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Abstract: Mental stress state recognition using electroencephalogram (EEG) signals for real-life ap-

plications needs a conventional wearable device. This requires an efficient number of EEG channels 

and an optimal feature set. The main objective of the study is to identify an optimal feature subset 

that can best discriminate mental stress states while enhancing the overall performance. Thus, multi-

domain feature extraction methods were employed, namely, time domain, frequency domain, time-

frequency domain, and network connectivity features, to form a large feature vector space. To avoid 

the computational complexity of high dimensional space, a hybrid feature selection (FS) method of 

minimum Redundancy Maximum Relevance with Particle Swarm Optimization and Support Vec-

tor Machine (mRMR-PSO-SVM) is proposed to remove noise, redundant, and irrelevant features 

and keep the optimal feature subset. The performance of the proposed method is evaluated and 

verified using four datasets, namely EDMSS, DEAP, SEED, and EDPMSC. To further consolidate, 

the effectiveness of the proposed method is compared with that of the state-of-the-art heuristic 

methods. The proposed model has significantly reduced the features vector space by an average of 

70% in comparison to the state-of-the-art methods while significantly increasing overall detection 

performance. 

Keywords: brain-computer interface (BCI); electroencephalography (EEG); stress state recognition; 

feature selection; particle swarm optimization (PSO); mRMR; SVM; DEEP; SEED 

 

1. Introduction 

Feature selection (FS) is a crucial processing step in machine learning that leads to 

the development of efficient real-world applications. FS aims to identify the most relevant 

feature sets for a given task by removing irrelevant and redundant features. Hence, it re-

duces the high dimensionality space and prevents the incidence of the over-fitting prob-

lem caused by the curse of dimensionality [1,2]. In particular, FS approaches have demon-

strated their significant impact on improving the overall classification performance of a 

given problem, in terms of the quality of the extracted features and in reducing the com-

putational costs [3]. Therefore, current state-of-art efforts employ FS as an optimization 

technique to enhance the classification performance by selecting the optimal feature set 

[2]. Furthermore, FS has been successfully utilized to solve several classification problems 

from various domains, for instance, data mining [2], pattern recognition [4–6], and other 

domains where the high dimensionality occurred. 
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Specifically, pattern recognition such as Electroencephalography (EEG) is a vulnera-

ble domain requiring the extraction of relevant patterns from high dimensional space. 

Current research studies employed EEG to acquire brain activities because it is reliable, 

affordable, portable, and provides high temporal resolution of the brain signals [7,8]. In 

multi-channel EEG, several features from the time domain, frequency domain, time-fre-

quency domain, spatial domain, etc., contribute to the high dimensional feature space in 

which one aims to recognize or assess several brain states such as seizure detection (epi-

lepsy) [9], motor imaginary [10], depression [11], emotion detection [12,13], and mental 

stress recognition [14]. Recently, EEG signals have been used extensively in the field of 

emotion recognition, particularly in the recognition of distress due to its harmful influence 

on physical and mental health [15,16]. However, one of the major challenges in building 

a successful model for stress detection is finding the most appropriate features. Due to 

that researchers employ several features, extracted from time domain, frequency domain, 

brain connectivity network or time-frequency network, and a combination of one or more 

methods, to find their association with mental stress [16].  

Despite the great efforts from community researchers, in recent studies, for enhanc-

ing the classification accuracy of mental stress state recognition using EEG signals, few 

significant studies utilized multi-feature domains and multi-channel EEG with feature se-

lection method. Yet, there is no solid conclusion of what is the optimal feature subset for 

stress recognition [4,5,17]. 

Consequently, current researchers acknowledge that multi-feature and multi-chan-

nel analyses are required to establish informative feature space in which a good inter-

preter can eventually produce effective alarms of the occurrence of mental state [5,12,17–

19], allowing subjects to seek appropriate treatment at an early stage. The success in find-

ing an optimal feature set for stress detection would be an essential step toward the crea-

tion of real-world applications that would provoke clinical or behavioral intervention if 

stress continued to worsen [20]. However, extracting EEG multi-features from different 

domains would result in high dimensionality that may contain irrelevant features that are 

not helpful for machine learning classification due to the enormous search space known 

as the “curse of dimensionality” [1]. Thus, FS becomes an essential pipeline to address 

these problems in EEG-specific domain’ analysis by selecting an optimal feature subset 

and reducing system complexity [1,21].  

The feature selection approaches are often categorized into two main types: filters, 

and wrappers. Some other selection approaches are discussed in various literature [1,22]. 

Filter methods measure the degree of the importance between each feature without the 

involvement of subsequent learning algorithms [23]. In contrast, wrapper methods rely 

on prediction models (e.g., SVM, KNN) to estimate the importance of features via classi-

fication algorithm evaluation [2]. In comparison, filters methods usually outperform 

wrappers in terms of computational speed because they use statistical measurements be-

tween features such as feature distance, information gain, and feature dependency; how-

ever, wrappers methods proved to be better at finding the importance of feature subsets 

that improve overall classification performance [23,24]. Nonetheless, these feature selec-

tion methods still suffer from some drawbacks, such as the feature selected subset can 

present a correlation between features (redundancy), be trapped in local optima, and may 

trigger a high computational cost [25,26]. Also, they tend to perform global searches to 

find the optimal features, yet it is impossible in most cases [27]. 

