Expert Radiology Application Softwares Enhance Radiology Diagnosis Contributions And Challenges By A Historical Review of Informetric Analysis From 1991To 2021

Chia-Cheng Chao

Department of Information Science, National Taipei University of Education, Taipei, Taiwan, email: vc88888@gmail.com

Ming-Hung Hsu

Department of Electrical Engineering, National Penghu University of Science and Technology, Magong, Penghu, Taiwan, e-mail:hsu.mh@msa.hinet.net

Abstract

In all areas of medicine, especially in radiology, computers are increasing year by year. Filmless radiology, speech recognition software, electronic application forms, and teleradiology are recent developments that have greatly improved radiologists' performance. This research explores radiology software trends, predictions, and the challenges posed by informatics and historical trend analysis. The rationale behind this research is that information technology (IT) is overgrowing almost every day. We must continuously seek new ways to apply IT to make more use of resources. Consequently, IT becomes increasingly crucial to radiology organizations' innovative thinking, workflow, and business models. This study aimed to analyze all radiology software publications in the Science Citation Index (SCI). From 1991 to July 2021, SCI was used to search for publications systematically. We have also widely used this historical method in radiology software research. The findings and discussions are base on an assessment of trends, predictions, contributions, and challenges in radiology software, and we are exploring radiology software with six evolutionary stages. The gift of this research is that radiology managers realize that the use of new information technologies is closely related to survival in a competitive environment. Radiology companies can review these new technologies to develop more innovative business models and services to improve operational deficiencies.

Keywords: radiology information systems, radiology education system, radiology operation software, information technology, computer-aided diagnosis system

I.Introduction

The use of computers is increasing in all fields of medicine, especially in radiology. The latest developments in membraneless radiology, speech recognition software, electronic application forms, and teleradiology have greatly improved the performance of radiologists [1]. This study aimed to explore trends, predictions, information challenges, and historical trend analysis of radiology software. Advances in emerging radiology information technology have made the global radiology business environment a vibrant market. The hospital will continue to face new radiation technologies and competition as well as gradually increase patient expectations. To compete in the new radiology, IT environment, commercial new IT technology alliances, radiology departments, radiology departments, doctors must coordinate inspection activities globally. This situation requires sharing knowledge, new technology drivers and patient inspection mechanisms, and links to radiology innovation design and information technology (IT) to implement these new business models. However, radiologists face fundamental changes in their pursuit of ambitious goals rather than incremental changes. Innovation is rapidly evolving, continually adopting new forms of technology and assessing its value in improving day-to-day operations [2]. Innovation is quickly changing, constantly embracing new technology forms and evaluating its importance in enhancing day-to-day operations [2]. We expect Computer graphics, visualization, and virtual environment applications in the medical field to improve health care and benefits that bring considerable opportunities to patients [3].

The rationale behind this research is that information technology (IT) is increasing more powerful operation almost every day. We must always strive to apply it to new ways of using more resources. Therefore, it is essential to create new ways of thinking about radiology, workflow, and business models. Radiology organizations can not only use intellectual capital and information technology to improve their business deficiencies, but radiology directors are also committed to addressing the ongoing business crisis. They invest in reconfiguring resources and knowledge, creating innovative structures and systems to overcome problems and seek more efficient operations.

There is no doubt that computer and communication hardware have reached a state of complexity and availability, in which any necessary information can be generated, stored, and distributed to healthcare personnel to support their patient care tasks [4]. The understanding and contribution of radiology information technology innovation adopting trends, application history review, and information analysis research methods apply to this study.

This study aims to analyze all radiology software publications in the Science Citation

Index (SCI). From 1991 to July 2021, we used t the Science Citation Index (SCI) to retrieve publications. Research findings and discussion of changing trends, predictions, and challenges of radiology software, we are exploring radiology software with six evolutionary stages; before 1990, most radiology information systems were designed for patient examination purposes. From 1990 to 2009, radiology software was Intranet connected. From 2011 to 2021, mobile devices such as PDAs, laptops, and mobile phones became an essential part of our lives. Then the era of radiation mobile began to innovate, while new business models and long-distance services, patient care became more valuable and efficient. The development of radiology has already started.

Later, Radiation Medical Artificial Intelligence technology was developed to integrate machines and software to achieve better quality and high-performance services, while large-scale integrated development with patient radiation extensive data software services. Since then, the era of machine learning has begun to provide diagnostics for diseases such as radiology. Also, the radiology software informatics review evolved into a strategic style of operations, education, management, and radiology software. It enhances the radiology director's ability to become a blueprint or reference application for emerging radiology software, thereby providing patients with safe, efficient services, improved competitive advantage, and more modern radiology service capabilities. It evolved into a strategic style of operation, education, management, and radiology software. It enhances the radiology director's ability to become a blueprint or reference application for emerging radiology software, thereby providing patients with safe, efficient services, improved competitive advantage, and more modern radiology service capabilities. It evolved into a strategic style of operation, education, management, and radiology software. It enhances the radiology director's ability to become a blueprint or reference application for emerging radiology software, thereby providing patients with safe, efficient services, increased competitive advantage, and more modern radiology service capabilities.

Figure 1 Radiology software evolution trend diagram

The main contribution of this research is to make radiology managers aware of the key to learning to use new information technologies to survive in a competitive environment [5]. The Radiology department director can use this innovative software in his department to improve operational efficiency and service quality. Radiology companies can look at these new technologies to develop further business models and services, strengthen business deficiencies in the past, and generate more business revenue from academic contribution, academic research on the exploration of innovation diffusion theory. It directly guides companies to improve existing machines, software, or operational errors and faces operational problems to improve innovative technologies, provide better services, and improve service quality and performance.

As a result, radiology has also begun to use information technology to solve more effective and accurate problems, such as using new and innovative systems for patient testing and diagnosis and competition for business, education, operations, and service needs. Therefore, radiology software resources and workflow, patient diagnostic safety management solutions, optimize asset utilization, reduce operating costs, and improve patient care in the medical industry; the world is based on various medical radiology applications developed. There are more radiation systems, and this hospital is using them. This article will explore the

trends through the 1991 Informatics and Historical Review Trends and Radiology Software Technology. By 2021, we will clarify the trends in technology, analyze their contributions, and predict trends and challenges through radiology software.

II. Literature review Diffusion of Innovation Theory

The diffusion of Everett Rogers defines it as a process through which the social system members propagate innovation through individual channels over time. The definition of Rogers includes four elements of communication that exist in the innovation process: (1) Innovation - by individuals or other adopting units as new ideas, practices, or object perceptions. (2) Communication channel - the message from one person to another device; (3) Time, including (a) the innovative decision-making process; (b) the relative time of innovation of individuals or groups in (b);(4) Three-time factors of the social system - a group of people involved in solving problems together to achieve a common goal.

