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Abstract: We generalize the dynamical analog of the Berry geometric phase setup to the quaternionic
model of Avron et al. In our dynamical quaternionic system, the fast half-integer spin subsystem
interacts with a slow two-degrees-of-freedom subsystem. The model is invariant under the 1:1:2
weighted SO(2) symmetry and spin inversion. There is one formal control parameter in addition to
four dynamical variables of the slow subsystem. We demonstrate that the most elementary qualitative
phenomenon associated with the rearrangement of the energy super-bands of our model consists
of the rearrangement of one energy level between two energy superbands which takes place when
the formal control parameter takes the special isolated value associated with the conical degeneracy
of the semi-quantum eigenvalues. This qualitative phenomenon is of the topological origin, and is
characterized by the second Chern class of the associated semi-quantum system. The correspondence
between the number of redistributed energy levels and the second Chern number is confirmed
through a series of examples.
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1. Introduction

Parametric quantum dynamical systems exibit many different qualitative modifications under
variation of their control parameters. Our purpose is to study qualitative modifications occurring in
simple (molecular) quantum systems possessing slow and fast dunamical variables and one control
parameter. The first step in this direction was the analysis of model Hamiltonians describing one “slow”
degree of freedom (rotation) and several “fast” quantum states (vibrations) and depending on one
control parameter [24] . This model exibits a typical qualitative phenomenon, namely, the redistribution
of energy levels between energy bands under the variation of the control parameter. The redistribution
is associated with the formation of the isolated degeneracy point between the eigenvalues of the
semi-quantum Hamiltonian which treats fast and slow variables as quantum and classical, respectively.
(For molecular applications of semi-quantum approach see [11,13,26,28,30,36].) The semi-quantum
Hamiltonian takes the form of an Hermitian N x N matrix, with N being the number of fast quantum
states taken into account, and the matrix elements being functions of the slow variables, defined
over the slow classical phase space. Since the codimension of the degeneracy points of Hermitian
matrices depending on parameters is three [2,33], the degeneracies of semi-quantum eigenvalues in
systems with one slow degree of freedom (two dynamical parameters) and one control parameter
occur generically at isolated points. It follows that the above elementary qualitative phenomenon is the
dynamic version of the geometric phase setup by Berry [9,35]. The phenomenon is of topological origin
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and is characterized by the topological invariant [32], the first Chern class c; of the corresponding fiber
bundle, with the number of redistributed energy levels being related to the topological invariants of
the introduced fiber bundles [11,12,15,16].

Soon after Michael Berry formulated his geometrical phase concept in [9], its generalization to
parametric problem with half-integer spin possessing Kramers degeneracies due to the time-reversal
invariance was formulated by Mead [20] and Avron et al [7,8]. The corresponding model Hamiltonian
can be considered as a quaternionic generalization of complex Hermitian parametric Berry Hamiltonian.
The construction of the dynamic quaternionic model and its analysis from the point of view of our
qualitative approach treating fast (half-integer spin) states as quantum and slow dynamic variables as
classical is the subject of the present note.

Due to the Kramers degeneracy of fast quantum states, the eigenvalues of the semi-quantum
matrix are Kramers degenerate and the complete quantum system has degenerate bands, which we
call super-bands. The eigenvalues of the semi-quantum hyperhermitian quaternionic Hamiltonian have
codimension 5 degeneracies and consequently, the simplest model with qualitative modifications of
the super-band structure could appear for at least four fast states (two Kramers degenerate pairs),
a slow subsystem of two degrees of freedom (four classical variables), and one control parameter.
The topological invariant associated with the formation of the codimention-5 degeneracy is now the
second Chern class [31]. We conjecture again that this class corresponds to the number of quantum
energy levels redistributed between the super-bands under the variation of the control parameter. The
redistribution is associated with the specific isolated parameter value, for which two degenerate pairs
of semi-quantum eigenvalues form a degeneracy point.

