Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2021 d0i:10.20944/preprints202111.0345.v1

Article

Enhancing EEG-Based Mental Stress State Recognition using
an Improved Hybrid Feature Selection Algorithm

Ala A. Hag *, Dini Handayani ", Maryam Altalhi %>, Thulasyammal Pillai !, Teddy Mantoro 3, Mun Hou Kit 4, and
Fares Al-Shargie >

1 School of Computer Science & Engineering, Taylor’s University, Jalan Taylors, 47500, Subang Jaya, Selan-
gor, Malaysia; dinioktarina.dwihandayani@taylors.edu.my

2 Department of Management Information System, College of Business Administration, Taif University, P.O.
BOX 11099, Taif 21944, Saudi Arabia; marem.m@tu.edu.sa

3 Faculty of Engineering and Technology, Sampoerna University, Jakarta 12780, Indonesia; teddy.man-
toro@sampoernauniversity.ac.id

¢ Department of Mechatronic and Biomedical Engineering, Universiti Tunku Abdul Rahman, 43000 Bandar
Sungai Long, Malaysia; munhk@utar.edu.my

5 Department of Electrical Engineering, American University of Sharjah, UAE

Correspondence: Maryam Altalhi (email:marem.m@tu.edu.sa), Dini Handayani (email: dinioktarina.dwihanda-

yani@taylors.edu.my), Fares Al-Shargie (email:fyahya@aus.edu); Ala Hag (email:alaahmedyahyahag@sd.tay-

lors.edu.my);

Abstract: Mental stress state recognition using electroencephalogram (EEG) signals for real-life ap-
plications needs a conventional wearable device. This requires an efficient number of EEG channels
and an optimal feature set. The main objective of the study is to identify an optimal feature subset
that can best discriminate mental stress states while enhancing the overall performance. Thus, multi-
domain feature extraction methods were employed, namely, time domain, frequency domain, time-
frequency domain, and network connectivity features, to form a large feature vector space. To avoid
the computational complexity of high dimensional space, a hybrid feature selection (FS) method of
minimum Redundancy Maximum Relevance with Particle Swarm Optimization and Support Vec-
tor Machine (mRMR-PSO-SVM) is proposed to remove noise, redundant, and irrelevant features
and keep the optimal feature subset. The performance of the proposed method is evaluated and
verified using four datasets, namely EDMSS, DEAP, SEED, and EDPMSC. To further consolidate,
the effectiveness of the proposed method is compared with that of the state-of-the-art heuristic
methods. The proposed model has significantly reduced the features vector space by an average of
70% in comparison to the state-of-the-art methods while significantly increasing overall detection
performance.

Keywords: brain-computer interface (BCI); electroencephalography (EEG); stress state recognition;
feature selection; particle swarm optimization (PSO); mRMR; SVM; DEEP; SEED

1. Introduction

Feature selection (FS) is a crucial processing step in machine learning that leads to
the development of efficient real-world applications. FS aims to identify the most relevant
feature sets for a given task by removing irrelevant and redundant features. Hence, it re-
duces the high dimensionality space and prevents the incidence of the over-fitting prob-
lem caused by the curse of dimensionality [1,2]. In particular, FS approaches have demon-
strated their significant impact on improving the overall classification performance of a
given problem, in terms of the quality of the extracted features and in reducing the com-
putational costs [3]. Therefore, current state-of-art efforts employ FS as an optimization
technique to enhance the classification performance by selecting the optimal feature set
[2]. Furthermore, FS has been successfully utilized to solve several classification problems
from various domains, for instance, data mining [2], pattern recognition [4-6], and other
domains where the high dimensionality occurred.
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Specifically, pattern recognition such as Electroencephalography (EEG) is a vulnera-
ble domain requiring the extraction of relevant patterns from high dimensional space.
Current research studies employed EEG to acquire brain activities because it is reliable,
affordable, portable, and provides high temporal resolution of the brain signals [7,8]. In
multi-channel EEG, several features from the time domain, frequency domain, time-fre-
quency domain, spatial domain, etc., contribute to the high dimensional feature space in
which one aims to recognize or assess several brain states such as seizure detection (epi-
lepsy) [9], motor imaginary [10], depression [11], emotion detection [12,13], and mental
stress recognition [14]. Recently, EEG signals have been used extensively in the field of
emotion recognition, particularly in the recognition of distress due to its harmful influence
on physical and mental health [15,16]. However, one of the major challenges in building
a successful model for stress detection is finding the most appropriate features. Due to
that researchers employ several features, extracted from time domain, frequency domain,
brain connectivity network or time-frequency network, and a combination of one or more
methods, to find their association with mental stress [16].

Despite the great efforts from community researchers, in recent studies, for enhanc-
ing the classification accuracy of mental stress state recognition using EEG signals, few
significant studies utilized multi-feature domains and multi-channel EEG with feature se-
lection method. Yet, there is no solid conclusion of what is the optimal feature subset for
stress recognition [4,5,17].

Consequently, current researchers acknowledge that multi-feature and multi-chan-
nel analyses are required to establish informative feature space in which a good inter-
preter can eventually produce effective alarms of the occurrence of mental state [5,12,17—
19], allowing subjects to seek appropriate treatment at an early stage. The success in find-
ing an optimal feature set for stress detection would be an essential step toward the crea-
tion of real-world applications that would provoke clinical or behavioral intervention if
stress continued to worsen [20]. However, extracting EEG multi-features from different
domains would result in high dimensionality that may contain irrelevant features that are
not helpful for machine learning classification due to the enormous search space known
as the “curse of dimensionality” [1]. Thus, FS becomes an essential pipeline to address
these problems in EEG-specific domain” analysis by selecting an optimal feature subset
and reducing system complexity [1,21].