To address the feature selection challenges, an efficient global search technique is 

needed to select a (near) optimal feature subset from the original feature set. With global 

searchability, the swarm intelligence-based heuristic search methods have shown supe-

rior performance to obtain optimal solutions [28]. Metaheuristics are also seen to be supe-

rior to random searches because, in the worst-case scenario, they can perform as a com-

prehensive search method. Swarm intelligence-based (SI) heuristic search methods aim to 

investigate the behavior of a group of agents in self-organized communities, such as ants, 

bees, moths, and birds [1]. Recently, several SI algorithms, such as the Ant Colony 
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Optimization (ACO) [28], Bee Optimization Algorithm (BeOA) [29], Moth-flame opti-

mizer (MFO) [30], Multi-Verse Optimizer (MVO) [31], Butterfly Optimization algorithm 

(BOA) [32], Bat Algorithm (BAT)[33], Firefly Algorithm (FFA) [1], Grey Wolf Optimizer 

(GWO) [34], Moth Optimization Algorithm (MOA) [30], Whale Optimization Algorithm 

(WOA) [2] and Particle Swarm Optimization (PSO) [2,35] have been successfully utilized 

to discover the optimal feature subset. However, despite the excellent findings, most of 

these algorithms have a poor convergence rate and are entrapped in local optima [32]. 

Recently, researchers developed various hybrid algorithms using swarm intelligence 

models, which fused at least two approaches to improve each method's performance and 

overcome challenges occurred in search space [1,36]. 

PSO is a relatively recent optimization technique that is more computationally effi-

cient than the existing metaheuristic methods. The method has shown to be a valuable 

solution for optimization issues due to its effectiveness and ease of implementation. How-

ever, there are some major issues with the conventional PSO when used for feature selec-

tion, such as lack of exploitation for particular problems [37]. Moreover, according to the 

“NO Free Lunch” (NFL) theorem, no feature selection algorithm can handle all optimiza-

tion problems. As a result, if one algorithm outperforms other algorithms in one specific 

domain problem, it may not exceed them in another. Furthermore, the standard PSO is 

suggested for the continuous optimization problem, which cannot be employed for fea-

ture selection issues with binary solution space [37]. Therefore, the considerations men-

tioned above motivate us to propose a new hybrid method to make it more suited for 

feature selection and to effectively balance exploration and exploitation in the search pro-

cess. 

In this work, a hybrid of minimum-Redundancy Maximum Relevance and PSO 

(mRMR-PSO) feature selection methods are proposed. The proposed method aims to im-

prove the exploitation of the PSO algorithm. The mRMR is utilized to enhance the exploi-

tation of PSO, as a building block of PSO. It ranks a set of features by applying Pearson's 

correlation to minimize the redundancy among the subset of features while maximizing 

the features' relevance using the f-test. The output of the selected optimal features is then 

classified using a support vector machine (SVM). 

In summary, the main contributions of this work are given as follows: 

1. Develop an experimental protocol to induce stress on participants while solving 

mental arithmetic tasks under time pressure and negative feedback. 

2. Extract multi-domain features from multi-EEG channels and fused them to form 

a large pool of feature vectors. 

3. Propose a novel EEG feature selection method called mRMR-PSO-SVM to im-

prove the search of local optimal and fit for binary feature selection. 

4. Validated the proposed method by utilizing our dataset with another three public 

datasets of EEG on mental stress state and compared its performance with several 

metaheuristic algorithms. 

The structure of the paper is organized as follows. Section 2, explains the datasets 

structures, preprocessing, and feature extraction as well as presenting the methodology 

of the proposed framework. In section 4, the results of the study are presented. Finally, 

the discussion and conclusion are provided in sections 5 and 3, respectively. 

2. Experiment and Materials  

In this study, our EEG Dataset for Mental Stress State (EDMSS) and three other public 

datasets were utilized to validate the proposed method. The below subsections describe 

the details for each dataset. 

2.1. Participants 

Twenty-two healthy right-handed males (aged 26± 4 with a head size of 56± 2 cm) 

participated in this experiment. The experiment was conducted between 3.00 and 4.30 

p.m to avoid circadian rhythm influences on the alpha-amylase measurement. These 
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individuals had no history of psychiatric, neurological, or psychotropic drug use. The par-

ticipants were placed in a comfortable room with good air conditioning and instructed to 

avoid moving their heads as possible throughout the experiment to avoid any environ-

mental stress. All participants were informed about the study and signed consent forms 

before the trial began. The experiment procedures followed the Declaration of Helsinki 

and ethics approval granted by the local ethics review committee at Universiti Teknologi 

PETRONAS. 

 

2.2. Stress Inducement Method   

We induced stress by utilizing mental arithmetic tasks with time pressure and nega-

tive feedback as reported in our previous studies  [20,38,39]. Then we carried out the ex-

perimental protocol in four steps.  

Step 1: The participants were given a brief introduction to the tasks that would be 

assigned to them and collected an alpha-amylase sample (S1) as a baseline. 

 Step 2 (training phase):  Each of the participants practiced the mental arithmetic 

(MA) task for five minutes to estimate how long it would take to answer each question. 

The MA task involved three single-digit integers (range from 0 to 9) and used two opera-

tors; plus (+) or minus (–), (for example, 7-3 + 1), see Figure 1. Each question's response 

was displayed on a computer monitor in the order of '0' to '9,' and the participant had to 

select the correct answer with a single left click on the mouse.  

Step 3 (stress phase): Participants performed the same MA task under time pressure 

and negative emotional feedback. In this context, the allocated time to answer the MA task 

was reduced by 10% compared to the average time taken to answer each question during 

phase 2. Participants who answered incorrectly or did not submit their answer within the 

allocated time received negative comments in the form of a notification display in the 

monitor as “Incorrect” or “Time's up”, “correct” alongside the average performance of 

participants and Excellent user.  

Step 4 (rest phase): Participants were asked to look at a fixation cross on the computer 

with a black background to sustain their attention to the monitor. The entire experiment 

lasted about 15 minutes including the experimental setup. Meanwhile, the task presenta-

tion during the stress and rest states lasted for five minutes. In this experiment, we dis-

played the MA task in a block design following the fNIRS protocol [40,41]. 