Without going into strict mathematical details associated with the definition of the spectral flow in
the context of the Atiyah-Singer theorem [4-6] we show on concrete examples that typical qualitative
modifications of the (super)band structure can be interpreted in terms of the correspondence between
semi-quantum and quantum quaternionic Hamiltonians and allows to relate topological invariant
associated with formation of degeneracy point for semi-quantum model to the number of redistributed
quantum energy levels.

2. Model construction

We begin by reviewing the qualitative analysis of model Hamiltonians describing interaction
of two “fast” quantum states with one “slow” degree of freedom. The spin operators (51, Sz, S3)
with S? = 3/4 describe the fast subsystem. The slow subsystem is described by angular momentum
components (N7, Np, N3 ), satisfying N12 + sz + N32 = const. The operator form of the model quantum
Hamiltonian takes the form

H =cosa Sy +sina SN, 1)

where « is the control parameter, whose variation we restrict to the domain 0 < « < 7. Due to the
axial symmetry of the system, the quantum version of Hamiltonian (1) possesses explicit solutions for
eigenvalues and eigenfunctions [24]. The secular equation decomposes into several quadratic, and
two linear equations for eigenvalues. For any fixed value of quantum number N, the eigenvalue of
the operator N2 equals N(N + 1), and the energy level pattern consists of 2(2N + 1) quantum energy
levels forming for & ~ 0 and & ~ 7 two well separated and almost degenerate energy bands consisting
of 2N + 1 energy levels each. Near the control parameter value & ~ 71/2, two nearly degenerate
energy bands also exist, but now the number of the energy levels in these bands is different: the
upper-in-energy band consists of 2N + 2 quantum levels, while the lower-in-energy band consists of
2N levels. Schematic representation of the quantum energy level pattern for the Hamiltonian (1) is

shown in fig. 1 in the form of correlation diagram relating &« = 0, 7t/2, 7t limiting cases.
1 2

2 The two bands at the « = 0 and & = 7t endpoints correspond to the uncoupled system, and the
s global evolution of the pattern of energy levels under the variation of « between « = 0 and « = 77 can
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Figure 1. Correlation diagram connecting two uncoupled limits (left and right ends) and coupled limit
(middle) for the spectrum of quantum Hamiltonian (1). Eigenstates that remain in the same energy
band are called “bulk”, and represented by blue or green color depending on the principal contribution
to the eigenfunction beeing by the |S; = 1/2, Ny) or |S; = —1/2, Np), respectively. Eigenstates that
change the energy band when control parameter is varied are called “edge”, and are shown in red.

« be interpreted as crossover of the band structure going through the intermediate system with coupled
s spin and orbital momentum at & ~ 71/2. The two bands near a« = 71/2 are characterized by the total
s angular momentum quantum number | = N+1/2and ] = N —1/2.

7 As can be seen in fig. 1, the rearrangement of the energy levels between the energy bands is
s associated with the transition of two quantum levels with ; = N+1/2and J; = —N — 1/2. To see
» the topological origin of the rearrangement phenomenon, we construct the semi-quantum model by
10 replacing slow quantum operators by classical variables. In the basis of |S; = £1) functions, this
1 results in the 2 x 2 Hermitian matrix

% cosa + % sin aNp % sinaN_
Hsemifq = 1 .. N 1 1 . N (2)
5 sinaNy —5cosa — 5 sinaNp
12 The eigenvalues of the above semi-quantum matrix Hamiltonian become degenerate at the

s isolated points of the three-dimensional space {P, a }, where P is the two-dimensional classical phase
12 space for slow subsystem and « is the control parameter. More specifically, P is a two-dimensional
15 sphere S?, defined by N7 + N7 + N7 = N2,

16 The complex eigenfunctions of semi-quantum Hamiltonian (2) form a rank-two fiber bundle which
1z can be decomposed into two line eigenbundles if the eigenvalues are not degenerate. The degeneracy
e of two eigenvalues of semi-quantum Hamiltonian occurs at isolated points of the three-dimensional
10 base space (P,a): {N; = N,N, = N3 =0,a = /4} and {N; = —N,N; = N3 =0, = 37t/4}.