The Internet is an indispensable part of almost all radiologists' daily lives. Nevertheless, few people fully understand how it works or how to make the most of workplace technology. These analysis tables will explore the basics of computer networks and make the Internet a valuable resource. In addition, we will discuss the process of designing and implementing radiation management and education websites or intranet websites. Developing a website, what it contains, how to use it for ease of use, free provisioning, and two-way cost software to achieve this goal is also an essential point of view for applying this software [6]. Table 1, 2, 3, illustrate the operation type software of radiology for X-ray, CAD, CT, MRI, PACE, speech recognition, 3D, 4D, artificial intelligence, and electronic radiology reporting system.

Table 1 Operation type software of radiology

No	Style Software	Method	Contribution	Author
	Type			
	OPERATION			
1.	X-ray	ViewDEX is	An efficient and easy to use	Hakansson,
	ViewDEX (X-ray	compatible with	observer performance study	M;
	image digital	DICOM, and its	software	Svensson, S;
	evaluation	interface features		Zachrisson,
	viewer)	are versatile and		S; Svalkvist,
		flexible.		A; Bath, M;
				Mansson,
				LG [7].
2.	CAD	A method to use a	This CAD system for chest	Kakeda, S;
	computer-aided	chest X-rays film	X-rays helps radiologists	Moriya, J;

	diagnosis (CAD)	for automatically	improve lung nodules	Sato, H;
	system	detecting nodules	caused by lung cancer	Aoki, T;
	EpiSight/XR		, ,	Watanabe,
				H; Nakata,
				H; Oda, N;
				Katsuragaw
				a, S;
				Yamamoto,
				K; Doi, K
				[8].
3.	CAD	The CAD	The operators can easily	Pietka, E;
		environment is	handle CAD designers in	Kawa, J;
		subject to the	a user-friendly manner by	Badura, P;
		developmental	choosing various	Spinczyk, D
		•		
		process of three	workflow paths.	[9].
		systems: multiple		
		sclerosis CAD,		
		lung nodule CAD,		
		and		
		pneumothorax		
		CAD.		
4.	CAD	As a second	CAD software can aid in	Teague, SD;
	a computed	reader for	refining the sensitivity of	Trilikis, G;
	tomographic lung	radiology	residents to detect lung	Dharaiya, E
	nodule is a type	residents.	nodules on computed	[10].
	of		tomography, making them	
	computer-aided		comparable to	
	detection (CAD)		board-certified radiologists.	
	software			

Table 2 Operation type software of radiology

No	Style Software Type OPERATION	Method	Contribution	Author
5.	CT	With interactive	Post-processing	Kirchgeorg,
	angiography,	parameter	applications add to the	MA;
	volume rendering	changes	advantages of spiral CT	Prokop, M

t	techniques		3D imaging of soft tissue	[11].
	(VRT)		will also become feasible	
			through interactive	
			parameter changes	
6.	СТ	The analysis tool	It is possible and allows for	Thali, MJ;
		marks the pattern	the collecting of	Taubenreuth
	Micro-computed	damage on the	microstructured 3D bone	er, U;
t	tomography	bone. Detailed	information. Analysis of	Karolczak,
	(Micro-CT)	analysis of 3D	bone damage indicates that	M; Braun,
	`	(3D) architecture	Micro-CT provides an	M;
		using	opportunity to correlate	Brueschweil
		high-resolution	bone damage with	er, W;
		Micro-CT and	instruments that cause	Kalender,
		computer	corrosion.	WA;
		software		Dirnhofer, R
				,
				Forensic
				[12].
7. 1	DICOM:	It downloads	The existing infrastructure	Henri, CJ;
1	Digital image	image data from a	of the Internet is beneficial	Rubin, RK;
(communication	remote site:	for developing a low-cost	Cox, RD;
(of medicine	requests to	system that can use for	Bret, PM
		retrieve data from	teleradiology.	[13].
		long-term storage;		
		view images and		
		perform certain		
		DICOM routing		
		operations.		
8. 1	Dicom	Users can easily	Successfully incorporated	Friedkin,
1	RadPix (R)	crop and annotate	radiology education	AM;
	Video, we can	data. Easily create		Weadock,
	import	annotated movie		WJ, [14].
	multi-frame	ultrasound files.		
	cine DICOM			
	(Digital			
	Imaging and			
	Communication			
	s in Medicine)			

files.		

Table 3 Operation type software of radiology

No	Style Software	Method	Contribution	Author
	Туре			
	OPERATION			
9.	MRI	Monitor changes	Contrast-enhanced analysis	Parker,
	Magnetic	in disease status	during MR imaging is a	GJM;
	Resonance	and assesses	promising new approach to	Suckling, J;
	Imaging	treatment	data analysis in radiology	Tanner, SF;
	Workbench	outcomes	for such qualitative or	Padhani,
	MRIW:		quantitative parameters.	AR;
	Parametric			Husband,
	analysis software			JE; Leach,
				MO [15].
10.	MRI	It is an imaging	MRI has been increasingly	Blanco, RT;
	Magnetic	modality for	used to guide, monitor, and	Ojala, R;
	resonance	detecting disease	control percutaneous	Kariniemi,
	imaging (MRI)	and pathology.	surgery and surgery.	J; Perala, J;
		Excellent		Niinimaki,
		soft-tissue		J; Tervonen,
		contrast in MRI		O [16].
		can better define		
		pathology.		
11.	PACS	It converts	It saves costs and improves	Arenson,
	Picture archiving	film-based	doctor communication.	RL;
	and	radiology into a		Chakraborty
	communication	computer-based		, DP;
	systems (PACS)	digital		Seshadri,
		environment.		SB; Kundel,
				HL [17].

Table 4 and Table 5 show the operation type software of radiology. Radiology and radiologists consider being an increasingly valuable resource in anatomy teaching. It is a state-of-the-art radiology workstation with industry-standard application software to provide the latest in fascinating pathology and physiology.

PACS diagnostic workstation. This environment includes all the tools used to create the teaching files, including text descriptions, annotations, and image processing [19].

Understanding informatics principles is crucial because they affect PACS and other supporting software and the model itself [20]. CT and the latest MRI, with software processing (interactive data display, contour detection and summation, imaginary 3D structure, and interactive visualization), provide further analysis improvements that are now available to make a single model [21]. The essential information is needed. Computer-aided detection (CAD) has attracted a wide range of research interests [22]. The following operating software section uses the latest voice-to-text IT technology to design these systems to improve operational efficiency. Speech recognition (SR) in a radiation environment is a way to reduce management costs by reducing or eliminating transcriptional services and reducing reporting time by reducing reporting time [23].