The feature selection approaches are often categorized into two main types: filters,
and wrappers. Some other selection approaches are discussed in various literature [1,22].
Filter methods measure the degree of the importance between each feature without the
involvement of subsequent learning algorithms [23]. In contrast, wrapper methods rely
on prediction models (e.g., SVM, KNN) to estimate the importance of features via classi-
fication algorithm evaluation [2]. In comparison, filters methods usually outperform
wrappers in terms of computational speed because they use statistical measurements be-
tween features such as feature distance, information gain, and feature dependency; how-
ever, wrappers methods proved to be better at finding the importance of feature subsets
that improve overall classification performance [23,24]. Nonetheless, these feature selec-
tion methods still suffer from some drawbacks, such as the feature selected subset can
present a correlation between features (redundancy), be trapped in local optima, and may
trigger a high computational cost [25,26]. Also, they tend to perform global searches to
find the optimal features, yet it is impossible in most cases [27].

To address the feature selection challenges, an efficient global search technique is
needed to select a (near) optimal feature subset from the original feature set. With global
searchability, the swarm intelligence-based heuristic search methods have shown supe-
rior performance to obtain optimal solutions [28]. Metaheuristics are also seen to be supe-
rior to random searches because, in the worst-case scenario, they can perform as a com-
prehensive search method. Swarm intelligence-based (SI) heuristic search methods aim to
investigate the behavior of a group of agents in self-organized communities, such as ants,
bees, moths, and birds [1]. Recently, several SI algorithms, such as the Ant Colony
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Optimization (ACO) [28], Bee Optimization Algorithm (BeOA) [29], Moth-flame opti-
mizer (MFO) [30], Multi-Verse Optimizer (MVO) [31], Butterfly Optimization algorithm
(BOA) [32], Bat Algorithm (BAT)[33], Firefly Algorithm (FFA) [1], Grey Wolf Optimizer
(GWO) [34], Moth Optimization Algorithm (MOA) [30], Whale Optimization Algorithm
(WOA) [2] and Particle Swarm Optimization (PSO) [2,35] have been successfully utilized
to discover the optimal feature subset. However, despite the excellent findings, most of
these algorithms have a poor convergence rate and are entrapped in local optima [32].
Recently, researchers developed various hybrid algorithms using swarm intelligence
models, which fused at least two approaches to improve each method's performance and
overcome challenges occurred in search space [1,36].

PSO is a relatively recent optimization technique that is more computationally effi-
cient than the existing metaheuristic methods. The method has shown to be a valuable
solution for optimization issues due to its effectiveness and ease of implementation. How-
ever, there are some major issues with the conventional PSO when used for feature selec-
tion, such as lack of exploitation for particular problems [37]. Moreover, according to the
“NO Free Lunch” (NFL) theorem, no feature selection algorithm can handle all optimiza-
tion problems. As a result, if one algorithm outperforms other algorithms in one specific
domain problem, it may not exceed them in another. Furthermore, the standard PSO is
suggested for the continuous optimization problem, which cannot be employed for fea-
ture selection issues with binary solution space [37]. Therefore, the considerations men-
tioned above motivate us to propose a new hybrid method to make it more suited for
feature selection and to effectively balance exploration and exploitation in the search pro-
cess.

In this work, a hybrid of minimum-Redundancy Maximum Relevance and PSO
(mRMR-PSO) feature selection methods are proposed. The proposed method aims to im-
prove the exploitation of the PSO algorithm. The mRMR is utilized to enhance the exploi-
tation of PSO, as a building block of PSO. It ranks a set of features by applying Pearson's
correlation to minimize the redundancy among the subset of features while maximizing
the features' relevance using the f-test. The output of the selected optimal features is then
classified using a support vector machine (SVM).

In summary, the main contributions of this work are given as follows:

1. Develop an experimental protocol to induce stress on participants while solving

mental arithmetic tasks under time pressure and negative feedback.

2. Extract multi-domain features from multi-EEG channels and fused them to form
a large pool of feature vectors.

3. Propose a novel EEG feature selection method called mRMR-PSO-SVM to im-
prove the search of local optimal and fit for binary feature selection.

4. Validated the proposed method by utilizing our dataset with another three public
datasets of EEG on mental stress state and compared its performance with several
metaheuristic algorithms.

The structure of the paper is organized as follows. Section 2, explains the datasets
structures, preprocessing, and feature extraction as well as presenting the methodology
of the proposed framework. In section 4, the results of the study are presented. Finally,
the discussion and conclusion are provided in sections 5 and 3, respectively.

2. Experiment and Materials

In this study, our EEG Dataset for Mental Stress State (EDMSS) and three other public
datasets were utilized to validate the proposed method. The below subsections describe
the details for each dataset.

2.1. Participants

Twenty-two healthy right-handed males (aged 26+ 4 with a head size of 56+ 2 cm)
participated in this experiment. The experiment was conducted between 3.00 and 4.30
p-m to avoid circadian rhythm influences on the alpha-amylase measurement. These
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individuals had no history of psychiatric, neurological, or psychotropic drug use. The par-
ticipants were placed in a comfortable room with good air conditioning and instructed to
avoid moving their heads as possible throughout the experiment to avoid any environ-
mental stress. All participants were informed about the study and signed consent forms
before the trial began. The experiment procedures followed the Declaration of Helsinki
and ethics approval granted by the local ethics review committee at Universiti Teknologi
PETRONAS.

2.2. Stress Inducement Method

We induced stress by utilizing mental arithmetic tasks with time pressure and nega-
tive feedback as reported in our previous studies [20,38,39]. Then we carried out the ex-
perimental protocol in four steps.

Step 1: The participants were given a brief introduction to the tasks that would be
assigned to them and collected an alpha-amylase sample (S1) as a baseline.

Step 2 (training phase): Each of the participants practiced the mental arithmetic
(MA) task for five minutes to estimate how long it would take to answer each question.
The MA task involved three single-digit integers (range from 0 to 9) and used two opera-
tors; plus (+) or minus (-), (for example, 7-3 + 1), see Figure 1. Each question's response
was displayed on a computer monitor in the order of '0' to '9,' and the participant had to
select the correct answer with a single left click on the mouse.