The task's block architecture is shown in Figure 1. Each block began with a 30-seconds 

MA stress task, followed by a 20-rest task. The baseline was taken for a total of 20 seconds 

before starting the experiment. Immediately, at the end of the five blocks of the MA task, 

we collected the second sample of alpha-amylase (S2) as shown in Figure 1. To check if 

the participants were paying attention to the exercise, the accuracy with which they an-

swered the questions was calculated. The average score was 95% accuracy in the training 

phase and 40% in the stress phase, as reported in the original published MIST paper [38]. 

 

 

Figure 1 Experiment block design. A total of five blocks for the stress and rest tasks. In each block, 

arithmetic tasks were generated for 30 seconds followed by 20 seconds’ rest. Alpha-amylase samples 
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(S1-S2) were taken five minutes before the experiment began as a baseline and five minutes after the 

experiment ended. 

2.3. Data Acquisition 

Brain activity was recorded using EEG signal from prefrontal cortex using seven elec-

trodes namely: FP1, FP2, F3, F4, Fz, F7, and F8, plus two reference electrodes A1 and A2 

placed to the earlobes as shown in Figure 2. The BrainMaster 24E system is an EEG machine 

with wet electrodes utilized in this study with a sampling rate of 256Hz. However, for 

salivary alpha-amylase, we measure the cortisol activities using a hand-held monitor 

called COCORO meter (Nipro, Osaka, Japan).  

 

Figure 2 EEG Electrodes placement on the scalp. 

 

2.4. Description of Public Datasets 

Three publicly available datasets were also used in this study for validation of the 

proposed method. The summary of the dataset’s contents data used in this study is 

shown in Table 1. The description for each of the three datasets are given below: 
 

2.4.1. DEAP Dataset 

A Database for Emotion Analysis using Physiological Signals (DEAP) is a well-

known publicly available dataset for emotion classification [42]. The DEAP dataset con-

tains multiple physiological signals for the evaluation of emotions. Thirty-two healthy 

participants have participated in the experiment. The EEG signals were acquired with 32 

channels/electrodes while watching music videos. A total of 40 different music videos, 

each 60 seconds long for emotional stimulation. The signals were then downsampled to 

128 Hz and preprocessed from artifacts and noise. The EEG signals were cleaned from 

EOG artifacts, de-noised using bandpass filters from 4-45hz, and then data was averaged 

to a common reference. In the DEAP dataset, the emotional state was labeled based on 

arousal and valence of self-assessment manikins (SAM) [43]. The EEG signals were anno-

tated based on the online self-assessment rating SAM scale provided by DEAP for valence 

and arousal. Therefore, in this study, the valence and arousal values were considered to 

identify calm and stress tasks for each participant using Equations (1) and (2), derived 

from [17,44]: 

 ( ) ( )    4 4    6   Calm arousal valence=      (1) 

  ( ) ( )    5   3   Stress arousal valence=     (2) 
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By applying the rules of selecting stress and calm states from each participant, a re-

sult of 25 participants was met the rules, and seven participants (with participants IDs:  

3, 6, 7, 9, 17, 23, 30) were excluded. Therefore, in our study, the rest of the DEAP analysis 

continued with the remaining data of 25 participants. 

 

2.4.2. SEED Dataset 

SJTU Emotion EEG Dataset (SEED) is a public emotion dataset consist of fifteen sub-

jects (7 males and eight females), aged 23.27±2.37 (mean ± std)) participating in the emo-

tion-inducing experiment. Each subject was required to watch 15 selected film clips with 

positive, neutral, and negative stimuli to induce a corresponding emotional state with a 

duration of 4 minutes long of each film clip. Three sessions of data were collected, and 

each session comprises 15 trials/movies. The data were recorded using 62 EEG channels 

with a 1000 sampling Rate from each participant. The placements of 62 EEG channels were 

according to the international 10-20 system. Then, the data were downsampled to 200Hz 

to reduce computing complexity. A bandpass filter from 0-75Hz was applied.  In this pa-

per, we only used the positive and negative labels/classes for a fair comparison of 2 class 

problems of the other emotional state datasets. In summary, 45 files (3 experiments for 

each participant) were used with data shape of (trail, channels, samples data) and label 

file of the 15 trails. More details about the dataset can be found in [45]. 

2.4.3. EDPMSC Dataset 

The EEG Dataset for Classification of Perceived Mental Stress (EDPMSC) is a publicly 

available dataset that contains the EEG physiological signals of 28 participants (13 men 

and 15 women, ages 18–40) [19] . The EDPMSC contains data collected at 256 sampling 

rates from four Muse headband dry EEG channels. These electrodes are AF7, AF8, TP9, 

and TP10 and are placed on the scalp as references using Fz. The PSS questionnaire was 

used to assess a subject's level of stress over the preceding 30 days, which was then used 

to categorize EEG signals as stress or not stress. Each participant underwent three exper-

iments. The first experiment was termed the pre-active phase, during which EEG data 

were collected for three minutes while sitting in a relaxed position in a quiet room with 

open eyes. The second phase involved recording EEG data during a presentation (activity 

phase) in front of a group of people. Finally, there was a three-minute post-activity phase 

during which EEG data were collected in the recording room. If the PSS score was greater 

than or equal to twenty, the subject was classified as stressed; if it was less than twenty, 

the subject was classified as non-stressed. The author of the dataset compared the pre-

active and post-active phases and concluded that the pre-active phase is more accurate at 

identifying stress. As a result, we employ the precative phase in this study to develop our 

proposed model. The raw EEG data were preprocessed using a bandpass filter of a finite 

impulse response (FIR) filter with a bandwidth of 0.5 Hz to 35 Hz. To eliminate slow drifts, 

a high bandpass filter with a cutoff frequency of 0.5Hz was chosen. Additionally, the low 

bandpass filter of 35Hz was used to eliminate line noise at 50Hz and to store data for the 

delta, theta, alpha, and beta frequency bands. 

