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Abstract: Although educational timetabling problems have been studied for decades, one type, the 
STP, has not developed as quickly as the other two types due to its diversity and complexity. Also, 
most of the STP research has only focused on the educators’ availabilities when studying the edu-
cator aspect, and the educators’ preferences and expertise have not been taken into consideration. 
This paper proposes a conceptual model for the school timetabling problem considering educators’ 
availabilities, preferences and expertise as a whole, and chooses a common real-world school time-
tabling scenario to study. A mathematical model is presented. A Virtual search space for dealing 
with the large search space is introduced, and the artificial bee colony algorithm is adapted and 
applied to the proposed model. The proposed approach is simulated with a random-generated large 
dataset. The experimental results demonstrate that the proposed approach is able to solve the STP 
and handle a large dataset in an ordinary computer hardware environment, which significantly re-
duces computational costs. Compared to the traditional CP method, the proposed approach is more 
effective and can provide more satisfactory solutions in considering educators’ availabilities, pref-
erences, and expertise levels. 

Keywords: educational timetable; school timetabling; constraint satisfaction problem; optimisation; 
artificial bee colony algorithm 
 

1.Introduction 
The problem of timetabling can be defined as a computational problem that allocates 

resources in given periods under particular constraints to achieve desirable goals [1]. Ed-
ucational timetabling is one of the fundamental tasks affecting educational institutes’ op-
erations and productions. Educational timetabling problems (ETPs) are constraint satis-
faction problems involving multiple aspects, such as educators, students and educational 
resources. Based on the types of educational activities, ETPs can be roughly categorised 
as course timetabling, examination timetabling and school timetabling problems [2]. 
Course timetabling arranges educational facilities, such as classrooms and laboratories, 
ensuring no single student takes more than one course at the same time and no classroom 
hosts more than one class at a time. Examination timetabling prevents an individual stu-
dent from taking more than one exam simultaneously but allows exams to share rooms 
and/or invigilators. Generally, the problem of the school timetabling is to allocate educa-
tors to classes with the considerations of their availability and expertise [3], which is the 
focus of this study. 

School timetabling problems (STPs) have been recognised as a non-polynomial (NP) 
complete problem as its variables vary from one educational institute to another [4]. Alt-
hough STPs have been studied since the 1960s [5], this area has not been developed as 
quickly as course timetabling and examination timetabling problems, probably because 
of the isolation of studies in particular schools [6]. In addition, the wide variety of school 
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timetables complexifies the problems. For example, some schools [7, 8] treated courses, 
educators and rooms as resources to be allocated, whereas some schools bound courses 
and educators as a pair to be assigned [8, 9].  

To solve STPs, many computational intelligent methods and approaches have been 
applied, which mainly are categorised as heuristic approaches and novel approaches [10, 
11]. Heuristic approaches consist of metaheuristics and hyper-heuristics. Metaheuristics 
approaches are inspired by natural phenomena aiming at seeking better solutions rather 
than the best solution [12, 13]. Hyper-heuristics uses metaheuristics methods to select a 
metaheuristic to solve generalised solutions [14]. Novel approaches include hybrid ap-
proaches, fuzzy logic approaches and MAS. Hybrid approaches employ different meth-
ods to solve a problem in order to alleviate the weakness of a single method [15, 16]. Fuzzy 
logic approaches aim to solve those problems which are hard to be quantitated and mod-
elled as they do not have a precisive classification [17, 18]. MAS deploys serval computa-
tional intelligent methods as an agent to play different roles to collaboratively fulfil a com-
mon goal [19].   

Based on the abovementioned approaches, many applications are developed to solve 
STPs. In the metaheuristics field, Odeniyi, Omidiora, Olabiyisi and Aluko proposed a 
modified simulated annealing approach for Fakunle Comprehensive High School in Ni-
geria [20]. With the aid of the annealing scheme through the temperature parameter in-
troduction, the approach successfully reduced the convergence time and computational 
cost brought by the annealing algorithm in dealing with large search spaces. A simple 
genetic algorithm (SGA) was adopted by Sutar and Bichkar [21] to solve an STP with 
knowledge augmented operators and probabilistic repair in the crossover step. The result 
of the modified approach against the OR-Library dataset [21] suggested SGA could pro-
duce faster solutions for GA-based optimization problems than the conventional GA 
method. In the hyper-heuristics area, Ahmed, Ozcan, Kheiri [22] combined five different 
selection hyper-heuristics with three-move acceptance methods to challenge the ITC2011 
instances. The outcome indicated the approach was better than evolutionary algorithms 
[23] and an adaptive large neighbourhood search algorithm [24] but not when compared 
to hybridized simulated annealing (SA) and stagnation-free late acceptance hill climb-
ing[25]. Hybrid approaches are combinations of various approaches. Those combined ap-
proaches for solving STPs include but are not limited to cat swarm optimization (CSO) 
with a local search algorithm [26], particle swarm optimization (PSO) with hybrid artifi-
cial fish swarm (AFS) [27]. Babaei, Karimpour and Oroji employed a fuzzy c-means clus-
tering algorithm to solve STP for Islamic Azad University [28] to reduce redundancy and 
consider lecturers’ preferences. When school timetabling is being planned, it will get mul-
tiple stakeholders involved, such as educators, heads of school and administrators, to ne-
gotiate. Therefore, MAS is often applied to simulate the process and the parties of the 
negotiation. Oprea [29] demonstrated that MAS could handle the negotiations between 
faculties and minimize resource conflicts, while Tkaczyk, Ganzha and Paprzycki [30] em-
ulated the school timetabling workflow of the University of Gdansk with MAS.  

