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Abstract: Powder and SLM additively manufactured parts of X5CrNiCuNb17-4 maraging steel 
were systematically investigated by electron microscopy to understand the relationship between 
the properties of the powder grains and the microstructure of the printed parts. We prove that 
satellites, irregularities and superficial oxidation of powder particles can be transformed into an 
advantage through the formation of nanoscale (AlMnSiTiCr)-oxides in the matrix during the 
printing process. The nano-oxides showed extensive stability in terms of size, spherical 
morphology, chemical composition and crystallographic disorder upon in situ heating up to 950°C 
in the scanning transmission electron microscope. Their presence thus indicates a potential for 
oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated 
temperatures. The nucleation of copper clusters and their evolution into nanoparticles as well as the 
precipitation of Ni and Cr particles upon in situ heating have as well been systematically 
documented.  
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1. Introduction 
Maraging steels are low carbon precipitation hardenable martensitic steels with high 

strength and toughness, high temperature creep resistance and low temperature 
properties but also corrosion resistant. These properties qualify them as promising steels 
for structural applications and also as favorites for additive manufacturing due to their 
very good weldability. Few types of steels are actually used for additively manufactured 
components with complex geometries in aerospace, automobile, medical techniques, 
tooling and other industry applications: austenitic stainless steels (AlSl-316L/1.4404, AlSl-
304/1.4307), duplex stainless steel (SAF2 705), maraging steels (17-4PH/1.4542, 15-
5PH/1.4545, 18PH-300/1.2709), and C-bearing (H13) tool steel as well as oxide dispersive 
steels (PM2000) [1-5]. The steels are selected based on application areas for which the 
additively manufactured components should perform high corrosion resistance and long 
service lifetimes in extreme conditions, enhanced mechanical properties (strenghts, 
ductility, hardness, toughness, wear resistance, etc.), multivalent microstructural 
properties (from hard martensite to ductile multiphase components), different 
functionalities (electromagnetic or invar properties) and, of course, an affordable price to 
make it attractive for the industry [5]. 
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The microstructure of additively produced maraging steels in the “as-built” 
condition is refined due to the high cooling rates the material experiences, and consists of 
few small retained austenite grains mixed with dislocation-rich ferritic / martensitic (bcc) 
laths. In addition, depending on the printing parameters and powder characteristics (e.g. 
uniformity of grain size and natural surface oxidation) element segregations and rather 
large oxide inclusions (TiO2:Al2O3 of about 10 – 20 µm, or other oxides containing Ti, Mo, 
Al and Si in various ratios) [4] have been observed at melt pool boundaries. Their 
presence, by consistently high density of the part (absence of pores), is however, generally 
considered to have an unfavorable influence on the mechanical properties of the printed 
part [4-6] because of crack initiation. On the other hand, the in situ addition during the 
additive production of dispersive oxide (ODS) powders [7,8] or the use of environmental 
oxygen or nitrogen gases to form ODS (TixOy, AlyOy) or nitrogen dispersed particles 
(NDS) during printing, induced a significant increase in hardness and thermal stability 
[9]. However, such uniformly dispersed oxides with dimensions in the nanometer and 
micrometer range have been detected only by few authors [10-14] in additively 
manufactured (L-PBF) stainless and maraging steels. 

Most stainless and maraging steels uses intermetallic compounds precipitation at 
temperatures between 400 and 650°C as strengthening mechanism [15]. These precipitates 
with sizes between 50 nm and 1 µm form at laths interfaces and are expected to impede 
the movement of subgrains and dislocations (through the Orowan effect), thus 
contributing to the precipitation hardening. However, thermal stability of the precipitates 
at elevated temperatures is critical to resist grain growth and dislocation recovery when 
long-term creep strength of the printed components needs to be achieved.  

This work provides a detailed microstructure study of the X5CrNiCuNb17-4 
precipitation hardened stainless steel [1,16], in powder form as well as additively 
manufactured by selective laser melting in the as-built condition and heat treated 
according to the recommended scheme that also applies to the bar material (H1150 
(620°C): [P930]). This grade contains Cr and Ni for corrosion resistance and Cu for 
precipitation hardening (fcc - nano-precipitates) that is achieved upon ageing heat 
treatment [1,16-18]. 

