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Abstract 

Oats are a nutrient rich cereal used for animal feed and growing in human consumption. This 

cereal can be affected by Fusarium spp., causing the disease Fusarium Head Blight. This 

disease is caused mainly by species within the Fusarium graminearum species complex, and 

are also responsible for producing mycotoxins that are harmful to humans and animals. This 

study aimed to investigate fungal diversity in Brazilian oat samples, focusing on the Fusarium 

sambucinum species complex and the presence of type B trichothecenes (deoxynivalenol and 

its derivatives, and nivalenol) from two different regions; Paraná (PR) and Rio Grande do Sul 

(RS). The isolated fungi from oat grains were identified as species from the genera: Fusarium, 

Phoma and Alternaria. The majority of Fusarium isolates belonged to the Fusarium 

sambucinum species complex; identified as F. graminearum s.s., F. meridionale and F. poae. 

In the RS region, F. poae was the most frequent fungus, while FGSC was the most frequent in 

the PR region. The majority of F. graminearum s.s. isolates were of the 15-ADON genotype, 

while some 3-ADON genotypes were identified; however, F. meridionale and F. poae were all 

of the NIV genotype. Mycotoxin analysis revealed that 92% and 100% of the samples from PR 

and RS were contaminated with type B trichothecenes, respectively. The oats from PR were 

predominantly contaminated with DON, whereas NIV was predominant in oats from RS. 

Analysis showed that 24% of the samples were contaminated with DON at levels higher than 

Brazilian regulations. Co-contamination of DON, its derivatives and NIV was observed in 84% 

and 57.7% of the samples from PR and RS, respectively. The results provide new information 

on Fusarium contamination in Brazilian oats, highlighting the importance for further studies on 

mycotoxins. 

 

Keywords: Oats, Fusarium sambucinum species complex, deoxynivalenol, nivalenol, 

mycotoxin.   
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1 Introduction 

Oats (Avena sativa L.) have been consumed by humans and livestock since ancient times; it is 

considered a nutrient-rich cereal due to the high concentration of lipids, proteins, vitamins, 

antioxidants, minerals and β-glucan [1]. The global production of oats in 2020/2021 was 25,470 

thousand metric tons, with the European Union being the largest producer; followed closely by 

Canada, Norway, Australia and Brazil [2]. 

Cereals can be affected by fungal diseases, which can lead to lower nutritional values and 

mycotoxin accumulation in the grains; resulting in reduced product quality and economic losses 

[3]. Numerous fungi may be attributed to various oat diseases; the Fusarium genus, however, 

is considered one of the major threats. One of the most serious and economically important 

diseases caused by the genus is Fusarium Head Blight (FHB), which affects cereal production 

worldwide [4-6].  

Fusarium Head Blight is primarily caused by species in the Fusarium graminearum species 

complex (FGSC), however, other Fusarium species may also be involved. FHB causes flower 

abortion, and the formation of pitted, wrinkled and rough grains that are ‘pinkish’ in color [7]. 

Infection by these pathogens can also result in mycotoxin accumulation, mainly trichothecenes 

and zearalenone (ZEN) [8,9].  

Trichothecenes produced by Fusarium species are classified into either type A or B; these 

compounds are differentiated by the C-8 function of the 12,13-epoxytrichothec-9-ene (EPT) 

core structure [10]. Members of the FGSC are able to produce type B trichothecenes, such as 

deoxynivalenol (DON) and its acetylated derivatives (3 acetyl-DON and 15 acetyl-DON; 3-

ADON and 15-ADON); as well as nivalenol (NIV) and its acetylated forms [10].  

