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Abstract: We generalize the dynamical analog of the Berry geometric phase setup to the quaternionic
model of Avron et al. In our dynamical quaternionic system, the fast half-integer spin subsystem
interacts with a slow two-degrees-of-freedom subsystem. The model is invariant under the 1:1:2
weighted SO(2) symmetry and spin inversion. There is one formal control parameter in addition to
four dynamical variables of the slow subsystem. We demonstrate that the most elementary qualitative
phenomenon associated with the rearrangement of the energy super-bands of our model consists
of the rearrangement of one energy level between two energy superbands which takes place when
the formal control parameter takes the special isolated value associated with the conical degeneracy
of the semi-quantum eigenvalues. This qualitative phenomenon is of the topological origin, and is
characterized by the second Chern class of the associated semi-quantum system. The correspondence
between the number of redistributed energy levels and the second Chern number is confirmed
through a series of examples.
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1. Introduction

Parametric quantum dynamical systems exibit many different qualitative modifications under
variation of their control parameters. Our purpose is to study qualitative modifications occurring in
simple (molecular) quantum systems possessing slow and fast dunamical variables and one control
parameter. The first step in this direction was the analysis of model Hamiltonians describing one “slow”
degree of freedom (rotation) and several “fast” quantum states (vibrations) and depending on one
control parameter [24] . This model exibits a typical qualitative phenomenon, namely, the redistribution
of energy levels between energy bands under the variation of the control parameter. The redistribution
is associated with the formation of the isolated degeneracy point between the eigenvalues of the
semi-quantum Hamiltonian which treats fast and slow variables as quantum and classical, respectively.
(For molecular applications of semi-quantum approach see [11,13,26,28,30,36].) The semi-quantum
Hamiltonian takes the form of an Hermitian N×N matrix, with N being the number of fast quantum
states taken into account, and the matrix elements being functions of the slow variables, defined
over the slow classical phase space. Since the codimension of the degeneracy points of Hermitian
matrices depending on parameters is three [2,33], the degeneracies of semi-quantum eigenvalues in
systems with one slow degree of freedom (two dynamical parameters) and one control parameter
occur generically at isolated points. It follows that the above elementary qualitative phenomenon is the
dynamic version of the geometric phase setup by Berry [9,35]. The phenomenon is of topological origin
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and is characterized by the topological invariant [32], the first Chern class c1 of the corresponding fiber
bundle, with the number of redistributed energy levels being related to the topological invariants of
the introduced fiber bundles [11,12,15,16].

Soon after Michael Berry formulated his geometrical phase concept in [9], its generalization to
parametric problem with half-integer spin possessing Kramers degeneracies due to the time-reversal
invariance was formulated by Mead [20] and Avron et al [7,8]. The corresponding model Hamiltonian
can be considered as a quaternionic generalization of complex Hermitian parametric Berry Hamiltonian.
The construction of the dynamic quaternionic model and its analysis from the point of view of our
qualitative approach treating fast (half-integer spin) states as quantum and slow dynamic variables as
classical is the subject of the present note.

Due to the Kramers degeneracy of fast quantum states, the eigenvalues of the semi-quantum
matrix are Kramers degenerate and the complete quantum system has degenerate bands, which we
call super-bands. The eigenvalues of the semi-quantum hyperhermitian quaternionic Hamiltonian have
codimension 5 degeneracies and consequently, the simplest model with qualitative modifications of
the super-band structure could appear for at least four fast states (two Kramers degenerate pairs),
a slow subsystem of two degrees of freedom (four classical variables), and one control parameter.
The topological invariant associated with the formation of the codimention-5 degeneracy is now the
second Chern class [31]. We conjecture again that this class corresponds to the number of quantum
energy levels redistributed between the super-bands under the variation of the control parameter. The
redistribution is associated with the specific isolated parameter value, for which two degenerate pairs
of semi-quantum eigenvalues form a degeneracy point.

Without going into strict mathematical details associated with the definition of the spectral flow in
the context of the Atiyah-Singer theorem [4–6] we show on concrete examples that typical qualitative
modifications of the (super)band structure can be interpreted in terms of the correspondence between
semi-quantum and quantum quaternionic Hamiltonians and allows to relate topological invariant
associated with formation of degeneracy point for semi-quantum model to the number of redistributed
quantum energy levels.

2. Model construction

We begin by reviewing the qualitative analysis of model Hamiltonians describing interaction
of two “fast” quantum states with one “slow” degree of freedom. The spin operators (S1, S2, S3)

with S2 = 3/4 describe the fast subsystem. The slow subsystem is described by angular momentum
components (N1, N2, N3), satisfying N2

1 + N2
2 + N2

3 = const. The operator form of the model quantum
Hamiltonian takes the form

H = cos α S1 + sin α S ·N, (1)

where α is the control parameter, whose variation we restrict to the domain 0 ≤ α ≤ π. Due to the
axial symmetry of the system, the quantum version of Hamiltonian (1) possesses explicit solutions for
eigenvalues and eigenfunctions [24]. The secular equation decomposes into several quadratic, and
two linear equations for eigenvalues. For any fixed value of quantum number N, the eigenvalue of
the operator N2 equals N(N + 1), and the energy level pattern consists of 2(2N + 1) quantum energy
levels forming for α ∼ 0 and α ∼ π two well separated and almost degenerate energy bands consisting
of 2N + 1 energy levels each. Near the control parameter value α ∼ π/2, two nearly degenerate
energy bands also exist, but now the number of the energy levels in these bands is different: the
upper-in-energy band consists of 2N + 2 quantum levels, while the lower-in-energy band consists of
2N levels. Schematic representation of the quantum energy level pattern for the Hamiltonian (1) is
shown in fig. 1 in the form of correlation diagram relating α = 0, π/2, π limiting cases.