By studying the samples in a high-resolution scanning transmission electron 
microscope (STEM) using in situ thermal treatment and correlation with simultaneous 
thermal analysis (STA) measurements, we aim to understand the relationship between the 
powder characteristics and the microstructural details that might influence the properties 
of the printed parts. In particular, we systematically followed the evolution of the 
nanometric spherical oxides as well as the chromium and copper precipitate nucleation 
and coarsening upon heating of the sample in the as-built condition up to 950°C. Such 
experiments have, to the best of our knowledge, only been reported for AlSi10Mg alloy 
[19]. 

2. Materials and Methods 
The microstructure of the X5CrNiCuNb17-4 steel in powder form and additively 

manufactured in as-built condition as well as the thermally treated specimen 
(1040°C/30min/air cooling + 620°C/4h/air cooling) have been extensively investigated by 
optical, scanning and high-resolution transmission electron microscopy techniques as 
well as simultaneous thermal analysis. For both samples we measured the hardness 
(replacing the tensile test) and determine the fatigue strength by nanoindentation 
technique.  

The spherical powder was produced by argon gas atomization and has a broad 
particle size distribution between 14 and 45µm (D10[µm] 18 – 24, D50[µm] 29 – 35, 
D90[µm] 42 – 50) [16,20]. The cycled powder (mixture of pristine and the excess of a 
previous printing) was used for additive manufacturing by selective laser melting. The 
chemical compositions of the powder and of the additively manufactured sample in the 
as-built condition, as determined by wet chemical analysis, are listed in Table 1. The 
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chemical composition of the as-built sample differs slightly from the powder, indicating 
that some elements (C, Si, Mn, Nb, Mo) were evaporated during the printing process. 
After thermal treatment, the chemical composition remained unchanged. The printing 
parameters for the as-built sample are given in Table 2. 

Table 1. Chemical composition of the powder [1,16] and as-built condition (wt. %). The standard 
deviation of the measurement lies between 3 - 5 %. 

wt. % C Si Mn Cr Ni Cu Nb P S Mo Fe 
Powder [1] 0.07 0.7 1.0 15 - 17 3 - 5 3 - 5 0.45 0.025 0.015 0.5 bal. 

as-built  0.04 0.34 0.36 15.2 4.80 3.03 0.25 0.02 0.006 0.26 bal. 

Table 2. Printing parameters of the X5CrNiCuNb17-4 steel. 

Power Speed Hatch distance Layer Thickness 
250 W 850 mm/s 0.1 mm 0.05 mm 

The X5CrNiCuNb17-4 powder, as-built and thermally treated samples were first 
examined in a scanning electron microscope (SEM). An adhesive tape was used to pick 
up the powder grains for morphology and sphericity analysis. A second batch of the 
powder was embedded in a resin (CALDOFIX), polished down to a few tenths of a 
micrometer, and thinned by Ar -ion milling at cryogenic temperature. The additively 
manufactured samples were cut and polished along the build direction (z-axis) and the 
basal plane (xy-plane), using diamond and aluminum suspensions as final polishing steps 
for electron backscatter diffraction (EBSD) measurements. SEM micrographs were 
acquired using backscatter, secondary electron, and in-lens detectors. We used energy 
dispersive X-ray spectrometry for the analytical studies and EBSD for crystallographic 
studies of the grains and grain boundaries. 

The ex situ samples for scanning transmission electron microscopy (STEM) analysis 
were prepared by Ar ion milling at cryogenic temperature, while for the in situ heating 
experiments, a focused ion beam (FIB) prepared lamella, cut from the as-built sample, was 
mounted on a MEMS heating chip (DENS solutions-Wildfire H+ DT, heating/quenching 
rate 200°C/ms and settling time 2s). For the high-resolution STEM studies, we used a 
probe-corrected microscope FEI Titan G3 60-300 (Thermo Fisher GmbH) operated at 
300kV. HR-STEM micrographs were acquired using the annular (ADF) and high angle 
annular dark field (HAADF) detectors. Analytical studies were performed using energy 
dispersive X-ray analysis (EDS) and electron energy loss spectroscopies. For EDS the 
microscope is equipped with a windowless silicon drift detector FEI Super-X (Chemi-
STEM technology) and for electron energy loss spectroscopy with a dual EELS Quantum 
Gatan Imaging Filter (GIF). 

The nanoindentation measurements were performed using the NHT3 Nanointender 
from Anton Paar. Each sample was tested in all three regions of the stepwise geometry 
presented in Fig. 2a. 