Although many efforts have been made in the educational timetabling research field 
for decades, there has still been no consensus about the standard formulation and data 
format [8]. In addition, most of the STP researches only focused on educators’ availabili-
ties when they studied the educator aspect [6, 31], and the attributes of educators’ prefer-
ences and expertise were not taken into consideration. To address this issue, this paper 
chooses a common real-world school timetabling scenario to study and takes educators’ 
preferences towards units (also known as ‘courses’ in some literature) and the correspond-
ing expertise level into account. Based on the chosen scenario, this paper presents a model 
of the STP and proposes a modified ABC algorithm to solve the problem because the ABC 
algorithm has successfully solved ETPs in the course [32, 33] and examination [15, 34, 35] 
timetabling fields. In addition, this paper introduces a novel VSS method to reduce the 
search space. The proposed approach is simulated with a random-generated large dataset. 
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The experiment results demonstrate the proposed approach is able to solve the STP and 
handle a large dataset in an ordinary computer hardware environment.  

The contributions of this research include a conceptual model and its mathematical 
formulation for the STP considering educators’ availabilities, preferences and expertise as 
a whole, a novel VSS method for reducing the computational cost of handling a large 
searching space and a modified ABC algorithm to solve the proposed STP model. 

The organisation of this article is as follows. Section 2Error! Reference source not 
found. presents the problem formulation, including a conceptual model of the STP, iden-
tification of hard and soft constraints, and formulation of the objective function. Section 3 
describes the proposed approach, consisting of a concept of educator allocation, a modi-
fied ABC algorithm and a VSS construction method. Section 4 simulates the proposed 
approach with a case based on a local university’s business scenario. A comparison study 
between the proposed approach and the Constraint Programming (CP) is presented in 
Section 5. Section 6 concludes the article and indicates future works. 

2.Problem Formulation 
As the descriptions and terminology of STP are dramatically different from study to 

study [6], this section firstly defines the STP studied and the terms used in this paper. 
After that, hard constraints and soft constraints of the STP will be identified followed by 
the objective function formulation. 
2.1.Terminology 

A course refers to an academic program that students need to learn to gain university 
degrees, for example, in a Bachelor of Mobile Application degree, Mobile Application is 
the course name. 

A unit refers to the academic subject within a course, e.g., Java Programming is a unit 
of the course Mobile Application. 

A class refers to the particular teaching activity being scheduled in a timeslot in a day, 
which could be a lecture, a tutorial, a workshop and/or other educational activities. 

An educator refers to the educational staff who delivers lectures, tutorials, workshops, 
etc. 

A school week is from Monday to Friday. 
A school day is a day of a school week. 

2.2. School Timetabling Concept Model 
In this study, three parameters of educators have been taken into consideration: pref-

erences, availabilities and expertise. The objective of the school timetabling is to allocate 
all the school educators to a scheduled course timetable that satisfies all the preferences, 
availabilities and expertise as much as possible. The conceptual model of the school time-
tabling is presented in Figure 1. In the beginning, a course timetable is preconstructed 
according to all university course information. That is, all the class activities have been 
scheduled with their timeslots in a school week. The course timetable has ensured that 
every single student will not take more than one unit at the same time. Educators provide 
their availabilities in a school week and their preferences along with preference levels 
against each unit. After that, the head of school will generate a school timetable by allo-
cating educators to the scheduled course timetable according to educators’ availabilities, 
preferences and expertise. The level of expertise against units is predefined by the head 
of school. 
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Figure 1. School timetabling concept model 

2.3.Symbols and Notations 

Parameters 
L Total number of educators. 
O Total number of units. 
K Total number of classes in a school week. 
P Maximum preference value. 
E Maximum expertise value. 
V Number of classes that an educator is allowed to deliver in a school week. 
H Number of hours in a school day (e.g., from 8 am to 6 pm, there are 10 hours). 
D Number of days in a school week. 
M Maximum number of hours a class lasts 

Variables 
d Duration (in hours) of each class, 𝑑 = {1, … 𝑀} 
t Set of educators, 𝑡 = 𝑡 , … , 𝑡  
r Set of units, 𝑟 = 𝑟 , … , 𝑟   
c Set of classes, 𝑐 = 𝑐 , … , 𝑐  
p  Set of preference, 𝑝 = 0, … , 𝑃* 
e  Set of expertise, 𝑒 = 0, … , 𝐸* 
A  Set of timeslots of a school week, 𝐴 = {1, … , 𝐻 × 𝐷} 
u Number of units that cannot be allocated with educators. 

*When p = 0, it indicates an educator does not prefer a unit. When e = 0, it means the educator is not capable to deliver the 

unit. By default, all the p and e are 0. They need to be set by educators and the head of school. 

Notation 
𝐴  Set of timeslots that educator 𝑡  is available in the school week. If educator 𝑡  

is available in a whole school week, then 𝐴 = {1, … , 𝐻 × 𝐷} 
𝐴  Set of timeslots that class 𝑐  is scheduled to in the school week. If class 𝑐  is 

scheduled in the first three hours of the school week, then 𝐴 = {1,2,3} 
2.4.Hard Constraints 

Hard constraints are those conditions that the solutions have to satisfy. In this study, 
the hard constraints listed below are binary values. If a hard constraint is violated, it will 
be given value zero, otherwise, value 1 will be assigned. The hard constraints are notated 
as 𝑔 and mathematically modelled as below: 

𝑔1: No an educator can deliver more than one class simultaneously. 
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𝐴 ⊇ 𝐴   &   𝐴 ⊇ 𝐴    &   𝐴 ∩ 𝐴 = ∅ = 𝑇𝑟𝑢𝑒 (1) 

where  𝑖 ∈ {1,2, . . . , 𝐾}; 𝑣 ∈ {1,2, . . . , 𝐾}; 𝑣 ≠ 𝑖; 𝑗 ∈ {1,2, . . . , 𝐿}; 
𝑔2: An educator will only be assigned to the timeslots of a class when s/he is availa-

ble. Meanwhile, the class must be fully allocated to an educator, meaning that the allo-
cated educator must be available during the whole period of the class.  