20 These line eigenbundles can be characterized topologically in two slightly different ways. We
-  can consider eigenbundle defined on the closed regular spherical surface in the three-dimensional
22 {P,a} space surrounding the degeneracy point {Pyeg, #deg } Of the semi-quantum eigenvalues. We
23 denote this bundle A (Pdeg, ‘Xdeg)- Its construction reproduces the one suggested by Simon [32] and
2a  used by Mead [20] and Avron et al [7,8]. Alternatively, we can consider the fiber bundle with the base
= space being the classical phase space P of the slow subsystem for fixed value of control parameter a.
2 When there is no degeneracy of eigenvalues, each line eigenbundle is characterized by the first Chern
2z class c1. We denote such eigenbundle by Ay (a). The topological invariant ¢; for Ag(«) is a piece-wise
2 constant function of control parameter « which is not defined for the special parameter values & = ageg
2 corresponding to the degeneracies of the semi-quantum eigenvalues. The topological invariant c; of
so  the Ap(Pyeg, @deg) bundle plays the role of “6-Chern” for the c; invariant for the Ay (a) bundle. It gives
s the jump of c1(Ag(a)) that occurs when the control parameter a passes the special isolated values ageg
52 corresponding to the degeneracy of semi-quantum eigenvalues (we assume for simplicity that there is
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Figure 2. Schematic representation of (P,«) space near one degeneracy point of eigenvalues of
semi-quantum Hamiltonian corresponding to isolated value of control parameter a = ageg = 0.
Yellow sphere surrounds isolated degeneracy point and allows to calculate the topological invariant for
Ak(“deg) bundle associated with degeneracy point (Pyeg, &deg = 0) (red point in the center) and related
to the number of redistributed energy levels for corresponding quantum problem. (p.q) subspaces for
fixed a # 0 are the base spaces for Ag(a) bundles.

53 only one degeneracy point (Peg, @deg) for any ageg) [11,12,15,16]. The base spaces of A and A bundles
s« are represented schematically in figure 2.

35 It is important to note that topological invariants c1(Ag) for the semi-quantum version of
s Hamiltonian (1) are well defined (over the sphere surrounding the degeneracy point) regardless
sz on whether the slow classical phase space P is compact or not [16]. On the other hand, c¢1(Ay) can
ss be defined for any 0 < a # 71/2 + 71/4 < 1 because the classical phase space for slow variables is
s compact. Only formal Chern numbers can be used for problems with non-compact space of slow
a0 variables [14,17].

@ Comparing the topological modifications of the semi-quantum eigenfunction bundles to the
.2 evolution of the energy spectrum of the parent quantum system, we find that the number of
a3 redistributed quantum energy levels equals (with appropriate choice of the sign) the Chern numbers
as  C1(Dk(Pyegs 2deg)) associated to the corresponding degeneracy point of the semi-quantum eigenvalues.
«s Figure 3 illustrates schematically the rearrangement of the set of basis functions describing the two
s bands of the spin- axially symmetric model system. The basis functions are classified according to
«z their axial symmetry and describe the “edge” states (with J; = (] + 1/2)) belonging to different
«s bands at various values of control parameter and “bulk” states (with —] +1/2 < J; < ] —-1/2)
s belonging to the same band at all different regular values of control parameter. The most simple
so generic qualitative modification of the energy bands in the slow-fast system with one slow degree of
51 freedom consists in the jump of the first Chern class dc; = £1 of the semi-quantum system and in the
sz redistribution of the single quantum level between two energy bands in the corresponding quantum
s system!. For S = 1/2, the model Hamiltonian (1) has two degeneracy points of semi-quantum
sa eigenvalues occurring at the north and south poles of the classical phase space P = S? (which we
ss denote by (+) and (—) respectively) at two different isolated values of control parameter. The
ss associated redistribution of the edge energy levels is represented in fig. 3 as the modification of the
sz set of basis functions associated with each band under the control parameter variation. Extension to
se arbitrary spin S > % does not change the number of degeneracy points of Hamiltonian (1) but results
so in more complicated simultaneous degeneracy of all 25 4 1 bands. Splitting the basis set into the edge