Table 1 A SUMMARY DESCRIPTION OF THE DATASETS USED IN THIS STUDY 

Dataset  Stimuli (stressor) 
Stress 

labeling 

Total EEG 

channels 
Selected channels 

No. Participants / 

Total Experiments 

Frequency 

Rate (Hz) 
classes 

DEAP Music video SAM 32 

AF3', 'FC5', 'F8', 

'Fp1', 'AF4', 'P7', 

'Fp2', 'F7 

32/32 128 
Stress/ 

Calm 

SEED Emotional video 
Questio

nnaire 
62 

'AF3', 'FC5', 'F8', 

'Fp1', 'AF4', 'P7', 

'Fp2', 'F7' 

15/45 200 
Negative/Po

sitive 
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EDPMSC History PSS 4 
'TP9', 'AF7', 

'AF8','TP10' 
28/84 256 

Stress/ 

not stress 

Our 

MA, Negative 

feedback and 

 time pressure 

Saliva 

cortisol 
7 

'Fp1', 'Fp2', 'F7', 

'F3',  

'Fz', 'F4', 'F8' 

22/22 256 Stress/ Rest 

 

3. Methodology 

A hybrid dominant feature selection method is developed in this study to enhance 

the classification performance of EEG mental stress recognition. A block diagram of the 

proposed method is shown in Figure 3. Multi-domain features are extracted from the time 

domain, frequency domain, time-frequency domain, and connectivity features. The opti-

mal subset selected features are used to classify mental stress state using optimized SVM. 

The method’s implementation phases are outlined below. 

• Dataset Preprocessing  

• Multi-domain features are extracted from multi-EEG channels and combined to form 

a large feature vector. 

• Feature selection based on the proposed mRMR-PSO method is used to identify dis-

criminative features. 

• Classification parameters of SVM were optimized using PSO. 

• The proposed model was validated with three different public datasets. 

 

3.1. Data Preprocessing 

The preprocessing of EEG signal was implemented using Python and an external 

package called MNE. Raw EEG signals were preprocessed using a bandpass filter. Finite  

impulse response (FIR) filters between 0.5 Hz to 35 Hz to remove DC artifacts and 

line noise (50/60Hz). All EEG channels were subjected to the common average reference. 

Fast, independent component analysis was used to eliminate the eye-blink generated by 

electrooculogram (EOG), eye movements as well as muscular artifacts. After that, the 

clean signals were employed for the rest of the research. 

3.2. Feature Extraction 

In this study, we extracted multi-domain features seeking a better presentation of the 

signal that provides acceptable accuracy for stress detection. Features from the time do-

main, frequency domain, time-frequency domain, and connectivity features were ex-

tracted. The connectivity features were estimated by utilizing Phase Locking Value. Fea-

tures from the time-domain were based on Hjorth Parameters of activity mobility, and 

complexity, Peak to peak amplitude, Line Length, Kurtosis, and Skewness. Frequency do-

main features were based on the relative power of theta (4-8Hz), alpha(8-12Hz), sigma(12-

15Hz), low beta(15-20Hz), and high beta (20-30Hz). Likewise, Time-Frequency domain 

features were based on Spectral Entropy (PSD, Welch) [12] and Katz Fractal Dimension 

[29]. Table 2 shows the summary of all features used in this study. These features were 

then normalized using feature-based z-score normalization to avoid large-scale 

weighting.

Table 2 Summary of Multi-Domain Feature Extraction Methods Employed in the Selected Datasets 

Domain Feature Name Description No. Features Formula  

Connectivity  Phase Locking Value  

[46] 

It is a proportion of phase differ-

ence between signals over different 

trials above or below the 0 degree 

( 1)

2

n n −

 ( )

1

1 a a
t j

N
i

ij

i

PLV e
T

 −

=

= 
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3.3. Feature Selection using mRMR-PSO 

The proposed mRMR-PSO method consists of minimum redundancy maximum rel-

evance (mRMR) [50] and a PSO algorithm. The proposed method aims to select the more 

informative feature subsets related to mental stress from the high dimensional space of 

EEG signal to improve the accuracy performance of the SVM classifier by ranking the 

relative and informative features. We utilize the filter method of mRMR first to generate 

a short feature pool and PSO wrapper to get the least redundant feature set and optimized 

SVM parameters for better accuracy. The sections below describe the details of each 

method. 

 

Time Hjorth Parameters of 

activity mobility, and 

complexity [22] 

Activity is the variance of the sig-

nal on time. 

 

1 
var( ( ))Activity y i=   

Mobility represents the proportion 

of standard deviation of the win-

dow signal in the time domain. 

1 
var ( ( ))y i

Mobility
Activity


=

 

Complexity represents how the 

shape of a signal is similar to a 

pure sine wave. 

 

1 
( )

( )

( ( ))

dy t
Mobility

dtComplexity
Mobility y t

=

 

Peak to peak amplitude Represents the peak time of EEG 

signal between the various win-

dows. 

1 
high lowPTP pk pk= −

  

Line Length [22,47] Named a curve length, which indi-

cates the total vertical length of the 

signal. 

1 1

1
 1( ) [ ] [ ]

N

i
L n x i x i

−

=
= − −   

Kurtosis [48] Shows the sharpness of EEG sig-

nals’ peaks. 

1 
3

1

4

( ( )
1

)
T

t

x t µ
t

Kurtosis


=

−

=


  

Skewness Represents the asymmetry of an 

EEG signal. 

1 
3

1

3

( ( )
1

)
T

t

x t µ
t

Skewness


=

−

=


  

Frequency Relative Powers of [49]: 

theta (4-8Hz) 

alpha(8-12Hz) 

sigma(12-15Hz) 

low beta(15-20Hz) 

a high beta (20-30Hz). 

Relative power represents the av-

erage absolute power of the given 

band intervals. 