In animals, DON has been linked to feed refusal, vomiting and weight reduction [11]. NIV can 

cause immunotoxicity and haematotoxicity, based on in vitro and in vivo tests [12]. The toxic 

effects of the acetylated DON forms are poorly documented; however, 15-ADON has been 
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reported to be more toxic than DON and 3-ADON in ex vivo and in vivo tests using human 

intestinal cells and piglets [13]. Due to the toxic effects of DON in humans, a provisional 

maximum tolerable daily intake (PMTDI) of 1.0 μg/kg body weight/day has been set by the 

U.N. Food and Agriculture Organization/World Health Organization Joint Expert Committee 

on Food Additives (JECFA) [14]. For NIV, a tolerable daily intake (TDI) of 1.2 μg/kg body 

weight/day has been set by the European Food Safety Authority (EFSA) [12]. 

Zearalenone is a cyclic compound containing a resorcyclic acid lactone structure; and is also 

primarily produced by the same fungi that produce type B trichothecenes. It is commonly found 

together with DON and NIV in cereals. ZEN is considered an estrogenic mycotoxin that causes 

abnormalities in the reproductive system, particularly in swine; leading to infertility, genital 

prolapse and enlarged mammary glands [15]. Due to these effects, the JECFA established a 

PMTDI of 0.5 μg/kg body weight/day [16].  

In the Northern hemisphere, the main Fusarium species associated with oats are: F. 

graminearum, F. avenaceum, F. sporotrichioides, F. langsethiae, F. poae, F. culmorum and F. 

tricinctum [4-6,17-19].  This implies that a diverse range of mycotoxins may be found in oats. 

For example, F. sporotrichioides and F. langsethiae are responsible for T-2 and HT-2 (type A 

trichothecenes) accumulation in small grain cereals [20]; whereas F. graminearum and F. 

culmorum are able to produce ZEN and type B trichothecenes; F. poae mainly produces NIV 

[21]; and finally, F. avenaceum and F. tricinctum are able to produce other Fusarium 

mycotoxins, such as moniliformin (MON) and enniatins (ENNs) [22]. Indeed, several studies 

have already shown the occurrence of type A and type B trichothecenes in oats grown in colder 

climates [6,23-27]. 

In South America, a few studies have shown that Alternaria, Aspergillus, Penicillium and 

Fusarium are prevalent in oats [28-30]. Regarding the Fusarium genus, F. graminearum, F. 

poae and F. verticillioides have previously been recovered from freshly harvested grains [30].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 November 2021                   doi:10.20944/preprints202111.0212.v1

https://doi.org/10.20944/preprints202111.0212.v1


In regards to mycotoxin contamination, aflatoxin B1 (AFB1), DON, fumonisin B1 (FB1) and 

ochratoxin A (OTA) have been detected in oat grains and products [28,30-34].  

In Brazil, reports of fungi and mycotoxin contamination in oats are scarce, with a few only 

focusing either on the mycobiota or mycotoxin contamination. The majority of the associated 

fungi recovered were Alternaria, Drechslera, Fusarium and Puccinia [28,29,35]. However, the 

only reported mycotoxin was FB1, while aflatoxins, ochratoxin A and ZEN were not detected 

[28,32]. 

Due to the lack of information on fungal diversity and mycotoxin contamination in Brazilian 

oats, together with the increasing production of this cereal within the country, the objectives of 

the current study were: i.) to characterize Fusarium species associated with freshly harvested 

Brazilian oats, ii.) to determine the levels of deoxynivalenol, its derivatives (3-

acetildeoxynivalenol and 15-acetildeoxynivalenol) and nivalenol in the grain samples. 

 

2 Results 

2.1 Water activity and mycobiota of freshly harvested oat grains 

Ninety-two percent of the oat samples were contaminated with fungi, predominantly by the 

Fusarium genus. In the RS region, samples were contaminated with Fusarium, followed by 

Phoma, Epicoccum, Alternaria, Cladosporium, Penicillium, Aspergillus, Drechslera, 

Pestalotiopsis, Mucor, Rhizopus, Curvularia and Trichoderma. Water activity (aw) ranged from 

