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Abstract: Fluid flow and chemokine gradients play a large part in not only regulating homeostatic 
processes in the brain, but also in pathologic conditions by directing cell migration. Tumor cells in 
particular are superior at invading into the brain resulting in tumor recurrence. One mechanism 
that governs cellular invasion is autologous chemotaxis, whereby pericellular chemokine gradients 
form due to interstitial fluid flow (IFF) leading cells to migrate up the gradient. Glioma cells have 
been shown to specifically use CXCL12 to increase their invasion under heightened interstitial flow. 
Computational modeling of this gradient offers better insight into the extent of its development 
around single cells, yet very few conditions have been modelled. In this paper, a computational 
model is developed to investigate how a CXCL12 gradient may form around a tumor cell and what 
conditions are necessary to affect its formation. Through finite element analysis using COMSOL and 
coupled convection-diffusion/mass transport equations, we show that velocity (IFF magnitude) has 
the largest parametric effect on gradient formation, multidirectional fluid flow causes gradient for-
mation in the direction of the resultant which is governed by IFF magnitude, common treatments 
and flow patterns have a spatiotemporal effect on pericellular gradients, exogenous background 
concentrations can abrogate the autologous effect depending on how close the cell is to the source, 
that there is a minimal distance away from the tumor border required for a single cell to establish 
an autologous gradient, and finally that the development of a gradient formation is highly depend-
ent on specific cell morphology. 

Keywords: interstitial flow; glioma; chemotaxis; autologous; computational; gradient; CXCL12; mi-
gration 
 

1. Introduction 
Within the brain many dynamic processes take place on a regular basis in order to 

maintain homeostasis. These include electrical gradients being induced and sent out to 
the rest of the body for communication and motor function, fluid exchange in order to 
keep the correct amount of ions, nutrients, and oxygen delivered to the tissue, and bio-
physical forces acting on the tissue to direct organization and repair [1]. On a smaller scale, 
these processes are driven by interactions at the cellular level and governed by signaling 
cascades, cell-to-cell interactions, cell-to-environment interactions, chemical gradients, 
and individual cellular phenotypes/functions. At this level, biophysical forces such as 
fluid flow have a direct impact what a cell feels and how it reacts, for example flow-me-
diated shear stress on the outside of a cell leading to cytoskeletal remodeling and cell 
movement [2], [3]. Another example is flow acting as a convective force to create gradients 
of chemokines which can help pattern organs such as during neonatal development [4], 
[5], recruit immune cells to distant sites of inflammation [6], or even play a role in tumor 
invasion and development [7], [8]. To complicate matters, this flow is driven by multiple 
means such as respiration and blood pressure, through multiple structural pathways such 
as blood vessels, lymphatics, and ventricles, and is constantly changing in magnitude [9]. 
In the brain, the fluid that cells in the parenchyma encounter is interstitial fluid. This is 
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similar in property to cerebrospinal fluid and is a combination of fluid coming from blood 
vessels and cerebrospinal fluid from the ventricles into the Virchow-Robin space [10]. This 
fluid travels through the extracellular matrix (ECM) and around cells, driven by the pres-
sure differential from the vasculature. More recently, the glymphatic pathway has been 
characterized as a conduit by which the interstitial fluid flows in/around arteries, through 
the extracellular space, and ultimately is drained by the cervical lymphatics as it travels 
around veins to leave the cortex [11]. In this context, we can think of interstitial fluid as 
having a defined, or at least somewhat organized, direction of flow governed by anatom-
ical structures that also directly interacts with cells. 

Interstitial fluid flow is especially of interest because it has been shown to change 
drastically with pathological states such as cancer, hydrocephalus, and Alzheimer’s dis-
ease [10], [12]. In particular, our lab and others have identified interstitial fluid flow as a 
mediator of cancer cell invasion in brain and breast cancer cell lines [7], [13], [14]. We have 
also mapped velocities based on human MRI around gliomas and shown that magnitudes 
and flow direction are heterogeneous with average speeds of 3um/s [9]. During tumor 
development, intratumoral pressure increases while pressure in the surrounding tissue 
stays at normal levels [15]. Specifically, the pressure stays mostly constant in the tumor 
interior and drops quickly at the tumor border. This pressure is a result of leaky vascula-
ture caused by breakdown of the blood brain barrier and remodeling of the ECM by the 
tumor. The resulting pressure differential causes interstitial fluid flow from the tumor into 
the surrounding space, with implications for tumor growth and development [7], [16], 
[17]. This is especially important in glioma as recurrence is caused by cells that have in-
vaded past the tumor border and evaded removal by surgical resection because they are 
outside of the surgical margin. This brings up important questions as to what is causing 
this migration, especially in regards to fluid flow effects. There are currently two main 
hypotheses by which flow as a biophysical force is mediating this invasion: mechanotrans-
duction and autologous chemotaxis. The model in this paper is focused on autologous 
chemotaxis and how chemokines form under different flow conditions. 