 

5 ( )

( _ )
100R

e

power b

l
P

pow r band

n

A s

a d

l
= 

  

Time-Fre-

quency 

Spectral Entropy (PSD, 

Welch)[12] 

 

Measure the distribution of signal 

power 

over frequency. 

 

1 45

4

( ) ( ( ))
F

f

SE PSD F log PSD F
=

=

= −
 

Katz Fractal Dimension 

[29] 

Represents the maximum distance 

between the first point and any 

other point of the Signal’s time 

window. 

 

1 
10

10 10

( )

( ) ( )

log n
D

L
log log n

d

=

+
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3.3.1. minimum-Redundancy Maximum Relevance (mRMR) 

The mRMR is a filter-based method, was first proposed by Ding and Peng,(2005)[51] 

as a solution for feature selection problems and shown to be computationally fast. The 

mRMR is used to rank a subset of features by minimizing the redundancy between the 

subset of features while maximizing the relevance of the feature to the target. 

 The proposed method employs mRMR to minimize the search space of the local 

optima of the original feature by ranking a subset of important features. The mRMR algo-

rithm is based on a relevance measurement using an F-score, while the redundancy meas-

urement is based on Pearson's correlation among features set [52]. This process minimizes 

the selection of redundant features, which results in minimizing the risk of overfitting at 

the PSO phase and solve the issue of global search space. 

The maximum relevance (RL) is computed using F-statistic F(Xi, y) between feature 

and target class  as the equation : 

 
1

, ( , )
i

f f i

X S

maxRL RL F X y
S 

= 
 

(3) 

  

Where S = 
 1 2 3, , ,..., nX X X X

 is the set of features, y is the target class (ex. stress/ not. 

Stress), |S| is the size of the feature set. 

 

 The minimum redundancy (RD) among features is computed using Pearson's cor-

relation between pair of features as shown in equation(4): 

 The full join formula of the mRMR selection schema to rank the feature set is calcu-

lated using the F-test correlation quotient 
FCQf

 as the equation:  
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
 

(5) 

where 
( , )i jX X

 is the Pearson's correlation between pair of features, F(Xi,y) is F-

statistic, Xi (i ∈ {1, 2, ..., m}) is feature importance based on the mRMR criterion, m is total 

features, |S| is the size of the feature set and y refer to target (class/label). In summary, at 

each stage of the mRMR feature selection process, the features with the highest feature 

important score will be added to the subset 
FCQ

if (X )  selected feature ranks.  The 
FCQf  

mRMR feature selection results in achieving a more coverage balance in the solution space 

as well as contributing significant improvements to classification performance. 

 

3.3.2. PSO Algorithm 

Particle swarm optimization (PSO) was proposed by Kennedy & Eber-hart, (1995) for 

optimization problems [37,53–55]. PSO is a swarm intelligence meta-heuristic technique 

motivated by social behavior such as fish schooling, birds searching in search of food. PSO 

is based on the concept of birds exchanging information with one another. When birds 

seek food at random, they have no idea where to look. Like the evolutionary algorithm 

and genetic algorithm, PSO performs searches on a population (called swarm) of individ-

uals (called particles), which are updated from iteration to iteration. PSO discovers the 

                     2

1
min , ( , )

i

i j

X S

RD RD X X
S

  


=   (4) 
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optimal solution by allowing each particle changes its searching direction based on two 

factors, the best of all features (gbest) and its own best previous experience (pbest).  

The status of each particle is characterized based on its position (global optima) and 

velocity (distance: local optima). If the position of each particle found its best position, 

then the information would be delivered to other particles. The particles’ velocity and 

position were updated over iteration for the search of pbest and gbest for optimal solution 

p as equations.   

 

1

1 1

2 2

( )

           ( )

t t t t

id id id id

t t

id id

V w V c r pbest X

c r gbest X

+ =  +  −

+  −  

(6) 

 
1 1, {1,2,..., }t t t

id id idX X V d D+ += + =
 

(7) 

where 𝑡 denotes evolutionary generation, t

idV  denotes particle’s velocity i on dimension 

d, t

idX  denotes particle's position i on dimension d, ( 1c , 2c ) denotes social learning factors of 

personal best (pbest) and global best (gbest) respectively, and ( 1r , 2r ) are random numbers 

of uniformly distributed U(0,1). The w refers to the weight used to balance global explora-

tion and local exploitation. 

 

 

3.3.3. Proposed Hybrid Method: mRMR-PSO-SVM.  

In this section, we propose a hybrid method mRMR-PSO-SVM proposed for mental 

stress classification as shown in fig. The mRMR-PSO-SVM algorithm aims to select the 

optimal feature set from the reduced set of FCQf  mRMR while optimize the classification 

performance by estimating the optimal values of SVM parameters (C, γ) simultaneously.  

In our approach, three main phases are considered for better optimization: Initializa-

tion phase, Feature selection phase, and classification & evaluation phase. 

 In the initialization phase: it is proved that the high number of particles (P) in-

creases the computational complexity of the optimization process while the small search 

space of P results in poor optimal solutions [55]. Therefore, we select 200 and 50 for a total 

number of generations (t) and a total number of particles, respectively. Likewise, ( 1c , 2c ) 

and w values influence the convergence of the optimization process. If they are set too 

high, the particle velocity becomes too fast, and the optimum solution cannot be obtained. 

Thus, we set ( 1c , and 2c )  to 2 and w set to mean the mutual information of the subset 

selection 
FCQf . 

In the feature selection phase: 

The mRMR algorithm is developed as described in Section B.1 to rank the most im-

portant features of the given datasets that result in the highest classification performance 

with the SVM classifier. The mRMR-PSO evaluate each selection of ranked feature subset 

and SVM parameters according to a fitness function which is the classification F-measure 

of SVM. 