Table 4 Operation type software of radiology

Style Software	Method	C (11 11 1	
	Wichiod	Contribution	Author
Type			
OPERATION			
Reporting			
system			
voice			
recognition			
Voice	It uses a speech	The radiologist can use the	Schwartz,
recognition	recognition	normal speech mode for	LH;
systems used for	system in the	dictation while reviewing	Kijewski, P;
radiology	transcription of	the film. Reduce the	Hertogen,
reporting.	radiology reports.	hardware cost to a level	H; Roossin,
		acceptable to radiology	PS;
		using a standard personal	Castellino,
		computer	RA [24].
To Making a	It illustrates the	This method is easily	Lee, YH;
quantitative	practical use of	adaptable to other QCT	Song, HT;
computed	the QCT reporting	applications and PACS /	Suh, JS
tomography	system in a	EMR.	[25].
(QCT) reporting	radiology reading	(1) Save the QCT report as	
system	environment by	a graphic file; (2) Identify	
	using optical	the characters in the image	
	character	as text; (3) Extract the	
	recognition	T-score from the text; (4)	
	(OCR) and macro	Perform error correction;	
	programs.	(5) Reformat the value to	
	OPERATION Reporting system voice recognition Voice recognition systems used for radiology reporting. To Making a quantitative computed tomography (QCT) reporting	OPERATION Reporting system voice recognition Voice recognition systems used for radiology reporting. To Making a quantitative computed tomography (QCT) reporting system It illustrates the practical use of the QCT reporting tomography (QCT) reporting system environment by using optical character recognition (OCR) and macro	OPERATION Reporting system voice recognition Voice It uses a speech recognition systems used for radiology reporting. To Making a quantitative computed tomography (QCT) reporting system radiology reports. It illustrates the practical use of the QCT reporting system in a radiology reading tomography (QCT) reporting system environment by using optical character recognition The radiologist can use the normal speech mode for dictation while reviewing the film. Reduce the hardware cost to a level acceptable to radiology using a standard personal computer This method is easily adaptable to other QCT applications and PACS / EMR. (1) Save the QCT report as a graphic file; (2) Identify the characters in the image character recognition (OCR) and macro Perform error correction;

		Designed for	The QCT radiology report	
		OCR to report	template, and (6) paste the	
		QCT images	report into an electronic	
		during	medical record (EMR), or it	
		radiological	can be a picture archiving	
		reading.	and communication system	
			(PACS).	
3.	computer	It developed a	It is a template-type	Sistrom,
	speech	networked	construct that allows	CL;
	recognition	database system	radiologists to share	Honeyman,
	system (SRS) for	for creating,	standard organ systems or	JC;
	clinical reporting	storing, and	model-specific templates	Mancuso, A;
		managing	dynamically.	Quisling,
		predefined	It can be triggered from the	RG [26].
		radiology report	printed list of barcodes	
		definitions.	while dictating.	

Table 5 Operation type software of radiology about the reporting system

No	Style Software Type OPERATION Reporting system voice	Method	Contribution	Author
	recognition			
4.	SPIDER the	It contains a	It is a structured data entry	Kahn, CE;
	radiology	WWW server and	in which information can	Wang, K;
	reporting	two dedicated	enter by using	Bell, DS
	process,	programs. The	predetermined data	[27]
	structured entry	WebForm	elements and formats -	
	of radiology	program converts	potentially improving the	
	reports	the knowledge of	radiology reporting process,	
		the system into a	structured entries of	
		graphical WWW	radiology reports,	
		data input form.		
		The WebReport		
		program.		

Table 6 shows the operation type software of radiology about 3D,4D, and AI. The development of telecommunications and computer software led to the development of radiographic image transmission systems. Radiologists can now check X-rays anywhere, and in some cases, this is almost synchronized. It can use the Internet to perform remote imaging such as computed tomography, magnetic resonance imaging, and ultrasound. These systems include systems for transmitting still images and real-time video systems for interactive monitoring through remote radiography. The review workstation (compared to the Picture Archiving and Communication System (PACS)) examines multi-image CT and MRI studies on the iPad tablet [28].

Table 6 Operation type software of radiology about 3D,4D, and AI

No	Style Software Type	Method	Contribution	Author
	OPERATIO			
	N N			
	miscellaneou			
	s			
1	STEPanizer	A simple tool for stereo	STEPanizer is an	Tschanz,
	is an	evaluation of digital	easy-to-use,	SA; Burri,
	easy-to-use	images.	computer-based	PH;
	computer-bas		software tool for	Weibel,
	ed software		stereoscopic evaluation	ER
	tool		of digitally captured	[29].
			images from various	
			microscopes.	
2.	An artificial	A distributed network of	They successfully	Itchhaporia
	neural	computing elements is	applied to diagnosing	, D; Snow,
	network	modeled on the biological	and treating coronary	PB;
		neural system and	artery disease and	Almassy,
		implemented as a	myocardial infarction,	RJ;
		computer software	ECG interpretation and	Oetgen,
		program.	arrhythmia detection,	WJ [30].
			and image analysis in	
			cardiac X-ray and	
			ultrasonography.	
6	3D surfaces	It uses to create a	This volume-based	ZUBAL,

	digital	3-dimensional surface of	software phantom	IG;
	volumetric	human anatomy for use in	depicts internal organs	HARREL
	clinical	a computer database.	in millimeter resolution	L, CR
	imaging		and makes them suitable	[31].
	instruments		for full 3-dimensional	
			Monte Carlo	
			simulations.	
11.	3D	IT equipped with a newly	It is used as an adjunct	Nagasaka,
	computer-aid	developed skull	or alternative to existing	S;
	ed,	measurement software for	X-ray cephalometric	Fujimura,
	contact-meth	bedside.	measurements in the	T;
	od		clinic and as an	Segoshi, K
	cephalometric		epidemiological tool	
	software a		outside the clinic.	[32].
	portable 3D			
	computer-aide			
	d,			
	contact-metho			
	d			
	cephalometric			
	system			
20.	4D	It establishes a complete	A dedicated,	Trimarchi,
	Dimension	visual database for	user-friendly sinus	M; Lund,
	NSNT v 1.0	patients with sinus	tumor formation	VJ;
	like the	tumors.	database facilitates	Nicolai, P;
	Neoplasms of		establishing a	Pini, M;
	the Sinonasal		multi-center network	Senna, M;
	Tract software		with significant clinical	Howard,
	package		and research advantages.	DJ ,
	(NSNT v 1.0)		Histology and	[33].
			endoscopic images can	
			sequence.	

Table 7 shows the operation type software of radiology about the Teleradiology system.

Intranet helps to optimize the organizational efficiency and cost-effectiveness, and daily work of outpatient and hospital radiology departments. The focus is usually on Internet and Intranet technologies to ensure their continued development [34].