21

The two bands at the α = 0 and α = π endpoints correspond to the uncoupled system, and the2

global evolution of the pattern of energy levels under the variation of α between α = 0 and α = π can3
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Figure 1. Correlation diagram connecting two uncoupled limits (left and right ends) and coupled limit
(middle) for the spectrum of quantum Hamiltonian (1). Eigenstates that remain in the same energy
band are called “bulk”, and represented by blue or green color depending on the principal contribution
to the eigenfunction beeing by the |S1 = 1/2, N1〉 or |S1 = −1/2, N1〉, respectively. Eigenstates that
change the energy band when control parameter is varied are called “edge”, and are shown in red.

be interpreted as crossover of the band structure going through the intermediate system with coupled4

spin and orbital momentum at α ∼ π/2. The two bands near α = π/2 are characterized by the total5

angular momentum quantum number J = N + 1/2 and J = N − 1/2.6

As can be seen in fig. 1, the rearrangement of the energy levels between the energy bands is7

associated with the transition of two quantum levels with J1 = N + 1/2 and J1 = −N − 1/2. To see8

the topological origin of the rearrangement phenomenon, we construct the semi-quantum model by9

replacing slow quantum operators by classical variables. In the basis of |S1 = ± 1
2 〉 functions, this10

results in the 2× 2 Hermitian matrix11

Hsemi−q =

(
1
2 cos α + 1

2 sin αN1
1
2 sin αN−

1
2 sin αN+ − 1

2 cos α− 1
2 sin αN1

)
(2)

The eigenvalues of the above semi-quantum matrix Hamiltonian become degenerate at the12

isolated points of the three-dimensional space {P, α}, where P is the two-dimensional classical phase13

space for slow subsystem and α is the control parameter. More specifically, P is a two-dimensional14

sphere S2, defined by N2
1 + N2

2 + N2
3 = N2.15

The complex eigenfunctions of semi-quantum Hamiltonian (2) form a rank-two fiber bundle which16

can be decomposed into two line eigenbundles if the eigenvalues are not degenerate. The degeneracy17

of two eigenvalues of semi-quantum Hamiltonian occurs at isolated points of the three-dimensional18

base space (P, α): {N1 = N, N2 = N3 = 0, α = π/4} and {N1 = −N, N2 = N3 = 0, t = 3π/4}.19

These line eigenbundles can be characterized topologically in two slightly different ways. We20

can consider eigenbundle defined on the closed regular spherical surface in the three-dimensional21

{P, α} space surrounding the degeneracy point {Pdeg, αdeg} of the semi-quantum eigenvalues. We22

denote this bundle ∆k(Pdeg, αdeg). Its construction reproduces the one suggested by Simon [32] and23

used by Mead [20] and Avron et al [7,8]. Alternatively, we can consider the fiber bundle with the base24

space being the classical phase space P of the slow subsystem for fixed value of control parameter α.25

When there is no degeneracy of eigenvalues, each line eigenbundle is characterized by the first Chern26

class c1. We denote such eigenbundle by Λk(α). The topological invariant c1 for Λk(α) is a piece-wise27

constant function of control parameter α which is not defined for the special parameter values α = αdeg28

corresponding to the degeneracies of the semi-quantum eigenvalues. The topological invariant c1 of29

the ∆k(Pdeg, αdeg) bundle plays the role of “δ-Chern” for the c1 invariant for the Λk(α) bundle. It gives30

the jump of c1(Λk(α)) that occurs when the control parameter α passes the special isolated values αdeg31

corresponding to the degeneracy of semi-quantum eigenvalues (we assume for simplicity that there is32
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Figure 2. Schematic representation of (P, α) space near one degeneracy point of eigenvalues of
semi-quantum Hamiltonian corresponding to isolated value of control parameter α = αdeg = 0.
Yellow sphere surrounds isolated degeneracy point and allows to calculate the topological invariant for
∆k(αdeg) bundle associated with degeneracy point (Pdeg, αdeg = 0) (red point in the center) and related
to the number of redistributed energy levels for corresponding quantum problem. (p.q) subspaces for
fixed α 6= 0 are the base spaces for Λk(α) bundles.

only one degeneracy point (Pdeg, αdeg) for any αdeg) [11,12,15,16]. The base spaces of ∆ and Λ bundles33

are represented schematically in figure 2.34

It is important to note that topological invariants c1(∆k) for the semi-quantum version of35

Hamiltonian (1) are well defined (over the sphere surrounding the degeneracy point) regardless36

on whether the slow classical phase space P is compact or not [16]. On the other hand, c1(Λk) can37

be defined for any 0 ≤ α 6= π/2± π/4 ≤ 1 because the classical phase space for slow variables is38

compact. Only formal Chern numbers can be used for problems with non-compact space of slow39

variables [14,17].40

Comparing the topological modifications of the semi-quantum eigenfunction bundles to the41

evolution of the energy spectrum of the parent quantum system, we find that the number of42

redistributed quantum energy levels equals (with appropriate choice of the sign) the Chern numbers43

c1(∆k(Pdeg, αdeg)) associated to the corresponding degeneracy point of the semi-quantum eigenvalues.44