0.4 to 0.6 (mean=0.54). No correlation between aw and the occurrence of Fusarium was 

observed (p<0.05). In the PR region, 33.1% of the samples were contaminated with Fusarium, 

followed by Alternaria, Nigrospora, Epicoccum, Phoma, Cladosporium, Rhizopus, 

Penicillium, Dreschelera, Mucor and Pestalotiopsis (Table 1). Water activity ranged from 0.5 

to 0.6 (mean=0.51). No correlation between aw and the occurrence of Fusarium was observed 

(p<0.05).  
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The F. sambucinum species complex (FSAMSC) was foremost in oat samples from both 

regions. In the RS region, F. poae was the primary species isolated, followed by the FGSC, F. 

avenaceum and F. proliferatum.  In the PR region, the majority of the isolates belonged to the 

FGSC, followed by F. poae, F. incarnatum-equiseti species complex (FIESC), F. 

verticillioides, F. subglutinans and F. solani species complex.  

 

Table 1. Frequency and mean count of fungal genera and Fusarium species complexes isolated 

from oat samples from two different regions of Brazil: Paraná (PR - 50 samples) and Rio Grande 

do Sul (RS - 50 samples).  

Oat origin RS PR 

Average count 

(CFU/g) 
Oat aw

a 0.54 0.51 

Genera of fungi Frequency (%) 

Fusarium  37.3 33.1 1.8 x 105 

Phoma  15.4 11.1 7.7 x 104 

Epicoccum 13.8 11.3 7.1 x 104 

Alternaria 9.6 16.3 5.9 x 104 

Cladosporium  7 6.9 3.3 x 104 

Penicillium 4.4  1.9 2.2 x 104 

Aspergillus 3.4 ND 2.3 x 104 

Dreschlera 3 1.7 1.4 x 104 

Pestalotiopsis 1.5 0.3 4 x 103 

Mucor 1.5 1.7 7 x 103 

Rhizopus 1.5 2.6 9 x 103 

Curvularia 0.8 ND 6 x 103 

Trichoderma 0.8 ND 6 x 103 

Nigrospora ND 13.1 4.3 x 104 

Fusarium species complexes Frequency (%)  

FSAMSC 93.8 85.5 1.7 x 105 

FTSC 3.2 0 7.6 x 103 

FFSC 3 6.7 4.3 x 104 

FIESC ND 5 5.6 x 103 

FSSC ND 2.8 3.1 x 103 
 

a  Mean values for water activity; ND: not detected. FSAMSC: Fusarium sambucinum species complex; FTSC: F. 

tricinctum species complex; FFSC: F. fujikuroi species complex; FIESC: F. incarnatum-equiseti species complex; 

FSSC: F. solani species complex. 
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2.2 Molecular characterization of Fusarium isolates 

A sub-sample of Fusarium isolates were selected for molecular characterization. Isolates 

belonging to the FSAMSC were randomly selected for phylogenetic analysis of the second 

major subunit of the RNA polymerase locus (RPB2) and genotype characterization.  

The phylogenetic analysis dataset consisted of 55 taxa, with 259 parsimony informative 

characters (PICs). The analysis resulted in one hundred most parsimonious trees (consistency 

index/CI = 0.76; retention index/RI = 0.95). No significant topological variations were detected 

between neighbor-joining, parsimony and likelihood phylogenies (data not shown). Most of the 

isolates were clustered within F. graminearum and F. poae species, and a few within F. 

meridionale. (Figure 1). 

The FGSC isolates were predominantly 15-ADON (50%) genotype, followed by NIV (36.4%) 

and 3-ADON (13.6%). All strains identified as F. meridionale were characterized as NIV 

genotype, while the majority of F. graminearum s.s were characterized as 15-ADON and, in 

lesser frequency, as 3-ADON genotypes. As expected, all of the F. poae strains displayed a 

NIV genotype. The oat grain isolates from Rio Grande do Sul were identified mostly as NIV 

(75%) genotype, followed by 15-ADON (16.7%) and 3-ADON (8.3%). The isolates from 

Paraná mostly displayed the NIV genotype (70.4%), followed by 15-ADON (25.9%) and 3-