Table 7 Operation type software of radiology about Teleradiology system

No	Style	Method	Contribution	Author
	Software Type			
	OPERATION			
	miscellaneous			
13.	MASTOS	It is a software package	A mammography	Spyrou, G;
	a software	based on the Monte	simulation tool for	Panayiotak
	package	Carlo method and	design optimization	is, G;
		intends to use as a	studies	Tzanakos,
		simulation tool in		G
		mammography.		[35].
19.	PMCT	It is a valuable	It is beneficial to get the	Maiese, A;
		procedure that clarifies	essential information to	Gitto, L;
	Post-mortem	how the injury is done	use 3D rendering, for	De
	computer	and provides solid	example: accurately	Matteis, A;
	tomography	medical evidence, which	depicting the wound	Panebianc
	(PMCT)	is very useful during	trajectory, identifying	o, V;
		litigation and trials.	the entrance and exit	Bolino, G
			wounds, showing the	,
			fracture of the bone, and	[36].
			the movement of its	
			fragments in the body.	
21.	CR	It is a widely used	It replaces the regular	Zhang, JG;
	Computed	imaging method	screen/film program in	Huang,
	radiography		diagnostic radiology	HK [37].
	(CR)		radiodiagnosis.	
23.	Teleradiology	It combines	A new environment for	Monteiro,
		teleconferencing with a	training, learning and	AMV;
	Pediatric	virtual learning	interactive discussions	Correa,
	Teleradiology	environment for service		DG;
		integration,		Sarmet,
		collaborative research,		AA;
		and continuing		Cavalcanti
		education in pediatric		, SA;
		radiology.		Sakuno, T;
				Filgueiras,
				T; Just, E;

				Santos, M;
				Messina,
				LA;
				Haddad,
				AE;
				Marchiori,
				E [38]
24.	MPCSS	It is constructed using	It is a solution for	Guo, QY;
	multi personal	hardware and software.	sea-capacity storage.	Hao, FD;
	computer	The image data is	PACS storage is much	Duan, XL;
	storage system	archived from the	cheaper than other	Xie, XQ;
	(MPCSS)	primary server to the	high-capacity systems or	Liao, W
		personal storage	devices. It is possible	[39].
		computer (PC) using the	and suitable for digital	
		Neusoft Picture	image storage.	
		Archiving and		
		Communication System		
		(PACS) and backed up		
		to the storage PC.		
25.	RODOS	Its distributed database,	It provides tools for	Schule, O;
		geographic information	processing and	Rafat, M
		system RoGIS, online	managing various types	[40].
		connections to	of information,	
		radiology and	including meteorology,	
		meteorological	radiology, economics,	
		networks, and software	emergency operations,	
		environments for	and countermeasures,	
		integrating external	rules, preferences, facts,	
		programs into RODOS	maps, and statistics.	
		systems		

Table 8 shows the education type of radiology software. Computers have greatly facilitated the processing and storage of radiological information. Manufacturers of radiology information systems (RIS) increasingly connect their products to other computers (for example, hospital information systems). However, the demand for RIS and digital radiology equipment continues to increase, so images (such as X-rays of the chest and bones) will automatically mark the data marked by the technician, thereby eliminating redundant work and reducing appearance marking errors. Data for patients

with increased radiographic consistency [41]. The artificial neural network is a kind of artificial computer intelligence, which has been a research hotspot in the past ten years [30]. Despite the enthusiasm for software and continuous improvement, some studies clearly show that medical education is superior to traditional methods [5]. These methods are aimed at human-centered social cognitive engineering. It integrates software and tasks. Knowledge and organizational engineering have been improved and tested through developing computer systems to support training and professional work [42]. Although digital technology plays an increasingly important role in radiology, teaching documents are widespread in radiology [43]. Radiologists may be interested in different free (open source) software available via the Internet. Web-based programs provide different levels of radiological anatomy and practical difficulties, allowing users to test and build their knowledge of radiation [45].

Table 8 Education type of radiology software

		31	of radiology software	
No	Style	Method	Contribution	Author
•	Software Type			
	EDUCATION			
1.	PACE teaching	It creates an	It allows doctors to create	Rosset, A;
	system	image-based	reference databases	Ratib, O;
		e-learning file to	directly from the clinical	Geissbuhler,
		replace the	case reviews on the PACS	A; Vallee,
		collection of	diagnostic workstation for	JP
		printed film	teaching and research.	[46].
		images.		
		Integrate		
		multimedia		
		teaching and		
		reference databases		
		in a PACS		
		environment.		
2.	A software	It is developed in	It is designed to handle	Borjesson,
	tool-ViewDEX	Java, making it run	many types of research,	S;
	(Viewer for	on almost all	such as visual grade	Hakansson,
	Digital	computers.	analysis (VGA), standard	M; Bath, M;
	Evaluation of		image score (ICS), and	Kheddache,
	X-ray images)		receiver operating	S; Svensson,
			characteristics (ROC).	S; Tingberg,
			A software tool for	A; Grahn,

			improving the efficiency	A; Ruschin,
			of radiologists'	M; Hemdal,
			performance studies	B; Mattsson,
			performance studies	S; Mansson,
				LG [47].
3.	Radiologist	It bases on the	This networked	Dalessandro
] 3.	multimedia	Internet, the World	multimedia textbook	, Mp; Lacey,
	publishing	Wide Web, Mosaic,	approach to the global	Dl; Galvin,
	software	and Wide Area	distribution of multimedia	Jr; Erkonen,
	Software	Information Server		
			radiology information	We; Santer,
		software	brings today's radiologists	Dm
		technologies, all of	the benefits of multimedia	[48].
		which are in the	publishing on the Internet.	
		public domain.		
4.	Teaching file	It was developed	It can access both local	Wallis, Jw;
	software	for the World Wide	and remote (Internet)	Miller, Mm;
	(TF-Web)	Web and used in	networks. Another	Miller, Tr;
		conjunction with	requirement is that it is	VreelanD
		locally produced	easy to view existing	[49].
		programs for	cases and add new ones.	
		importing images.		
5.	An automated	A text search	It is a potent tool for	Thomas, BJ;
	Computerized,	algorithm uses	cost-benefit research,	Ouellette, H;
	the	dividing a	healthcare policy,	Halpern, EF;
	categorization	radiographic report	operational assessment,	Rosenthal,
	of narrative text	into a fracture,	and quality control.	DI [50].
	radiograph	typical, neither		
	reports, is	regular nor fracture.		
	illustrated.			
6.	A digital teaching	DTF is built using	It helps quickly transfer	Trumm, C;
	file (DTF),	established Internet	selected images	Dugas, M;
	Computer-based	tools and integrated	(DICOM_Send) to the	Wirth, S;
	training (CBT) in	into heterogeneous	DTF during interpretation	Treitl, M;
	radiology	PACS/RIS	and access to the DTF	Lucke, A;
		environments.	application anytime,	Kuttner, B;
			anywhere.	Pander, E;
			,	Clevert,
				DA; Glaser,
			<u> </u>	211, 010301,