Simultaneous Thermal Analyses (STA) combining thermogravimetry (TG) and 
differential scanning calorimetry (DSC) were performed in a NETZSCH STA 449F1 Jupiter 
in Argon atmosphere applying different heating and cooling rates. 

3. Results 
The morphology, chemical composition, particle size distribution, and roundness 

factor of the X5CrNiCuNb17-4 powder grains have been studied in detail and published 
elsewhere [1, 20].  

We observed a rather large size distribution and a high amount of satellites. STEM 
Analysis of a focused ion beam lamella cut from such a grain with satellites and 
accretionary forms (Fig. 1a and b) revealed the presence of Ni-intermetallic phases (Fig. 
1c #1) and Cu-metallic layers (Fig. 1c #2) as well as a nm-thin layer of amorphous carbon 
at the interface between the particle body and the accretionary envelope (Fig. 1c #3). 
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Furthermore a 10 nm thin passive oxide layer was found to cover the particles and 
irregularities. 

 
Figure 1. Powder characterization by SEM and STEM. a) SEM of a corrupted particle with the FIB 
lamella position; b) STEM ADF image of the FIB lamella; c) STEM HAADF image at higher 
magnification. The insets #1, #2 and #3 represent different regions at the interface of the particle 
body with the envelope. #1 – Ni intermetallic phases, #2 – Cu metallic interface and #3 – 
amorphous C and iron oxides. The Fe, Cu, C, and O - EDX maps reveal the interface from area #2. 

The geometry of the printed samples was stepwise (Fig. 2a) to determine the effect of 
redundant heat during the printing process on the microstructure and mechanical 
properties. The mechanical properties for the as-built sample and the thermally treated 
sample (1050°C / 3min / air + 620°C / 4h / air), measured by nanoindentation, are presented 
in Fig. 2b. The measurement for all three areas showed low influence of the thermal 
treatment on the nanohardness.  

 
Figure 2. a) Image of the printed sample with the step-wise geometry; b) nanoindentation 
measurements performed for the as-built and heat-treated samples for the three areas with 
different thicknesses (2, 4 and 6 mm). 

The as-built sample was extensively investigated in the build-up direction (z-axis) as 
well as in the basal plane (xy-plane) by means of optical microscopy and scanning electron 
microscopy (Fig. 3). The SEM images show distinct areas of microsegregation, which can 
be attributed to the quick cooling and solidification during the laser process. The 
microsegregations occur in lines at the interface between the melt pools - following the 
layers - and have a reduced hardness to the matrix, so they could serve as preferential 
crack paths. Their chemical analyses by EDX showed a mixture of Ni, Mo, Ti, Nb, W with 
various concentrations.  
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EBSD analysis showed a fine microstructure with small austenite grains of 280 to 
340 nm in size, mixed with larger ferrite and martensite grains of about 10 µm (Fig. 3g - 
j). The austenite fraction, as quantified from the EBSD images in both z-direction and xy 
plane, ranged from 2 to 3.1 %. No clear columnar grains of increased size were observed 
in the heat-affected zones at the boundaries of the melt pools, indicating that the printing 
parameters were optimized for the best homogeneous microstructure that a sample can 
have in the as-built condition. 

At higher magnifications, we noticed micrometer-sized pores and dark or bright 
small spherical features.  

 

 
 

Figure 3. As-built sample characterization by optical microscopy (Infinite Focus Microscope) and 
SEM. a) IFM of the sample polished in the build direction (z-axis) and b) in the basal plane;  c) 
and d) SEM of the as-built sample in the build direction (z-axis) and basal plane with the EDX 
spectrum #1 from a microsegregation area; e) and f) SEM images with the EDX spectrum #2 from a 
region with pores and spherical nano-sized features; g) EBSD investigations for the as-built 
sample in the z-axis for the austenite and h) ferrite - martensite phases and i) in the basal plane for 
the austenite and j) ferrite - martensite phases. 

STEM analysis (Fig. 4a, b, c) showed the dark spherical features that decorate the 
matrix to be distributed inside the martensite or ferrite grains but also at the grain 
boundaries. Furthermore, the high-resolution STEM image of such a particle in Fig. 4d 
and the X-ray elemental maps and line scan in Fig. 4e, confirmed that they are indeed 
nanometric oxide phases containing Si, Al, Ti, Cr, Mn. Their internal structure is 
disordered crystalline and core-shell-like, with a core consisting mainly of silicon and a 
shell of titanium and chromium, while aluminum and manganese are evenly distributed. 
However, in some nano-oxides, the shell of titanium and chromium was found to be sheet 
like (probably a couple of atomic layers thick) and crystalline. While the other elements 
are expected, the presence of Al and Ti impurity atoms probably originates from the alloy 
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ingot casting, which was subsequently converted into powder. However, their 
concentration seems to be high enough to form densely dispersed oxides in the matrix.  