Figure 3 illustrates schematically the rearrangement of the set of basis functions describing the two45

bands of the spin- 1
2 axially symmetric model system. The basis functions are classified according to46

their axial symmetry and describe the “edge” states (with J1 = ±(J + 1/2)) belonging to different47

bands at various values of control parameter and “bulk” states (with −J + 1/2 ≤ J1 ≤ J − 1/2)48

belonging to the same band at all different regular values of control parameter. The most simple49

generic qualitative modification of the energy bands in the slow-fast system with one slow degree of50

freedom consists in the jump of the first Chern class δc1 = ±1 of the semi-quantum system and in the51

redistribution of the single quantum level between two energy bands in the corresponding quantum52

system1. For S = 1/2, the model Hamiltonian (1) has two degeneracy points of semi-quantum53

eigenvalues occurring at the north and south poles of the classical phase space P = S2 (which we54

denote by (+) and (−) respectively) at two different isolated values of control parameter. The55

associated redistribution of the edge energy levels is represented in fig. 3 as the modification of the56

set of basis functions associated with each band under the control parameter variation. Extension to57

arbitrary spin S > 1
2 does not change the number of degeneracy points of Hamiltonian (1) but results58

in more complicated simultaneous degeneracy of all 2S + 1 bands. Splitting the basis set into the edge59

1 In the case of additional symmetries, the concepts of local delta-Chern and of the orbit of degeneracy points should be
properly introduced and applied [15,16].
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Figure 3. Schematic representation of band structure inversion for Hamiltonian (1) with S = 1/2
realized in two steps with intermediate formation of coupled basis with J = N ± 1/2.

Figure 4. Schematic representation of band structure inversion for Hamiltonian (1) with S=3/2 realized
in two steps with intermediate formation of coupled basis with J = N ± 3/2, N ± 1/2.

and bulk states for the case of S = 3
2 is represented in fig. 4. From this figure, we can derive easily60

the number of lost/gained energy levels for each of the 2S + 1 bands of the system after the critical61

control parameter value associated with the isolated degeneracy is crossed. For the band attributed in62

the uncoupled limit to a particular fixed value of k = S1, the number of the lost/gained levels equals63

(depending on the direction of the assumed control parameter evolution) ±2 S1. At the same time, this64

number equals (to a sign convention) the first Chern number c1(∆k(Pdeg, αdeg)) of the corresponding65

line eigenbundle component defined over the 2-sphere surrounding the degeneracy point (Pdeg, αdeg)66

(yellow sphere in fig. 2. surrounfing the red point.).67

The above discussion summarizes briefly the principal results of the qualitative analysis of68

complex generic Hamiltonians describing quantum systems formed by fast subsystem (of several69

quantum states) and slow subsystem (with one degree of freedom) and depending on one control70

parameter. This analysis can be regarded as a dynamic realization [24] of the geometric phase setup by71

Berry [9]. In the present paper we want to formulate the generalization of this dynamic construction72

for the non-Abelian geometric phase setup of Mead [20] and Avron et al [7,8].73

The basic physical idea behind this generalization is to study qualitative modifications of the74

energy band spectrum in systems consisting of coupled fast and slow subsystems, but whose fast75

subsystem is characterized by half-integer spin and is invariant under spin reversal [19,34]. The76

invariance of the fast subsystem under the spin reversal is equivalent for the parametric model of77

Avron et al to time reversal invariance because there is no other dynamical variables. Spin reversal78

results in the so-called quaternionic form of the semi-quantum Hamiltonian with all eigenvalues being79

Kramers (doubly) degenerate [18,21]. Due to the Kramers degeneracy of the semi-quantum eigenvalues80

of the fast subsystem, we should treat the two components of the Kramers doublets together and81
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should analyze super-bands or doublet-bands rather than simple bands. The codimension of the82

degeneracy of two Kramers-degenerate pairs of eigenvalues of generic quaternionic semi-quantum83

Hamiltonians is five. Consequently, the generic qualitative modification of the band structure in84

quaternionic dynamical systems can occur if such systems possess two slow degrees of freedom85

providing four dynamical variables in addition to one formal control parameter. In such a case, under86

variation of the formal control parameter, an isolated degeneracy point of two Kramers-degenerate87

doublets can be formed generically and can be associated with the redistribution of energy levels88

between superbands in the quantum version of the same system. Due to the double degeneracy of all89

quaternionic semi-quantum eigenvalues, the fibre bundles formed by the respective eigenfunctions90

are generically (in the absence of additional degeneracies of eigenvalues) of rank two, and should be91

characterized by the second Chern class c2 [23].92

The qualitative analysis of corresponding quantum Hamiltonians shows that the formation93

of isolated degeneracy points of semi-quantum eigenvalues corresponds to the rearrangement of94

energy levels between superbands. In the most trivial generic situation, this rearrangement involves95

the transfer of one quantum energy level. Conjecturally, the number of quantum levels which are96

redistributed under the variation of control parameter α across the degeneracy point αdeg to/from97

the k-th band in the spectrum of the quantum quaternionic Hamiltonian corresponds to the second98

Chern class c2(∆k(αdeg)) computed for the corresponding semi-quantum Hamiltonian. We confirm99

this conjecture on the examples below.100

We begin by choosing the slow and fast dynamic variables needed to construct our model101

quantum Hamiltonian. The fast subsystem is described by spin operators (S1, S2, S3) = S with fixed102

value of S2 = S(S + 1). We take S = 3/2 to model the simplest interesting situation with redistribution103

of quantum energy levels between two Kramers doublets (two superbands). The slow subsystem is104

described by angular momentum operators X = (X1, X2, X3) and Y = (Y1, Y2, Y3) with fixed norms105