Chemokines are chemoattractant cytokines found ubiquitously throughout the body. 
They are involved with processes such as cell proliferation, cell migration, and the inflam-
matory response. In the context of cancer, chemokines have been found to promote inva-
sion and tumorigenesis [18]. There are over 40 main chemokines not including their re-
ceptors [19] that cover a range of functions and are found in many different types of can-
cer. Some of the more well-documented include CCL21 [20] in breast cancer, 
CXCL12/CXCR4 in brain cancer [19], and CCL2 in prostate cancer [21]. These chemokines 
are also not exclusive to any one type of cancer. For example, CXCL12 induces EMT in 
colorectal and pancreatic cancer cells and has also been implicated in neoangiogenesis or 
angiogenic activity through PI3K pathway in glioblastoma [19]. Because of its high levels 
in glioma and the many roles that it plays with promoting glioma progression, we chose 
to focus on CXCL12 and its receptor CXCR4. It is also important to realize the way in 
which this axis interacts with the cell and surrounding matrix. As CXCL12 is released into 
the environment, it not only binds to specific sites on the cell surface but also molecules 
within the extracellular matrix. One of the main molecules is a glycosaminoglycan (GAG) 
called heparan sulfate (HS) that allows the CXCL12 to bind directly and plays an im-
portant role in regulating chemokine gradients within the microenvironment [22]. In our 
model we are specifically interested in the bound CXCL12 gradients that form as a result 
of the relationship with HS as this ultimately dictates cell movement that occurs from the 
CXCL12/CXCR4 axis. In addition to secreting chemokines, glioma cells also secrete prote-
ases at higher levels than normal cells [23], [24]. These substances, such as MMP9, can 
break down the extracellular matrix, both creating spaces for the cells to migrate as well 
as releasing bound molecules such as the CXCL12. 

In 2006, Fleury et al. published a computational paper on the theory of autologous 
chemotaxis as a result of fluid flow [25]. They investigated autologous chemotaxis in the 
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context of CCL21 and CCR7 through a 2D finite element model. They incorporated unidi-
rectional fluid flow across a cell (represented by a circle) with secretion of a chemokine 
and a protease from the cell, while looking at the resulting pericellular gradient that 
formed under different reaction conditions and velocities. Their model found that gradi-
ent formation is dependent on interstitial fluid flow velocity, increasing drastically from 
just 0 um/s to 6 um/s flow magnitude. This model was expanded by Evje [26] in 2018 to 
include multiphase components (treating the fluid and the cancer cells as two distinct 
phases with their own equations) and adding a stress term to describe the force the fluid 
exerts on the cell to try to “push” it downstream. 

In 2007, Shields et al. [20] published a seminal paper on autologous chemotaxis, with 
the hypothesis that cells migrate along autocrine chemokine gradients formed by fluid 
flow from the lymphatics in breast cancer/melanoma. They specifically looked at CCL21 
and its receptor CCR7 and found that chemotaxis toward lymphatic endothelial cells was 
mediated by CCR7 and that flow induced a higher % migration dependent on CCR7 but 
independent of LECs, suggesting that a mechanism such as autologous chemotaxis is pre-
sent. 

There have been other papers published recently that investigate gradient formation 
of certain chemokines in the context of inflammation, the immune system, and other dis-
eases [27], [28] but none that investigate the role of CXCL12 in autologous chemotaxis. We 
build on the foundation of previous models here by bringing it into the 3D realm and 
considering effects such as cell shape and time on gradient formation, which has not been 
done before to our knowledge. We also extend the application to glioma and the 
CXCL12/CXCR4 chemokine axis as a way to describe how tumor cells might be migrating 
in the brain due to changes in interstitial fluid from tumor growth and drainage via the 
glymphatic system. 

2. Materials and Methods 
Equations and implementation of the model 
Our model focuses on a control volume around a single cell and looks at gradient 

formation under different parameter changes, flow directions and magnitudes, cell mor-
phology, transient functions, background concentrations, and distances from the tumor 
border. COMSOL is used as the software package in which to set up the finite element 
analysis and run the model. The model is based on modified Navier Stokes (convection-
diffusion equation): 

𝜕𝑢

𝜕𝑡
+ (𝑢 ∙ 𝛻)𝑢 − 𝜈𝛻ଶ𝑢 = −𝛻𝑝 + 𝑔 (1)

where u is the velocity, v is the dynamic viscosity, p is the pressure, and g is gravity. 
The first term describes the change in velocity over time, the second term the convection 
component, and the third term the diffusion component. The terms on the right hand side 
make up the internal and external forces on the system, with a term for the pressure gra-
dient and a term for gravity. This can be simplified by the assumption of stationary (no 
time dependence), creeping (convection small compared to viscous or diffusion), and in-
compressible flow (ρ is constant) to the Stokes equation: 

𝜕𝑝

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑢) = 0 (2)

from this the Brinkman form of Darcy’s law can be derived by assuming viscous force 
is linear with velocity and adding the Brinkman term to account for transitional flow. This 
equation describes fluid flow through a porous media (such as interstitial fluid flow 
through the ECM): 

−𝛽𝛻ଶ𝑞 + 𝑞 = −
𝑘

𝜇
𝛻𝑝 (3)
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where beta is a correction term to account for flow through porous media, q is the 
flux (flow per area), k is permeability, µ is the viscosity, u is the velocity, and p is pressure. 
This equation is coupled with the mass transport equation which describes transport of a 
chemical species through convection and diffusion along with any reactions taking place: 