				C; Reiser, M
				[51].
7.	3-dimensional	It can create a	ent 3D printing technology	atson, RA,A
	(3D) printing	personalized/patien	can use to develop	[52].
		t-specific liver 3D	low-cost	
		physical model	personalized/patient-spe	
		from clinical	cific liver 3D models for	
		radiology studies	clinical residency	
		for surgical	education through	
		residency	clinical radiology	
		education.	research.	
8.	Integrating	Collaborative	It can effectively reduce	Rengier, F;
	interactive	improvement in	students' lack of image	Hafner, MF;
	three-dimensiona	visual space and	interpretation.	Unterhinnin
	1 post-processing	radiology skills is a	It can improve diagnostic	ghofen, R;
	software into	promising	skills and visual space	Nawrotzki,
	undergraduate	approach.	capabilities.	R; Kirsch, J;
	radiology			Kauczor,
	teaching			HU; Giesel,
				FL[53].
9.	RadNotes: A	It enables doctors	Software development	Baxter, AB;
	novel software	to develop	tools are for radiology	Klein, JS;
	development tool	textbooks that	education that does not	Oesterle,
	for radiology	combine text and	require programming	EV , [54].
	education	images in an	expertise or the help of a	
		innovative, highly	software engineer.	
		available format.		
10	Artificial	Track the use of	Imagine new areas that	Ray
	intelligence and	radiology	might use in exam	CodyMayoJ
	deep learning	computers, from	interpretation.	essicaLeung
		management		[73]
		functions to image		
		acquisition, storage,		
		and reporting, to		
		trying to improve		
		diagnosis as early		
		as possible,		
11	Proton PACS	With	It is uniquely engineered	[74]

state-of-the-art	to eliminate downtime
storage, viewing	and increase workflow
and voice	efficiency.
recognition	
features,	

III. Research method

A historical review of this research application is based on an understanding of trends and radiology IT's innovative contributions. This study aimed to analyze all radiology software publications in the Science Citation Index (SCI). From 1991 to July 2021, SCI was used to search for publications systematically. The selected file includes the radiology software as part of the title, abstract, or keyword. Analysis parameters include authorship, international cooperation mode, magazine, language, file type, research address, reference count, and reprinted author address. The citation analysis is based primarily on the Journaling Citation Report (JCR) and the impact factor defined in each publication citation (CPP) and is used to assess the effect of the journal relative to the entire field and describes it as the ratio. The average per publication quotes at a given time. Also, historical methods have been applied to the study of radiology software. This practice shows that historical phenomena can be costly and complicated. We can raise our awareness by reviewing and investigating the background and development of time, location, and events. From July 1991 to 2021, SCI initiated and used historical methods to develop software radiology publications.

IV.Research finding and discussion

Challenges: Privacy, data security

In the Virtual Radiology Environment (VRE), the information to be protected embeds in three main information components:

- (1) Patient information includes fields in the Digital Imaging and Medical Communications (DICOM) format. Patient information is located in the Digital Imaging Mesh Image Archiving and Communication System (DIN-PACS) network in the data vault system, including (a) patient demographic information; (b) patient information; (c) patient image can be by X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US); (c) previous patient images and related patient medical history.
- (2) Meta-manager information to be protected consists of multiple data objects. This information will be distributed to the Meta-Manager node, including (a) radiologist programs; (b) radiologist programs; (c) radiologist programs; (c) radiologist programs; (d) radiologist program; (e) radiologist program; (e) radiologist program; (e) radiologist program; (e) radiologist program; (f) list of modal words; (f) route case information; (d) information on DIN-PACS and integrated health systems, and meta-management management

and safety Information; (e) Patient case data.

(3) VRE requires access control and communication security to control who uses the VRE and meta-manager functions and protects messages between VRE elements [68].

Contributions:

CT:

The precise CT technology of the spine covers the smallest area required to answer clinical questions, and individual patients significantly impact the risk of cancer. Cancer risk is decisive, so it is necessary to consider spinal CT imaging based on the total radiation risk over the patient's lifetime [55]. Radiation diagnostics, such as traditional radiography, fluoroscopy, and computed tomography (CT), will continue to bring significant benefits to modern medical care [57].

PACE: It determines the cost of the difference between film-based radiology and the hospital's image archiving and communication system (PACS). If a hospital-wide PACS is implemented in a short period, it will immediately convert to digital movies and archives. The net present value of the Pacs business is \$1,598,698, and the net current worth of the film business is \$208,856, with a net savings of \$485,157. The payback period is four years. The cost of computer radiography and imaging boards accounts for 40% of the initial capital expenditures of Pacs, followed by computer hardware (30%) and software (9%). Explain that implementing Pacs inside the hospital can save costs. The Internet can quickly distribute information to distant users through various computers, making it a definite candidate for electronic medical record system technology solutions. Second-generation Internet technologies, such as the ones described in this article—XML (Extensible Markup Language), XSL (Extensible Style Language), dom (Archive Object Model), CSS (Cascading Style Sheets). Javascript and JavaBeans can significantly reduce the complexity of distributed medical system development [69].

Computer applications in radiology are rapidly evolving and linked to the gradual improvement of hardware, software, and methods. Significant improvements in engineering workstation graphics and computational efficiency have helped to visualize in terms of computer hardware. Substantial changes in networking, storage, and display technologies play an essential role in influencing applications. It reports that it can use 3D digitizers and rapid prototyping methods (such as stereolithography) to locate 3D points and images and object rendering in real-time. The software has made significant progress using a menu-driven or point-and-click user interface, a data flow language, or an application package for a complete turnkey application. This year, imaging methods using advanced computer technology are new technologies, including ct, MR imaging, digital imaging, biomagnetism, and optical

distance sensing. Image processing for multimodal fusion or image registration, visualization, reconstruction, and image quantification reports in various conferences and publications—a new computer approach proposed for custom orthopedic implants and improved imaging techniques [70].

A smartphone is a telephone device to browse, navigate, and run small computer programs called applications. A tablet or tablet is a fully functional stand-alone computer with a thin LCD to control and input data using the screen itself. To illustrate how experts, radiographers, and residents can diagnose imaging using smartphones and tablets, you can use mobile apps with iTunes, Android Market, BlackBerry App World, and Windows Phone Market Diagnostic Imaging. The following terms apply to search strategies: (1) radiology, (2) X-ray, (3) ultrasound, (4) MRI, (5) CT, (6) technician, and (7) nuclear medicine. Smartphones and tablets offer new opportunities for diagnostic imaging practitioners—these easy-to-use devices are equipped with a display for good reading. The development of research techniques, image processing, workstation monitoring, and analysis tools in the field of radiology is enormous, and the need for valuable tools to evaluate and optimize the quality of images and surveys is significant [7]. Medical imaging is primarily in radiology, but with the advent of virtual pathology and telemedicine, imaging technology has expanded in healthcare companies. As new imaging technologies evolve, they must evaluate them to assess patient care's impact and benefits [72].