1 In the case of additional symmetries, the concepts of local delta-Chern and of the orbit of degeneracy points should be

properly introduced and applied [15,16].
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Figure 3. Schematic representation of band structure inversion for Hamiltonian (1) with S = 1/2
realized in two steps with intermediate formation of coupled basis with ] = N +1/2.
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Figure 4. Schematic representation of band structure inversion for Hamiltonian (1) with 5=3/2 realized
in two steps with intermediate formation of coupled basis with | = N £3/2, N +1/2.

e and bulk states for the case of S = 3 is represented in fig. 4. From this figure, we can derive easily
&1 the number of lost/gained energy levels for each of the 25 + 1 bands of the system after the critical
ez control parameter value associated with the isolated degeneracy is crossed. For the band attributed in
es the uncoupled limit to a particular fixed value of k = 51, the number of the lost/gained levels equals
es (depending on the direction of the assumed control parameter evolution) +2 S;. At the same time, this
s number equals (to a sign convention) the first Chern number c1 (Ay(Pgeg, ®deg)) Of the corresponding
ss line eigenbundle component defined over the 2-sphere surrounding the degeneracy point (Pyeg, Xdeg)
ez (yellow sphere in fig. 2. surrounfing the red point.).

o8 The above discussion summarizes briefly the principal results of the qualitative analysis of
e complex generic Hamiltonians describing quantum systems formed by fast subsystem (of several
70 quantum states) and slow subsystem (with one degree of freedom) and depending on one control
= parameter. This analysis can be regarded as a dynamic realization [24] of the geometric phase setup by
72 Berry [9]. In the present paper we want to formulate the generalization of this dynamic construction
73 for the non-Abelian geometric phase setup of Mead [20] and Avron et al [7,8].

74 The basic physical idea behind this generalization is to study qualitative modifications of the
7 energy band spectrum in systems consisting of coupled fast and slow subsystems, but whose fast
76 subsystem is characterized by half-integer spin and is invariant under spin reversal [19,34]. The
7z invariance of the fast subsystem under the spin reversal is equivalent for the parametric model of
s Avron et al to time reversal invariance because there is no other dynamical variables. Spin reversal
7o results in the so-called quaternionic form of the semi-quantum Hamiltonian with all eigenvalues being
so Kramers (doubly) degenerate [18,21]. Due to the Kramers degeneracy of the semi-quantum eigenvalues
a1 Of the fast subsystem, we should treat the two components of the Kramers doublets together and
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=2 should analyze super-bands or doublet-bands rather than simple bands. The codimension of the
es degeneracy of two Kramers-degenerate pairs of eigenvalues of generic quaternionic semi-quantum
e« Hamiltonians is five. Consequently, the generic qualitative modification of the band structure in
es quaternionic dynamical systems can occur if such systems possess two slow degrees of freedom
s providing four dynamical variables in addition to one formal control parameter. In such a case, under
ez variation of the formal control parameter, an isolated degeneracy point of two Kramers-degenerate
ss doublets can be formed generically and can be associated with the redistribution of energy levels
s between superbands in the quantum version of the same system. Due to the double degeneracy of all
s quaternionic semi-quantum eigenvalues, the fibre bundles formed by the respective eigenfunctions
o1 are generically (in the absence of additional degeneracies of eigenvalues) of rank two, and should be
o2 characterized by the second Chern class ¢, [23].