𝐴 ⊇ 𝐴 , 𝑖 ∈ {1,2, . . . , 𝐾}; 𝑗 ∈ {1,2, . . . , 𝐿} (2) 

𝑔3: One class only can be allocated with one educator. 

𝑥 = 1, 𝑖 ∈ {1,2, . . . , 𝐾} (3) 

where i is the index of classes and j is the index of the educators; x  are decision var-
iables, which is explained in Equation 6. 

𝑔4: one educator is allowed to teach no more than V classes in a school week 

𝑥 ≤ 𝑉, 𝑗 ∈ {1,2, . . . , 𝐿} (4) 

where i is the index of classes and j is the index of the educators; x_{ij} are decision var-
iables, which is explained in Equation 6. 

2.5.Soft Constraints 
Soft constraints are those conditions that the solutions do not have to satisfy but are 

preferably satisfied. The following soft constraints have been identified: 
 Educators will be assigned with the units most preferred.  
 Units will be allocated with the educators who are more capable to teach. 
 All units must be allocated with educators.  

In practice, some units cannot be allocated with educators. For example, when a unit 
has not been favoured by any educator, or when two units are only favoured by one edu-
cator, but these two units are time conflicted. 
2.6.Objective Function 

The objective of this study is to maximise both all educators’ satisfaction and all units’ 
quality of teaching, in other words, to let the units be taught by the most qualified educa-
tors and to let the educators teach their most preferred units. When a unit is allocated with 
an educator, its allocation quality will be decided by the educator’s expertise level and 
associated preference level, subject to the hard constraints being satisfied. This study de-
fines the objective value 𝑞 of a class allocation as shown in Equation 5, which is the mul-
tiplication of preferences (𝑝) and expertise (𝑒) values given to class 𝑖.  

𝑞 = 𝑝 × 𝑒   (𝑖 ∈ {1,2, . . . , 𝐾}; 𝑗 ∈ {1,2, . . . , 𝐿}) (5) 

where 𝑝  refers to the preference of educator 𝑗 toward class 𝑧; 𝑝  represents the 
expertise of educator 𝑗 to class 𝑖.  

According to the concept model, the course timetable is preconstructed. The STP can 
be transferred to an allocation problem. Figure 2 is the bipartite graph for the STP. 
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Figure 2. Bipartite graph for the STP 

The objective function for school timetabling is to maximise the sum of every class’s 
objective value (𝑞). 

Therefore, the STP optimization model can be presented as: 

𝑚𝑎𝑥 𝑞 𝑥 𝑢 (6) 

where                     𝑞 = 𝑝 × 𝑒  

𝑥  are decision variables 

𝑥 =
1     𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑    
0    𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

 

𝑢 =
𝐾 − 𝑥 , 𝑖𝑓    𝐾 ≠ 𝑥

1,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

Where 𝑖 ∈ {1,2, . . . , 𝐾}; 𝑗 ∈ {1,2, . . . , 𝐿}; u is the number of unallocated units (if all the 
units are allocated, then u will be set to be 1). 

Subject to: 

g1. 𝐴 ⊇ 𝐴   &   𝐴 ⊇ 𝐴    &   𝐴 ∩ 𝐴 = ∅ = 𝑇𝑟𝑢𝑒 

g2. 𝐴 ⊅ 𝐴   

𝑔3.  𝑥 = 1 

𝑔4.  𝑥 ≤ 𝑉 

where  𝑖 ∈ {1,2, . . . , 𝐾}; 𝑣 ∈ {1,2, . . . , 𝐾}; 𝑣 ≠ 𝑖; 𝑗 ∈ {1,2, . . . , 𝐿}; 

3.The Proposed Approach 
This section firstly presents a basic concept of allocating educators to the scheduled 

course timetable. Based on the concept, a modified ABC algorithm is introduced. After 
that, a novel method named VSS is proposed to solve the gigantic searching space issue. 
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3.1.The Basic Concept of Educator Allocation 
The research aims to allocate educators to a scheduled course timetable and attempts 

to satisfy their availabilities, preferences and expertise as much as possible. The allocation 
concept can be illustrated in Figure 3.  