X2 = X(X + 1), Y2 = Y(Y + 1). These angular momenta commute with each other and with spin S.106

The Hamiltonian is supposed (by construction) to be invariant with respect to the weighted action of107

the SO(2) group. The action on dynamic variables ωS : ωX : ωY = 1 : 1 : 2 is given as follows2
108

R(ϕ) (S1, S+, S−)→ (S1, exp(iϕ)S+, exp(−iϕ)S−) , (3)

R(ϕ) (X1, X+, X−)→ (X1, exp(iϕ)X+, exp(−iϕ)X−) , (4)

R(ϕ) (Y1, Y+, Y−)→ (Y1, exp(2iϕ)Y+, exp(−2iϕ)Y−) , (5)

where we use the notation A± = A2 ± A3 for A = S, X, Y.109

Due to presence of this weighted SO(2) symmetry, there exists the integral of motion110

j1 = S1 + X1 + 2 Y1. (6)

Another a priori symmetry requirement is the invariance with respect to the inversion of the sign of111

the S components. We denote this operation, which acts only on spin, by TS112

TSS = −S, TSX = X, TSY = Y. (7)

The invariance with respect to TS implies that the Hamiltonian should be of even degree (at least113

quadratic) in Sk.114

In what follows we consider S to be half-integer and X, Y to be integer and satisfying X, Y � S.115

This requirement is based on the assumption that S describes fast quantum subsystem, whereas X and116

Y describe the slow classical subsystem.117

2 Note that weighted action 1 :1 : (−2) which will be mentioned below leads to slightly different results.
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2.1. Quantum model Hamiltonian118

In order to generalize Hamiltonian (1) to describe systems with two slow degrees of freedom,119

half-integer spin S, and Kramers degeneracy for semi-quantrum eigenvalues, we consider the following120

low-degree contributions invariant with respect to SO(2) and TS symmetry.121

The terms which are diagonal in S1 include the traceless term122

S2
1 − S2/3, (8a)

which describes splitting of the entire set of basis functions into subsets with |S1| = 1
2 , 3

2 , . . .. This
term replaces the first term in (1), but contrary to its predecessor, it is invariant with respect to both TS
and complete time reversal. When this term is dominant (and all other contributions are negligible),
there exist well-separated superbands characterized by |S1|. For S = 3/2 there are two superbands
with S1 = ± 3

2 and S1 = ± 1
2 . Inversion of the sign of (8a) results in the crossover (inversion of energy)

of the superband spectrum. The two other diagonal terms

X1(S2
1 − S2/3) and Y1(S2

1 − S2/3) (8b)

represent the diagonal part of the spin-orbital interaction. They are invariant only with respect to TS.123

The contributions which are non-diagonal in S1 include

X± (S1S∓ + S∓S1) and Y±S2
∓. (8c)

Like (8b), these terms are Ts-invariant, but they are not invariant with respect to the complete time124

reversal. Note that transformation properties of dynamical variables under SO(2) symmetry group125

SO(2) irrep 0 ±1 ±2
Terms S1, X1, Y1 S±, X± S2

±, Y±
(9)

mean that the first of (8c) terms represents the 1:1 resonance between the fast spin subsystem and126

slow X-subsystem, while the second term in (8c) corresponds to the 1:2 resonance of spin and Y127

subsystem. It follows that by construction, any combination of (8c) represents the 1:1:2 fast-slow128

resonance. Further observe that the presence of the anticommutator S1S∓ + S∓S1 results in the zero129

value of the non-diagonal block 〈S1 = ± 1
2 |...|S1 = ∓ 1

2 〉. This is required for the semi-quantum matrix130

to be quaternionic.131

Collecting all terms in (8), the quantum Hamiltonian takes the following form132

Hq = α

(
S2

1 −
S2

3

)
+ d1qX1

(
S2

1 −
S2

3

)
+ d2qY1

(
S2

1 −
S2

3

)
+ c1q (X+ (S1S− + S−S1) + X− (S1S+ + S+S1)) + c2q

(
Y+S2

− + Y−S2
+

)
(10)

with real coefficients. The coefficients ciq, diq are supposed to be fixed, whereas α is considered a control133

parameter responsible for the crossover of the band structure.134

The eigenfunctions of the Hamiltonian (10) can be written as the superposition of the135

uncoupled-basis functions136

Ψn = ∑
mS ,mX ,mY

cmS ,mX ,mY |S, mS; X, mX ; Y, mY〉 . (11)

To be more concrete, we consider the case S = 3
2 . The Hamiltonian (10) has two obvious limits137

which correspond to α → ±∞. In each of these trivial limits, all energy levels are grouped into two138

superbands, one with positive energy, the other with negative energy. One superband includes all139

eigenstates with mS = ± 3
2 , while the other consists of the eigenstates with mS = ± 1

2 .140
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Figure 5. Schematic correlation diagram for the crossover of the superband energy level structure of
the spin- 3

2 system with Hamiltonian (10) as function of a single control parameter. The bulk states (blue
color) belong to the same superband for all values of the control parameter; the edge states (two shades
of red) change the superbands under the control parameter variation. The value of j1 is displayed for
each edge state.