03 The qualitative analysis of corresponding quantum Hamiltonians shows that the formation
o« of isolated degeneracy points of semi-quantum eigenvalues corresponds to the rearrangement of
os energy levels between superbands. In the most trivial generic situation, this rearrangement involves
ss the transfer of one quantum energy level. Conjecturally, the number of quantum levels which are
o redistributed under the variation of control parameter a across the degeneracy point agey to/from
s the k-th band in the spectrum of the quantum quaternionic Hamiltonian corresponds to the second
oo Chern class ¢z (Ay(rgeg)) computed for the corresponding semi-quantum Hamiltonian. We confirm
w0  this conjecture on the examples below.

101 We begin by choosing the slow and fast dynamic variables needed to construct our model
102 quantum Hamiltonian. The fast subsystem is described by spin operators (S, S, S3) = S with fixed
103 value of S? = S(S +1). We take S = 3/2 to model the simplest interesting situation with redistribution
10a  Of quantum energy levels between two Kramers doublets (two superbands). The slow subsystem is
s described by angular momentum operators X = (X1, Xp, X3) and Y = (Y3, Y2, Y3) with fixed norms
we X2 = X(X+1),Y2=Y(Y +1). These angular momenta commute with each other and with spin S.
1z The Hamiltonian is supposed (by construction) to be invariant with respect to the weighted action of
105 the SO(2) group. The action on dynamic variables ws : wy : wy = 1:1: 2 is given as follows?

R(¢) (51,5+,5-) — (S1, exp(ip)S+, exp(—ig)S—_), (3)
R(p) (X1, X4, X-) = (X1, exp(i@) X4, exp(—ip)X_), 4)
R(p) (Y1, Y4, Y-) = (Y1, exp(2ip) Y5, exp(—2ip)Y-), @)

100 Where we use the notation AL = A, £ Asfor A=S5,X,Y.
110 Due to presence of this weighted SO(2) symmetry, there exists the integral of motion

j1=5+X1+2Y. (6)

11 Another a priori symmetry requirement is the invariance with respect to the inversion of the sign of
12 the S components. We denote this operation, which acts only on spin, by 7s

TS =-S, TX=X, TsY=Y. @)

us  The invariance with respect to Tg implies that the Hamiltonian should be of even degree (at least
14 quadratic) in Sg.

115 In what follows we consider S to be half-integer and X, Y to be integer and satisfying X,Y >> S.
us This requirement is based on the assumption that S describes fast quantum subsystem, whereas X and
ur Y describe the slow classical subsystem.

2 Note that weighted action 1:1 : (—2) which will be mentioned below leads to slightly different results.
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us  2.1. Quantum model Hamiltonian

110 In order to generalize Hamiltonian (1) to describe systems with two slow degrees of freedom,
120 half-integer spin S, and Kramers degeneracy for semi-quantrum eigenvalues, we consider the following
121 low-degree contributions invariant with respect to SO(2) and 7g symmetry.

122 The terms which are diagonal in S; include the traceless term
$? —82/3, (8a)
which describes splitting of the entire set of basis functions into subsets with |S;| = %, %, .... This

term replaces the first term in (1), but contrary to its predecessor, it is invariant with respect to both 7
and complete time reversal. When this term is dominant (and all other contributions are negligible),
there exist well-separated superbands characterized by |S1|. For S = 3/2 there are two superbands
with S; = £3 and S; = £3. Inversion of the sign of (8a) results in the crossover (inversion of energy)
of the superband spectrum. The two other diagonal terms

X1(S?—S%/3) and Y{(S?—S%/3) (8b)

123 represent the diagonal part of the spin-orbital interaction. They are invariant only with respect to 7.
The contributions which are non-diagonal in S; include

Xi (S1S+ +5¢51) and YiSZ. (8¢)