ADON (3.7%). 
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Figure 1. Maximum parsimony phylogeny inferred from the first fragment of the RPB2 locus. Bootstrap values above 70% and Bayesian posterior 

probabilities (BPP) above 0.9 are assigned in bold branches. Support values above branches are bootstrap/BPP values. The outgroup is F. concolor. The 

NIV genotype is highlighted in blue and 15-ADON in green. FML: Food Microbiology Laboratory.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 November 2021                   doi:10.20944/preprints202111.0212.v1

https://doi.org/10.20944/preprints202111.0212.v1


 

2.3 Mycotoxin analysis 

2.3.1 Occurrence of type B trichothecenes 

Type B trichothecenes were found in 92% and 100% of oat samples from PR and RS, 

respectively. In PR, DON was the predominant mycotoxin and was detected in 44.2% of the 

samples; followed by NIV (28.6%), 3-ADON (18.8%) and 15-ADON (7.7%). In RS, NIV was 

detected in 44.7% of the samples and was the predominant mycotoxin; followed by DON 

(35%), 15-ADON (3.6%) and 3-ADON (14.8%).   

Table 2 shows the levels of DON, 3-ADON, 15-ADON and NIV detected in the PR and RS 

regions. The mean contamination levels for mycotoxins in oat samples from PR were 45 µg/kg, 

18.8 µg/kg, 7.7 µg/kg and 28.6 µg/kg for DON, 3-ADON, 15-ADON and NIV, respectively. 

Regarding the RS oat samples, the mean mycotoxin contamination levels were 35 µg/kg, 14.8 

µg/kg, 3.6 µg/kg and 46.7 µg/kg for DON, 3-ADON, 15-ADON and NIV, respectively. 

In the current study, a higher frequency and average concentration levels of NIV were found in 

RS; however, no significant difference was observed between RS and PR for the other evaluated 

mycotoxins (p>0.05).  

The co-occurrence of trichothecenes was also observed. Eighty-four percent of the samples 

from the PR region simultaneously presented DON and NIV, whereas the co-occurrence of 

DON and NIV was observed in only 57.7% of the RS samples. 
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Table 2. Occurrence of type B trichothecenes in oat grain samples from Rio Grande do Sul (RS) and Paraná (PR), Brazil. 

Region 

NIV DON 15-ADON 3-ADON 

Concentration (µg/kg) Concentration (µg/kg) Concentration (µg/kg) Concentration (µg/kg) 

Mean Median Range Mean Median Range Mean Median Range Mean Median Range 

PR 28.6 330.3 ND-820 45 540.1 ND-1,620 7.7 349.7 ND-723.3 18.8 648.6 ND-2,546.7 

RS 46.7 778.3 ND-7,716.7 35 503.2 ND-1,610 3.6 157.8 ND-420 14.8 491.7 ND-3,333.3 

NIV=nivalenol; DON=deoxynivalenol; 15-ADON=15-acetildeoxynivalenol; 3-ADON=3-acetildeoxynivalenol; ND=Not Detected. 
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3 Discussion 

The current study found a high diversity of fungi in Brazilian oat grains; including potentially 

toxigenic fungi. The occurrence of the FSAMSC and its related mycotoxins such as DON, 3-

ADON, 15-ADON and NIV was the focus of the investigation. It is important to mention that 

there is a lack of research regarding mycotoxin contamination in Brazilian oat grains, despite 

high consumption by the population. Most of the previous studies were conducted in the 

Northern hemisphere and those have reported the presence of multiple Fusarium mycotoxins 

in oat grains [36,37].  

A study conducted on Swiss oat samples from the 2013 to 2015 harvests reported the occurrence 

of nine different Fusarium species and a 97% frequency of Fusarium infection in the analyzed 

samples; similar to the frequency determined in this study (93.8% and 85.5% for samples from 

RS and PR, respectively). The same study pointed out that F. poae was the most predominant 

species in all three harvest years (2013, 2014 and 2015) with 55%, 57% and 87% isolation 

amongst Fusarium species [6].  