Classification and evaluation phase: 

support vector machine (SVM) has been widely used in different applications, in-

cluding EEG-based applications [56,57]. The classification procedure is a part of wrapper 

feature selection methods to evaluate and validate the model. In our method, we optimize 

SVM parameters (C, γ) using PSO and evaluate the subset performance using the activa-

tion function of F-measure as the equations (8-10): 
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Figure 3 The flowchart of the proposed feature selection method’ mRMR-PSO-SVM. 

 

 

 

 
TP
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TP FP

=
+  

(8) 
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Where TP refers to the total number of true positives, false positive (FP), true negative 

(TN), and false-negative (FN). 

Accuracy is also used as an overall measure for classification, which is: 

 
TP TN

TP TN FP FN
accuracy

+ + +
=

+

 
(11) 

Additionally, SVM has different kernel functions such as linear, polynomial, and ra-

dial basis functions (RBF). In this study, we utilize RBF to obtain optimal solution due its 

widely used when dealing with multi-dimensionality space, also the number of the pa-

rameter that needs to be optimized are few compared to other kernels such as polynomial. 

RBF has two parameters C and γ, Parameter C denotes the cost of the penalty. The choice 

of value for C influences the classification outcome. While Parameter γ has a much greater 

influence on classification outcomes than C because its value affects the partitioning out-

come in the feature space [58]. The primary aim of selecting a suitable kernel function 

along with its kernel parameter (s), because the kernel defines the feature space in which 

the training sets will be classified. In this context, the values of RBF parameters need to be 

optimized for the optimal use of the SVM along with the feature selection. 

In summary, the main basic procedure for the proposed algorithm (mRMR-PSO-

SVM) is presented as follows: 

Step 1:   Use the mRMR method to rank the features of the training sets from the 

highest best feature to the lowest using the equation (5). 

Step 2: Initialize PSO parameters (populations, number of particles, learning param-

eters ( 1c , and 2c ), the inertia weight (w) and the generate velocity and position of each 

particle). 

Step 3: Train the selected subset of the features from step 1 using RBF-SVM. 

Step 4: Evaluate the selected features with PSO and SVM parameters using the fitness 

function of F-measure as shown in equation (10). 

Step 5: Update parameters of PSO (velocity and position) and SVM parameters (C, 

γ) till the termination criteria are met. 

Step 6: termination condition: recursively use steps 3,4 and 5 for refining the model 

fitness till the criteria of termination are satisfied (e.x number of generations or accuracy 

fulfilled). 

Step 7: Classify mental stress from testing data using generated optimal model (op-

timal selected model and optimized parameters). 

 

 

 

 

 

 

4. Result 

In this section, we present the statistical results of the mental stress experiment in-

duced by MAT and assessed by EEG and alpha-amylase. Although, we report the mental 

stress state classification based on optimal feature set, selected from multi-domain 

 
TP

recall
TP FN

=
+  

(9) 

 2
precision recall

F measure
precision recall


− = 

+  
(10) 
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features, of network connectivity features, time domain, frequency domain, and time-fre-

quency domains, using the proposed method mRMR-PSO-SVM. 

4.1. Statistical Analysis 

In our EDMSS experiment, the stress tasks were induced using a mental arithmetic 

task with negative feedback and time pressure. The salivary alpha-amylase (SAA) was 

used to assess and validate mental stress during EEG acquisition and plays as a bi-

omarker for EEG annotation. The mean scores acquired from 22 participants using the 

SAA are shown in Figure 4. 

 

 

Figure 4. The average score of salivary alpha-amylase level responses for stress and rest tasks. Two 

measurement samples (5 min before (baseline), and 5 min after the last stress task. The “***” marks 

indicate, the task is significant with p<0.001. 

Overall, the reported SAA level among participants scores (µ, σ) = (24.45± 4.44 (kIU/L)) 

before stress inducement and (µ, σ) = (93.64±13.99 (kIU/L)) after stress inducements. Par-

ticipants with an SAA score of more than 60 (kIU/L) were classified as being in a stress 

state, whereas those with a score of less than 30 (kIU/L) were classified as being in the rest 

group. The T-test was applied on SAA to verify the affective of stress inducements on rest 

and stress states. The difference between the mental states is considered significantly dif-

ferent if the p-value is less than 0.05. The results revealed a significant difference between 

the two states with p<0.001. The approach of stress inducement using mental arithmetic 

tasks used in this experiment is similar to that used by other researchers [16]. 

4.2. Performance analysis of feature selection and multi-domain features 

We evaluate the performance of our methodology using EDMSS and further validated using three 

public EEG datasets. The datasets DEAP, SEED, and EDPMSC were utilized here for mental stress 

recognition. A summary of the datasets is provided in The EEG Dataset for Classification of 

Perceived Mental Stress (EDPMSC) is a publicly available dataset that contains the EEG 

physiological signals of 28 participants (13 men and 15 women, ages 18–40) [19] . The 

EDPMSC contains data collected at 256 sampling rates from four Muse headband dry EEG 

channels. These electrodes are AF7, AF8, TP9, and TP10 and are placed on the scalp as 

references using Fz. The PSS questionnaire was used to assess a subject's level of stress 

over the preceding 30 days, which was then used to categorize EEG signals as stress or 

not stress. Each participant underwent three experiments. The first experiment was 

termed the pre-active phase, during which EEG data were collected for three minutes 

while sitting in a relaxed position in a quiet room with open eyes. The second phase 
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involved recording EEG data during a presentation (activity phase) in front of a group of 

people. Finally, there was a three-minute post-activity phase during which EEG data were 

collected in the recording room. If the PSS score was greater than or equal to twenty, the 

subject was classified as stressed; if it was less than twenty, the subject was classified as 

non-stressed. The author of the dataset compared the pre-active and post-active phases 

and concluded that the pre-active phase is more accurate at identifying stress. As a result, 

we employ the precative phase in this study to develop our proposed model. The raw 

EEG data were preprocessed using a bandpass filter of a finite impulse response (FIR) 

filter with a bandwidth of 0.5 Hz to 35 Hz. To eliminate slow drifts, a high bandpass filter 

with a cutoff frequency of 0.5Hz was chosen. Additionally, the low bandpass filter of 35Hz 

was used to eliminate line noise at 50Hz and to store data for the delta, theta, alpha, and 

beta frequency bands. 