2.2. Generating functions for numbers of states141

The number of states in the two superbands in both trivial limiting cases is the same but the142

distribution of eigenstates with respect to the integral j1 (6) is superband specific and depends on143

the value of the control parameter α. This means that when α is varied, an exchange of energy levels144

between the two superbands must take place.145

To characterize the redistribution of quantum energy levels between trivial limit superbands146

with different |S1| under the variation of the crossover control parameter, it is useful to construct the147

correlation diagram which takes into account the classification of quantum energy levels by the 1:1:2148

symmetry, i.e. by the conserved value of j1. We use for this purpose generating functions [27].149

The generating function for the number of states with the same value of j1 for the entire problem150

with arbitrary positive integer X, Y, and half-integer S is151

g1:1:2(t) =

(
1− t2S+1) (1− t2X+1) (1− t2(2Y+1)

)
(1− t)2(1− t2)

= ∑
n=0

Cntn. (12)

The coefficient Cn in the Taylor series expansion of the generating function gives the number of states152

with given j1 = n− (X + 2Y + S).153

In order to count the number of states with given j1 belonging separately to one of the superbands154

with given projection |S1| = σ (in the limit of α→ ±∞ where such superbands are well defined), we155

transform the generating function (12) into the following form156

g1σ :1:2(t) =

(
tS−σ + tS+σ

) (
1− t2X+1) (1− t2(2Y+1)

)
(1− t)(1− t2)

= ∑
n=0

Cn,σtn. (13)

The term Cn,σtn in the Taylor expansion of (13) means that among all basis functions (states) with157

j1 = n− (S + X + 2Y) there are Cn,σ functions (states) with S1 = ±σ.158

We consider the case of S = 3
2 (fig. 5) with two superbands in more detail. The energies of159

these superbands are inversed in the limits of α→ ±∞. In other words, when the control parameter160

α is varied from −∞ to +∞, the superband structure “crosses over”. This does not mean that all161

states of the upper band go down and all states of the lower band go up. Quite the opposite (fig. 5),162

similarly to the spin-orbit system with Hamiltonian (1)-(2), most of the states, called “bulk”, remain163
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X+2Y−S1−X−2Y−S

1 X+2Y+S1−X−2Y+S

1

j1

j 1

j1

Figure 6. Possible geometric representation of the number-of-state functions for the trivial (uncoupled)
superband over S2 × S2 slow space. Edge states are situated near the four vertices of the trapezoid. See
figure 9 for the detailed local representation in the regions surrounded by the red dash line.

within their superbands, while only a few states, called “edge”, need to be transferred between the164

superbands. Using generating function (13), we can obtain the explicit expressions for the number of165

the eigenfunctions |j1〉, which are exchanged in the crossover. For S = 3
2 , the difference of generating166

functions in the two limiting cases gives167 (
1 + t3 − t− t2) (1− t2X+1) (1− t2(2Y+1)

)
(1− t)(1− t2)

= 1− t4Y+2 − t2X+1 + t2X+3+4Y. (14)

The coefficient at tn gives the number of the edge quantum states with

j1 = n− jmax = n−
(
X + 2 Y +

3
2
)

and the direction of their redistribution. We conclude that during the crossover of the spin- 3
2 superband168

structure, four quantum states must be tranferred between the superbands. As illustrated in fig. 5, two169

quantum states with extremal values j1 = ±(X + 2Y + 3/2) move in one direction, while two other170

states with j1 = ±(X− 2Y− 1/2) go in the opposite direction.3171

Consider now the total number n(k) of the slow subsystem basis wavefunctions |k(X1, Y1)〉which172

are eigenfunctions of K = X1 + 2 Y1, the momentum of the slow 1:2-resonant SO(2) symmetry, with173

eigenvalue k, and the number nS1(j1) of slow-fast basis functions |S1〉 |k(X1, Y1)〉 for each spin basis174

component with S1 = −S,−S+ 1, . . . , S− 1, S as function of the integral of motion j1 in (6). We say175

that these functions give, respectively, the slow and the S1-specific slow-fast distributions of basis176

wavefunctions. Note that nS1(j1) follows from n(k) after a trivial linear shift of its argument k by177

S1, so that nS1(j1) = nS′1
(j1 + S′1 − S1). Quantum distribution n(k) is a piecewise function which178

3 The correlation diagram does not reproduce the order (as function of α) in which quantum levels are redistributed between
limiting cases.
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combines a linear staircase-function and, depending on the relative values of X and 2 Y, a step-function179

or a constant function [27]. In the classical limit of large X and Y, we can ignore the h̄-small steps180

and approxiamte the distribution n(k) by the Duistermaat-Heckman diagram [10] representing the181

volume of the reduced slow phase space Pk as function of the value k of momentum K. By the182

Duistermaat-Heckman theorem, since the total slow phase space P = S2×S2 and the reduced spaces183

Pk are of respective dimensions 4 and 2, this diagram is piece-wise linear, and it can be further argued,184

that in our case, it is symmetric with respect to k→ −k, and has the form of a trapezoid. Shifting for185

each S1 components as shown in fig. 6, we obtain similar diagrams nS1(j1) for each S1 component186

of each superband |S1|. In particular, it can be seen that the number-of-state function for superband187

|S1| is a sum of two distriburions n±|S1|(j1), which are shifted one with respect to another by 2 |S1|. It188

becomes clear that the difference in the number-of-state function for different superbands is localized189

in the four regions near j1 values corresponding to the vertices of the diagram with |S1| = 1
2 . In order190

to visualize better the number-of-state function for superbands, we join the distributions n±|S1|(j1)191

in two alternative graphical ways, as depicted in fig. 6, middle and bottom, where the parts that are192

important to further analysis are marked by red dashed circles.193

Before going further into the local analysis of the number-of-states functions in the case of arbitrary194