 
Figure 4. STEM investigations for the as-built sample. a) and b) low magnification HAADF 
images; c) and d) high resolution HAADF images; e) EDX line scan and EDX maps from the 
particle represented in d). 

The thermally treated sample (1050°C / 3min / air + 620°C / 4h / air) (Fig. 5a-b) exhibits 
a martensitic refined microstructure. The segregations (Fig. 5c and EDX #1) at the melt 
pool interfaces however were not entirely dissolved. The Nb-rich carbides and the nano-
oxides (Fig. 5d-f with EDX #2 and #3) are also still preserved. As expected, the typical 
intermetallic Ni precipitates (200 nm - 700 nm) were mainly formed at the grain or lattice 
boundaries. 

 
Figure 5. Thermally treated sample (1050°C / 3min / air + 620°C / 4h / air) characterization by 
optical microscopy and SEM. a) and b) IFM images in the z-axis and basal plane; c) and d) SEM 
images at low magnification with the EDX spectrum from segregation area #1; and e) higher 
magnification SEM image with the EDX spectra from the bright #2 and dark #3 particles. 

Figures 6 and 7a present STEM HAADF images and EDX maps for areas containing 
both Ni-precipitates and nanoparticles (oxides and carbides) at low and high 
magnification, respectively. Along with the NbC and nano-oxides that have not changed 
their morphology or chemical composition, we found a high density of Cu nanoparticles 
(5 – 20 nm) uniformly distributed in the matrix. The element concentrations in the oxides 
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and carbides vary only slightly and can thus be considered stable phases. Exemplar line 
scans for the typical nanoparticles indicated by arrows on the Mn, Ti, and Nb maps in 
figure 6, are also shown. Both nanoparticle types, nano-oxides and nano-carbides (NbC), 
were not affected at all by the heat treatment at 620°C.  

Nevertheless, possible nanopores partially filled with oxygen and having Cu, Mn, 
and Ni adsorbed on their walls are also shown in figure 7b. Their presence, however, 
might be induced by the electron beam affecting the nano-oxides situated closed to the 
surface of the very thin STEM sample.  

 
Figure 6. STEM investigations for the thermally treated sample. a) HAADF image at low 
magnification; b) HAADF image with the rectangle indicating the area for EDX maps. EDX line 
scans over particles #1 (manganese oxide), #2 (titanium oxide), #3 (niobium carbide). 

 
Figure 7. a) EDX maps from an area containing nanometric oxide in thermally treated sample. b) 
EDX maps at higher magnifications to reveal nanometric pores filed with oxygen and having Cu, 
Mn and Ni adsorbed on the walls. 

In order to clarify whether the oxides are stable at elevated temperatures and to 
observe the nucleation of the nanosized Cu, Cr and Ni precipitates, we performed 
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simultaneous thermal analysis (STA) measurements of the as-built sample and STEM in 
situ heating experiments accompanied by EDX analyses.  

With the first STA experiment the heat treatment was simulated with a heating rate 
of 10 K/min up to 1050°C and a dwell time of 30 minutes, followed by a rapid cooling with 
50 K/min, all in Argon atmosphere (Fig. 8). The STA curve exhibits an exothermal peak at 
483°C in the first heating segment followed by another broad exothermal peak above 
600°C. In the cooling segment no signals were detected that would indicate a reversibility 
of these processes. The measurement at a higher heating rate 35 K/min (not shown here) 
showed a shift of the first exothermal peak toward higher temperatures (501°C).  

 
Figure 8. Simultaneous thermal analysis (STA - extracted DSC curve) measurements of the “as-
built” sample at 10 K/min heating rate. 

In addition, the “as-built” sample was in situ heated in the high-resolution 
microscope operated in STEM mode, starting at room temperature (23°C) up to 950°C at 
a heating rate of 8.6 K/min for the temperature range between 23°C and 550°C and 
2.8 K/min between 550 °C and 950 °C (suppl. Fig. 1). It is worth noting that heating at a 
temperature above 950 °C was hindered by the fact that the matrix in the very thin lamella 
decomposed almost completely (Fig. 9a). 