𝜕𝑐

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑐 = 𝛻 ∙ (𝐷𝛻𝑐) + 𝑅 (4)

where c is the concentration and D is the diffusion coefficient. The first term describes 
the change in concentration over time, the second term the convective component of con-
centration change, the third term the diffusive component of concentration change, and 
the last term the chemical reactions that take place to either generate or degrade the chem-
ical species. The reaction equations used in this model describe the binding kinetics of 
CXCL12 to the matrix. As the CXCL12 is secreted from the cell, it preferentially binds to 
sites on the extracellular matrix, such as heparan sulfate [22]. This bound CXCL12 is what 
will ultimately interact with the CXCR4 receptor on the cell to cause migration or other 
cell activity and is the main concentration that we are concerned with in the model. The 
CXCL12 binding is governed by the kon and koff values, experimentally determined by 
Munson et al [17]. In addition, the cell secretes a protease, such as MMP9, that acts to 
cleave the bound CXCL12 and release it back into the environment as free CXCL12. The 
protease is an enzyme in the model, meaning it does not get altered by its proteolysis 
function and so its reaction is zero. The equations are shown below: 

 
Free chemokine [CXCL12]: 

𝑅௖௫௖௟ଵଶ = 𝑘௥௘௟ ∗ [𝑝𝑟𝑜𝑡𝑒𝑎𝑠𝑒] ∗ [ℎ𝑠_𝑐𝑥𝑐𝑙12] − 𝑘௢௡ ∗ [𝑐𝑥𝑐𝑙12] ∗ [𝐻𝑆] + 𝑘௢௙௙ ∗

[ℎ𝑠௖௫௖௟ଵଶ]  
(5)

 
Bound chemokine [HS_CXCL12]: 

𝑅௛௦೎ೣ೎೗భమ
= −𝑘௥௘௟ ∗ [𝑝𝑟𝑜𝑡𝑒𝑎𝑠𝑒] ∗ [ℎ𝑠௖௫௖௟ଵଶ] + 𝑘௢௡ ∗ [𝑐𝑥𝑐𝑙12] ∗ [𝐻𝑆] − 𝑘௢௙௙ ∗

[ℎ𝑠_𝑐𝑥𝑐𝑙12]  
(6)

 
Protease: 

𝑅௣௥௢௧௘௔௦௘ = 0 (7)

where [cxcl12] is the concentration of the free chemokine, [hs_cxcl12] is the concen-
tration of the bound chemokine, [HS] is the heparan sulfate concentration, and [protease] 
is the concentration of the protease. The solution for the Brinkman equation (3) is first 
generated and the corresponding velocity term is used by the mass transport equation (4) 
to solve for the concentration at each element in the model. 

 
Mass transfer coefficients for the chemokine and protease were calculated via corre-

lation ‘forced convection around a sphere’ [29]: 

𝑘௠𝐷௦௣௛௘௥௘

𝐷
= 2 + 0.6 ∗ ൬

𝜌𝐷௦௣௛௘ 𝑉

𝜇
൰

ଵ
ଶ

൬
𝜇

𝜌𝐷
൰

ଵ
ଷ
 

 

(8)

where km is the mass transfer coefficient, D is the diffusion coefficient, Dsphere is the 
diameter of the sphere, ρ is the fluid density, µ is the fluid viscosity, and V is the average 
fluid velocity.  

 
In order to quantify model results, % concentration is calculated as: 
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% 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
(𝐶ଶ − 𝐶ଵ)

(𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝐶ଵ&𝐶ଶ))
∗ 100 (9)

where Ci is the concentration taken at the respective point on the surface of the 
sphere, either upstream or downstream of flow. All parameters and their values for the 
model can be found in Table 1. 

 
Conditions and Quantitative Values used in the model 
Two COMSOL modules are used in this model: ‘fluid flow’ and ‘chemical species 

transport’. The ‘Brinkman Equations’ physics and ‘Transport of Diluted Species in Porous 
Media’ physics are then used to set up the specific equations for the model. Two domains 
are present in this system – one for the cell, modeled as a sphere, and one for the control 
volume, modeled as a rectangular prism. COMSOL Multiphysics is used to establish the 
relationship between the brinkman equation and the mass transport of the CXCL12. The 
HS is modeled in a separate physics for transport where there is no convection or diffusion 
(the HS is present through the ECM as a structure that does no move). There are many 
boundary conditions prescribed throughout the model, with each figure having a slightly 
different configuration. For the baseline case, a no slip boundary condition is given for the 
fluid flow around the outside of the cell, thus there are viscous effects at this interface (u 
= 0 m/s at this boundary). An open boundary condition is used at the walls of the control 
volume for the fluid flow equations as this allows movement of fluid into and out of the 
domain. An inlet and outlet Dirichlet boundary condition are specified at either end of the 
control volume (Supplemental Figure S1) with the inlet being a uniform velocity (u = 1E-
5 m/s) and the outlet being a uniform pressure (p = 0 Pa). From the mass transport side, a 
Neumann boundary condition is applied around the outside of the cell representing se-
cretion of the chemokine CXCL12 and the protease MMP9. An open boundary condition 
is specified for all of the outer walls of the control volume where convective inflow and 
outflow of the chemical species can occur. This represents an open space where the chem-
okine can disperse as if the surrounding space is a large volume, which is applicable for 
our system. Reactions (Equations 5, 6 & 7) are prescribed to take place within the control 
volume. Initial values for the chemokine and protease were set to 100 nM and 1 nM, re-
spectively. Geometry of the figure is set up to include a rectangular prism 100 µm x 50 µm 
x 50 µm (LxWxH) corresponding to a control volume encompassing a cell, which is mod-
eled as a sphere with diameter of 10 µm. The sphere is placed 25 µm from the inlet bound-
ary. Meshing was done through the COMSOL software to apply a free tetrahedral mesh 
to the geometry. A predefined mesh calibrated for fluid dynamics was used with a ‘finer’ 
element size applied for each domain based on a mesh refinement analysis (Supplemental 
figure S2). For specific model conditions applicable to individual figures, refer to the sup-
plementary materials. 