S, we like return to the quantum system with S = 3/2. According to our general conjecture, the195

distribution of energy levels between energy (super)bands can be realized at control parameter values196

associated with the formation of degeneracy points between the eigenvalues of the semi-quantum197

version of the quantum Hamiltonian. The latter is obtained from (10) by replacing angular momentum198

operators X̂ and Ŷ by their classical analogs and computing matrix elements of the spin operators in199

the basis {|S1 = 3/2〉, |S1 = −3/2〉, |S1 = −1/2〉, |S1 = 1/2〉}. We obtain the 4×4 matrix200 
α + d1qX1 + d2qY1 0 c2q

√
6 Y− c1q 2

√
3 X−

0 α + d1qX1 + d2qY1 −c1q 2
√

3 X+ c2q
√

6 Y+

c2q
√

6 Y+ −c1q 2
√

3 X− −α− d1qX1 − d2qY1 0
c1q 2
√

3 X+ c2q
√

6 Y− 0 −α− d1qX1 − d2qY1

 , (15)

where X1, X±, Y1, Y± are components of classical angular momenta, d1q, d2,q, c1q.c2q are fixed real201

phenomenological coefficients of model Hamiltonian (10) and α is a control parameter. Rewriting this202

matrix in a more symbolic form203 
t 0 a + ib c + id
0 t −c + id a− ib

a− ib −c− id −t 0
c− id a + ib 0 −t

 , (16)

we can see that it is of the typical quaternionic form with real coefficients a, b, c, d, t and consequently,204

the semi-quantum Hamiltonian (16) has two doubly degenerate eigenvalues. These eigenvalues205

depend on five parameters, which include four dynamical parameters being local coordinates on the206

slow classical phase space P = S2× S2, and one formal parameter α describing the crossover of the207

superband structure. Their isolated degeneracies can be easily found because they are associated with208

fixed points (critical orbits) of the SO(2) group action on P.209

The action of the 1:2 weighted SO(2) symmetry group on the slow classical phase space S2 × S2
210

R(ϕ) (θX , φX , θY, φY))→ (θX , φX + ϕ, θY, φY + 2ϕ) , (17)
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Figure 7. Spectrum of Hamiltonian (10) computed numerically as function of control parameter α

for X = Y = 5, S = 3/2, d1q = 1/5, d2q = 2/5. The choice of c1q, c2q coefficients influences internal
structure of superbands and is not important for analysis of the redistribution. Four edge states
are shown by red color. 480 bulk states are marked by three different colors depending on j1 value.
Eigenvalues of the semi-quantum version of (10) are represented by shaded areas, and empty circles
mark semi-quantum energies for critical orbits (18a)-(18b).

expressed here in terms of spherical coordinates on each of the S2 factors in S2 × S2, has four isolated211

critical one-point orbits, the poles at which X1 = ±X and Y1 = ±Y, and which can be denoted212

accordingly as (++), (+−), (−+), and (−−).213

(++) : (X1 = X, Y1 = Y); (−−) : (X1 = −X, Y1 = −Y); (18a)

(+−) : (X1 = X, Y1 = −Y); (−+) : (X1 = −X, Y1 = Y). (18b)

Four values of control parameter α at which degeneracy points of semi-quantum version of quantum
Hamiltonian (10) occur are

αdeg = ±
(
d1qX± d2qY

)
,

Each of the four conical degeneracy points is associated with the transfer of a single quantum level214

between the two superbands. This is illustrated by the results of the direct numerical calculation for a215

concrete example of quantum Hamiltonian (10) in fig. 7.216

2217

In this particular numerical example, conical semi-quantum eigenvalue degeneracies at points218

(++) and (−−) (18a) occur at α = −3 and α = 3, respectively, and are associated with the transfer of219

single states |J1 = X + 2Y + 3/2〉 and |J1 = −X− 2Y− 3/2〉 in the same direction (upwards when α220

increases), while degeneracies at points (−+) and (+−) (18b) occur at α = 1 and α = −1 (see fig. 7),221

and are associated with the transfer of states |J1 = ∓(X− 2Y− 1/2)〉 in the opposite direction. Four222
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states changing superbands under control parameter variation are named edge in fig. 7 and marked by223

two shades of red. In order to visualize better internal structure of superbands formed by 480 bulk224

states, three different colors are used to represent bulk states depending on their j1 value. Note that225

the internal structure of superbands strongly depends on the numerical values of ciq but we do not226

discuss it in this paper devoted to redistribution phenomenon.227

We conclude that the crossover of the trivial limit (uncoupled) band structure of (10), which takes228

place when we make α vary between −∞ and +∞ (or, in the concrete example in fig. 7, from α� −3229

to α� 3), engages four elementary one-state transfers, each localized at a different point in the total230

control parameter space (cf. the red point in fig. 2), i.e., a different pole of S2×S2 and a different isolated231

critical value of α. It follows that a universal description of such phenomena is intrinsically local. We232

turn to such local analysis in the next section.233

3. Local spin-oscillator approximation and large-spin systems234

The local approximation of quantum Hamiltonians (1) and (10) near one of the degeneracy235

points of the eigenvalues of their semi-quantum forms leads to a class of systems which can be236

named spin-oscillators [1,25]. In the particular case of (10), its local approximations represent a “fast”237

half-integer spin subsystem coupled to a “slow” two-dimensional oscillator in resonances 1:(±1):(±2)238

or 1:(±1):(∓2). Specifically, this quaternionic spin-oscillator is described by Hamiltonian239