In Figure 3, the left side is an example of a scheduled course timetable listing the 
classes along with their weekdays, start times and durations. The educator ID column is 
to be filled with the IDs of the educators who are allocated to the classes. Weekdays and 
start times indicate which weekday the class is allocated to and at what time the class will 
start. Duration shows how long the class will last. On the right side of Figure 3, the edu-
cator list is presented including educator ID, preference and expertise, and availability 
columns. The educator ID column lists educators’ IDs 𝑡 (𝑗 ∈ {1,2, . . . , 𝐿}); the preference 
and expertise column stores a two-dimensional table, exampled in Table 1, which has K 
rows and three fields storing all the unit IDs, and their preferences and the expertise levels 
of an educator against those units. If an educator has no interest to teach a class, for exam-
ple 𝑐  in Table 1, then the preference and expertise will be filled with 0; otherwise, the 
corresponding level number will be put. The availability column contains a one-dimen-
sional array converted from the two-dimensional school week timetable exampled in The 
basic process of allocating educators is to match each educator against a unit. Figure 3 can 
be used as an example to explain the process. Assuming that 𝑡  is capable (“capable” 
means the expertise value 𝑒 is not equal to zero) and available to teach 𝑐 , 𝑡  and 𝑡  are 
capable to teach 𝑐  and 𝑐 , but only 𝑡  is available to teach 𝑐 . Firstly, the program will 
consult the first unallocated educator from the educator list, which is 𝑡 , and allocate it to 
the first unallocated class, which is 𝑐 , as 𝑡  is capable and available. Then, the corre-
sponding cell on 𝑡 ’s availability table will be marked with “N”. After that, 𝑡  becomes 
the first unallocated educator. However, 𝑡  is not available to teach 𝑐 , therefore the con-
secutive unallocated educator, that is 𝑡  , will be consulted. As 𝑡  is capable and availa-
ble, so 𝑡  will be assigned to 𝑐 . When 𝑐 ’s allocation is finished, 𝑡  becomes the first 
unallocated educator and will be consulted for the 𝑐 . As 𝑡  is capable and available to 
teach 𝑐 , thus 𝑡  takes 𝑐 . When all the educators and their profiles have been consulted, 
a timetable solution would be outputted. 

Table 2. The number of elements in the availability array is 𝐻 × 𝐷. The availability 
column indicates the availabilities of each educator in a school week. If an educator is 
available at, for example, 8 a.m. on Monday in Table 2, then the first cell of the array will 
be marked with a Y, otherwise, an N will be stored.  

 
Class 

ID 
Week-

day 
Start 
time 

Duration 
(hour) 

Educator 
ID 

 Educator 
ID 

Preference & 
Expertise 

Availability 

𝑐  Mon 8am 1 𝑡   𝑡  PE[K][3] Ava [𝐻 × 𝐷] 
𝑐  Wed 3pm 2 𝑡   𝑡  PE[K][3] Ava [𝐻 × 𝐷] 
𝑐  Fri 11am 4 𝑡   𝑡  PE[K][3] Ava [𝐻 × 𝐷] 
… … … … …  … … … 
𝑐  Tue 4pm 2   𝑡  PE[K][3] Ava [𝐻 × 𝐷] 

Figure 3. Concept of allocating educators to units  

Table 1. Example of Preference & Expertise table 

Class ID Preference Expertise 
𝑐  2 3 
𝑐  1 1 
… … … 
𝑐  3 2 
… … … 
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𝑐  0 0 

The basic process of allocating educators is to match each educator against a unit. 
Figure 3 can be used as an example to explain the process. Assuming that 𝑡  is capable 
(“capable” means the expertise value 𝑒 is not equal to zero) and available to teach 𝑐 , 
𝑡  and 𝑡  are capable to teach 𝑐  and 𝑐 , but only 𝑡  is available to teach 𝑐 . Firstly, the 
program will consult the first unallocated educator from the educator list, which is 𝑡 , and 
allocate it to the first unallocated class, which is 𝑐 , as 𝑡  is capable and available. Then, 
the corresponding cell on 𝑡 ’s availability table will be marked with “N”. After that, 𝑡  
becomes the first unallocated educator. However, 𝑡  is not available to teach 𝑐 , therefore 
the consecutive unallocated educator, that is 𝑡  , will be consulted. As 𝑡  is capable and 
available, so 𝑡  will be assigned to 𝑐 . When 𝑐 ’s allocation is finished, 𝑡  becomes the 
first unallocated educator and will be consulted for the 𝑐 . As 𝑡  is capable and available 
to teach 𝑐 , thus 𝑡  takes 𝑐 . When all the educators and their profiles have been con-
sulted, a timetable solution would be outputted. 

Table 2. Example of educator's availability  

  Mon Tue Wed Thu Fri 
8am Y N Y N N 
9am Y N N N N 
10am Y Y N N N 
11am Y Y Y N N 
12pm N Y Y N N 
1pm N N Y N Y 
2pm N N Y N Y 
3pm N Y Y N Y 
4pm N N Y N Y 
5pm Y N Y N Y 
6pm Y N Y N Y 

note: Y refers to available, N means unavailable. This table will be converted to be a one-dimensional array. The total num-

ber of cells of the array equals to the multiplication of 𝐻 × 𝐷. The index 1 refers to the first timeslot of the first day. The 

index 𝐻 × 𝐷 indicates the last timeslot of the last day. 

With the concept of educator allocation, it is known that a specific educator list se-
quence subjected to the course timetable will always output the same school timetable. 
For instance, in Figure 3, educator 𝑡  will always be assigned to the class 𝑐 , even if edu-
cator 𝑡  might be more suitable (e.g., 𝑡  has a higher 𝑞 value than 𝑡 ), as 𝑡  will be con-
sulted before 𝑡 . Therefore, an educator list can be considered as a solution and therein 
changing the educator list sequence can obtain different solutions, from which it can be 
reasoned that the number of possible solutions is the number of permutations of the edu-
cator list, in other words, is the factorial of the number of educators. All of the possible 
solutions form the entire solution searching space. However, the number of educators in 
a university could be over 100, meaning that the number of solutions will be gigantic and 
lead to the impossibility of seeking the best solution by traversing the whole searching 
space. Therefore, an artificial intelligence algorithm is needed. 
3.2.ABC Algorithm 