 
Assumptions of the model 
The model presented here has inherent assumptions that need to be addressed. In-

terstitial fluid is treated as a Newtonian fluid in this model and the flow through the sys-
tem is assumed to be laminar, viscosity-dominated, and incompressible (Stokes flow). We 
also model the cell as continuously secreting both the chemokine and the protease. Under 
normal circumstances this secretion may fluctuate based on factors in the environment 
such as shear stress exerted on the cell or individual cell phenotypes. The reaction equa-
tions represent simplified relationships between the CXCL12, protease, and HS. While 
values from the literature were used where possible, some terms such as the concentration 
of the HS and the krel term were guessed. These parameters have not been well-studied 
and should be experimentally determined for exact values in the future, especially be-
cause a sensitivity analysis reveals that krel accounts for large fluctuations in model out-
come (Supplemental Figure S3). In addition, we only model one protease, MMP9, and 
one chemokine, CXCL12. There are many different matrix metalloproteinases that may be 
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at work, however, to impact the gradient formation based on ECM degradation. Lastly, 
the control volume that we have chosen was assigned uniform parameters for porosity 
and permeability which do not change in relation to the protease in contrast to what 
would be seen with ECM remodeling in vitro or in vivo. We do not include a term for the 
protease degradation and we do not take into account any interaction between the cell 
and the chemokine such as recycling effects or receptor binding. More detailed infor-
mation specific to each manipulation can be found in the Supplemental Methods. 

3. Results 
3.1. Effects of transport parameter changes on pericellular gradients 

To begin, we probed the effects of changing biotransport parameters on pericellular 
gradients. From parametric sweeps of each individual parameter, it is clear that three in 
particular stand out as affecting gradient formation the most (Supplemental Figure S4): 
diffusion coefficient (Figure 1A), reaction coefficients for CXCL12 binding to HS to form 
bound CXCL12 (1C), and velocity of flow (1E). The values used were from a physiological 
range pulled from the literature (Table 1). The resulting concentration gradients at steady 
state were plotted as a function of the distance from the cell. We found that for diffusion 
coefficient (1B) the bound CXCL12 profile changed more in magnitude than %concentra-
tion showing that while diffusion coefficient might affect the overall concentration of the 
free and bound CXCL12, it does not significantly impact the gradient that forms around 
the cell. A smaller diffusion coefficient of CXCL12 results in a greater accumulation of the 
CXCL12 and therefore more bound CXCL12 and a more distinct pericellular gradient. In-
terestingly, a smaller diffusion coefficient of protease results in a lower bound CXCL12 
concentration and less downstream gradient formation. This makes sense if we consider 
that a more concentrated protease (i.e. lower diffusion) will cleave more of the bound 
CXCL12, disrupting the gradient formation. For reaction coefficient (1D) the binding and 
cleaving rates of the CXCL12 to the HS impacts the resulting pericellular gradient im-
mensely. If the release rate is increased we see a lesser concentration of bound CXCL12 
and eventually a disruption of the gradient as the bound CXCL12 is mostly cleaved to 
become free CXCL12. Changing the kon or koff values impacts the magnitude of the bound 
CXCL12 – increasing kon will increase the bound CXCL12 and increasing koff will decrease 
the bound CXCL12 as expected. Lastly, for velocity we saw that higher velocities led to 
steeper differences of concentration upstream and downstream of the cell (1F). As velocity 
is increased, so too is the %concentration as the chemokine is affected by the convection 
of fluid flow. The difference across the cell can be used to calculate a concentration gradi-
ent (1G), which can be used to simply describe the steepness of the gradient across the cell 
and thus the gradient that a cell may feel. This value is denoted as %concentration and 
will be used throughout the manuscript. As expected, we see a significant correlation 
(r=0.991, p<0.05) between the velocity and the %concentration (1H).  

Velocity has the largest impact on % concentration of bound CXCL12 with 0 m/s cor-
responding to about 0% all the way to 100 µm/s causing a gradient of 46%. Interestingly, 
it’s not until 10 µm/s that we see a large increase in gradient formation occurring (>5%). 
This is apparent in Figure 1E where we can see the concentration gradient profiles and the 
increase in the formation of bound CXCL12 skewed to one side of the cell with increasing 
velocity. At 0.1 and 1 µm/s the % concentration is 1% or lower. The results found here are 
in agreement with those found by Fleury et al. 
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Table 1. Parameter Values for 3D computational model 

Figure 1. Modulation of transport parameters yields expected responses in gradient formation. 
A) Representative images of three different diffusion coefficient combinations which create varying 
bound CXCL12 gradients around the cell. B) Quantification of % concentration (bound CXCL12) 
around the cell. C) Representative images of three combinations of reaction coefficients showing the 
differential response of gradient formation. D) Quantification of bound CXCL12 around the cell 
with varying reaction coefficients. E) Representative images of gradient formation with increasing 

