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Abstract: Model understanding is critical in many domains, particularly those involved in high-
stakes decisions, i.e., medicine, criminal justice, and autonomous driving. Explainable AI (XAI) 
methods are essential for working with black-box models such as Convolutional Neural Networks. 
This paper evaluates the traffic sign classifier of Deep Neural Network (DNN) from the Program-
mable Systems for Intelligence in Automobiles (PRYSTINE) project for explainability. The results of 
explanations were further used for the CNN PRYSTINE classifier vague kernels` compression. After 
all, the precision of the classifier was evaluated in different pruning scenarios. The proposed classi-
fier performance methodology was realised by creating the original traffic sign and traffic light clas-
sification and explanation code. First, the status of the kernels of the network was evaluated for 
explainability. For this task, the post-hoc, local, meaningful perturbation-based forward explainable 
method was integrated into the model to evaluate each kernel status of the network. This method 
enabled distinguishing high and low-impact kernels in the CNN. Second, the vague kernels of the 
classifier of the last layer before the fully connected layer were excluded by withdrawing them from 
the network. Third, the network's precision was evaluated in different kernel compression levels. It 
is shown that by using the XAI approach for network kernel compression, the pruning of 5% of 
kernels leads only to a 1% loss in traffic sign and traffic light classification precision. The proposed 
methodology is crucial where execution time and processing capacity prevail.  

Keywords: Explainable AI, Convolutional Neural Network, Network Compression; 
 

1. Introduction 
The nature of road traffic is currently considered a complex and dynamic environ-

ment, where safety performance depends on several interconnected factors. Failure to 
comply with them would be the cause or interaction to cause the road accidents [1]. The 
primary reasons for the accidence are drivers' characteristics, the vehicle itself, and road 
characteristics [2].  One of the modern concepts related to road infrastructure is "self-ex-
plaining roads" [3]. The concept aims to convey information about the upcoming situation 
to the driver or the visual system of a self-driving car in a comprehensible, faithful, and 
trustful way, using various measures related to traffic signs and road markings. Taking 
these specifics for granted is an intrinsic part of road control infrastructure and provides 
drivers with the necessary information, warning of road regulations, and keeping pedes-
trians safe.  

For autonomous driving, accurate and robust perception of traffic signs is essential 
for motion planning and distinctness. However, traffic sign detection and classification 
problem are still challenging due to the following reasons: (1) traffic signs are easily con-
fused with other objects in streets scenes, (2) weather conditions, time of the day, refection, 
and occlusions would decrease the classification performance, (3) the size, shape, and col-
our of the traffic signs, (4) slight inter-class variance due to similar appearance of signs 
[4]. 

Therefore, traffic sign detection and classification has been just now studied exten-
sively in the computer vision community. More recently, the availability of annotated 
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large datasets [5,6] and computational gains with powerful GPU cards [7] show good re-
sults by using convolution neural networks (CNN)s [8, 9].  For this purpose, to classify all 
specific traffic signs and traffic light classes, a classifier based on a CNN architecture from 
the Horizon 2020 ECSEL-JU project "Programmable Systems for Intelligence in Automo-
biles" (CNN PRYSTINE) was for providing our experiment considered [10]. Despite the 
success achieved by this approach, the existing CNN classifier is still lacking because it 
provides a classification output that does not provide us with what information in the 
input data makes them arrive at their decisions. It is known that CNNs consist of a highly 
complex internal structure and, as a result, is very difficult to explain because of their 
black-box nature. It leads to a challenge to understand what exactly goes on at each layer. 
It is also known that after training, each layer progressively extracts higher and higher-
level features of the image until the final layer essentially predicts what the image shows. 
We have focused on using explainable AI (XAI) to identify novel higher-level patterns 
and detections to provide more precise classification strategies to overcome these limita-
tions. Moreover, the explanations will ideally let us comprehend the model's reasoning 
behaviour and understand why the model has predicted explicit decisions, e.g. to classify 
the traffic sign in a specific manner or associate certain properties with the performance 
of CNN. 