Step 3 (stress phase): Participants performed the same MA task under time pressure
and negative emotional feedback. In this context, the allocated time to answer the MA task
was reduced by 10% compared to the average time taken to answer each question during
phase 2. Participants who answered incorrectly or did not submit their answer within the
allocated time received negative comments in the form of a notification display in the
monitor as “Incorrect” or “Time's up”, “correct” alongside the average performance of
participants and Excellent user.

Step 4 (rest phase): Participants were asked to look at a fixation cross on the computer
with a black background to sustain their attention to the monitor. The entire experiment
lasted about 15 minutes including the experimental setup. Meanwhile, the task presenta-
tion during the stress and rest states lasted for five minutes. In this experiment, we dis-
played the MA task in a block design following the fNIRS protocol [40,41].

The task's block architecture is shown in Figure 1. Each block began with a 30-seconds
MA stress task, followed by a 20-rest task. The baseline was taken for a total of 20 seconds
before starting the experiment. Immediately, at the end of the five blocks of the MA task,
we collected the second sample of alpha-amylase (52) as shown in Figure 1. To check if
the participants were paying attention to the exercise, the accuracy with which they an-
swered the questions was calculated. The average score was 95% accuracy in the training
phase and 40% in the stress phase, as reported in the original published MIST paper [38].

Alpha amylase
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Figure 1 Experiment block design. A total of five blocks for the stress and rest tasks. In each block,
arithmetic tasks were generated for 30 seconds followed by 20 seconds’ rest. Alpha-amylase samples
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(S1-52) were taken five minutes before the experiment began as a baseline and five minutes after the
experiment ended.

2.3. Data Acquisition

Brain activity was recorded using EEG signal from prefrontal cortex using seven elec-
trodes namely: FP1, FP2, F3, F4, Fz, F7, and F8, plus two reference electrodes Al and A2
placed to the earlobes as shown in Figure 2. The BrainMaster 24E system is an EEG machine
with wet electrodes utilized in this study with a sampling rate of 256Hz. However, for
salivary alpha-amylase, we measure the cortisol activities using a hand-held monitor
called COCORO meter (Nipro, Osaka, Japan).

Figure 2 EEG Electrodes placement on the scalp.

2.4. Description of Public Datasets

Three publicly available datasets were also used in this study for validation of the
proposed method. The summary of the dataset’s contents data used in this study is
shown in Table 1. The description for each of the three datasets are given below:

2.4.1. DEAP Dataset

A Database for Emotion Analysis using Physiological Signals (DEAP) is a well-
known publicly available dataset for emotion classification [42]. The DEAP dataset con-
tains multiple physiological signals for the evaluation of emotions. Thirty-two healthy
participants have participated in the experiment. The EEG signals were acquired with 32

channels/electrodes while watching music videos. A total of 40 different music videos,
each 60 seconds long for emotional stimulation. The signals were then downsampled to
128 Hz and preprocessed from artifacts and noise. The EEG signals were cleaned from
EOG artifacts, de-noised using bandpass filters from 4-45hz, and then data was averaged
to a common reference. In the DEAP dataset, the emotional state was labeled based on
arousal and valence of self-assessment manikins (SAM) [43]. The EEG signals were anno-
tated based on the online self-assessment rating SAM scale provided by DEAP for valence
and arousal. Therefore, in this study, the valence and arousal values were considered to
identify calm and stress tasks for each participant using Equations (1) and (2), derived
from [17,44]:

Calm = (arousal < 4)n(4 < valence < 6) (1)

Stress = (arousal > 5)~(valence < 3) )
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By applying the rules of selecting stress and calm states from each participant, a re-
sult of 25 participants was met the rules, and seven participants (with participants IDs:
3,6,7,9, 17,23, 30) were excluded. Therefore, in our study, the rest of the DEAP analysis
continued with the remaining data of 25 participants.

2.4.2. SEED Dataset

SJTU Emotion EEG Dataset (SEED) is a public emotion dataset consist of fifteen sub-
jects (7 males and eight females), aged 23.27+2.37 (mean = std)) participating in the emo-
tion-inducing experiment. Each subject was required to watch 15 selected film clips with
positive, neutral, and negative stimuli to induce a corresponding emotional state with a
duration of 4 minutes long of each film clip. Three sessions of data were collected, and
each session comprises 15 trials/movies. The data were recorded using 62 EEG channels
with a 1000 sampling Rate from each participant. The placements of 62 EEG channels were
according to the international 10-20 system. Then, the data were downsampled to 200Hz
to reduce computing complexity. A bandpass filter from 0-75Hz was applied. In this pa-
per, we only used the positive and negative labels/classes for a fair comparison of 2 class
problems of the other emotional state datasets. In summary, 45 files (3 experiments for
each participant) were used with data shape of (trail, channels, samples data) and label
file of the 15 trails. More details about the dataset can be found in [45].

2.4.3. EDPMSC Dataset

The EEG Dataset for Classification of Perceived Mental Stress (EDPMSC) is a publicly
available dataset that contains the EEG physiological signals of 28 participants (13 men
and 15 women, ages 18—40) [19] . The EDPMSC contains data collected at 256 sampling
rates from four Muse headband dry EEG channels. These electrodes are AF7, AF8, TP9,
and TP10 and are placed on the scalp as references using Fz. The PSS questionnaire was
used to assess a subject's level of stress over the preceding 30 days, which was then used
to categorize EEG signals as stress or not stress. Each participant underwent three exper-
iments. The first experiment was termed the pre-active phase, during which EEG data
were collected for three minutes while sitting in a relaxed position in a quiet room with
open eyes. The second phase involved recording EEG data during a presentation (activity
phase) in front of a group of people. Finally, there was a three-minute post-activity phase
during which EEG data were collected in the recording room. If the PSS score was greater
than or equal to twenty, the subject was classified as stressed; if it was less than twenty,
the subject was classified as non-stressed. The author of the dataset compared the pre-
active and post-active phases and concluded that the pre-active phase is more accurate at
identifying stress. As a result, we employ the precative phase in this study to develop our
proposed model. The raw EEG data were preprocessed using a bandpass filter of a finite
impulse response (FIR) filter with a bandwidth of 0.5 Hz to 35 Hz. To eliminate slow drifts,
a high bandpass filter with a cutoff frequency of 0.5Hz was chosen. Additionally, the low
bandpass filter of 35Hz was used to eliminate line noise at 50Hz and to store data for the
delta, theta, alpha, and beta frequency bands.