12 Like (8b), these terms are 7;-invariant, but they are not invariant with respect to the complete time
1s  reversal. Note that transformation properties of dynamical variables under SO(2) symmetry group

SO(2) irrep 0 +1 +2
Terms S, X1,Y1 Si, X+ S%, Yy

)

12¢  mean that the first of (8c) terms represents the 1:1 resonance between the fast spin subsystem and
127 slow X-subsystem, while the second term in (8c) corresponds to the 1:2 resonance of spin and Y
122 subsystem. It follows that by construction, any combination of (8c) represents the 1:1:2 fast-slow
120 resonance. Further observe that the presence of the anticommutator S1S+ + 5551 results in the zero
10 value of the non-diagonal block (S; = £3|...|S; = F1). This is required for the semi-quantum matrix
131 to be quaternionic.

132 Collecting all terms in (8), the quantum Hamiltonian takes the following form
s? s? s
Hy = « (s% - 3) +d1gX4 (5% — 3> +dy Vs (s% — 3>
+ c1g (X4 (S1S— 4+ S-51) + X_ (S15+ + S4+51)) + c2g (Y+52_ + Y_si) (10)

133 with real coefficients. The coefficients c;;, d;, are supposed to be fixed, whereas a is considered a control
13« parameter responsible for the crossover of the band structure.

135 The eigenfunctions of the Hamiltonian (10) can be written as the superposition of the
136 uncoupled-basis functions

Y, = Z Cimg,my,my |Sr mg; X, mx; Y, mY> . (11)

mg,my,my

137z To be more concrete, we consider the case S = % The Hamiltonian (10) has two obvious limits
13e which correspond to @ — =co. In each of these trivial limits, all energy levels are grouped into two
13s  superbands, one with positive energy, the other with negative energy. One superband includes all
190 eigenstates with mg = & %, while the other consists of the eigenstates with mg = :l:%.
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Figure 5. Schematic correlation diagram for the crossover of the superband energy level structure of
the spin-3 system with Hamiltonian (10) as function of a single control parameter. The bulk states (blue
color) belong to the same superband for all values of the control parameter; the edge states (two shades
of red) change the superbands under the control parameter variation. The value of j; is displayed for
each edge state.

2.2, Generating functions for numbers of states

142 The number of states in the two superbands in both trivial limiting cases is the same but the
13 distribution of eigenstates with respect to the integral j; (6) is superband specific and depends on
1as  the value of the control parameter «. This means that when « is varied, an exchange of energy levels
s between the two superbands must take place.

146 To characterize the redistribution of quantum energy levels between trivial limit superbands
1z with different S| under the variation of the crossover control parameter, it is useful to construct the
s correlation diagram which takes into account the classification of quantum energy levels by the 1:1:2
14e  Symmetry, i.e. by the conserved value of j;. We use for this purpose generating functions [27].

150 The generating function for the number of states with the same value of j; for the entire problem
11 with arbitrary positive integer X, Y, and half-integer S is

(1- t25+1) (1— 2X+1) (1 _ t2(2Y+l)>

g12(p) — T = ngbcnt”, (12)

152 The coefficient C;; in the Taylor series expansion of the generating function gives the number of states
1z withgivenj; =n— (X+2Y+S5).

154 In order to count the number of states with given j; belonging separately to one of the superbands
15 with given projection |S1| = ¢ (in the limit of « — £co where such superbands are well defined), we
156 transform the generating function (12) into the following form

tS—U’ + tS-HT 1— t2X+l 1— t2(2Y+1)
10-:1:2(t) _ — Z C, " (13)
8 1-H1-8) oy

15z The term C;, +t" in the Taylor expansion of (13) means that among all basis functions (states) with
s j1 =1 — (S + X 4 2Y) there are C,,, functions (states) with S = +o.