Despite the advantages, the CNN models require a significant number of resources 
including, processing capacity, energy, bandwidth, and storage capacity. Therefore, dif-
ferent CNN compression techniques have been proposed in the existing literature to mit-
igate these shortcomings, i.e., network pruning, sparse representation, bits precision, 
knowledge distillation, and miscellaneous [11]. The key reason to tackle this problem is to 
find an appropriate method for CNN compression by using the XAI approach.  

This paper presents a study on how explainability at a model level can be utilised on 
network pruning and how pruning influences prediction precision. We show that the per-
turbation-based methods can be used not only to explain the decision of CNN but can be 
used as a perspective tool for compressing CNNs with minimal precision compromise. 

 The following section discusses the perturbation-based explanation methods appro-
priate for network parameter evaluation. Section 3 presents the overview of the used CNN 
PRYSTINE network architecture for the classification of traffic sign and traffic light. Sec-
tion 4 describes the mathematical background for the proposed methodology. Section 5 
shows the results of the experiment. Finally, Section 6 presents the discussions and future 
directions as well as conclusions. 

2 Perturbation-based methods 
For black-box models like CNNs, it is crucial to make the prediction process faithful 

to a particular model by explaining why it reaches such results. Current studies into algo-
rithmic explanation methods for predictive models fall into three main approaches: attrib-
ution, distillation, and intrinsic. The attribution focuses on measuring the attribution or 
feature relevance scores. The distillation focuses on reducing the complexity of CNN mod-
els by transforming them into simple, easily understandable surrogate models. Finally, 
the intrinsic approach integrates the inner states of the deep networks or modular algo-
rithms to justify the model. First, the attribution approach can be divided into three sub-
categories: perturbation-based, functional, and structural explanations. The first sub-
group's methods are analysed here, and the eligible has been chosen to support our ex-
perimental methodology. 

The idea of perturbation-based explanations is to calculate the feature importance of 
a feature or a group of features in a specific model by simulating a lack of knowledge 
about the value of the feature(s) [12]. In other words, the perturbation methods try to as-
sess attribution or feature relevance by testing the model's response to the removal, mask-
ing or altering the feature and measuring the corresponding feature relevance scores. Per-
turbation-based explanations are widely used with arbitrary prediction models and sup-
port explanations of individual predictions. These methods express an explanation by 
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manipulating the input image and/or activations of a CNN [13]. They can also visualise 
the predictive model as a whole. When a perturbation highlights image regions, it has an 
easily explainable meaning, i.e., editing that region in the actual input will significantly 
affect the model's prediction. They have the advantage of a straightforward explanation, 
as they directly measure the marginal effect of some input features on output [14]. In this 
case, perturbation-based methods only require the propagation of one forward and/or 
backward pass through the CNN to generate an attribution visualisation. Understanding 
the visual perception aspects captured within a deep model has become particularly rele-
vant in the context of an explanation of deep networks. Our experiment applied saliency 
to highlight essential regions in the input image to understand CNN inference. 

The Occlusion Sensitivity method of Zeiler and Fergus [15] is based on dividing the 
input into segments called patches, masking them, and measuring the input impact of 
each defined patch on the classification score. For example, an image can be split into a 
grid of regular non-overlapping patches, and a mask slid over an image covering patches. 
The authors occluded different segments of an input image with a grey patch and visual-
ised the change in the activations of the later layers. When the patch covers the critical 
area, the output prediction performance drops significantly.  A similar approach was pro-
posed by Zhou et al. [16], using small grey squares to occlude image patches (in a dense 
grid) to explain scene classification. The visualisation depicts the sensitivity area of an 
image for its classification label. The Meaningful Perturbation method proposed by Fong 
and Vedaldi [17] uses the output value of the DNN changes as the input is penalised by 
deleting specific regions. Attribution aims to identify which regions of an image are used 
to produce the output value. The idea is not to iterate over all possible perturbations but 
to search locally for the best perturbation mask, i.e., the smallest deletion mask.  The au-
thors have considered three perturbation types for creating a perturbation mask: replacing 
the input region with a constant value, injecting noise, or blurring the image. Extremal 
perturbations are regions of an input image that maximally affect the activation of a par-
ticular neuron in a DNN. The Extremal Perturbations method [18] optimises the pertur-
bations by choosing smooth perturbations masks, maximising the classifier's output con-
fidence score. Randomised Input Sampling for Explanation (RISE) [19] explains DNN 
black-box models by estimating pixel saliency importance (importance map) of the input 
image regions. The importance of pixels is estimated by blurring them in random combi-
nations, reducing their intensities to zero, and weighting their changes in the output by 
occluding patterns. The authors [20] developed a fast saliency detection method Universal 
Adversarial Perturbations for image classifiers by manipulating the scores of classifiers 
by masking salient parts of the input image.  