The ABC algorithm is chosen for the proposed STP for its ability to solve multivaria-
ble, multimodal optimisation problems efficiently. Also, the ABC algorithm can be easily 
implemented without requiring many parameters. The ABC algorithm is inspired by the 
behaviours of honeybees and was introduced by Karaboga [36]. It simulates the ways that 
honeybees forage for food sources, which helps bees efficiently and effectively seek better 
food sources in a vast area. The mechanisms the ABC algorithm uses include positive 
feedback, negative feedback, fluctuations and multiple interactions. These four 
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mechanisms help the bees to explore new food sources and to avoid over-populating a 
source, and also ensure information can be shared with each bee. Labour division is an-
other feature of the ABC algorithm. Bees are categorised to be employee bees, onlooker 
bees and scout bees. Employee bees are responsible for new food source exploration; on-
looker bees are in charge of food source analysis and exploitation; scout bees avoid food 
source exhaustion.  

The ABC algorithm consists of four stages: population, employee bee, onlooker bee 
and scout bee stages. 

In the solution population stage, the ABC algorithm randomly populates several so-
lutions (bees) in a searching space with Equation 7. 

𝑠 = 𝑠 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 𝑠 − 𝑠  (7) 

where i is one of the nodes in the searching space, d is dimension. 𝑠  and 𝑠  is 
the upper bound and low bound for the dimension d. 

In the employee bee stage, neighbours of the populated solutions will be looked for 
with Equation 8. 

𝑒𝑠 = 𝑠 + 𝜑 𝑠 − 𝑠  (8) 

where k is randomly chosen from the searching space and 𝑘 ≠ 𝑖. 𝜑  is randomly 
generated in the range of [-1,1]. 𝑠  is a neighbour of 𝑠 . The probability of each employee 
bee 𝑒𝑠 will be calculated with Equation 9. 

𝑝 =
𝑓𝑖𝑡(𝑒𝑠 )

∑ 𝑓𝑖𝑡(𝑒𝑠 )
 (9) 

In the onlooker bee stage, a random number [0,1] will compare to 𝑝  for each em-
ployee bee, if the random number is better than a 𝑝 , an onlooker bee will be sent to look 
for a neighbour of the employee. A parameter called trail will be used in this stage. Trail 
limits the times that a food source has been explored. If the exploration time reaches the 
trail and the better neighbour has not been found, the food source will be abandoned. 

In the scout bee stage, the onlooker bee(s), whose food source(s) is abandoned, will 
become scout bee(s) and randomly populate a new solution. The equation scout bees use 
is similar to Equation 7.  
3.3. A Modified ABC Algorithm for Proposed STP 

The modified ABC algorithm is presented in Figure 4. To adapt the ABC algorithm, 
some modifications have been made to suit the investigated problem. The modifications 
are described as follows. 
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Figure 4. Pseudo code of the modified ABC algorithm 

Before food source initialisation, a scheduled course timetable will be retrieved from 
the course database followed by the educator profiles data retrieval (Step 1 in Error! Ref-
erence source not found.). The examples of course timetable and educator profile are il-
lustrated in Error! Reference source not found.. Since the boundary (Equation 7 and 8) of 
the searching space and the current neighbourhoods are needed to be known when bees 
are foraging for food sources, the searching space will be formed beforehand. However, 
as mentioned before, the number of solutions is gigantic, so this research proposes a VSS 
to tackle this dilemma. The VSS is detailed in Section 3.4. To construct the final solutions 
from the food sources that bees forage from the VSS (Step 03, 09, 15 and 19 in Error! Ref-
erence source not found.), the school timetable construction will be applied and detailed 
in Section 3.5. The objective values of constructed final solutions will be evaluated with 
Equation 6 (Steps 04, 10 and 16 in Error! Reference source not found.). 
3.4.Virtual Searching Space Construction 

VSS aims to provide an entire solution pool for the proposed algorithm rather than 
constructing a gigantic searching space. As discussed above, the searching space is formed 
through permutation manipulation with the magnitude of the factorial number of educa-
tors. Thus, it would be impractical to physically construct the whole searching space as it 
would exceed the memory capacity of ordinary computers not to mention the computa-
tional time for generating all the solutions for each educator list. To tackle this dilemma, 
we propose a novel VSS approach. VSS does not construct a searching space by the direct 
permutations. Instead, it “imagines” the solutions to be allocated in the searching space 
in the way as exampled in Error! Reference source not found..  
3.4.1. How VSS works 

/*Initialization stage*/ 
01: Retrieve the scheduled course timetable and educators’ profiles. 
02: Define the neighbour search range, number of Traits and read parameters. 
03: Initialize the food source and construct school timetable satisfying all hard constraints as in 
Equation 1, 2, 3 and 4. 
04: Evaluate school timetable’s objective values with Equation 6. 
05: Send the employed bees to the current food sources. 
06: Iteration = N 
07: FOR (each iteration) 
/∗Employed Bee Phase∗/ 
08:FOR (each employed bee) 
09: Seek new food source from neighbourhood in VSS satisfying Equation 1, 2, 3 and 4. 
10:  Construct school timetables and evaluate their objective value with Equation 6, apply 

greedy selection 
11:END FOR 
12: Calculate the probability p for each food source with Equation 9. 
/∗Onlooker Bee Phase∗/ 
13: FOR (each onlooker bee) 
14:  Send onlooker bees to food sources based on p 
15:  Find a new food source in its neighbourhood in VSS satisfying Equation 1, 2, 3 and 4. 
16:  Construct school timetables and evaluate their objective value with Equation 6, Apply 

greedy selection. Set Trait+1 if applicable. 
17:  END FOR 
/∗Scout Bee Phase∗/ 
18:  IF (any onlooker bee becomes scout bee) 
19:  Send scout bee to a randomly produced food source satisfying Equation 1, 2, 3 and 4. 
20:  END IF 
21:  Memorize the best solution achieved so far 
22: END FOR 
23: Output the best solution achieved 
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Assume one bee is employed and four educators are to be allocated, then the search-
ing space will be similar to Error! Reference source not found. with four regions (A, B, C 
and D) and 24 possible solutions (hereafter referred to as columns) numbered. 