The overall appearance of the microstructure on the HAADF images seemed to 
remain stable up to 600°C (Fig. 9a) even though the STA measurement indicated an 
exothermic peak at 480°C that is related to the formation of Cu clusters and nanoparticles 
[21]. Nevertheless, on the high magnification EDX maps taken at 500 °C, we could indeed 
observe a few Cu nanoparticles (Cu map and line scan on Fig. 10). On the images acquired 
with the HAADF detector, however, the formation of the nanoparticles and their 
continuous coarsening (intermetallic Cu, Cr and Ni) was first observed above 650°C and 
up to 950°C. (At this point we have to note that imaging alone, also using different 
detectors, without analytical evidence did not deliver the complete information about the 
dynamic of the alloy system.) While the coarsening of Cu and Ni precipitates was rather 
slow, the coarsening rate for Cr precipitates proved to be higher. Moreover, we also 
observed the precipitation of Cr23C6, contrary to the general knowledge that in Cr 
containing maraging steels, Cr23C6 precipitate nucleation should be restricted due to the 
low carbon concentration. Phase diagrams for PH-17 stainless steel [22, 23] show a very 
low mass fraction for the M23C6 phase with possible coarsening above 650°C. We assume 
that the nucleation of the Cr23C6 precipitate during in situ heating (Fig. 11), is due to 
accelerated surface diffusion of Cr and C atoms (also probably supplied by the fixing alloy 
for the FIB lamella on the heating chip, which is a mixture of Pt and C) at higher 
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temperatures. Although we tried to minimize the contribution of the fixing alloy by 
preparing the FIB lamella in a window-like manner (thin middle area with very thick 
edges acting as barriers for diffusion), this effect could eventually not be completely 
prevented.  

The nano-oxides, on the other hand, remained stable up to 950°C and retained their 
spherical morphology, complex or core-shell-like chemical composition, and 
crystallographic disorder. Figure 9b shows images at temperatures between 23°C and 
760°C from an area at higher magnification containing few nano-oxides. Above 700°C, the 
matrix in this region started to decompose quickly covering some oxides. However, they 
are still visible at lower magnification in figure 9a. Chemical analysis of a nano-oxide was 
performed at room temperature and compared to the analyses at 500°C and 800°C. We 
did not detect any changes on the EDX maps shown in figure 10 at all three temperatures.  
However, the EDX maps at 800°C were recorded at lower magnification to feature the 
changes undergone by the matrix surrounding the nano-oxide. The high-resolution STEM 
images of such a particle at different temperatures presented in supplementary figure 2 
show the cupper segregation in the proximity of the nano-oxide at temperatures above 
600°C. The shape of the particle is slightly changed at 850°C due to the Cu and Cr 
segregations as well as matrix deterioration. 

Figure 11 exemplifies the STEM HAADF image and chemical analyses of a large area 
at 700°C. The EDX maps display the coarsened Cr (about 200 nm) and Ni (larger 
than 250 nm) precipitates, the Cu (about 20 – 30 nm) and oxide nanoparticles, but also 
silicon segregations of about 2 – 5 nm at martensite lath interfaces.  

a)
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b) 

 
 

Figure 9. In situ heating study for the as-built sample a) at lower magnification to observe the 
nucleation and coarsening of the Cr- and Ni-rich precipitates, and b) at higher magnification to 
follow the evolution of the nanometer sized oxides. 

 

 
Figure 10. EDX analysis of a nanometer sized oxide in the as-built sample at room temperature 
(23°C), 500°C and 800°C. EDX line scan over two Cu nano-precipitates at 500°C (Ni signal on the 
line scan is displayed for comparison). 
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Figure 11. EDX analysis at lower magnification at 700°C. 

When comparing the STA measurements with the in situ STEM measurements at 
450°C and 500°C, we observed that the exothermic peak present at 481°C (10 K/min) or 
501°C (35 K/min) do not resemble any dramatic changes in the microstructure that could 
be detected on the images at low magnification. At higher magnification however, the Cu-
EXD map (Fig. 10) demonstrates the formation of dense Cu clusters and nanoparticles as 
reported in the literature for the PH 15-5 [21]. This process is probably driven by the 
continuous stress release that starts already at low temperatures (probably above 200°C) 
and pipe diffusion through dislocations. Beside pipe diffusion, the surface diffusion 
accelerated the growing of the Cu- nanoparticles at higher temperatures and the 
nucleation of Cr and Ni intermetallic precipitates followed by their coarsening that give 
rise to the broad exothermic peak starting at 620°C.  