V.Conclusion

This study aimed to explore the trends, predictions, and challenges of informatics and historical trend analysis. The development of emerging radiology information technology has made the global radiology business environment a dynamic market. The hospital will continue to face new radiological technology and competition and increasingly complex patient expectations. The basic principle of this research is that information technology is increasing almost every day, and we must continuously seek new ways to use it to create more resources. In light of this, developing new ways of thinking for radiology organizations, workflows, and business models is increasingly important. Radiology organizations not only use intellectual capital and information technology to improve their operational deficiencies, but radiology directors are also committed to addressing ongoing operational crises. They invest resources and knowledge in reconfiguring and creating innovative structures and systems to overcome problems and pursue more efficient operations.

This study used a combination of historical review and data analysis. This study aimed to analyze all radiology software publications in the Science Citation Index (SCI). From 1991 to July 2021, SCI was used to search for publications systematically.

The contribution of this research is that radiology managers recognize that the use of new information technologies is critical to survival in a competitive environment. [5] From the perspective of academic contribution, from discovering the theory of innovation diffusion to

finding embedded academic research, it directly guides enterprises to improve existing machines, software, or operational errors, innovate technologies, provide better services, and enhance the quality of service and performance.

Reference

- [1] Goyal, N; Jain, N; Rachapalli, V, Ergonomics in radiology , Clinical Radiology , V. 64 , I. 2 , PP. 119 126 , 2009
- [2] Edwards, SP , Computer-Assisted Craniomaxillofacial Surgery , Oral And Maxillofacial Surgery Clinics Of North America , V. 22 , I. 1 , PP. 117 + , 2010
- [3] Vidal, FP; Bello, F; Brodlie, KW; John, NW; Gould, D; Phillips, R; Avis, NJ; Hirsch, T, Principles and applications of computer graphics in medicine, Computer Graphics Forum, V. 25, I. 1, PP. 113 137 , 2006
- [4] Sistrom, C, The socioeconomic aspects of information technology for health care with emphasis on radiology , Academic Radiology , V. 12 , I. 4 , PP. 431 - 443 , 2005
- [5] Letterie, GS, Medical education as a science: The quality of evidence for computer-assisted instruction, American Journal Of Obstetrics And Gynecology, V. 188, I. 3, PP. 849 - 853, 2003
- [6] Perriss, RW; Graham, RNJ; Scarsbrook, AF , Understanding the internet, website design and intranet development: a primer for radiologists , Clinical Radiology , V. 61 , I. 5 , PP. 377 389 , 2006
- [7] Hakansson, M; Svensson, S; Zachrisson, S; Svalkvist, A; Bath, M; Mansson, LG, ViewDEX: an efficient and easy-to-use software for observer performance studies, Radiation Protection Dosimetry, V. 139, I. 13, PP. 42 - 51 , 2010
- [8] Kakeda, S; Moriya, J; Sato, H; Aoki, T; Watanabe, H; Nakata, H; Oda, N; Katsuragawa, S; Yamamoto, K; Doi, K, Improved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis system, American Journal Of Roentgenology, V.

182, I. 2, PP. 505 - 510 , 2004

- [9] Pietka, E; Kawa, J; Badura, P; Spinczyk, D, Open architecture computer-aided diagnosis system , Expert Systems , V. 27 , I. 1 , PP. 17 39 , 2010
- $[10] \ \ Teague, SD; Trilikis, G; Dharaiya, E \ , \qquad Lung \ Nodule \ Computer-Aided \ Detection \ as$ a Second Reader: Influence on Radiology Residents $\$, $\$ Journal Of Computer Assisted Tomography $\$, $\$ V. $\ 34$ $\$, $\$ I. $\$ 1 $\$, $\$ PP. $\ 35$ $\$ $\ 39$ $\$, $\ 2010$
- [11] Kirchgeorg, MA; Prokop, M , Increasing spiral CT benefits with postprocessing applications , European Journal Of Radiology , V. 28 , I. 1 , PP. 39 54 , 1998
- [12] Thali, MJ; Taubenreuther, U; Karolczak, M; Braun, M; Brueschweiler, W; Kalender, WA;

- Dirnhofer, R, Forensic neuroradiology: Micro-computed tomography (micro-CT) and analysis of patterned injuries inside of bone, Journal Of Forensic Sciences, V. 48, I. 6, PP. 1336 1342, 2003
- [13] Henri, CJ; Rubin, RK; Cox, RD; Bret, PM, Design and implementation of World Wide Web-based tools for image management in computed tomography, magnetic resonance imaging, and ultrasonography, Journal Of Digital Imaging, V. 10, I. 3, PP. 77 79, 1997
- [14] Friedkin, AM; Weadock, WJ , Creation of annotated cine ultrasound videos from multiframe DICOM files , International Journal Of Computer Assisted Radiology And Surgery , V. 2 , I. , PP. S302 S304 , 2007
- [15] Parker, GJM; Suckling, J; Tanner, SF; Padhani, AR; Husband, JE; Leach, MO , MRIW: Parametric analysis software for contrast-enhanced dynamic MR imaging in cancer , Radiographics , V. 18 , I. 2 , PP. 497 506 , 1998
- [16] Blanco, RT; Ojala, R; Kariniemi, J; Perala, J; Niinimaki, J; Tervonen, O,
 Interventional and intraoperative MRI at low field scanner a review, European Journal
 Of Radiology, V. 56, I. 2, PP. 130 142 , 2005
- [17] Arenson, RL; Chakraborty, DP; Seshadri, SB; Kundel, HL , The digital imaging workstation (Reprinted from Radiology, vol 176, pg 303-315, 1990) , Journal Of Digital Imaging , V. 16 , I. 1 , PP. 142 162 , 2003
- [18] Tam, MDBS , Building Virtual Models by Postprocessing Radiology Images: A
 Guide for Anatomy Faculty , Anatomical Sciences Education , V.3 ,I. 5,PP.
 261 266 , 2010
- [19] Rosset, A; Muller, H; Martins, M; Dfouni,N; Vallee,JP; Ratib, O , Casimage project
 A digital teaching files authoring environment , Journal Of Thoracic Imaging ,V.19,I.2,PP.103-108,2004
- [20] Branstetter, BF, Basics of imaging informatics: Part 1, RADIOLOGY, V. 243, I. 3, PP. 656 667, 2007
- [21] Lambrecht, Jt; Hammer, B; Jacob, Al; Schiel, H; Hunziker, M; Kreusch, T; Kliegis, U ,
 Individual Model Fabrication In Maxillofacial Radiology , Dentomaxillofacial
 Radiology , V. 24 , I. 3 , PP. 147 154 , 1995
- [22] Yoon, HJ; Zheng, B; Sahiner, B; Chakraborty, DP , Evaluating computer-aided detection algorithms , Medical Physics , V. 34 , I. 6 , PP. 2024 2038 , 2007
- [23] Callaway, EC; Sweet, CF; Siegel, E; Reiser, JM; Beall, DP , Speech recognition interface to a hospital information system using a self-designed visual basic program: Initial experience, Journal Of Digital Imaging, V. 15 , I. 1 , PP. 43 53 , 2002

PP. 47 -

59 .