Table 1 A SUMMARY DESCRIPTION OF THE DATASETS USED IN THIS STUDY

. . Stress Total EEG No. Participants/  Frequency
Dataset Stimuli (stressor) labeling channels Selected channels Total Experiments  Rate (Hz) classes
AF3', 'FC5', 'F8/,
. . [ [} v i Stress/
DEAP Music video SAM 32 Fpl', 'AF4', 'P7', 32/32 128
o Calm
Fp2', 'F7
'AF3', 'FC5', 'F8'
. 4 4 4 . P
SEED  Emotional video ~2¢St° 62 'Fpl),'AF4''P7, 15/45 200 Nesative/Fo
nnaire sitive

'Fp2,, 'F7
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. '"TP9', 'AF7', Stress/
EDPMSC History PSS 4 'AF8 'TP10 28/84 256 ot stress
MA, Negative Saliva 'Fpl', 'Fp2', 'F7,
Our feedback and . 7 'F3, 22/22 256 Stress/ Rest
- cortisol Bt A RQ
time pressure Fz', 'F4', 'F8

3. Methodology

A hybrid dominant feature selection method is developed in this study to enhance
the classification performance of EEG mental stress recognition. A block diagram of the
proposed method is shown in Figure 3. Multi-domain features are extracted from the time
domain, frequency domain, time-frequency domain, and connectivity features. The opti-
mal subset selected features are used to classify mental stress state using optimized SVM.
The method’s implementation phases are outlined below.

e Dataset Preprocessing
e  Multi-domain features are extracted from multi-EEG channels and combined to form

a large feature vector.

e  Feature selection based on the proposed mRMR-PSO method is used to identify dis-
criminative features.

e (lassification parameters of SVM were optimized using PSO.

e  The proposed model was validated with three different public datasets.

3.1. Data Preprocessing

The preprocessing of EEG signal was implemented using Python and an external
package called MNE. Raw EEG signals were preprocessed using a bandpass filter. Finite

impulse response (FIR) filters between 0.5 Hz to 35 Hz to remove DC artifacts and
line noise (50/60Hz). All EEG channels were subjected to the common average reference.
Fast, independent component analysis was used to eliminate the eye-blink generated by
electrooculogram (EOG), eye movements as well as muscular artifacts. After that, the
clean signals were employed for the rest of the research.

3.2. Feature Extraction

In this study, we extracted multi-domain features seeking a better presentation of the
signal that provides acceptable accuracy for stress detection. Features from the time do-
main, frequency domain, time-frequency domain, and connectivity features were ex-
tracted. The connectivity features were estimated by utilizing Phase Locking Value. Fea-
tures from the time-domain were based on Hjorth Parameters of activity mobility, and
complexity, Peak to peak amplitude, Line Length, Kurtosis, and Skewness. Frequency do-
main features were based on the relative power of theta (4-8Hz), alpha(8-12Hz), sigma(12-
15Hz), low beta(15-20Hz), and high beta (20-30Hz). Likewise, Time-Frequency domain
features were based on Spectral Entropy (PSD, Welch) [12] and Katz Fractal Dimension
[29]. Table 2 shows the summary of all features used in this study. These features were
then normalized using feature-based z-score normalization to avoid large-scale
weighting.

Table 2 Summary of Multi-Domain Feature Extraction Methods Employed in the Selected Datasets

Domain Feature Name Description No. Features Formula
n(n-1)
. . 2 1N, e

[46] ence between signals over different PLV. =|— Ze'(ﬂ )
ij T

=

trials above or below the 0 degree

Connectivity | Phase Locking Value It is a proportion of phase differ-
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~
=

Time Hjorth Parameters of Activity is the variance of the sig- 1 Activity = var(y(i))
activity mobility, and nal on time.
complexity [22]
Mobility represents the proportion 1 ——
of standard deviation of the win- Mobility = Vzr t('y'(tl))
dow signal in the time domain. cmy
Complexity represents how the 1 YON
shape of a signal is similar to a _ Mobility(=, =)
. Complexity =4/ —————
pure sine wave. Mobility (y(t))
Peak to peak amplitude | Represents the peak time of EEG 1
. . . PTP = kg, — PKioy
signal between the various win- 9
dows.
Line Length [22,47] Named a curve length, which indi- 1 Lm =S Ly i1
cates the total vertical length of the (n) =2 X=Xl
signal.
Kurtosis [48] Shows the sharpness of EEG sig- 1 13
nals’ peaks. 2 (x®-w?
Kurtosis = —=L———
ol
Skewness Represents the asymmetry of an 1 1 .
EEG signal. EZ (x@®) -
Skewness = —=
o3
Frequency | Relative Powers of [49]: | Relative power represents the av- 5 np ____Power(band)
theta (4-8Hz) erage absolute power of the given ~ power(All _bands)
alpha(8-12Hz) band intervals.
sigma(12-15Hz)
low beta(15-20Hz)
a high beta (20-30Hz).
Time-Fre- Spectral Entropy (PSD, 1 Foas -
quency Welch)[12] Measure the distribution of signal SE=- ; PSD(F)log (PSD(F
power
over frequency.
Katz Fractal Dimension | Represents the maximum distance 1 log,, (n)
[29] between the first point and any D= L n
other point of the Signal’s time l0giq (E) +109,,(n)
window.