Therefore, we can understand the STA curve considering matrix relaxation at low 
temperature (below 450°C), formation of Cu clusters between 470°C and 520°C followed 
by coarsening until 950°C and precipitation and coarsening of Cr- and Ni particles 
between 620°C and 950°C. The nanosized oxides remained unchanged over the whole 
range of temperatures, therefore no influence on the STA curve is expected. 

4. Discussion 
The powder analysis confirmed the thin passive oxide layer that covered the particles 

and irregularities, that seems to supply sufficient oxygen to the system to ensure the 
formation of nano-oxides during the printing process. The nano-oxides in the as built 
sample can have, depending on printing parameters, a high density in the vicinity of the 
melt pools or be evenly distributed in the matrix.  

In the thermally treated sample the nano-oxides are not affected at all by the heat 
treatment at 620°C (their thermal stability has also been acknowledged by Sun et al 
(2018)). Furthermore, the in situ heating experiment up to 950°C confirmed their stability 
in all aspects (Fig. 11) suggesting that they could be beneficial in terms of strength or creep 
resistance at elevated temperatures. 

Very often the oxides in the as built sample have been identified as pores since 
micrometer sized pores with variate morphologies and nanopores are frequently present 
in the additively manufactured parts. While the micrometer sized are easy to detect by 
different macroscopic methods, in the optical and SEM microscopes or by X-ray computer 
tomography, the nanopores detection needs high-resolution investigation methods such 
as STEM images accompanied by chemical composition analyses using X-ray and electron 
energy loss spectroscopy (EELS). Advanced methods such as EELS fine structure (ELNES) 
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analysis of the oxygen edge can even distinguish between molecular oxygen (or nitrogen) 
in gas form and bound oxygen (carbon, nitrogen) in amorphous or crystalline state. 
Furthermore, this method can be applied for detection of such atoms at grain / subgrain 
or melt-pool boundaries. 

On the other hand, the amorphous carbon found at the interfaces between the 
powder particle body and the envelopes (corrupted particles), added to the nominal 
concentration presented in Table 1, supplied sufficient carbon for niobium to form nano-
carbides (NbC), but also few chromium carbides at higher temperatures as presented in 
Fig. 9 and 11. The NbC appear on the EDX maps (Fig. 6 and 7) and with a bright contrast 
on the SEM images (Fig. 5e #2) while the chromium carbides are visible only on the in situ 
heating HAADF images acquired above 660°C in Fig. 9b and on the EDX maps at 700°C 
in Fig. 11. 

The STA curve in Figure 8 confirmed our results in the in-situ heating measurements, 
validating this method for the heat tempering study of other steel grades and alloys. 

5. Conclusions 
Correlative electron microscopy and STA investigations were performed for the 

X5CrNiCuNb17-4 maraging steel to better understand the microstructure characteristics 
and mechanical properties of the final additively manufactured parts. 

Regular and irregular powder grains high resolution microstructure analyses 
revealed the thin copper segregations and the amorphous carbon layer as well as the 
surface superficial oxidation of about 10 nm.  

Further, the microstructure characterization of the as-built condition unveiled the 
presence of nanosized oxides distributed in the matrix. These particles have been shown 
to persist in the thermally treated state and, together with the formation of the expected 
intermetallic Ni precipitates at the interfaces between the laths and the Cu nanoparticles, 
contribute to the improved mechanical properties of the material.  

During in situ heating in STEM we observed the formation and coarsening of Cu 
nanoparticles that reached dimensions larger than 200 nm at 700°C, and precipitation of 
Ni and Cr particles that continuously coarsened at higher temperatures reaching 500 nm 
at 950°C. These observations are in line with the STA measurement at higher 
temperatures. 

The origin of the Al, Si, Ti, Mn and Cr containing nanosized oxides already observed 
in the as-built sample, is most probably linked to the very thin superficial oxidation layer 
on the powder particles. The in situ heating experiment in STEM confirmed their 
exceptional stability up to 950°C. They preserved their dimensions, spherical morphology 
and chemical composition, and might be considered as strengthening particles in addition 
to Ni and Cu precipitates. 

Consequently, we conclude that the controlled superficial oxidation of steel powder 
grains can in fact be reversed into an advantage, to produce oxide-dispersive strengthened 
additively manufactured steel parts with higher thermal stability. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1, 
Figure S2.  
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