From those mentioned above, the perturbation-based methods try to evaluate the 
importance of input segments, regions or pixels on the classifier's decisions, and how the 
deep network reacts to changes in the input. For example, if a specific part of the input is 
masked, how does it affect a classification prediction. Therefore, the relevance (attribu-
tion) score evaluates the strength of the connection between the pixel or group of pixels 
to the specific network output. From this point, we can hypothesise that certain regions 
on an image are not involved in classifiers decision-making. Consequently, it leads to an 
assumption that there might be parameters in the network that if they are excluded from 
the deep network, the classifier's prediction precision remains at the same level.  

In our experiment, we used the meaningful perturbation method to blackout the re-
gion of traffic sign in the feature map of the last 4-th layer before a fully connected layer 
of CNN PRYSTINE classifier model to distinguish high and low-impact parts of CNN. 
Using the perturbation, we would have explained the attribution of the 4-th layer kernels 
on classifier prediction. Therefore, this approach allowed us to identify those vague ker-
nels that were not involved in traffic sign and light classification and compressed them. 

 

3 Implementation of Traffic Sign and Traffic Light Classifier 
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The architecture of a 5-layer CNN from the PRYSTINE project [21] has been used for 
traffic sign and light classification. Each layer of the network consists of convolution fil-
tering, batch norming, sigmoid activation, and downsampling by max pooling. The last, 
5-layer, consists of a linear classifier with a soft-max, producing the network's output of 
45 classes. The precise definition and description with a code of CNN can be found online 
at GitLab [22].  

 
Figure 1. The architecture of the used 5-layer CNN road sign and light classification from the  

PRYSTINE project. 
 

The network was trained and tested using a multi-class, single-image German Traffic 
Sign Recognition Benchmark (GTSRB) database [23]. The GTSRB includes more than 50 
000 single traffic sign images from 43 classes. The traffic signs are captured at different 
sizes, rotations, and different light levels, thus giving a natural road traffic sign distribu-
tion. Next, the two classes of 2239 images from the LISA Traffic Light Dataset (LISA) [24] 
were added to the GTSRB dataset (adding red/yellow light and green light classes). Fi-
nally, the CNN model based on both GTSRB and LISA primary datasets was retrained. 

The classification using CNN from the PRYSTINE project provides the precision of 
91.86% for traffic sign classification (tested only on GTSRB test data) and the precision of 
96.55% for traffic light classification (tested only on LISA test set). The execution time of 
an image in both classification categories is ~0.0187 sec on Intel Xeon CPU. For explaina-
bility testing, the subset of 100 images was randomly taken from the GTSRB and LISA test 
sets (test.py) and is available together with the developed code to approve our experi-
mental methodology. 

4. CNN Layer Perturbation-based Forward 
The standard perturbation approach aims to identify which regions of an input im-

age 𝑥଴ are used by the black box CNN 𝑓(𝑥) to produce the output value 𝑓(𝑥଴). Derived 
from the meaningful perturbation method, given an input traffic sign image 𝑥଴ our goal 
was to define an explanation for traffic sign and traffic light classification in the output of 
the last convolution layer (4-th layer) before max-pooling by masking the output region 𝑅 
of the feature map with a constant black value, see Figure 2.  
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Figure 2. CNN PRYSTINE manipulations with perturbation mask in 4-layer. 