- [24] Schwartz, LH; Kijewski, P; Hertogen, H; Roossin, PS; Castellino, RA, Voice recognition in radiology reporting , American Journal Of Roentgenology , V. 169 , I. 1 , PP. 27 29 , 1997
- [25] Lee, YH; Song, HT; Suh, JS , Quantitative Computed Tomography (QCT) as a Radiology Reporting Tool by Using Optical Character Recognition (OCR) and Macro Program , Journal Of Digital Imaging, V. 25 , I. 6 , PP. 815 -818 , 2012
- [26] Sistrom, CL; Honeyman, JC; Mancuso, A; Quisling, RG , Managing predefined templates and macros for a departmental speech recognition system using common software , Journal Of Digital Imaging, V. 14 , I. 3 , PP. 131 141 , 2001
- [27] Kahn, CE; Wang, K; Bell, DS , Structured entry of radiology reports using World Wide Web technology , Radiographics , V. 16 , I. 3 , PP. 683 691 , 1996
- [28] John, S; Poh, ACC; Lim, TCC; Chan, EHY; Chong, LR, The iPad Tablet Computer for Mobile On-Call Radiology Diagnosis? Auditing Discrepancy in CT and MRI Reporting, Journal Of Digital Imaging, V. 25, I. 5, PP. 628 634 , 2012
 [29] Tschanz, SA; Burri, PH; Weibel, ER , A simple tool for stereological assessment of digital images: the STEPanizer , Journal Of Microscopy , V. 243 , I. 1
- [30]Itchhaporia, D; Snow, PB; Almassy, RJ; Oetgen, WJ , Artificial neural networks: Current status in cardiovascular medicine , Journal Of The American College Of Cardiology , V. 28 , I. 2 , PP. 515 521 , 1996

2011

- [31] Zubal, Ig; Harrell, Cr, Voxel-Based Monte-Carlo Calculations Of Nuclear-Medicine
 Images And Applied Variance Reduction Techniques , Image And Vision Computing ,
 V. 10 , I. 6 , PP. 342 348 , 1992
- [32] Nagasaka, S; Fujimura, T; Segoshi, K, Development of a non-radiographic cephalometric system, European Journal Of Orthodontics , V. 25 , I. 1 , PP. 77 85 , 2003
- [33] Trimarchi, M; Lund, VJ; Nicolai, P; Pini, M; Senna, M; Howard, DJ, Software application Database for the collection and analysis of clinical data and images of neoplasms of the sinonasal tract, Annals Of Otology Rhinology And Laryngology, V. 113, I. 4, PP. 335 337, 2004
- [34] Knopp, MV; von Hippel, GM; Koch, T; Knopp, MA , Intranet applications in radiology , Radiologe , V. 40 , I. 1 , PP. 78 82 , 2000
- $[35] \ Spyrou, G; Panayiotakis, G; Tzanakos, G \quad , \qquad MASTOS: Mammography simulation \\ tool for design optimization studies \quad , \qquad Medical Informatics And The Internet In Medicine$

```
293 ,
         V.
              25
                        I.
                             4
                                       PP. 275 -
                                                                2000
[36] Maiese, A; Gitto, L; De Matteis, A; Panebianco, V; Bolino, G
                                                                     Post mortem
computed tomography: Useful or unnecessary in gunshot wounds deaths? Two case reports,
    Legal Medicine,
                             16
                                       i.
                                            6
                                                      pp. 357 -
                                                                     363 .
                                  Multilevel adaptive process control of acquisition and
[37] Zhang, JG; Huang, HK
post-processing of computed radiographic images in picture archiving and communication
system environment , Computerized Medical Imaging And Graphics ,
                   PP. 31
                                             1998
    I.
                                  40
[38] Monteiro, AMV; Correa, DG; Sarmet, AA; Cavalcanti, SA; Sakuno, T; Filgueiras, T;
Just, E; Santos, M; Messina, LA; Haddad, AE; Marchiori, E,
                                                           Telemedicine and Pediatric
Radiology: A New Environment for Training, Learning, and Interactive Discussions
    Telemedicine And E-Health
                                , V.
                                            17,
                                                      I.
                                                           10 ,
                                                                     PP. 753 -
              2011
    756,
[39] Guo, QY; Hao, FD; Duan, XL; Xie, XQ; Liao, W
                                                           Multi personal computer
storage system: solution of sea capacity PACS storage,
                                                      Chinese Medical Journal ,
                                                                                    V.
    116 .
              I.
                   5
                             PP. 650 -
                                                      2003
[40] Schule, O; Rafat, M,
                             The software framework of RODOS,
                                                                     Radiation
Protection Dosimetry,
                        V.
                             73
                                       I.
                                             1¤ë4¤é
                                                           PP. 41
     1997
[41] Frank, Ms; Stewart, Bk; Rowberg, Ah,
                                            Use Of Data In A Radiology
Information-System For Labeling Computed Radiographs - An Interface To Connect The 2
              American Journal Of Roentgenology, V. 164,
    PP. 745 -
                   747 .
                              1995
[42] Sharples, M; Jeffery, N; du Boulay, JBH; Teather, D; Teather, B; du Boulay, GH,
    Socio-cognitive engineering: A methodology for the design of human-centred
technology
                   European Journal Of Operational Research,
                                                                     136 .
                                                                                    2
                        323 ,
              310 -
                                  2002
                                                      A cost-effective web-based
[43] Henderson, B; Camorlinga, S; DeGagne, JC
teaching file system,
                        Journal Of Digital Imaging,
                                                      V.
                                                           17
                                                                     I.
    PP. 87 -
                   91
                             2004
[44] Scarsbrook, AF,
                        Open-source software for radiologists: a primer,
                                                                          Clinical
                             I.
                                  2
Radiology,
              V.
                   62
                                            PP. 120 -
                                                           130 ,
                                                                     2007
[45] Grunewald, M; Heckemann, RA; Gebhard, H; Lell, M; Bautz, WA
                                                                          COMPARE
Radiology: Creating an interactive Web-based training program for radiology with multimedia
authoring software
                         Academic Radiology,
                                                 V.
                                                      10
                                                                     5
                                                                               PP.
    543 -
              553 .
                        2003
[46] Rosset, A; Ratib, O; Geissbuhler, A; Vallee, JP,
                                                      Integration of a multi-media
teaching and reference database in a PACS environment
                                                           Radiographics,
                                                                               V.
```