In the current study, most of Fusarium isolates belonged to the FSAMSC and were 

characterized as F. graminearum, F. meridionale and F. poae. The latter was frequently isolated 

from RS samples, in contrast to PR samples; where F. meridionale was highly detected. Studies 

have highlighted F. poae as a frequent species found in oat samples [6,38]. These results suggest 

that different geographic origins, soil type, environmental and harvest conditions could lead to 

a distinct predominant species, and might influence the mycotoxin content of the grains [39]. 

In both studied regions, the NIV genotype was predominant. In RS, it was associated with the 

high frequency of F. poae, and with the samples mostly contaminated with NIV mycotoxin. 

The high occurrence of this genotype in PR is associated to F. meridionale and F. poae. This 

knowledge is relevant to determine a more efficient prediction of the contamination by NIV; 
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and may aid management strategies to control the occurrence of toxigenic fungi in barley from 

different geographic regions [40]. 

Mycotoxin analysis demonstrated that most of the samples were contaminated with type B 

trichothecenes. DON contamination was higher in samples from PR, while NIV was prevalent 

in RS. The presence of these mycotoxins conforms with the frequency of isolated fungi, as F. 

poae was the most isolated species in RS and F. graminearum in PR. It has been reported that 

the incidence of F. poae increases when the climatic conditions do not favor the proliferation 

of F. graminearum s.s., the dominant pathogen involved in FHB [41,42].  

In Brazil, previous studies revealed a high frequency of the FSAMSC in wheat, barley and rice, 

leading to the high occurrence of DON in grains. Despite this knowledge, information 

correlating mycotoxin contamination to the predominant species in Brazilian oats is still scarce 

[43-50]. In Europe, the high occurrence of F. poae in cereals is responsible for NIV 

contamination [36,51]; while in Asia, NIV contamination is attributed to F. asiaticum [52,53]. 

In South America, NIV was found in wheat from Argentina and Brazil in lower frequency and 

levels than DON. Apparently, the higher frequency of DON is related to the higher risk of FHB 

epidemics caused by the predominance of no-till cropping and climate change in the subtropical 

environment of Southern of Brazil [44,54]. Furthermore, the analysis detected the presence of 

3-ADON and 15-ADON in oats, with high levels of 3-ADON in samples from both regions 

studied. This result corroborates with the occurrence of the F. graminearum 3-ADON genotype. 

In Europe, the acetylated DON forms are reported in cereals like oats [51,55-57], maize and 

wheat [58]. 

In our study, 24% of the samples presented DON levels higher than the maximum limit 

established by Brazilian legislation (750 µg/kg). Despite the absence of legislation for NIV 

globally, this mycotoxin was present in high levels, mainly in samples from RS. The toxic 

effects of NIV are still inconclusive, although it has displayed immunotoxic and hematotoxic 
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effects; which can be critical to humans [12]. In the case of acetylated DON forms (15-ADON 

and 3-ADON), high levels of 3-ADON were observed in the grains from both regions. 

Information about its toxic effects in animals and humans are still scarce, but a study 

demonstrated that 15-ADON is more toxic than DON and 3-ADON [13]. 

Co-contamination of DON, 15-ADON, 3-ADON and NIV was observed in this study due to 

the presence of different fungi in the grains. To our knowledge, this is the first report 

demonstrating the co-occurrence of these mycotoxins in Brazilian oat grains and their 

correlation with associated Fusarium species. However, the co-occurrence of DON and NIV 

has already been reported in 86% of Brazilian wheat kernels analyzed [44], as well as in 29.6% 

of Brazilian barley samples [50].  The main concern about co-contamination is the possible 

interactions and potential synergistic effects that these mycotoxins may have on animal and 

human health. [59] reported that the toxic effects of DON are intensified when consumed with 

NIV in in vitro models. 

