and participates in the regulation 

of all three arms of UPR signaling 269.  Enhanced GRP78 expression can alleviate ER stress in 

experimental models for a variety of disorders 270.  For example, AAV-mediated gene transfer of 

GRP78 ameliorated retinal cellular injury by mitigating ER stress in mice 271, rats 272 and human 

retinal epithelium cells 273.  In a rat model of Parkinson’s disease, overexpression of GRP78 by 

recombinant AAV attenuated ER stress, promoted the survival of nigral dopamine (DA) neurons 

and restored behavioral deficits 274.  Over-production of GRP78 driven by a rat insulin promoter 

in pancreatic beta cells provided protection against high-fat-induced ER stress and diabetes in 

mice 275.  In a caerulein-induced AP model, Grp78+/- mice displayed greater pathological 

alterations, including morphological change, cell necrosis, edema and inflammation, when 

compared to wild-type mice, suggesting a protective role of GRP78 in AP 276.  Therefore, one may 

take GRP78 into consideration as a potential therapeutic target in alcoholic pancreatitis, and AAV-

mediated delivery of GRP78 may be readily tested in experimental models.     

The downstream transcription programs of the three UPR signaling pathways are 

mediated by transcription factors XBP1 (IRE1 pathway), ATF4 (PERK pathway) and ATF6 (ATF6 

pathway), either individually or co-operatively.  Gene delivery of those transcription factors may 

also be a potential strategy to optimize the beneficial effects of certain pathways in different 

diseases.  Overexpression of XBP1 in the nervous system of adult animals by viral-based delivery 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2021                   doi:10.20944/preprints202111.0384.v1

https://doi.org/10.20944/preprints202111.0384.v1


has been shown to exert protective effects in a mouse model for Huntington’s disease (HD) 277, 

spinal cord injury 278 and PD 279, 280.  More recently, co-expression of XBP1 and ATF6 in a fusion 

protein by AAV-based delivery showed a more potent effect in neuroprotection and anti-

aggregation of mis-folded proteins than XBP1 or ATF6 alone in preclinical models for PD and HD, 

suggesting a cooperative action of XBP1 and ATF6 in enhancing the folding capacity of the ER 

and promoting cell survival under disease settings 281.  Overexpression of XBP1 by AAV-mediated 

delivery may be a promising therapeutic strategy readily tested in alcoholic pancreatitis because 

XBP1 has been implicated to have a beneficial role in alcohol-induced pancreatic damages in an 

experimental model for alcohol-related pancreatitis 80.   However, ATF6 has been shown to play 

a detrimental role in a mouse model for severe AP 282 and CP 188.  Therefore, one should remain 

cautious when testing the effects of its overexpression in alcoholic pancreatitis.  In contrast to the 

beneficial effects of overexpression of ATF6 and XBP1 in neurodegenerative disorders, AAV-

mediated overexpression of ATF4 has been shown to have deleterious effects in the brain of 

animal models for PD and caused behavioral deficits when compared to the control 283.  Excessive 

expression of ATF4 by AAV-mediated delivery resulted in cell death associated with ER stress in 

mouse models for progressive retinal degeneration 284.  A more recent study showed that ATF4 

contributed to the pathogenesis of AP in caerulein-induced AP mouse models 285.  Therefore, 

AAV-mediated delivery of ATF4 seems to be unlikely to exert therapeutic benefits to the alcohol-

induced pathology in the pancreas.  

Another molecular target of interest in the treatment of alcoholic pancreatitis is 

mesencephalic astrocyte-derived neurotrophic factor (MANF).  MANF is an ER stress-inducible 

secretory protein expressed in many human and mouse tissues, with a particularly high 

expression level in secretory tissues such as the pancreas 286, 287.  MANF is activated by alcohol 

exposure and plays a protective role by alleviating alcohol-induced ER stress in the brain and in 

cultured acinar cells 199, 229, 288 (Fig. 3).  The cytoprotective role of MANF in the pancreas has been 

demonstrated by increased apoptosis and reduced proliferation of pancreatic beta cells and an 
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insulin-deficient phenotype in pancreatic MANF knockout mice 289, 290.  In humans, MANF has also 

been shown to be essential for ER function and proper pancreatic beta cell function 291, 292.  In fact, 

MANF has been proposed to serve as a diagnostic biomarker for children with type I diabetes, 

given the elevated level of MANF found in the serum of type I diabetic children 293.  In contrast to 

the role of MANF in the endocrine function of the pancreas which has been well characterized, 

the role of MANF in the exocrine compartment of pancreas has not drawn much attention until 

very recently.  Using an in vitro model, we showed an siRNA knockdown of MANF exacerbated 

alcohol-induced damages in mouse pancreatic 266-6 acinar cells; whereas addition of 

recombinant human MANF or overexpression of MANF by adenovirus ameliorated alcohol-

induced ER stress and cellular injury 229.  While this finding may imply a beneficial role for MANF 

in alcoholic pancreatitis, further studies of measuring the effect of gain- or loss-of-function of 

MANF on pancreatitis features in animal alcoholic pancreatitis are necessary.  Delivery of the 

MANF gene to the brain using AAV protected neurons against ischemic injury in animal models 

294-298. Therefore, it is of interest to determine whether AAV delivery of the MANF gene to the 

pancreas can exert protective effects against alcohol-induced damages. In addition, the serum 

level of MANF in patients with alcoholic pancreatitis is also worth investigating to determine if 

MANF can be a biomarker for alcoholic pancreatitis. 

Conclusions 

Alcoholic pancreatitis is a serious medical concern worldwide and remains to be one of 

the common causes of pancreatic disease.  However, there are no FDA-approved drugs or 

treatments available for the disease.  ER stress has been shown to play a critical role in the 

pathogenesis and progression of alcoholic pancreatitis.  Approaches targeting ER stress may 

open a new avenue for therapeutic strategies for the disorder.  Small molecules and FDA-

approved chemicals that aim at UPR and ER homeostasis may be beneficial and promising. Gene 

therapy for delivering key ER chaperones or UPR proteins to the pancreas may also provide 

protection (Fig. 3). Further investigation on the precise mechanisms and contribution of each 
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individual UPR pathway/molecule in response to ER stress in alcoholic pancreatitis could provide 

insight for novel therapeutic strategies for the disease.    
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