Hlocal
q = α

(
S2

1 −
S2

3

)
+ c1q

(
a†

X (S1S∓ + S∓S1) + aX (S1S± + S±S1)
)

+ c2q

(
a†

YS2
∓ + aYS2

±

)
, (19)

where aX and aY are annihilation operators of the two-dimensional harmonic oscillator, which replace240

angular momentum operators X− or X+ and Y− or Y+ in (10), respectively, depending on which of the241

four poles in (18) is taken as the origin of the linearization [16]. The system has the flat slow phase242

space Plocal = R4 with symplectic coordiantes {qX , pX , qY, pY} which is the tangent space to S2×S2 at243

the chosen pole. The latter maps to the origin of Plocal.244

The so obtained dynamical system with Hamiltonian (19) can be also regarded as a particular245

(quaternionic) realization of the two-dimensional Dirac oscillator [16,22], which is invariant with246

regard to the specific weighted (resonant) diagonal action of the dynamical symmetry group SO(2)247

on subspaces associated with dynamical variables S, {aX, a†
X}, and {aY, a†

Y}. The two cases with248

weights 1:1:2 and 1:1:(−2) are essentially different. Since Plocal is not compact, the spectrum of (19) is249

unbounded. As the control parameter, we retain the diagonal parameter α. Its variation corresponds250

to the crossover of the trivial superband structure and is associated with the transfer of energy levels251

between energy superbands in the neighborhood of α = 0.252

Due to the invariance of (19) under spin-inversion (7), all eigenvalues of its semi-quantum form
are double degenerate, i.e., they constitute Kramers doublets. At the point α = 0, q = 0, p = 0 (cf.
fig. 2), all semi-quantum eigenvalues become degenerate. For half integer S > 3

2 , this means that the
qualitative phenomenon of the redistribution of energy levels is not elementary, and therefore—not
generic. Nevertheless, it is possible to calculate the number of quantum energy levels, which should
be transferred between the superbands by using the correlation diagram relating the α→ ±∞ limits of
the entire band structure. This can be done for each super-band directly by comparing the distributions
of states over the values of momentum

jlocal
1 = S1 + IX ± 2 IY

of the SO(2) action, where IX and IY are actions of the X and Y oscillators, respectively, and the ± sign253

refers to two qualitatively different spin-oscillator resonances..254
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Figure 8. Schematic representation of the redistribution of surplus states between the superbands
during the crossover of the band structure for the local model with Hamiltonian (19) and S = 7/2 in
case of resonance 1:1:2. For each superband, surplus states are shown by red filled circles and arranged
by the value of j1. The whole set of surplus and bulk states for the S = 7/2 system is represented in
figure 9, left.

As can be seen in fig. 6, the structure of the trivial (uncoupled) limit superbands depends only255

on |S1| ≤ S and not on spin S itself. We compute the number of quantum states transferred between256

the energy superbands during the crossover of the trivial limit band structure. This can be done257

for an arbitrary S > 1
2 , if we first compare all superbands with |S1| > 1

2 to the superband |S1| = 1
2258

with minimal number of states for each j1-value of the integral of motion. This comparison gives the259

distribution over j1 of the number of surplus states in superband |S1| (see fig. 8), i.e., states, which do260

not find counterparts in the superband |S1| = 1
2 . Manipulation with generating functions [27] allows to261

obtain an explicit expression for the number of surplus states with given jlocal
1 for each superband with262

given |S1|. The same expression can be deduced directly from fig. 9, where the surplus states of the263

1:1:2 spin-oscillator (left column) and missing states of the 1:1:(−2) spin-oscillator (right column) are264

marked by filled and empty red circles, respectively. Thus the surplus state of the 1:1:2 Dirac oscillator265

approximating Hamiltonian (10) with spin- 3
2 near the pole (++) has extremal value of |jlocal

1 |.266

The number of surplus states in the superband for |S1| = 1
2 , 3

2 , . . . , S− 1, S is267

N1:1:2
edge(|S1|) =

1
2

(
|S1| −

1
2

)(
|S1|+

1
2

)
(20)

In the inverted energy limit, after the crossover, the superband with |S1| connects to the superband268

with |S1| = S− |S1|+ 1
2 and the number of the surplus states becomes269

N1:1:2
edge(|S− S1 +

1
2
|) = 1

2
(S− |S1|)(S− |S1|+ 1). (21)

The difference in the number of surplus states for the two superbands connected in the crossover270

gives the number of edge states which are lost/gained by the superband during the rearrangement271

of the band structure. Even though the corresponding isolated degeneracy point of semi-quantum272

eigenvalues at (q, p) = 0 is highly non-generic for large spins S > 3
2 this works correctly. Figure 8273

illustrates rearrangement of surplus states during the crossover of superband structure for S = 7/2.274

According to our general conjecture, which was already used for the C-systems in [16,24], and275

which we expect to apply to the H-systems as well, the number of gained/lost quantum levels,276

or the spectral flow, equals the Chern number calculated for the ∆-eigenbundle over the closed277

surface surrounding the degeneracy point in the full parametric space whose coordinates include slow278

dynamical variables and formal control parameter. Figure 2, which illustrates the model C-system279

Hamiltonian (1) of [24], can also represent the full parameter space of the quaternionic Hamiltonian280