3.3. Feature Selection using mRMR-PSO

The proposed mRMR-PSO method consists of minimum redundancy maximum rel-
evance (NRMR) [50] and a PSO algorithm. The proposed method aims to select the more
informative feature subsets related to mental stress from the high dimensional space of
EEG signal to improve the accuracy performance of the SVM classifier by ranking the
relative and informative features. We utilize the filter method of mRMR first to generate
a short feature pool and PSO wrapper to get the least redundant feature set and optimized
SVM parameters for better accuracy. The sections below describe the details of each

method.

*100
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3.3.1. minimum-Redundancy Maximum Relevance (mRMR)

The mRMR is a filter-based method, was first proposed by Ding and Peng,(2005)[51]
as a solution for feature selection problems and shown to be computationally fast. The
mRMR is used to rank a subset of features by minimizing the redundancy between the
subset of features while maximizing the relevance of the feature to the target.

The proposed method employs mRMR to minimize the search space of the local
optima of the original feature by ranking a subset of important features. The mRMR algo-
rithm is based on a relevance measurement using an F-score, while the redundancy meas-
urement is based on Pearson's correlation among features set [52]. This process minimizes
the selection of redundant features, which results in minimizing the risk of overfitting at
the PSO phase and solve the issue of global search space.

The maximum relevance (RL) is computed using F-statistic F(X; y) between feature
and target class as the equation :

1
maxRL,,RL, g > F(X.y) ®)

X;eS

Where S = Ko Xoun Xy is the set of features, y is the target class (ex. stress/ not.

Stress), |S1 is the size of the feature set.

The minimum redundancy (RD) among features is computed using Pearson's cor-
relation between pair of features as shown in equation(4):

. 1
minRD,,RD, =—>" p(X;, X)) @

X;eS

The full join formula of the mRMR selection schema to rank the feature set is calcu-

FCQ
lated using the F-test correlation quotient as the equation:
Fr8(X)) = max§ - FX,.y) (5)
g 2 P X))
|S| XjeS

where * (X, Xj) is the Pearson's correlation between pair of features, F(X;y) is F-
statistic, Xi (i € {1, 2, ..., m}) is feature importance based on the mRMR criterion, m is total
features, IS| is the size of the feature set and y refer to target (class/label). In summary, at
each stage of the mRMR feature selection process, the features with the highest feature
important score will be added to the subset FT° () selected feature ranks. The ™
mRMR feature selection results in achieving a more coverage balance in the solution space

as well as contributing significant improvements to classification performance.

3.3.2. PSO Algorithm

Particle swarm optimization (PSO) was proposed by Kennedy & Eber-hart, (1995) for
optimization problems [37,53-55]. PSO is a swarm intelligence meta-heuristic technique
motivated by social behavior such as fish schooling, birds searching in search of food. PSO
is based on the concept of birds exchanging information with one another. When birds
seek food at random, they have no idea where to look. Like the evolutionary algorithm
and genetic algorithm, PSO performs searches on a population (called swarm) of individ-
uals (called particles), which are updated from iteration to iteration. PSO discovers the
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optimal solution by allowing each particle changes its searching direction based on two
factors, the best of all features (gbest) and its own best previous experience (pbest).

The status of each particle is characterized based on its position (global optima) and
velocity (distance: local optima). If the position of each particle found its best position,
then the information would be delivered to other particles. The particles’ velocity and
position were updated over iteration for the search of pbest and gbest for optimal solution

p as equations.
Vi(ti+l =W-V +¢; - r,(pbesty — X))

6
+C, 1 (gbeStitd - Xitd) ©

Xgt=X4+Vitd={2,..,D} %)

where t denotes evolutionary generation, Vi, denotes particle’s velocity i on dimension
d, Xi, denotes particle’s position i on dimension d, (C,,C,) denotes social learning factors of

personal best (pbest) and global best (gbest) respectively, and (I , I, ) are random numbers

of uniformly distributed U(0,1). The w refers to the weight used to balance global explora-
tion and local exploitation.

3.3.3. Proposed Hybrid Method: mRMR-PSO-SVM.

In this section, we propose a hybrid method mRMR-PSO-SVM proposed for mental
stress classification as shown in fig. The mRMR-PSO-SVM algorithm aims to select the
optimal feature set from the reduced set of f*° mRMR while optimize the classification
performance by estimating the optimal values of SVM parameters (C, y) simultaneously.

In our approach, three main phases are considered for better optimization: Initializa-
tion phase, Feature selection phase, and classification & evaluation phase.

In the initialization phase: it is proved that the high number of particles (P) in-
creases the computational complexity of the optimization process while the small search
space of P results in poor optimal solutions [55]. Therefore, we select 200 and 50 for a total

number of generations (t) and a total number of particles, respectively. Likewise, (C,,C,)

and w values influence the convergence of the optimization process. If they are set too
high, the particle velocity becomes too fast, and the optimum solution cannot be obtained.

Thus, we set (C,, and C,) to2 and w set to mean the mutual information of the subset

. FCQ
selection f .

In the feature selection phase:

The mRMR algorithm is developed as described in Section B.1 to rank the most im-
portant features of the given datasets that result in the highest classification performance
with the SVM classifier. The mRMR-PSO evaluate each selection of ranked feature subset
and SVM parameters according to a fitness function which is the classification F-measure
of SVM.

Classification and evaluation phase:

support vector machine (SVM) has been widely used in different applications, in-
cluding EEG-based applications [56,57]. The classification procedure is a part of wrapper
feature selection methods to evaluate and validate the model. In our method, we optimize
SVM parameters (C, y) using PSO and evaluate the subset performance using the activa-
tion function of F-measure as the equations (8-10):
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Figure 3 The flowchart of the proposed feature selection method’ mRMR-PSO-SVM.