Parameter Variable Value Unit Source
Density of fluid ρ 1 g/mL Anne Lui, Can J Anaesth, 1998
Dynamic viscosity of fluid µ 0.7-1 mPa·s Bloomfield, Pediatr Neurosurg, 1998
Temperature T 310.15 K Physiological temp
Inlet velocity v 0.1-100 um/s Munson JM, Can Man and Res, 2014

Porosity ε 0.3
Linninger A, IEEE Transactions on 
biomed. Eng. 2007

Permeability κ 1.00E-11 cm^2 Munson JM, Cancer Research 2013
Diffusion coefficient, chemokine D_cxcl12 120 um^2/s Fleury M, Biophysics Journal, 2006
Diffusion coefficient, protease D_protease 80 um^2/s Fleury M, Biophysics Journal, 2006
Mass transfer coefficient, chemokine k_cxcl12 2.80E-05 m/s Calculated Value
Mass transfer coefficient, protease k_protease 1.60E-05 m/s Calculated Value
Bulk concentration, chemokine bulk_cxcl12 100 nM Estimated Value
Bulk concentration, protease bulk_protease 1 nM Estimated Value
Heparan sulfate concentration HS 2.60E-03 mM Estimated Value
Radius of sphere r 5.00E-06 m Approximate Cell Diameter
Chemokine binding rate k_on 9.30E+04 1/(M*s) Munson JM, Cancer Research 2013
Chemokine unbinding rate k_off 1.16E-05 1/s Munson JM, Cancer Research 2013
Chemokine release rate from protease k_rel 1.00E+04 1/(M*s) Estimated Value
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velocity. F) Quantification of % concentration at varying velocities. G) Schematic of model and % 
concentration calculation. H) Regression of relationship between % concentration and velocity, 
showing positive correlation between the two. 

3.2. Directionality of flow alters gradient  
Magnitude of interstitial fluid velocity corresponded with increasing concentration 

gradients across the cell. However, in vivo, we see not only a range of interstitial flow 
velocity magnitudes, but also direction of the vectors. For example, in mice, we have used 
dynamic contrast enhanced MRI and mass transport analysis to map interstitial fluid flow 
velocities across tumors and interstitial space in the brain (Figure 2A). As the tumor pro-
gresses, fluid flow becomes heterogeneous especially around the tumor border where in-
vading cells are subjected to its effects. These flow patterns calculated from MRI can be 
overlaid on histological sections to examine cellular invasion within the brain tissue be-
yond the tumor border. The resolution of the velocity vector field is 104.2 μm/pixel. We 
identified and modeled two individual flow patterns (2A.1 and 2A.2): one where the flow 
vectors came from opposite sides of the cell and one where the flow was split into an x- 
and y-component with higher flow in the y-direction (2B, C). Introducing flow direction 
from either side of the cell lead to an even distribution of bound CXCL12, with no chem-
okine gradient formation. Interestingly, while no gradient developed, we did see an in-
duced surface pressure across the cell which might have implications in other cell migra-
tion mechanics. When fluid is induced in multiple directions, the formation of the gradient 
follows the resultant of the flow direction (2C). We have observed areas of higher invasion 
in regions of outward fluid flow from the tumor bulk [17], so the development of the gra-
dient in the direction of flow seems to support the idea of autologous chemotaxis. We 
have also modeled different flow arrangements and have seen this same effect of multidi-
rectional flow skewing the gradient toward the resultant flow direction (Supplemental 
Figure S5). 
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Figure 2. Multidirectional flow and its impact on gradient formation around a single cell. A) MRI 
analysis of interstitial fluid flow magnitude and direction overlayed on histological sample show-
ing flow heterogeneity and two specific regions of interest (1) and (2). B) Schematic of flow directed 
evenly on the top and bottom of the cell (left) and resulting flow pathways overlayed on top of 
bound CXCL12 gradient (right). C) Schematic of flow directed above and to the left of the cell (left) 
and resulting flow pathway (magenta arrows) with corresponding resultant of flow direction 
(green arrow) overlayed on bound CXCL12 gradient (right). 

 
3.3 Temporal fluctuations in velocity yield variable gradients 

After exploring some of the effects of IFF velocity magnitude and direction, we 
wanted to understand the time-sensitive effects on gradient formation. Transient solu-
tions were first solved at different time scales in order to investigate the rate at which the 
gradient formation could actually be observed. Time scales at minutes, seconds, and cen-
tiseconds were computed. As shown in Supplemental Figure S6, the gradient can be ob-
served to develop on the centisecond time scale. This seems to be within ranges that have 
been observed for ligand binding [30]. We next wanted to test the effect that varying flow 
magnitudes has on the developing cell gradient. We settled on three different conditions 
that would be physiologically relevant to brain cancer: convection enhanced delivery 
(CED), surgical resection, and pulsatile flow from cerebrospinal fluid (CSF). CED is a 
treatment method that allows for the bypassing of the blood brain barrier to deliver ther-
apeutics via catheter directly to the area of the tumor. This method introduces a volume 
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of fluid, which actually increases the interstitial fluid flow throughout the parenchyma. 
This was modeled as a ramp function with increasing IFF velocity over a short period 
(Figure 3A) which corresponds to an increasing %concentration that looks almost loga-
rithmic in nature. This is unsurprising based on the results from Figure 1, but we can see 
that at some point, the gradient starts to drop off as it approaches a potential maximum 
threshold around 80%. Surgical resection causes a large drop in pressure based on exper-
imental results [31] which we modeled here as a step function in the IFF velocity (3B). The 
initial step up shows IFF increase due to tumorigenesis with a steep drop off when resec-
tion happens. We see the corresponding rapid increase in bound CXCL12 gradient as the 
velocity increases, but then almost half a reduction in %concentration as the velocity re-
turns to a more normal value (which would be associated with the resection). Interest-
ingly, the %concentration does not return to normal but instead retains an increased value 
from baseline. During normal function, the brain has oscillatory flow due to CSF within 
the subarachnoid and ventricular spaces. We modeled this with a sinusoidal functional 
based on [32]. With the oscillating function that is net positive, the gradient initially mim- 
ics this sinusoidal pattern but quickly converges to a gradient that averages ~13%. 