Formally, let 𝑚 ∶  Λ → [0.1] be a perturbation mask, associating each pixel 𝑢 ∈  Λ with 
a scalar value 𝑚(𝑢). Then the perturbation operator for a constant value is defined as [17]: 

[Φ(𝑥଴; 𝑚)](𝑢) = 𝑚(𝑢)𝑥଴(𝑢) + (1 − 𝑚(𝑢))𝜇଴, (1)

where 𝜇଴ is an average colour. We use 𝜇଴ = 0, which yields, after normalisation, masking 
region 𝑅 by substituting with black colour. Then output vector of the network's 4-th pool-
ing layer  𝒑𝟒  are calculated as follows: 

𝒑𝟒 = 𝑝𝑜𝑜𝑙ସ(𝑐𝑜𝑛𝑣ସ(𝑝ଷ)), (2)

where  𝑐𝑜𝑛𝑣ସ() is an output of the convolutional 4th-layer from the previous layers. The 
output vector of the network's 4-th pooling layer, including or excluding particular re-
gions of an image from CNN decision making, is calculated as follows: 

𝒑𝟒
ᇱ = 𝑝𝑜𝑜𝑙ସ(𝑐𝑜𝑛𝑣ସ(𝑝ଷ) ∗ 𝑚)),  (3)

where 𝑚 is a perturbation mask. Then a coefficient 𝑐௥(𝑛) showing n-th feature involve-
ment on CNN decision making of r-th image (where r is an image number and in our 
experiment 𝑟 = 100 of the test.py set), are calculated as follows. 

𝑐௥(𝑛) = ൜
1, 𝑖𝑓 𝑝ସ(𝑛) = 𝑝ସ(𝑛)′ 

0,                  𝑖𝑓 𝑜𝑡ℎ𝑒𝑟
  (4)

Based on the feature involvement coefficient, the original CNN PRYSTINE model was 
compared to the model where dedicated parts of the output of the final 4-th convolutional 
layer of the network were excluded from the CNN traffic sign and traffic light prediction. 
In our experiment, the region of interest or mask 𝑅 was a 3x3 region on a 5x5 feature map. 
This approach further led to explaining the whole prediction power of the classification 
model. In our experiment, the perturbation mask filters 4-th layer kernels on their impact 
level accordingly to their significance. After obtaining feature significance statistical in-
volvement in neural network decision-making, kernels of the low impact of the 4-th layer 
were removed from CNN PRYSTINE, leading to model compression. Therefore, the 
model was compressed by pruning vague kernels in keeping with its precision calcula-
tions. The results of the experiments are presented in the next section.  

5 Experiments & Results 
This section presents details about the implementation of our experimental method-

ology. The code for all experiments, including 100 test data set (test.py), is available online 
at GitLab. The code was developed by using Python programming language and Tensor-
Flow 1.12 machine learning package. Examples of input traffic sign images from the test.py 
dataset see Figure 3. 
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(a) (b) (c) (d) 

Figure 3. Examples of an input image from the test dataset, where (a), (b), (c), traffic sign without 
occlusion, d occluded traffic sign. 

We included in the test.py dataset beside different traffic signs and traffic lights also 
occluded traffic signs and traffic light images data to check the prediction quality of the 
CNN PRYSTINE traffic sign classifier. The first three images in a row, (a), (b), and (c), are 
real traffic signs and are classified correctly. In the false case, (d) image, the traffic sign 
was occluded (covered); as a result, the network did not predict it as a traffic sign. Thus, 
after the first step, how well our CNN PRYSTINE model classifies, we recognised that our 
network could provide correct predictions. Next, we have wished to check out explaina-
bility by using the meaningful perturbation method of the prediction power of the classi-
fier and how it correlates if CNN PRYSTINE traffic sign and traffic light classifier kernels 
will be pruned. 

The region of a 3x3 perturbation mask was applied onto the 4-th layer feature map 
before max-pooling of 1x1x1x256 array. Figure 4 depicts an example of the CNN PRYS-
TINE 4-layer output of 5x5 feature map, where (a) a feature map without a mask, but (b) 
a feature mask, where a mask replaces its centre of the 5x5 output with a constant pixel 
value of zeros (black colour).  
 

(a) 

 

(b) 

Figure 4. The output of the 4-th layer feature map of CNN PRYSTINE before max pooling, (a) 
without masking, (b) with masking of the central region of 3x3 around the centroid. 