Algorithm 1: An Improved Hybrid Feature Selection Algorithm based
on mRMR-PSO-SVM

Result: Best feature Subset(U)

Input: N: multi-domain feature set of selected channels and and label

(model 1)

Initialization: PSO parameters (populationsMax =200 , particlesMax
=50, learning parameters (C1,C5) = 2, the inertia weight (w) = mean
subset of mRMR and random generate velocity and position of each
particle);

while i:populationsMax or stopping criterion is not met do

oStep 1: mRMR method to rank subset features of N equation (1).
eStep 2: Train the selected subset of the features from step 1 using

RBF — SV M.

oStep 3: Evaluate the selected features with PSO and SVM

parameters (C, y) equation (2).

eStep 4: Update PSO (velocity and position) and SVM (C,y) using

the equation(3,4).

eStep 6: termination condition: recursively use steps 1-4 till the

criteria of termination are satisfied (e.x number of generations or

accuracy fulfilled).

end

precision = _TP (8)
TP+FP
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TP
recall = — )
TP+FN

9 precision - recall
precision + recall

F —measure = (10)

Where TP refers to the total number of true positives, false positive (FP), true negative
(TN), and false-negative (FN).
Accuracy is also used as an overall measure for classification, which is:

accuracy = TP+TN (11)
TP+TN +FP +FN

Additionally, SVM has different kernel functions such as linear, polynomial, and ra-
dial basis functions (RBF). In this study, we utilize RBF to obtain optimal solution due its
widely used when dealing with multi-dimensionality space, also the number of the pa-
rameter that needs to be optimized are few compared to other kernels such as polynomial.
RBF has two parameters C and y, Parameter C denotes the cost of the penalty. The choice
of value for C influences the classification outcome. While Parameter y has a much greater
influence on classification outcomes than C because its value affects the partitioning out-
come in the feature space [58]. The primary aim of selecting a suitable kernel function
along with its kernel parameter (s), because the kernel defines the feature space in which
the training sets will be classified. In this context, the values of RBF parameters need to be
optimized for the optimal use of the SVM along with the feature selection.

In summary, the main basic procedure for the proposed algorithm (mRMR-PSO-
SVM) is presented as follows:

Step 1: Use the mRMR method to rank the features of the training sets from the
highest best feature to the lowest using the equation (5).

Step 2: Initialize PSO parameters (populations, number of particles, learning param-

eters (C,;, and C,), the inertia weight (w) and the generate velocity and position of each

particle).

Step 3: Train the selected subset of the features from step 1 using RBF-SVM.

Step 4: Evaluate the selected features with PSO and SVM parameters using the fitness
function of F-measure as shown in equation (10).

Step 5: Update parameters of PSO (velocity and position) and SVM parameters (C,
v) till the termination criteria are met.

Step 6: termination condition: recursively use steps 3,4 and 5 for refining the model
fitness till the criteria of termination are satisfied (e.x number of generations or accuracy
fulfilled).

Step 7: Classify mental stress from testing data using generated optimal model (op-
timal selected model and optimized parameters).

4. Result

In this section, we present the statistical results of the mental stress experiment in-
duced by MAT and assessed by EEG and alpha-amylase. Although, we report the mental
stress state classification based on optimal feature set, selected from multi-domain
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features, of network connectivity features, time domain, frequency domain, and time-fre-
quency domains, using the proposed method mRMR-PSO-SVM.

4.1. Statistical Analysis

In our EDMSS experiment, the stress tasks were induced using a mental arithmetic
task with negative feedback and time pressure. The salivary alpha-amylase (SAA) was
used to assess and validate mental stress during EEG acquisition and plays as a bi-
omarker for EEG annotation. The mean scores acquired from 22 participants using the
SAA are shown in Figure 4.

2
- Stress *x% P<0.001

120 | (D Rest

=

[2)] o] o

[=] (=] o
L 1 1

Salivary alpha amylase (kIU/L)
sy
(=)

Figure 4. The average score of salivary alpha-amylase level responses for stress and rest tasks. Two
measurement samples (5 min before (baseline), and 5 min after the last stress task. The “***” marks
indicate, the task is significant with p<0.001.

Overall, the reported SAA level among participants scores (u, o) = (24.45+ 4.44 (kIU/L))
before stress inducement and (u, o) = (93.64+13.99 (kIU/L)) after stress inducements. Par-
ticipants with an SAA score of more than 60 (kIU/L) were classified as being in a stress
state, whereas those with a score of less than 30 (kIU/L) were classified as being in the rest
group. The T-test was applied on SAA to verify the affective of stress inducements on rest
and stress states. The difference between the mental states is considered significantly dif-
ferent if the p-value is less than 0.05. The results revealed a significant difference between
the two states with p<0.001. The approach of stress inducement using mental arithmetic
tasks used in this experiment is similar to that used by other researchers [16].