 
 
 

 
Figure 3. Transient solutions of gradient formation around single cells based on physiological 
time-dependent changes to superficial flow rate. A) Schematic of CED increasing fluid flow 
(top) followed by the resulting concentration gradient over time (middle), and the ramp function 
input into COMSOL (bottom). B) Schematic of surgical resection impact of fluid flow (top), the 
resulting concentration gradient over time (middle), and the pulse function input into COMSOL 
(bottom). C) Schematic of oscillating CSF flow coming from the Virchow-Robin space into the 
parenchyma and interacting with tumor cells (top), the resulting concentration gradient over 
time (middle), and the oscillating function input into COMSOL (bottom). 
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Figure 4. Background concentration reduces the concentration gradient around single cell. A) 
Schematic of background concentration around a secreting cell (left) and timelapse video of back-
ground concentration added at 150 cs (right). Note that timelapse images are not to the same scale 
in order to better show background concentration. B) Modulating cellular secretion rate of 
CXCL12 while keeping a constant background CXCL12 concentration of 100 nM. C) Amount of 
background bound CXCL12 needed to decrease the cellular gradient below 5%. D) Impact of dis-
tance between cell and source of CXCL12 background on gradient formation. 

3.4 Background concentration can negate bound CXCL12 gradient 
As the single tumor cell is not the only contributor to CXCL12 gradients, it is useful 

to look at how background concentration can affect the development of the autologous 
gradient. After letting the cell establish its own gradient, we introduce CXCL12 to the 
background at 150 cs (Figure 4A). The abrogation of the pericellular gradient can be seen 
over time as the background concentration completely overtakes any gradient develop-
ment. This abrogation depends on a number of factors such as the bulk concentration of 
CXCL12 being released by the cell (4B), the background concentration of CXCL12 that the 
cell is surrounded by (4C), and the distance the cell is from the source of the concentration 
(4D). If the background CXCL12 is kept constant at 100 nM and the amount of CXCL12 
the cell secretes is changed, there is a tipping point where the pericellular gradient starts 
to form - after 250 nM CXCL12 bulk concentration - after which it reaches a plateau (4B). 
If the reverse scenario is explored (constant cell secretion with changing background 
CXCL12), the pericellular gradient formation is abrogated around 1 mol/m3 (4C). The po-
sition of the cell is also important where background concentration is concerned. As the 
cell is modeled farther from the source of the background concentration, the pericellular 
gradient becomes less disrupted to the point that at 70 µm from the source the autologous 
gradient is still observed for the length of time that the background concentration is ap-
plied (4D). If the cell is closer than 70 μm the background concentration completely abro-
gates pericellular gradient formation and actually causes a higher concentration of bound 
CXCL12 to develop upstream of the cell. If the background concentration is removed, the 
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cell reaches a new set point of gradient formation which is notably lower than the starting 
%concentration the closer the cell is to the source. 
3.5 The invading cell needs to be a certain distance from tumor border for gradient to develop 

Looking into a more physiologically relevant parallel, cells that invade past the tumor 
border are subjected to varying CXCL12 levels based on the cells at the tumor border that 
may also secrete CXCL12 as shown in histological samples (Figure 5A). By creating an 
approximate model with multiple cells on one side of the invading cell and applying 
CXCL12 secretion to a percentage of those cells, we can model the % concentration that 
an invading cell would have (5B, C). As the cell gets farther from the tumor border, the % 
concentration of bound CXCL12 around the cell increases. In other words, the pericellular 
gradient can develop without the interference of background CXCL12 secreted by the tu-
mor border in areas where flow is outward. This is further impacted by the magnitude of 
fluid flow that the cell is under. At higher fluid velocities, the cell is actually able to de-
velop a bound CXCL12 gradient closer to the tumor border. At the lower velocities, the 
cell cannot overcome the background CXCL12 even at 120 μm away from the border. 