Table 3. Example of searching space. 

A region B region 
1 2 3 4 5 6 7 8 9 10 11 12 
A A A A A A B B B B B B 
B B C C D D A A C C D D 
C D B D B C C D A D A C 
D C D B C B D C D A C A 

C region D region 
13 14 15 16 17 18 19 20 21 22 23 24 
C C C C C C D D D D D D 
A A B B D D A A B B C C 
B D A D A B B C A C A B 
D B D A B A C B C A B A 

In the food source initialisation phase (Step 03 in Error! Reference source not found.), 
VSS does not need to know the solutions’ coordinators in the searching space as any edu-
cator list combination will be in the solution pool. VSS randomly generates an educator 
sequence B-A-D-C (Column 8). 

In the neighbour seeking phase, VSS swaps the positions of A and C in Column 8 to 
obtain Column 10. The swap method can decide the distance, vector and boundary of 
neighbour solutions with the following rules: 

Rule 1: Fixing top element(s) can confine the boundary of the neighbourhood. For 
example, when the first element “B” is fixed, the neighbourhood will be in B region. When 
“B-A” is fixed, there are only two neighbours, B-A-C-D (Column 7) and B-A-D-C (Column 
8). This rule confines the upper bound and low bound for a dimension as 𝑠  and 𝑠  
in Equation 7. 

Rule 2: The relationship of swapping elements determines the orientation. For exam-
ple, if the higher element (A) switches with the lower one (C) (in practice, higher/lower 
element refers to higher/lower indexed element, which could be alphabetic order or nu-
merical order.), the orientation will be rightward, vice versa. This rule plays the rule as 
𝜑  in Equation 8. 

Rule 3: The positions and distance between swapping elements decide the distance 
of neighbours. For example, if swapping the last two elements, “D” and “C” in B-A-D-C 
(Column 8), the neighbour is right next to each other. If swapping higher elements, like 
“A” and “D” the neighbour is three steps away. This rule plays the role of k in Equation 
8. 

These three rules have been successfully applied to a large dataset with 150 educators 
experimented in Section 4. 

 The implementation of VSS in modified ABC algorithm 

VSS uses swapping methods to locate neighbour solutions and confine the searching 
space boundary. The pseudocode of VSS implementation is detailed in. 

01:  Randomly select first educator (index is 𝐼 ) from the given educator list 

02:  Randomly generate neighbour search range 𝑟 . 

03:  Randomly generate number 𝑏 (𝑏 = −1 𝑜𝑟 1). 
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04:  Set the second educator’s index 𝐼 = 𝐼 + 𝑟 × 𝑏 

05:  If 𝐼 > 𝐿 𝑜𝑟 𝐼 < 1, repeat Step 2 (𝐿 is the number of educators) 

06:  Swap 𝐼  and 𝐼  

Figure 5. Pseudocode of VSS 

3.5.School timetable construction 
The proposed approach will not generate a timetable solution directly. Instead, it will 

randomly select educator lists from VSS as the food sources of the modified ABC algo-
rithm. After that, the food sources will be passed to the timetable constructor to output 
complete solutions. The steps 03, 04, 10 and 16 in Error! Reference source not found. are 
the entries food sources passed to the school timetable constructor. Error! Reference 
source not found. demonstrates the construction process. 

A class will be selected from the scheduled course timetable subsequently to match 
an unallocated educator in the given educator list. If the educator is allocatable due to 
her/his preference and availability, then the class will be assigned to that educator. Oth-
erwise, the consecutive educator will be consulted. The scheduled course timetable will 
be traversed at particular times depending on the number of classes (parameter V) that an 
educator is allowed to deliver in a school week. If all the classes have been allocated with 
an educator, a constructed school timetable will be returned (steps 03, 04, 10 and 16 in 
Error! Reference source not found.). Otherwise, the unallocated classes will be revisited 
to seek the educators who are capable and available to teach those classes despite the lim-
itation of the V. When the program reaches the end of the course timetable again, a school 
timetable will be returned regardless even if there may be some unallocated classes left. 
The extra revisiting aims to minimise the number of unallocated classes and provides sug-
gestions to the head of school to negotiate with those educators who have the relevant 
expertise but do not prefer to teach the classes. 

 

 
Figure 6. Pseudocode of school timetable solution construction 

4.Experiment 
The experiment follows the proposed school timetabling conceptual model as illus-

trated in Figure 1. The scenario is detailed as below. 
 The course timetable is prescheduled and fixed based on the course enrolment infor-

mation. The class activities have been scheduled in the weekly timeslots.  
 Before planning a school timetable, educators will submit their expression of interest 

to the administration, including the units they want to teach and the preferences to-
wards each unit. 