4.2. Performance analysis of feature selection and multi-domain features

We evaluate the performance of our methodology using EDMSS and further validated using three
public EEG datasets. The datasets DEAP, SEED, and EDPMSC were utilized here for mental stress
recognition. A summary of the datasets is provided in The EEG Dataset for Classification of
Perceived Mental Stress (EDPMSC) is a publicly available dataset that contains the EEG
physiological signals of 28 participants (13 men and 15 women, ages 18-40) [19] . The
EDPMSC contains data collected at 256 sampling rates from four Muse headband dry EEG
channels. These electrodes are AF7, AF8, TP9, and TP10 and are placed on the scalp as
references using Fz. The PSS questionnaire was used to assess a subject's level of stress
over the preceding 30 days, which was then used to categorize EEG signals as stress or
not stress. Each participant underwent three experiments. The first experiment was
termed the pre-active phase, during which EEG data were collected for three minutes
while sitting in a relaxed position in a quiet room with open eyes. The second phase
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involved recording EEG data during a presentation (activity phase) in front of a group of
people. Finally, there was a three-minute post-activity phase during which EEG data were
collected in the recording room. If the PSS score was greater than or equal to twenty, the
subject was classified as stressed; if it was less than twenty, the subject was classified as
non-stressed. The author of the dataset compared the pre-active and post-active phases
and concluded that the pre-active phase is more accurate at identifying stress. As a result,
we employ the precative phase in this study to develop our proposed model. The raw
EEG data were preprocessed using a bandpass filter of a finite impulse response (FIR)
filter with a bandwidth of 0.5 Hz to 35 Hz. To eliminate slow drifts, a high bandpass filter
with a cutoff frequency of 0.5Hz was chosen. Additionally, the low bandpass filter of 35Hz
was used to eliminate line noise at 50Hz and to store data for the delta, theta, alpha, and
beta frequency bands.

Table 1 shows the number of EEG channels used from each dataset. In DEAP and
SEED datasets eight channels were selected mostly from the prefrontal and frontal regions
of the brain, seven EEG channels from EDMSS, and 4 EEG channels from EDPMSC.

The multi-domain features were extracted from each dataset and used as input vec-
tors after normalizing them using column-base z-score normalization. The features of
multi-domains are combined to derive a high-dimensional feature vector.

Table 2 shows the summary of the proposed multi-domain features presenting the
domain name, feature description, total number features, and feature formula is provided.
A total of 161 multi-domain features were extracted from the seven EEG channels of ED-
MSS, 188 features for the datasets containing 8 channels (DEAP, SEED), and only 86 fea-
tures were extracted from the EDPMSC dataset containing 4 EEG channels.

Figure 5 and Figure 6 represent the results of mMRMR-PSO-SVM in selecting the opti-
mal feature subset per dataset. From the figures, it can be observed that mRMR-PSO-SVM
can significantly reduce a large number of features vector space while achieving a high
classification performance. Figure 6 shows the classification performance results, and the
number of selected features obtained by our proposed algorithm on different datasets.
The highest average classification performance on EDMS was 77.23%, 80.87%, 76.30%, and
77.41% for accuracy, precision, recall, and fl-score respectively with an average of 52 op-
timal selected features. Whereas, in the DEAP dataset, the proposed algorithm achieved
an average performance of 93.88%, 91.11%, 94.91 %, and 91.99% for accuracy, precision,
recall, and f1-score respectively with an average of 56 selected features. Additionally, for
the SEED dataset, the achieved results were 84.17 for accuracy, 90% precision, 83.23% re-
call, and 85.54 fl-score using 49 optimal selected features. In the EDPMSC dataset, the
results obtained, based on dependent subject analysis since each subject was labeled as a
stressed subject or not, were 89.31%, 85.11%, 85.11 % 85.11% for accuracy, precision, recall,
and f1-score respectively with only 45 selected features.

From Figure 5 it can be observed that the proposed algorithm reduced the total num-
ber of features to less than 70% from the original feature vector space of all datasets while
increasing the prediction accuracy or maintain it. On all four datasets, the mRMR-PSO-
SVM approach preserved just around 30% of the features while improving prediction ac-
curacy. The findings indicate that the proposed mRMR-PSO-SVM method is capable of
efficiently removing redundant or irrelevant features, resulting in better classification per-
formance.
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Figure 5 A total number of multi-domain features selected using mRMR-PSO-SVM
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Figure 6 The evaluation performance of the proposed mRMR-PSO-SVM on different EEG datasets
for mental stress detection.

To evaluate the effectiveness of the proposed mRMR-PSO-SVM method was compared
to other state-of-the-art swarm intelligence meta-heuristic algorithms, namely, BAT,
FFA, GWO, MFO, MVO, PSO, and WOA [59]. We assess the performance of each feature
selection method using three parameters: classification accuracy, execution time, and the
number of selected features utilized for mental stress classification. For that, a split
mechanism was used to train and test feature selection methods for obtaining the classi-
fication accuracy with 80% for training and 20% for testing.

Table 3 shows the average number of the accuracy, selected features, and execution
time for each swarm optimizer algorithms with EDMSS, DEAP, SEED, and EDPMSC da-
tasets. In DEAP, the proposed algorithm achieved the highest accuracy of 93.878% using
57 selected features while the highest among the compared algorithms was MVO with
88.877% accuracy and 86 features. Meanwhile, in the SEED dataset, the proposed method
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obtained an accuracy of 84.167% with only 49 selected features which are higher than the
best competitive optimizer FFA that performed 74.815% of accuracy using 90 features
with the same dataset. Additionally, mRMR-PSO-SVM obtained 77.22%, 88.301% accura-
cies with 52 and 30 selected features for both EDMSS and EDPMSC, respectively. How-
ever, in EDPMSC, the WOA showed a slight increase in accuracy with 1.026% using 36
selected features.

Table 3 The average values of the statistical parameters of classifiers using the subject
independent test.

#No
#No Selected
Algorithm | Execution time Accuracy features Execution time Accuracy Selected
features
EDMSS DATASET EDPMSC DATASET
BAT 4.315 67.624 75 15.378 87.703 44
FFA 19.615 65.172 79 19.285 87.935 36
GWO 9.234 67.664 74 15.001 87.703 55
MFO 4.336 67.267 85 16.586 88.167 55
MVO 4.135 67.631 80 14.620 88.863 45
PSO 5.530 65.289 108 15.923 84.919 55
WOA 5.773 64.224 72 15.195 89.327 36
Proposed 11.719 77.222 52 60.700 88.301 30
DEAP DATASET SEED DATASET

BAT 10.328 88.229 80 2.946 68.889 86
FFA 41.391 88.079 87 14.852 74.815 90
GWO 21.013 87.515 83 6.939 71.111 84
MFO 46.348 88.182 97 2.865 70.370 85
MVO 10.695 88.877 86 2.869 70.370 85
PSO 13.682 88.276 121 4.027 66.667 122
WOA 14.482 88.697 79 4.236 68.148 79
Proposed 53.768 93.878 57 9.346 84.167 49

5. Discussion

The main object of mRMR-PSO-SVM is to select an optimal number of features that
increase or maintain the overall performance by enhancing the exploration, exploitation
of search space.