 
3.6 Cell type and morphology affects gradient formation 

Up to this point, we have not utilized the full capability of the 3D model as we have 
concentrated on a readily understandable 2D outcome, %concentration. However, we can 
probe more complex parameters such as cell size and morphology. As shown in Supple-
mental Figure S7, cell shape and orientation has a large impact on gradient formation. As 
the cell increases in diameter, %concentration actually decreases. If we then imagine the 
cell as an ellipsoid, such as might be seen in a mesenchymal state, we can look into how 
orientation plays a role in gradient formation. We performed a rotational parametric 
sweep which shows %concentration is greatest along the long axis of the ellipsoid or when 
the cell is oriented in the direction of flow (Supplemental Figure S7). When introducing 

Figure 5. Concentration gradients felt by an invading cell beyond the tumor border at varying distance 
A) Immunohistochemistry of tumor border and invading cell (green) with CXCR4 (red) and CXCL12 
(blue) (left) and schematic representing model parameters of interest (right). Scale bar=50µm B) Repre-
sentative image of gradient formation of cell with tumor border CXCL12 secretion. C) Quantification of 
gradient formation around invading cell depending on distance from tumor border and velocity of IFF. 
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more complex geometry such as that of actual cells, gradient formation becomes hetero-
geneous and dependent on topography of the cell (Figure 6). In order to accomplish this, 
we imaged different glioma cells that were within a 3D hydrogel (collagen and hyaluronic 
acid mixture) at 60x (S7A). The images were then rendered in 3D using a combination of 
ImageJ and meshing software (refer to the supplemental materials for a detailed descrip-
tion) and imported into the COMSOL model (S7B, C). The overall gradient stays largely 
the same at the pericellular level but the surface concentration that the cell sees is much 
more variable (S7D). This topographical heterogeneity is highly dependent on individual 
cell morphology which complicates matters when trying to understand gradient for-
mation. It may well be that the overall concentration profile is more important than dis-
crete locations on the cell, but this should not be dismissed out of hand. 

 

Figure 6. Concentration gradients depend on location along a morphologically accurate tumor 
cell. A-B) Impact of cell diameter on gradient formation. C) Impact of cell orientation on gradient 
formation. As the cell aligns its long axis in the direction of flow, the gradient increases. D) Confo-
cal images of astrocyte (left) and GL261 (right). 3D renderings and mesh used in the model are 
shown below. E) Representative images of cell imports into model and resulting concentration 
profiles. F) Quantification of % concentration at different points on the cell. 

4. Discussion 
In this model, the circumstances leading to and causing autologous gradient for-

mation are investigated through a variety of means in order to better understand forces 
potentially driving glioma invasion. These glioma cells are introduced to a variety of 
forces and tissue properties which are heterogeneous by nature. These can be from the 
environment such as stiffness of tissue, permeability and porosity of extracellular matrix, 
flow velocity magnitudes, and shear stress, or from internal origin such as regulation of 
cytokines, cytoskeletal remodeling, morphologic/phenotypic changes (epithelial to mes-
enchymal transition), secretion rates, or signaling kinetics. In Figure 1, we modulate indi-
vidual parameters and observe the effects they have on the development of the chemokine 
gradient around the cell. Interestingly, velocity magnitudes seem to have the highest im-
pact on this gradient formation. This may be unsurprising as one would expect higher 
flow rates to carry chemokines farther and there have been other published models which 
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observe the same for similar chemokines and pathological states [25], [26], but it is also 
complicated by the binding kinetics and tissue properties that are inherent to the system. 
This does further strengthen the idea, though, that increased interstitial flow magnitudes 
like those seen in brain cancer can mediate an autologous chemotaxis response, adding to 
the invasion potential of tumor cells. The reaction kinetic coefficients were also investi-
gated in order to get an idea of the effect that they have on the model, especially because 
there is a lack of experimental measurements of these values in the literature. While these 
should theoretically not change substantially (and not to the extent that we have manip-
ulated in the model), it is worth looking at their impact. From the model results, the % 
concentration changes from -9 to 25%. This shows a large sensitivity in our model and one 
that should be further explored as more data is collected on the binding rates and reaction 
kinetics of chemokines and their various binding sites. Lastly, the diffusion coefficient is 
the other variable that the model is sensitive to, with changes to % concentration of -2 to 
21%. 

We have observed heterogeneous flow magnitude and direction in and around glio-
blastoma tumors [9]. In particular, there seems to be a role between flow direction and 
glioma progression. The MRI overlay on the histological section shown in Figure 2 depicts 
multidirectional flow on invading cells. The effects of these different flow vectors have yet 
to be explored on autologous chemotactic gradients. We show here that multidirectional 
flow has a direct impact on gradient formation, with the gradient aligning in the direction 
of the resultant flow profile. In instances where a cell might be seeing flow from opposite 
directions, the gradient remains mostly unaffected, but there will be other factors to con-
sider such as how the resulting increase in pressure from this flow profile will impact the 
affected cell as there are other pathways by which flow could mediate tumor migration 
such as through mechanotransduction. 

As mentioned previously, the brain has dynamic processes taking place all the time 
especially when considering fluid flow. It has been shown that fluid flow can fluctuate 
based on changes in respiration, heart rate, circadian rhythm, and body position (supine 
vs sitting) [33]–[35]. These flows happen at different time scales and rates, and are made 
even more complex when considering pathologic states such as cancer. There are many 
ways that flow can change within the context of cancer – directly due to pressure from the 
tumor and surrounding modified tissue, from drugs/drug delivery methods, or from sur-
gical procedures (resection). Thus, it is useful to look at how gradient formation takes 
place over time and under these different circumstances to understand when/if autolo-
gous chemotaxis is a feasible method for cellular migration and the impact this might have 
on treatment outcomes. In the case of tumorigenesis there is an increase in pressure as the 
tumor grows, with heterogeneous flow magnitudes appearing. This can lead to a resulting 
scenario such as the ramped flow function shown in Figure 3. In the case of pulsatile flow, 
certain treatments such as CED cause fluctuations to interstitial fluid flow based on the 
treatment schema followed. The oscillating function mimics conditions that may be seen 
as a result of changing blood pressure or intracranial pressure from a number of things. 
From our model it seems that, given enough time, gradient formation eventually con-
verges with small fluctuations at earlier time points. 