- 22 , I. 6 , PP. 1567 1577 , 2002
- [47]Borjesson, S; Hakansson, M; Bath, M; Kheddache, S; Svensson, S; Tingberg, A; Grahn, A; Ruschin, M; Heimdal, B; Mattsson, S; Mansson, LG, A software tool for increased efficiency in observer performance studies in radiology, Radiation Protection Dosimetry, V. 114, I. 13, PP. 45 52, 2005
- [48] Dalessandro, Mp; Lacey, Dl; Galvin, Jr; Erkonen, We; Santer, Dm, The Networked Multimedia Textbook - Distributing Radiology Multimedia Information Across The Internet, American Journal Of Roentgenology, V. 163, I. 5, PP. 1233 - 1237, 1994
- [49] Wallis, Jw; Miller, Mm; Miller, Tr; Vreeland, Th, An Internet-Based
 Nuclear-Medicine Teaching File, Journal Of Nuclear Medicine, V. 36, I.
 8, PP. 1520 1527, 1995
- [50] Thomas, BJ; Ouellette, H; Halpern, EF; Rosenthal, DI, Automated computer-assisted categorization of radiology reports , American Journal Of Roentgenology , V. 184 , I. 2 , PP. 687 690 , 2005
- [51] Trumm, C; Dugas, M; Wirth, S; Treitl, M; Lucke, A; Kuttner, B; Pander, E; Clevert, DA; Glaser, C; Reiser, M , Digital teaching file. Concept, implementation, and experiences in a university setting , Radiologe , V. 45 , I. 8 , PP. 724 734 , 2005
- [52] Watson, RA , A Low-Cost Surgical Application of Additive Fabrication , Journal Of Surgical Education , V. 71 , I. 1 , PP. 14 -17 , 2014
- [53] Regnier, F; Hafner, MF; Unterhinninghofen, R; Nawrotzki, R; Kirsch, J; Kauczor, HU; Giesel, FL, Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability, European Journal Of Radiology, V. 82, I. 8, PP. 1366 1371, 2013
- [54] Baxter, AB; Klein, JS; Oesterle, EV , RadNotes: A novel soft ware development tool for radiology education , Radiographics , V. 17 , I. 3 , PP. 761 767 , 1997
- [55] Kuhnigk, JM; Dicken, V; Zidowitz, S; Bornemann, L; Kuemmerlen, B; Krass, S; Peitgen, HO; Yuval, S; Jend, HH; Rau, WS; Achenbach, T, New tools for computer assistance in thoracic CT Part 1. Functional analysis of lungs, lung lobes, and bronchopulmonary segments , Radiographics , V. 25 , I. 2 , PP. 525 536 , 2005
- [56] Bick, U; Lenzen, H , PACS: the silent revolution , European Radiology , V. 9 , I. 6 , PP. 1152 1160 , 1999
- [57] Osei, EK; Barnett, R, Software for the estimation of organ equivalent and effective

```
Journal Of Radiological Protection ,
doses from diagnostic radiology procedures
                          , PP. 361 -
                                                376 ,
                                                         2009
    V.
         29
                   I.
                        3
[58] Fang, YC; Yang, MC; Hsueh, YS
                                           Financial assessment of a picture archiving
and communication system implemented all at once
                                                     Journal Of Digital Imaging,
                                                                                 V.
                            PP. 44 -
                                           51
                                                     2006
              I.
[59] Yamazaki, A; Liu, P; Cheng, WC; Badano, A
                                                    Image Quality Characteristics of
Handheld Display Devices for Medical Imaging,
                                                Plos One , V.
                                                                   8
                                                                             I.
              PP.
                                      2013
    11
[60] Engelmann, U; Schroeter, A; Schwab, M; Eisenmann, U; Vetter, M; Lorenz, K; Quiles, J;
Wolf, I; Evers, H; Meinzer, HP, Borderless Teleradiology with CHILI, Journal Of Medical
Internet Research, V. 1. I.
                                 2. PP.
[61] Choudhri, AF; Chatterjee, AR; Javan, R; Radvany, MG; Shih, G,
                                                                   Security Issues
                                           Radiographics,
for Mobile Medical Imaging: A Primer
                                                            V.
                                                                   35 ,
         PP. 1814-
                        1824.
                                 2015
[62] Lasko, TA; Bhagwat, JG; Zou, KH; Ohno-Machado, L,
                                                         The use of receiver
operating characteristic curves in biomedical informatics, Journal Of Biomedical
Informatics, V. 38, I. 5, PP. 404 -
                                                415 .
                                                         2005
[63] Stern, Ej; Westenberg, L,
                                Copyright Law And Academic Radiology - Rights Of
Authors And Copyright Owners And Reproduction Of Information
                                                                   American Journal
                            164 .
Of Roentgenology
                        V.
                                      I.
                                           5
                                                     PP. 1083 -
                                                                   1088.
                                                                             1995
[64] Baker, GR,
                   Localization: conventional and CT simulation ,
                                                                   British Journal Of
                   79 .
                                           PP. S36 -
                           I.
                                                         S49 .
                                                                   2006
Radiology,
              V.
[65] Flanders, AE; Wiggins, RH; Gozum, ME,
                                                Handheld computers in radiology
                       V.
                            23 ,
                                      I.
                                           4
                                                     PP. 1035 -
                                                                             2003
    Radiographics,
                                                                   1047,
[66] Prevrhal, S; Shepherd, JA; Smith-Bindman, R; Cummings, SR; Kerlikowske, K,
    Accuracy of mammographic breast density analysis: Results of formal operator training,
    Cancer Epidemiology Biomarkers & Prevention, V. 11, I. 11, PP. 1389 -
    1393.
              2002
[67] Lou, SL; Huang, HK; Arenson, RL , Workstation design - Image manipulation,
image set handling, and display issues
                                           Radiologic Clinics Of North America,
                                                                                 V.
           I. 3 , PP. 525 -
                                           & .
                                                    1996
[68] Martinez, R; Cole, C; Rozenblit, J; Cook, JF; Chacko, AK,
                                                              Common object
request broker architecture (CORBA)-based security services for the virtual radiology
                   Journal Of Digital Imaging,
                                                V.
                                                     13
                                                                             PP.
environment
                                                                   2
    59 -
              70
                        2000
[69] Brelstaff, G; Moehrs, S; Anedda, P; Tuveri, M; Zanetti, G,
                                                              Internet Patient
Records: new techniques , Journal Of Medical Internet Research ,
                                                                   V.
                                                                        3
    1
              PP.
                                      2001
```

- [70] VANNIER, MW , Computer-Applications In Radiology , Current Opinion In Radiology , V. 3 , I. 2 , PP. 258 266 , 1991
- [71] Szekely, A; Talanow, R; Bagyi, P , Smartphones, tablets and mobile applications for radiology , European Journal Of Radiology , V. 82 , I. 5 , PP. 829 836 , 2013
- [72] Krupinski, EA; Jiang, YL , Anniversary paper: Evaluation of medical imaging systems , Medical Physics , V. 35 , I. 2 , PP. 645 659 , 2008.
- [73] Ray CodyMayoJessicaLeung, Artificial intelligence and deep learning Radiology's next frontier?, Clinical Imaging, Volume 49, May–June 2018, Pages 87-88
 [74] http://radsource.us,2021