1 :  Receive an educator list and the number of units an educator can take 
2 :  FOR (V) 
3 :  FOR (K) 
4 :  FOR (each unallocated educator in the educator list) 
5 :   IF (the educator is available and prefer to teach the class) 
6 :  Allocate the educator to the class 
7 :  Modify the educator’s availability 
8 :  IF (all classes are allocated with an educator) 
9 :  Return constructed School Timetable 
10 :  FOR (each unallocated class in the course timetable) 
11 :  FOR (L) 
12 :  IF (the educator can and is available to teach the class) 
13 :   Allocate the educator to the class 
14 :   Modify the educator’s availability 
15 :  Return constructed School Timetable 
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 Educators need to provide their unavailability form in the school week. The number 
of unavailable hours cannot be more than 3 hours. 

 The head of school will confirm and adjust each educator’s expertise against a unit. 
 The goal of the school timetabling is to satisfy educators’ preferences and classes’ 

qualities and attempt to ensure every unit is allocated with an educator. 
4.1.Experimental settings 

According to the proposed conceptual model in Error! Reference source not found., 
this research set the following parameters to randomly generate a dataset consisting of a 
predefined course timetable and an educator roster along with their availabilities, prefer-
ences and expertise levels. After that, the generated dataset will be simulated with the 
proposed approach. 
 K = 300 
 L = 150 
 V = 5 
 H = 8 
 D = 5 
 P = 5 
 E = 3 
 d = 1 or 2  
 Maximum unavailable timeslots an educator can have in a week: 3 

The proposed approach has been experimented in the below environment. 

 Operation System: Windows 10 Pro Edition 
 Integrated development environment: IntelliJ IDEA 2020.3.2 
 Programming language: JAVA 
 The computer hardware system is Intel® Core™ i7-1065G7 1.30GHz Processor with 

16.0 GB of memory 
Ten samples have been configured in Error! Reference source not found. to experi-

ment with the proposed algorithm with four ABC parameters: number of bees, neighbour 
range, number of iterations and number of traits. The number of bees presents the number 
of solution population; neighbour range confines the coverage of an exploration area of a 
bee; number of iterations is set to test whether increasing search times will improve the 
result; and number of traits determines the depth of exploitation of a food source. Each 
sample is tested ten times. 

Table 4. Parameter settings for modified ABC algorithm 

Sample Num of bees 
Neighbour 

range 
Num of itera-

tions Num of traits 

A 5 5 1000 10 
B 20 5 1000 10 
C 5 30 1000 10 
D 5 5 10000 10 
E 5 5 1000 30 
F 20 30 10000 10 
G 20 30 10000 30 
H 5 5 10000 30 
I 20 30 10000 30 
J 40 60 20000 60 

 
4.2.Experimental results 
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The experiment results for each sample listed in Error! Reference source not found. 
are shown in Error! Reference source not found.. Three key results demonstrating the 
performance of the proposed approach are chosen, which are values of the objective func-
tion, time spent and number of unallocated classes. Objective function values are calcu-
lated with Equation 6. Time spent presents computational time spent on the given sam-
ples. Unallocated class indicates the number of classes that cannot be allocated educators.  

There are 27 unallocated classes, which has been manually reviewed and confirmed 
that those failures are due to educators’ availabilities or interests. This is also because of 
the data quality resulting from all the experimental data being randomly generated. For 
example, two classes only can be taught by educator A, but these two classes share a 
timeslot with each other, or some classes have not been chosen by any educator. For this 
scenario, the educational administration will need to solve the issue manually, such as 
negotiating with educators and recruiting new educators. For simplifying the data com-
parison, the number of unallocated classes shown in Error! Reference source not found. 
and Error! Reference source not found. has been offset by 27. 

Based on the result, the following conclusion could be drawn. 
 The proposed approach can obtain a feasible solution in a gigantic searching space 

in a short time. In Sample A, the time spent for the best solution is 4.742 seconds.  
 Deploying more bees can help improve objective value. Sample B has a better result 

than Sample A in objective value (43.4970 to 42.4299 on average) as Sample B popu-
lates 20 bees and Sample A deploys five bees. 

 Increasing the number of program iteration can obtain a better result. Sample D has 
a better objective function value over Sample A (43.6596 over 42.4299 on average) as 
Sample D has 10,000 iterations and Sample A has 1,000 iterations. 

 Increasing both the number of bees and the number of iterations can improve the 
result. Comparing Sample A and Sample F, the objective value improves from 
42.4299 to 44.7148 on average, but the time spent also increased significantly (from 
4.983 seconds to 197.513 seconds on average). 

 Expanding the neighbourhood can slightly improve the result. Sample C expands the 
neighbourhood three times compared to Sample A, but the result only improves 
0.85% (from 42.4299 to 42.7910 on average). 

 Increasing the exploitation will not benefit the solution and instead provides worse 
results. Compared to Sample A, although Sample E triples the number of traits, the 
objective value decreases and the number of unallocated units increases. It is because 
that exploitation reduces the opportunity of exploration, which is also proved by the 
comparing the results between Sample D and Sample H, and between Sample F and 
Sample G. 

 Sample J enlarges the variables. Although the improvement of the result is obvious, 
the time spent is significant. Compared to Sample A, the objective value is increased 
by 10.3% (from 42.4299 to 46.8359), but the time Sample J spends is 165 times than 
that of Sample A. 