Up to this point, we have only considered gradient formation in the context of a sin-
gle cell secreting all of the chemokine. In reality, chemokines are released throughout tis-
sue from different cell types within the microenvironment which could impact gradient 
formation if close enough to the tumor cell. In particular, this could come from tumor cells 
located at the tumor border or from cells that have been polarized by the tumor itself. If 
we let the model cell develop its gradient and then apply a background concentration of 
CXCL12, we see that the gradient around the cell is negated. There are multiple factors 
that impact this relationship between the background concentration and gradient for-
mation, one of which is how much CXCL12 the cell is releasing. At some point, if the cell 
is secreting enough CXCL12 in relation to the background concentration, the gradient will 
still develop as shown in Figure 4. Depending on how close the cell is to the source of this 
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background concentration, the gradient can actually form in the opposite direction (up-
stream of the cell instead of downstream), denoted by a negative % concentration value. 
If the cell is far enough away, the % concentration will be lessened, but actually seems to 
reform its gradient more slowly as seen by the slope of the line in Figure 4D.  

If we introduce cells into the model to form a ‘tumor border’ and then place an ‘in-
vading cell’ and modulate its distance from this border, we can see a similar trend where 
the gradient is abrogated when the cell is close to the border and starts to form at a specific 
distance from the border. The flow magnitude in the local environment also impacts this 
greatly, with increased velocity causing gradient formation to happen even when the cell 
is close to the tumor border. In the context of glioma, this is very interesting as it suggests 
several things. The first is that invading cells in areas of low flow magnitude must be using 
multiple modalities by which to move when first invading from the tumor border as the 
autologous gradient would not have developed in most cases. It is only once the cells 
reach a certain distance that autologous chemotaxis might be taking place to cause tumor 
cell movement. The other is that under higher flow magnitudes, cells could possibly un-
dergo autologous chemotaxis even when near the tumor border as a way to invade into 
surrounding tissue. This seems more likely for flow magnitudes between 10 and 100 µm/s. 

We also see through our model that cell shape, orientation, and sizes play a large role 
in gradient formation. These can all vary throughout the life of a cell and are certainly 
different between similar cells, not to mention between cell types. The model suggests that 
larger cells (25-50 µm) are less able to form gradients that would lead to migration due to 
autologous chemotaxis. This is of course when looking at a perfectly spherical cell. In in-
stances where the cell is elongated as might occur in cells undergoing epithelial to mesen-
chymal transition or in cells that are activated or just possess such an inherent morphol-
ogy, our model shows an increase in the % concentration when the cell is aligned in the 
direction of flow (its long axis is parallel with flow). This might have major implications 
for differences in cell migration based on phenotype/morphology (in terms of autologous 
chemotaxis), and also mean that some cells might be predisposed to autologous chemo-
taxis-effected movement. In order to probe deeper into the role of morphology on gradient 
formation, we introduced 3D-rendered cells (developed from confocal imaging) into the 
model. The concentration gradient changes based on topographical region of the cell, but 
looking at the pericellular gradient as a whole the heterogeneity is less pronounced. This 
could have consequences on autologous chemotaxis based on which factor contributes 
more to the chemotactic effect, but is not in the scope of this paper. This also points to a 
heterogeneity between cells of the same type based on morphology as well as between 
cell types. More cells will need to be analyzed in order to see any apparent trends. 

There are many future directions and potentials for this model. The obvious first 
question is what amount of CXCL12 and what gradient is needed to cause chemotaxis to 
occur in glioma cells? In order to understand this, in vitro studies will need to be carried 
out that vary the concentration of CXCL12 across CXCR4 positive cells. More info is also 
needed on the specifics of the protease release reaction kinetics and the concentration of 
HS in the ECM. Having these in hand will drastically increase the robustness of the model 
and allow us to more confidently interpret the model results. In future, the model could 
also be improved by introduction of fluid-structure interactions to account for other fluid-
mediated effects, such as shear stress and cell morphology changes, on the formation of 
chemokine gradients. 

5. Conclusions 

In conclusion, we have explored the impact of physiological flows and parameters on 
the formation of autologous gradients around tumor cells. We see that in every case, gra-
dients can form, however, these are often reduced as more tissue-level relevance is 
added. Not only is the nature of the flow important but also the extracellular context 
including background gradients and other cells as would be present at the tumor border. 
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Further, the cell itself, when modeled based on an actual cell which is non-spherical in 
shape, we see differential gradients depending upon the 2-dimensional cross-section 
which is examined. These explorations tell us that the formation of autologous gradients 
in vivo is much more complex than what has been modeled before and what has been 
replicated in vitro.   

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
Schematic of computational model baseline. Figure S2: Mesh refinement analysis Figure S3: Sensi-
tivity analysis of krel Figure S4: Parametric sweeps of input variables and their corresponding effects 
on %concentration. Figure S5: Additional multidirectional flow modeling. Figure S6: Time effect on 
gradient formation for baseline condition. Figure S7: Cell size and orientation impact gradient for-
mation. Supplemental Methods.  
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