Various time-domain, frequency-domain, and time-frequency-domain features have
been proposed in previous studies for mental stress detection [13,15,16]. However, little
research utilizes connectivity features. In our study, we utilize the most important features
from multiple domains, seeking better informative features for stress detection. As a re-
sult, a fusion of multi-domain features showed a promising result in different fields as
there could be multi-way interactions among features [14,60]. The drawback of multi-do-
main features is that they are vulnerable to redundant and unrelated features. Therefore,
the proposed mRMR-PSO-SVM method aims to select the discriminative features from
high dimensional space. The optimal selected features using mRMR-PSO are used for
training SVM with RBF kernel, followed by the evaluation of the classification perfor-
mance with test data. In each dataset, an independent subject test was conducted.

Table 3 shows that the proposed mRMR-PSO-SVM outperforms the other algo-
rithms, used in this study, in terms of accuracy and selected features. The significant ad-
vantage in finding the optimum number of features is justified since the proposed mRMR-
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PSO-SVM employs the strength of mRMR and PSO mechanisms, which enhance the pos-
sibility of selecting weak solutions and decrease the probability of trapping in local op-
tima. This method allows the algorithm to fully explore parts of the feature space before
using PSO to improve these regions.

To address feature selection problems, this approach makes use of the strengths of a
global search algorithm, which is efficient in both exploration (local search) and exploita-
tion (global search). Finding fewer optimum features means that the algorithm has suc-
cessfully removed irrelevant/redundant features from the feature vector space of the da-
taset. However, for excursion time it shows slightly better than FFA in EDMSS and SEED
dataset while it takes more time compared to other optimizers. This could be due to the
hybrid interactions between the filter method (mRMR) and wrapper method (PSO).

It is worth mentioning that the proposed mRMR-PSO method outperforms the con-
ventional PSO algorithm in classification accuracy as well as most the state-of-the-art
meta-heuristic algorithms, namely, BAT, FFA, GWO, MFO, MVO, PSO, and WOA [59].
As aresult, the mRMR-PSO is a promising technique for detecting significant factors while

removing redundant and irrelevant data. When compared to the original PSO algorithm
with the same approach, we can conclude that the proposed mRMR-PSO method offers
accurate classification performance with the fewest number of selected features in all da-
tasets. Thus, the mRMR-PSO algorithm provides a viable solution to feature selection and
mental stress classification problems.

To further demonstrate the success of the proposed hybrid feature selection method, the
mRMR-PSO-SVM showed superior performance in comparison to state-of-the-art feature
selection methods in terms of accuracy, number of selected features as listed in Table 4.
From Table 3 and Table 4, we can highlight that our proposed method, outperform other
proposed methods in term of accuracy and number of selected features. This could be due
to many factors tacked in our model such as fusion of multi-domain features, improving
the exploitation of PSO, and optimizing the SVM parameters.

Table 4 Comparison with previous studies on related public available datasets for mental stress detection.

#Ref. Dataset FS- Classifier Total feature vector / No. Accuracy
Selected Features Channels
[44] DEAP GA- KNN! 673/not mentioned 32 71.76%
[17] DEAP Boruta-KNN 608/288* 32 73.38%
[19] EDPMSC Wrapper FS- (MLP, 90/18 4 89.30% MLP,
SVM) 67.85% SVM for
pre-active phase
[61] DEAP 2-D AlexNet-CNN 5 PSD bands con- 32 84.77%, 86.12%
3-D AlexNet-CNN?2 verted to image
[62] SEED, DEAP DWT-BODE?(SVM, 225 x 30 SEED 62 SEED 93.8% SVM
KNN) 576 x 40 DEAP 32 DEAP (SEED)
77.4% SVM
(DEAP)

It's worth emphasizing that our proposed model focused on EEG based mental stress
only, however, it could be further utilized with other datasets from different domains.

To summarize, the study's findings are quite promising. However, there is still much
potential for additional research in the field of EEG-based mental stress classifications. To
begin, we conducted our study using a fixed time window length; however, experiment-
ing with alternative window lengths can aid in model generalization. Additionally, It is
worth exploring, data augmentation via sliding windows as this technique is increasingly
being utilized in combination with deep learning on EEG [61]. Second, a more in-depth
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examination of other connective network features should be explored since they give de-
tailed information about channel interconnections. Our method was based on established
signal noise removal techniques [16]. However, alternative denoising techniques such as
signal smoothing should be considered. Additionally, prior research has demonstrated
that utilizing feature extraction with feature selection approaches and neural networks
results in high accuracy in EEG based models. As a result, future studies may potentially
explore neural networks and deep learning approaches.

3. Conclusions

In this paper, a hybrid feature selection method, mRMR-PSO-SVM, was proposed to select
the most informative features related to the mental stress task. By ranking important fea-
tures as a subset of the original feature set, the mRMR was used to reduce the search space
of the local optima of the original feature set. Following that, -PSO evaluates each ranked
feature subset selection and optimizes SVM parameters according to a fitness function.
On the basis of selected features and classification performance, the mRMR-PSO-SVM
was evaluated using four datasets and compared to existing methods. The proposed
method outperformed other feature selection methods in terms of accuracy and number
of selected channels, according to the experimental results obtained on various datasets.
Despite the fact that the proposed method yielded promising results, future research
could further validate the methods with different domain datasets and use neural net-
works and deep learning approaches to better evaluate the quality of selected features and
their effects on computation time.
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