Table 5. Experiment result (ten times run) 

Sample 
Objective values Time-spent(second) Unallocated classes 

Avg. Best Avg. Best Avg1 Best 
A 42.4299 44.0740 4.983 4.742 0.5 0 
B 43.4970 44.7037 18.8521 18.453 0.1 0 
C 42.7910 43.7407 5.0719 4.834 0.5 0 
D 43.6596 44.8518 48.843 47.238 0 0 
E 41.9709 43.9256 4.9919 4.818 1 0 
F 44.7148 45.3703 197.513 193.957 0 0 
G 44.5255 45.1481 201.0127 194.826 0 0 
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H 42.5502 43.2222 50.3867 46.775 0.3 0 
I 44.4592 45.8148 206.4878 197.141 0 0 
J 46.8359 47.1481 831.6302 813.494 0 0 

1 The numbers have been offset by 27. Those 27 classes have been manually confirmed as non-allocatable. 
Overall, although Sample A uses the least bees and iterations with a smaller neigh-

bour range and traits, it achieves acceptable results within several seconds of execution. 
Therefore, the settings for Sample A are recommended for the proposed approach.  

Besides, with the aid of VSS, the computational cost has been significantly released. 
Since VSS will not generate the entire searching space, the actual computational cost for 
forming the searching space is the cost of generating real solutions. The computational 
cost (𝑐𝑠) of forming the searching space can be calculate with the Equation 10. 

Set the number of bees as 𝑏, number of iterations as 𝑤 then the number of solutions 
that the program (detailed in Error! Reference source not found.) generates in one run is 

𝑐𝑠 = 𝑏 × 𝑤 × 3∗ (10) 

(*each bee populates one solution and at most generates two neighbour solutions, so each bee at most generates three solu-

tions in one iteration.) 

As explained above, the scale of the entire searching space is the factorial of the num-
ber of educators, that is 𝐿!. Therefore, the reducing computational cost can be calculated 
with Equation 11. 

1 −
𝑐𝑠

𝐿!
× 100% (11) 

Given that the result of factorial generally is gigantic, computational cost will be con-
siderably reduced. 

5.Comparison Study 
With the purpose of verifying the performance of the proposed approach in solving 

STPs, a CP is implemented for the comparison study since STPs are considered constraint 
satisfaction problems and CP has been proven to successfully solve various problems, in-
cluding timetabling [37]. The CP applied to the investigated problem is demonstrated in 
Error! Reference source not found.. The steps of testing data retrieval and solution pop-
ulation are the same as the ones detailed in the initialisation stage in step 1 of Error! Ref-
erence source not found.. After that, unassigned classes and the populated educator list 
will be consecutively visited. If the consulting educator satisfies the constraints of exper-
tise and availability of the selected class, the educator will be allocated to the class. If none 
of the educators can be allocated to the current class, the class will remain unassigned and 
the consecutive class will be selected to look for an eligible educator. If the number of 
unassigned classes exceeds the limitation, backtracking will be triggered. If all the classes 
have attempted to be assigned an educator, a solution will be outputted and then its ob-
jective function value will be evaluated. If the backtracking reaches the first class of the 
course timetable, the current solution is not feasible and another solution will be popu-
lated. 

To allow the modified ABC algorithm and CP be more comparative, the CP will be 
fed with Sample A, shown in Error! Reference source not found., which can reach a better 
solution with the smallest population and iteration. As it is known that there are 27 unas-
signable classes in the dataset, to avoid over-backtracking, the compared approach sets 
up a backtracking trigger with the value 27, which is the N parameter in Error! Reference 
source not found.. 
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Figure 7. Constraint programming flowchart 

This comparison study tests both the proposed modified ABC algorithm and CP ten 
times. The results of time spent in program execution, the number of unallocated classes 
and the objective function value will be compared. The comparison results are repre-
sented in Error! Reference source not found.. 

Table 6. Comparison results of ABC approach and cp approach 

Items 
Proposed ABC CP 

Best Average Best Average 
Time-spent(second) 4.742 4.983 3.5 3.6108 
Unallocated classes1 0 0.5 12 12 

Objective function values 44.0740 42.4299 30.5128 30.1158 
1 The numbers have been offset by 27. Those 27 classes have been manually confirmed as non-
allocatable. 

From Table 6 the following findings can be discovered. 
 CP is slightly faster than the modified ABC algorithm in solution-seeking (3.6108 sec-

onds over 4.983 seconds on average). 
 The modified ABC algorithm can allocate all the non-conflict classes. However, CP 

has 12 allocatable classes left. 
 The modified ABC algorithm can seek a solution that is 40.88% better than CP in 

terms of objective function values gaining (42.4299 against 30.1158 on average). 
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Overall, the modified ABC algorithm can find out a better solution than CP in terms of 
hard constraint satisfaction and objective function optimisation. Although the proposed 
ABC is slower than CP in program execution, one second time difference for a practical 
scenario is insignificant. 

6.Conclusion 
This research aims at providing an effective solution for solving an STP with the con-

siderations of educators’ availabilities, preferences and expertise as a whole. STP is an ETP 
that has not advanced as quickly as the other two types due to its diversity and complex-
ity. Most of the STP research only focused on educators’ availabilities rather than taking 
educators’ preferences and expertise into considerations. This paper proposed a concep-
tual model of STP and introduced a novel VSS method to reduce the searching space. A 
modified ABC algorithm is applied to the STP model.  

The proposed approach is simulated with a random-generated large dataset. The ex-
perimental results demonstrate that the proposed approach is able to solve the STP and 
handle a large dataset in an ordinary computer hardware environment thereby signifi-
cantly reducing computational costs. Compared to the traditional constraint program-
ming method, the proposed approach is more effective and can provide more satisfactory 
solutions in considering educators’ availabilities, preferences and expertise levels. 
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