Overall, studies about mycotoxin contamination in oat grains are relevant and necessary, to 

determine an efficient risk control plan; as the consumption of oats in natura plant-based 

beverages or cereal-based foods has been increasing, boosted mainly by its good nutritional 

features, such as a high protein and dietary fiber content [60].  

Since the levels of mycotoxin contamination and the dominant species in cereals can change 

according to various environmental parameters, studies that elucidate the prevalence of 

toxigenic fungi in different geographic regions are vital for designing efficient control 

management strategies, aiding the producers in obtaining a safer product. The results of this 

study highlighted the importance of further research on the contamination of multiple Fusarium 

mycotoxins in oat grains and their by-products consumed in Brazil. 
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4 Conclusion 

This study has shown high recovery of F. graminearum s.s. and F. poae from Brazilian oat 

grains, as well as contamination by the mycotoxins DON, 3-ADON, 15-ADON and NIV. 

Samples were highly contaminated with type B trichothecenes; and that 24% of the samples 

contaminated with DON were at concentrations higher than permitted by Brazilian legislation. 

Co-occurrence of these mycotoxins in oat grains samples was also observed; indicating the 

importance for further studies on trichothecene contamination in oat by-products; as well as the 

toxic synergistic interactions of these mycotoxins to determine potential risks to animal and 

human health. 

 

5 Materials and methods 

5.1 Oat samples 

One hundred oat grain samples were collected from the States of Paraná and Rio Grande do Sul 

(50 samples from each region), the two largest oat producing regions of Brazil. The grains were 

obtained after the cleaning and drying stages (up to maximum 60o C) of the 2018 harvest. 

Sampling was performed using a grain auger at different points of the harvest batches. Each 

sample was homogenized and reduced to a sub-sample of 3 kg. Grains were transferred into 

polyethylene bags and kept at room temperature (for up to two days). The bags were then stored 

at -18o C for mycotoxin analysis [45]. 

 

5.2 Water activity and identification of mycobiota 

Water activity analysis of the grain samples was conducted using the equipment Aqua-Lab CX-

2, Decagon Devices. Samples were analyzed in triplicate. The serial dilution technique was 

used for fungal isolation [61]. Aliquots of each dilution were plated onto Dichloran Rose Bengal 
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Chloramphenicol (DRBC, Oxoid) agar and incubated for 5 days at 25° C, results were expressed 

in CFU/g. 

Primary morphological characterization of the different genera was conducted according to 

[61], using Czapek Yeast Extract Agar (CYA) and Malt Extract Agar (MEA). Isolates 

belonging to the genus Fusarium were single-spored and plated onto Potato Dextrose Agar 

(PDA) and Carnation Leaf Agar (CLA) for further morphological characterization [62]. Isolates 

were stored in glycerol (60%) at -80° C. 

 

5.3 Characterization of Fusarium isolates 

The Fusarium isolates were initially identified as described above. Afterwards, 25 strains 

belonging to the F. sambucinum species complex (FGSC and F. poae isolates), were selected 

for sequencing and phylogenetic analyses. These isolates were selected in order to represent 

both regions studied (Paraná and Rio Grande do Sul). Sequencing reactions followed by 

phylogenetic analysis were performed on the RPB2 locus [63-65].  

Isolates were also characterized based on trichothecene genotyping (3-ADON, 15-ADON and 

NIV) by multiplex PCR, following the methodology proposed by [66]. 

 

5.4 DNA extraction, PCR and sequencing analyses of the RPB2 gene 

Fusarium cultures were grown on PDA for 5 days at 25° C and the DNA was extracted using 

Dneasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

PCR reactions and primer sets were performed according to [64,67]. PCR products were 

purified with QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and sequenced using 

Applied Biosystems® 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) by 

the company Helixxa Bases for Life (Paulínia, SP, Brazil). 
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The sequences were analyzed using Geneious v.6.0.6 (Biomatters, Auckland, New Zealand), 

and polymorphisms were confirmed by examining the chromatograms. For multiple alignment, 

nucleotide sequences were downloaded from National Centre for Biotechnology Information 

(NCBI) and aligned with the obtained Fusarium oat isolate sequences using the ClustalW 

plugin in Geneious v.6.0.6 (Supplementary Table 1). 