Table 1 shows the number of EEG channels used from each dataset. In DEAP and 

SEED datasets eight channels were selected  mostly from the prefrontal and frontal regions 

of the brain, seven EEG channels from EDMSS, and 4 EEG channels from EDPMSC.  

The multi-domain features were extracted from each dataset and used as input vec-

tors after normalizing them using column-base z-score normalization. The features of 

multi-domains are combined to derive a high-dimensional feature vector.  

Table 2 shows the summary of the proposed multi-domain features presenting the 

domain name, feature description, total number features, and feature formula is provided. 

A total of 161 multi-domain features were extracted from the seven EEG channels of ED-

MSS, 188 features for the datasets containing 8 channels (DEAP, SEED), and only 86 fea-

tures were extracted from the EDPMSC dataset containing 4 EEG channels.  

Figure 5 and Figure 6 represent the results of mRMR-PSO-SVM in selecting the opti-

mal feature subset per dataset. From the figures, it can be observed that mRMR-PSO-SVM 

can significantly reduce a large number of features vector space while achieving a high 

classification performance. Figure 6 shows the classification performance results, and the 

number of selected features obtained by our proposed algorithm on different datasets.  

The highest average classification performance on EDMS was 77.23%, 80.87%, 76.30%, and 

77.41% for accuracy, precision, recall, and f1-score respectively with an average of 52 op-

timal selected features. Whereas, in the DEAP dataset, the proposed algorithm achieved 

an average performance of 93.88%, 91.11%, 94.91 %, and 91.99% for accuracy, precision, 

recall, and f1-score respectively with an average of 56 selected features. Additionally, for 

the SEED dataset, the achieved results were 84.17 for accuracy, 90% precision, 83.23% re-

call, and 85.54 f1-score using 49 optimal selected features. In the EDPMSC dataset, the 

results obtained, based on dependent subject analysis since each subject was labeled as a 

stressed subject or not, were 89.31%, 85.11%, 85.11 % 85.11% for accuracy, precision, recall, 

and f1-score respectively with only 45 selected features.  

From Figure 5 it can be observed that the proposed algorithm reduced the total num-

ber of features to less than 70% from the original feature vector space of all datasets while 

increasing the prediction accuracy or maintain it. On all four datasets, the mRMR-PSO-

SVM approach preserved just around 30% of the features while improving prediction ac-

curacy. The findings indicate that the proposed mRMR-PSO-SVM method is capable of 

efficiently removing redundant or irrelevant features, resulting in better classification per-

formance. 
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Figure 5 A total number of multi-domain features selected using mRMR-PSO-SVM  

 

Figure 6 The evaluation performance of the proposed mRMR-PSO-SVM on different EEG datasets 

for mental stress detection. 

To evaluate the effectiveness of the proposed mRMR-PSO-SVM method was compared 

to other state-of-the-art swarm intelligence meta-heuristic algorithms, namely, BAT, 

FFA, GWO, MFO, MVO, PSO, and WOA [59]. We assess the performance of each feature 

selection method using three parameters: classification accuracy, execution time, and the 

number of selected features utilized for mental stress classification. For that, a split 

mechanism was used to train and test feature selection methods for obtaining the classi-

fication accuracy with 80% for training and 20% for testing.  

 

Table 3 shows the average number of the accuracy, selected features, and execution 

time for each swarm optimizer algorithms with EDMSS, DEAP, SEED, and EDPMSC da-

tasets. In DEAP, the proposed algorithm achieved the highest accuracy of 93.878% using 

57 selected features while the highest among the compared algorithms was MVO with 

88.877% accuracy and 86 features. Meanwhile, in the SEED dataset, the proposed method 
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obtained an accuracy of 84.167% with only 49 selected features which are higher than the 

best competitive optimizer FFA that performed 74.815% of accuracy using 90 features 

with the same dataset. Additionally, mRMR-PSO-SVM obtained 77.22%, 88.301% accura-

cies with 52 and 30 selected features for both EDMSS and EDPMSC, respectively. How-

ever, in EDPMSC, the WOA showed a slight increase in accuracy with 1.026% using 36 

selected features. 

 

Table 3 The average values of the statistical parameters of classifiers using the subject 

independent test. 

Algorithm Execution time Accuracy 

#No Selected 

features Execution time Accuracy 

#No 

Selected 

features 

 EDMSS DATASET EDPMSC DATASET 

BAT 4.315 67.624 75 15.378 87.703 44 

FFA 19.615 65.172 79 19.285 87.935 36 

GWO 9.234 67.664 74 15.001 87.703 55 

MFO 4.336 67.267 85 16.586 88.167 55 

MVO 4.135 67.631 80 14.620 88.863 45 

PSO 5.530 65.289 108 15.923 84.919 55 

WOA 5.773 64.224 72 15.195 89.327 36 

Proposed 11.719 77.222 52 60.700 88.301 30 

 DEAP DATASET SEED DATASET 

BAT 10.328 88.229 80 2.946 68.889 86 

FFA 41.391 88.079 87 14.852 74.815 90 

GWO 21.013 87.515 83 6.939 71.111 84 

MFO 46.348 88.182 97 2.865 70.370 85 

MVO 10.695 88.877 86 2.869 70.370 85 

PSO 13.682 88.276 121 4.027 66.667 122 

WOA 14.482 88.697 79 4.236 68.148 79 

Proposed 53.768 93.878 57 9.346 84.167 49 

 

5. Discussion 

The main object of mRMR-PSO-SVM is to select an optimal number of features that 

increase or maintain the overall performance by enhancing the exploration, exploitation 

of search space.  