(10) with two slow degrees of freedom or of its local approximations (19). To that end, it is sufficient281
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Figure 9. Representation of basis sets for quaternionic high-spin local models. Surplus states for 1 : 1 : 2
Dirac oscillator (left subfigure) are shown by fill red circles. For 1 : 1 : (−2) model (right subfigure) the
holes are shown by empty red circles. The representation for |S1|-superband is valid for any S ≥ |S1|.
The vertical axis for each superband can be labeled as (IY + 1/2) sign(−S1).
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to imagine that the {q, p} planes in figure 2 are four dimensional (two degrees of freedom) and the282

sphere surrounding the isolated degeneracy point at 0 is S4.283

For any spin S > 1
2 , the spectral flow equals the difference between the number (20) of surplus284

states in the trivial limit superband and the number (21) of such states in the reciprocal superband, to285

which a given superband is connected by the crossover. This spectral flow depends on both S and |S1|,286

and its general expression reproduces exactly that for the second Chern class287

c2(S, |S1|) = vS

(vS
2
− |S1|

)
, (22)

with vS = (2S + 1)/2 the number of superbands, calculated in [8,31] for the parametric288

spin-quadrupole system, which we used as the initial point of our dynamical construction. The289

appearence of the second Chern class (22) as the topological invariant of the model quaternionic290

systems with Hamiltonians (10) and (19) comes naturally because their semi-quantum energies are291

double degenerate (form Kramers pairs) everywhere, and the corresponding eigenbundles have rank292

two.293

Figure 9 presents another illustration of the above results. It shows the distriburtion of both294

edge (surplus) and bulk states for superbands with S = 7/2. In this figure, the set of uncoupled295

spin-oscillator basis functions |S1, IX, IY〉, with S1 = −S,−S + 1, . . . , S, IX = 0, 1, 2 . . ., and IY =296

0, 1, 2, . . . is represented for each superband |S1| in the form of a lattice in coordinates {S1 + IX ±297

2IY, (IY + 1/2) · sign(−S1)}. This figure allows to compare resonances 1 : 1 : 2 and 1 : 1 : (−2) which298

correspond to two diferent types of degeneracies of semi-quantum eigenvalues. As we have seen in299

sec. 2 and fig. 7, both types appear in the example system with Hamiltonian (10) and compact slow300

classical phase space P = S2 × S2. To see the similarity between the 1:1:(±2) resonances, it is sufficient301

to replace the concept of “surplus states” by “missing states” or “holes”. This modifies the direction302

of redistribution while keeping the number of redistributed states (more details will be discussed303

separately [29]).304

Figure 6 represents graphically the way how local figures for spin-oscillators fit within the global305

representation of the number of state functions for the superbands for quaternionic model with the306

slow phase space S2 × S2. Two regions surrounded by red dash lines in the central subfigure of fig. 6307

correspond to local lattices represented in fig. 9, left. In these regions, the superbands with |S1| > 1/2308

have surplus states shown by red dots in figure 9, left. In a similar way, two fragments surrounded309

by red dash lines in the bottom part of fig. 6 correspond to lattices for the local 1 : 1 : (−2)-resonant310

oscillator models in fig. 9, right. They indicate that the number-of-states distribution of the superbands311

with |S1| = 1/2 and |S1| > 1/2 differ in the absence of certain states (or the presence of missing states,312

which we call “holes”) for |S1| > 1/2. The latter are represented by red empty circles in fig. 9, right.313

The interpretations of the redistribution of quantum states between superbands in terms of surplus314

states and in terms of holes are complementary. In fact, the replacement of surplus states by holes315

corresponds to the inverion of the direction of redistribution.316

4. Conclusion317

Our main result in this paper is the demonstration of the topological origin of the rearrangement318

of energy levels between the superbands of quaternionic slow-fast dynamical systems. Such systems319

comprise a fast subsystem with one degree of freedom (spin) and a slow subsystem with two degrees of320

freedom, and provide the dynamical realization of the model by Avron et al [7,8] which generalizes the321

geometric phase setup of Berry [9,35] to the non-Abelian geometric phase. We constructed our example322

dynamical system with Hamiltonian (10) as a quaternionic generalization of our initial example (1) in323

[24] which was introduced as a dynamical analog of the original complex parametric Berry Hamiltonian324

in [9]. The one-parameter family of Hamiltonians (10) describes the generic qualitative phenomenon325

consisting in redistribution of energy levels between doubly degenerate Kramers superbands. We326

demonstrate the correspondence between the number of redistributed energy levels and the second327
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Chern class for the eigenbundle of the corresponding semi-quantum Hamiltonian. The most simple328

elementary qualitative phenomenon for quaternionic Hamiltonians with two slow degrees of freedom,329

the minimal fast subsystem with two Kramers doublets, and with one additional general control330

parameter corresponds to the transfer of a single quantum level between two quantum superbands.331

This transition is associated with the formation of the degeneracy point (Pdeg, αdeg) of the eigenvalues332

of the semi-quantum Hamiltonian. The latter form eigenbundles ∆k(Pdeg, αdeg) with k = 1, 2 over333

the sphere S4 surrounding the degeneracy point in the total 5-dimensional parameter space of the334

semi-quantum system. The bundles ∆k are characterized by the second Chern class c2 = ±1. A335

more detailed and systematic analysis of the model Hamiltonians, which describe such qualitative336

modifications of the superband structure, will be given in a separate publication [29] within the337

framework of constructing dynamical analogs of the complex (C) geometric phase setup by Berry, its338

generalizations to the quaternionic non-Abelian case (H), and its restriction to the real (R) systems, all339

inspired by the R−C−H trinity concept in [3].340
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