To summarise the effect of masking, to know the waveform of the signals to explain the 
CNN PRYSTINE classifier predictions (correct or wrong), and to know the waveform of 
the signals that flow through the network model (the signals from the max-pooling layer 
of 1x1 of the 4-th layer output) the signal characteristics plot are collected, see Figure 5. It 
shows the characteristics of the signals in a case when the traffic sign is occluded. DNN 
pool out shows the 4-th layer sigmoid activation function values for each of 256 features. It 
means how much each feature are involved in an input image. Signals LC weights and GT 
weights characterise and compare two randomly chosen classes of a linear classifier soft-
max activation function values. Both signals characterise the linear classifier classification 
signals, which most correlate with CNN PRYSTINE features.  
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Figure 5. Example of showing output signals of DNN pool out of 4-th layer in an occlusion case, 
linear classifier LC weights of chosen class (the most correlated signal), and GT weights of the right 

decision. 

The experiment of explainability has shown that the low impact kernels are in 4-layer. 
When removing them, the processing and storage capacity improves the performance of 
a CNN PRYSTINE model. Results of the quality of compression are shown in Table 1, 
where the CNN compression rate 𝛼(𝑀, 𝑀∗) of 𝑀∗ over  𝑀 was calculated as follows: 

𝛼(𝑀, 𝑀∗) =
௔

௔∗,          (5)

where 𝑎 is the number of kernels in the original model (4-th layer, 256 kernels) and is that 
of the compressed model 𝑎∗. For instance, if eight vague kernels are prune of 256, the 
compression rate is 3.125%.  

Table 1. Experimental results of compressing the CNN PRYSTINE 4-th layer. 

Compression rate, % Precision, % 
Original CNN PRYSTINE network 92.0 (total samples 100, correct 92) 

3.125 % 92.0 
5.47 % 90.0 

17.58 % 86.0 

As shown from Table 1, using the meaningful perturbation method, if the low-impact ker-
nels are found and removed from the 4-th layer by 3.125% (8 kernels), the network per-
formance improves by the same percentage in the same time the classification precision 
remains the same. If the compression rate is 5.47% (14 kernels), we still get a competitive 
advantage on network performance, however, with a slight decline of 2% in classification 
precision. But if the performance of the 4-th layer is improved by 17.58% (45 kernels are 
pruned), the loss in precision rate is only 6% compared to the original CNN PRYSTINE 
model. The proposed methodology is crucial where execution time and processing capac-
ity prevail.  

 7. Discussion 
Every model fails every and then, and when it does, we want explanations why it 

does it. In the case of traffic sign and traffic light classification, when human lives are at 
stake, we face a problem investigating CNN's inner workings. This study proposed a new 
methodology based on the XAI approach, which would "whiten" the black-box network. 
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Our experimental methodology results indicate that our image classification model, in 
which vague kernels of the 4-th layer were slightly compressed, can achieve the same 
precision as the state-of-the-art CNN models. The pruning of 5% of network parameters 
leads only to 1% loss on the traffic sign and traffic light classification precision that would 
be acceptable if one wants to get better performance in terms of processing capacity or 
execution time. However, in many cases, especially in deep learning, swapping an exist-
ing model for the pruning network elements results in a precision tradeoff. This might be 
a self-defining goal should the model be precision-oriented in the first place, or should the 
model be fast processing. Another challenge is how to integrate explanations into an au-
tomating driving in order to reduce its complexity and improve the model's performance 

6. Conclusions 
Many studies have been done to explain the decision-making process of CNNs for 

classification applications in computer vision. This work shows and experimentally 
proves that the CNN PRYSTINE model can be compressed using the meaningful pertur-
bations mask. Getting through the proposed methodology, we got an increase in the per-
formance of 17% only with the loss in precision by 6%. However, the compression of 
around 50% would be leading to low precision of the network and consequently to the 
low prediction power of traffic signs and traffic lights. The perturbation method can be 
more generalised and tested on larger data sets and different DNN models for further 
work. As well as the classification precision might be improved by analysing the CNN 
kernels comparing correct and error-leading data subsets. Also, compression of the pa-
rameters of the different network layers will be valuable to do.   

We aim to incorporate the gradient-based explainability methods to identify and un-
derstand vague kernels for CNN prediction models in our future work. In addition, it is 
worth investigating whether the pruning of kernels or parameters is appropriate for net-
work pruning. Finally, we also aim to develop more sophisticated, robust and reliable 
explainability algorithms to improve the prediction performance of classification models. 
Such algorithms could pave the way between AI model prediction structures and humans 
ground-truth knowledge. 
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