Various time-domain, frequency-domain, and time-frequency-domain features have 

been proposed in previous studies for mental stress detection [13,15,16]. However, little 

research utilizes connectivity features. In our study, we utilize the most important features 

from multiple domains, seeking better informative features for stress detection. As a re-

sult, a fusion of multi-domain features showed a promising result in different fields as 

there could be multi-way interactions among features [14,60]. The drawback of multi-do-

main features is that they are vulnerable to redundant and unrelated features. Therefore, 

the proposed mRMR-PSO-SVM method aims to select the discriminative features from 

high dimensional space. The optimal selected features using mRMR-PSO are used for 

training SVM with RBF kernel, followed by the evaluation of the classification perfor-

mance with test data. In each dataset, an independent subject test was conducted. 

 

Table 3 shows that the proposed mRMR-PSO-SVM outperforms the other algo-

rithms, used in this study, in terms of accuracy and selected features. The significant ad-

vantage in finding the optimum number of features is justified since the proposed mRMR-
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PSO-SVM employs the strength of mRMR and PSO mechanisms, which enhance the pos-

sibility of selecting weak solutions and decrease the probability of trapping in local op-

tima. This method allows the algorithm to fully explore parts of the feature space before 

using PSO to improve these regions.  

To address feature selection problems, this approach makes use of the strengths of a 

global search algorithm, which is efficient in both exploration (local search) and exploita-

tion (global search). Finding fewer optimum features means that the algorithm has suc-

cessfully removed irrelevant/redundant features from the feature vector space of the da-

taset. However, for excursion time it shows slightly better than FFA in EDMSS and SEED 

dataset while it takes more time compared to other optimizers. This could be due to the 

hybrid interactions between the filter method (mRMR) and wrapper method (PSO). 

It is worth mentioning that the proposed mRMR-PSO method outperforms the con-

ventional PSO algorithm in classification accuracy as well as most the state-of-the-art 

meta-heuristic algorithms, namely, BAT, FFA, GWO, MFO, MVO, PSO, and WOA [59]. 

As a result, the mRMR-PSO is a promising technique for detecting significant factors while 

removing redundant and irrelevant data. When compared to the original PSO algorithm 

with the same approach, we can conclude that the proposed mRMR-PSO method offers 

accurate classification performance with the fewest number of selected features in all da-

tasets. Thus, the mRMR-PSO algorithm provides a viable solution to feature selection and 

mental stress classification problems. 

To further demonstrate the success of the proposed hybrid feature selection method, the 

mRMR-PSO-SVM showed superior performance in comparison to state-of-the-art feature 

selection methods in terms of accuracy, number of selected features as listed in Table 4. 

From Table 3 and Table 4, we can highlight that our proposed method, outperform other 

proposed methods in term of accuracy and number of selected features. This could be due 

to many factors tacked in our model such as fusion of multi-domain features, improving 

the exploitation of PSO, and optimizing the SVM parameters. 

Table 4 Comparison with previous studies on related public available datasets for mental stress detection. 

#Ref. Dataset FS- Classifier  Total feature vector /  

Selected Features 

No. 

Channels 

Accuracy 

[44] DEAP GA- KNN1 673/not mentioned 32 71.76% 

[17] DEAP Boruta-KNN 608/288* 32 73.38% 

[19] EDPMSC Wrapper FS- (MLP, 

SVM) 

90/18 4 89.30% MLP, 

67.85% SVM for 

pre-active phase 

[61] DEAP 2-D AlexNet-CNN 

3-D AlexNet-CNN2 

5 PSD bands con-

verted to image  

32 84.77%, 86.12% 

[62] SEED, DEAP DWT-BODF3 (SVM, 

KNN) 

225 × 30 SEED 

 576 × 40 DEAP 

62 SEED 

32 DEAP 

93.8% SVM 

(SEED) 

77.4% SVM 

(DEAP) 

 

It’s worth emphasizing that our proposed model focused on EEG based mental stress 

only, however, it could be further utilized with other datasets from different domains.  

To summarize, the study's findings are quite promising. However, there is still much 

potential for additional research in the field of EEG-based mental stress classifications. To 

begin, we conducted our study using a fixed time window length; however, experiment-

ing with alternative window lengths can aid in model generalization. Additionally, It is 

worth exploring, data augmentation via sliding windows as this technique is increasingly 

being utilized in combination with deep learning on EEG [61].  Second, a more in-depth 
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examination of other connective network features should be explored since they give de-

tailed information about channel interconnections. Our method was based on established 

signal noise removal techniques [16]. However, alternative denoising techniques such as 

signal smoothing should be considered. Additionally, prior research has demonstrated 

that utilizing feature extraction with feature selection approaches and neural networks 

results in high accuracy in EEG based models. As a result, future studies may potentially 

explore neural networks and deep learning approaches. 

3. Conclusions 

In this paper, a hybrid feature selection method, mRMR-PSO-SVM, was proposed to select 

the most informative features related to the mental stress task. By ranking important fea-

tures as a subset of the original feature set, the mRMR was used to reduce the search space 

of the local optima of the original feature set. Following that, -PSO evaluates each ranked 

feature subset selection and optimizes SVM parameters according to a fitness function. 

On the basis of selected features and classification performance, the mRMR-PSO-SVM 

was evaluated using four datasets and compared to existing methods. The proposed 

method outperformed other feature selection methods in terms of accuracy and number 

of selected channels, according to the experimental results obtained on various datasets. 

Despite the fact that the proposed method yielded promising results, future research 

could further validate the methods with different domain datasets and use neural net-

works and deep learning approaches to better evaluate the quality of selected features and 

their effects on computation time. 
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