159 We consider the case of S = % (fig. 5) with two superbands in more detail. The energies of
10 these superbands are inversed in the limits of « — F-co. In other words, when the control parameter
161 o is varied from —oo to 400, the superband structure “crosses over”. This does not mean that all
162 states of the upper band go down and all states of the lower band go up. Quite the opposite (fig. 5),
163 similarly to the spin-orbit system with Hamiltonian (1)-(2), most of the states, called “bulk”, remain
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Figure 6. Possible geometric representation of the number-of-state functions for the trivial (uncoupled)
superband over S? x S? slow space. Edge states are situated near the four vertices of the trapezoid. See
figure 9 for the detailed local representation in the regions surrounded by the red dash line.

16s  within their superbands, while only a few states, called “edge”, need to be transferred between the
1es  superbands. Using generating function (13), we can obtain the explicit expressions for the number of
16 the eigenfunctions |j;), which are exchanged in the crossover. For S = 3, the difference of generating
167 functions in the two limiting cases gives

(148 =t — 12) (1 — X+ (1 _ t2(2Y+1)>
(1—1£)(1-1#2)

The coefficient at t" gives the number of the edge quantum states with

. ) 3
J1 =1 = Jmax =N — (X+2Y+§)

1es  and the direction of their redistribution. We conclude that during the crossover of the spin-3 superband
10 structure, four quantum states must be tranferred between the superbands. As illustrated in fig. 5, two
o quantum states with extremal values j; = £(X 4 2Y + 3/2) move in one direction, while two other
i states with j; = (X — 2Y — 1/2) go in the opposite direction.?

172 Consider now the total number n(k) of the slow subsystem basis wavefunctions |k(Xj, Y7)) which
173 are eigenfunctions of K = X + 2Y}, the momentum of the slow 1:2-resonant SO(2) symmetry, with
s eigenvalue k, and the number 75, (j;) of slow-fast basis functions |S;) |k(X1, Y1)) for each spin basis
17s  component with S; = —5,-S+1,...,5—1,§ as function of the integral of motion j; in (6). We say
e that these functions give, respectively, the slow and the S;-specific slow-fast distributions of basis
1z wavefunctions. Note that g, (j1) follows from n(k) after a trivial linear shift of its argument k by
e Sy, so that ng, (j1) = ng (1 + S} — S1). Quantum distribution n(k) is a piecewise function which

3 The correlation diagram does not reproduce the order (as function of «) in which quantum levels are redistributed between

limiting cases.
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170 combines a linear staircase-function and, depending on the relative values of X and 2 Y, a step-function
1.0 Or a constant function [27]. In the classical limit of large X and Y, we can ignore the fi-small steps
1s1  and approxiamte the distribution n(k) by the Duistermaat-Heckman diagram [10] representing the
12 volume of the reduced slow phase space P as function of the value k of momentum K. By the
13 Duistermaat-Heckman theorem, since the total slow phase space P = S?xS? and the reduced spaces
1es Py are of respective dimensions 4 and 2, this diagram is piece-wise linear, and it can be further argued,
s that in our case, it is symmetric with respect to k — —k, and has the form of a trapezoid. Shifting for
1 each S; components as shown in fig. 6, we obtain similar diagrams ng, (j;) for each S; component
17 Of each superband |S1|. In particular, it can be seen that the number-of-state function for superband
s |S1] is a sum of two distriburions 7. g,|(j1), which are shifted one with respect to another by 2 |S|. It
180 becomes clear that the difference in the number-of-state function for different superbands is localized
o in the four regions near j; values corresponding to the vertices of the diagram with |S;| = 1. In order
11 to visualize better the number-of-state function for superbands, we join the distributions 1.5, |(j1)
102 in two alternative graphical ways, as depicted in fig. 6, middle and bottom, where the parts that are
103 important to further analysis are marked by red dashed circles.