 

5.5 Phylogenetic analysis 

Maximum parsimony analysis was performed using PAUP 4.0b10 (Sinauer Associates, 

Sunderland, MA, USA) [68]. A heuristic search option with 1000 random additional sequences 

and tree-bisection-reconnection algorithm for branch-swapping were used to infer the most 

parsimonious tree. Gaps were treated as missing data. The Consistency Index (CI) and 

Retention Index (RI) were calculated to verify the homoplasy present. Clade stability was 

verified through bootstrap analysis with 1000 replicates (PAUP 4.0b10), Bayesian inference 

analysis was also performed using the MrBayes plugin in Geneious v.6.0.6, run with a 

2,000,000-generation Monte Carlo Markov chain method with a burn-in of 10,000 trees. 

Fusarium concolor was used as outgroup. The phylogenies were visualized using FigTree v.1.4 

(University of Edinburgh, Edinburgh, United Kingdom) [69]. 

 

5.6 Mycotoxin analysis 

5.6.1 Mycotoxin extraction 

Mycotoxin extraction was conducted using QuEChERS, according to the manufacturer’s 

instructions. Initially, 300 g of oat grains were ground, and a subsequent sub-sample of 100 g 

was separated using a sieve (0.5 mm mesh 32, generating 0.5 mm particles) and homogenized. 

Then, 10 g of the ground sample was weighed and transferred into a 50 ml QuEChERS 
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extraction tube, followed by 10 ml of ultrapure water and 10 ml of acetonitrile with 1.0% formic 

acid. 

The sample was agitated vigorously for 1 minute and then centrifuged for 5 minutes at 5000 

rpm. After, 3 mL of supernatant was transferred to a 15 ml RoC QuEChERS centrifuge tube, 

containing 900 mg MgCl and 150 mg PSA (Primary and Secondary Amine Exchange Material 

- KS0-8924). This was shaken vigorously for 30 seconds and centrifuged for 5 minutes at 3700 

x g to separate the solid material. Finally, 1mL of the supernatant was transferred into a flask 

for the solution to be evaporated in a heated sand bath at 60oC. 

Subsequently, the residue was diluted with 1 mL of acetonitrile:water (70:30 v/v), mixed and 

filtered through a 0.22 µm PTFE hydrophobic membrane filter, and injected into a high-

performance liquid chromatography with diode array detection. 

 

5.6.2 Chromatography conditions 

Chromatographic separation was performed through a high-performance liquid chromatograph 

(Shimadzu, Kyoto, Japan), Gemini C18 5.0 µm (250x4.6mm) chromatographic column, an 

auto-injector for injection handling of 20 µL and equipped with a diode-array detector SPD-

M20A [70]. 

The mobile phase was composed of acetonitrile:water (70:30 v/v), with elution in isocratic 

mode and a flow rate of 0.5 mL min-1, with a total analysis time of 15 minutes. The maximum 

absorption wavelength was 220 nm for 3-ADON, 15-ADON, DON and NIV. 

Data was collected and processed using LC Solution-Shimadzu software. Limit of detection 

(LOD), limit of quantification (LOQ) and recovery were: 16.15, 2.5, 2.5 and 16.15 µg/Kg; 53.3, 

8.3, 8.3 and 53.3 µg/Kg; 98%, 92%, 84% and 70% for DON, 3-ADON, 15-ADON and NIV, 

respectively.  
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5.7 Statistical analysis 

Statistical analysis was performed using Statistix v.10 software. ANOVA and the Kruskal-

Wallis test were chosen to assess the differences of Fusarium occurrence between the two 

studied regions, as well as the differences in mycotoxin levels between the two studied regions. 

Values of p < 0.05 were considered statistically significant. 
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