108 Before going further into the local analysis of the number-of-states functions in the case of arbitrary
15 S, we like return to the quantum system with S = 3/2. According to our general conjecture, the
106 distribution of energy levels between energy (super)bands can be realized at control parameter values
197 associated with the formation of degeneracy points between the eigenvalues of the semi-quantum
s version of the quantum Hamiltonian. The latter is obtained from (10) by replacing angular momentum
100 operators X and Y by their classical analogs and computing matrix elements of the spin operators in
200 the basis {|S1 =3/2),[S1 = —3/2), |51 = —1/2),|S1 = 1/2)}. We obtain the 4 x4 matrix

a4 d1gXq 4 dzg Vs 0 g V6 Y- c192V3 X
0 o+ dqul + quY1 —C1q 2\@ Xy C2q \@Y_;,_
. (15
Czq \@YJF _Clq Zﬁx, -0 — dqu1 — d2qY1 0
Clq 2\/§ X+ Czq \/ng 0 —& — dqul - quY1

20 where X;, X4,Y], Y+ are components of classical angular momenta, dlq,dzlq,clq.czq are fixed real
202 phenomenological coefficients of model Hamiltonian (10) and « is a control parameter. Rewriting this
203 matrix in a more symbolic form

t 0 a+ib c+id
0 t —c+id a—ib
, 1
a—ib —c—id —t 0 (16)
c—id a-+ib 0 —t

204 We can see that it is of the typical quaternionic form with real coefficients 4, b, ¢, d, t and consequently,
205 the semi-quantum Hamiltonian (16) has two doubly degenerate eigenvalues. These eigenvalues
20s depend on five parameters, which include four dynamical parameters being local coordinates on the
207 slow classical phase space P = S? x S?, and one formal parameter a describing the crossover of the
208 superband structure. Their isolated degeneracies can be easily found because they are associated with
200 fixed points (critical orbits) of the SO(2) group action on P.

210 The action of the 1:2 weighted SO(2) symmetry group on the slow classical phase space S? x S?

R(¢) (0x, ¢x, 0y, ¢y)) = (0x,x + 9,0y, Py +2¢), (17)
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=3/2

energy of the 1:1:2 system with S

edge
semi-quantum

| d
-4 -3 -2 -1 0 1 2 3 4
control parameter o

Figure 7. Spectrum of Hamiltonian (10) computed numerically as function of control parameter a
for X=Y=5,5§=3/2, dlq =1/5, dzq = 2/5. The choice of C1q/C2g coefficients influences internal
structure of superbands and is not important for analysis of the redistribution. Four edge states
are shown by red color. 480 bulk states are marked by three different colors depending on j; value.
Eigenvalues of the semi-quantum version of (10) are represented by shaded areas, and empty circles
mark semi-quantum energies for critical orbits (18a)-(18b).

2 expressed here in terms of spherical coordinates on each of the S? factors in S% x S2, has four isolated
212 critical one-point orbits, the poles at which X; = X and Y7 = %Y, and which can be denoted
213 accordingly as (++), (+—), (—+),and (——).

(++): (X1 =X, Y1=Y); (—):(X1=-X,Y1=-Y); (18a)
(+-): (X1=XY1=-Y);, (—H):(X3=-XY1=Y). (18b)

Four values of control parameter & at which degeneracy points of semi-quantum version of quantum
Hamiltonian (10) occur are

‘xdeg =+ (dqu + dqu) ’

za Each of the four conical degeneracy points is associated with the transfer of a single quantum level
215 between the two superbands. This is illustrated by the results of the direct numerical calculation for a
zus  concrete example of quantum Hamiltonian (10) in fig. 7.

217 2

218 In this particular numerical example, conical semi-quantum eigenvalue degeneracies at points
a0 (++)and (——) (18a) occur at « = —3 and a = 3, respectively, and are associated with the transfer of
220 single states |J; = X +2Y +3/2) and |J; = —X —2Y — 3/2) in the same direction (upwards when «
2z increases), while degeneracies at points (—+) and (4+—) (18b) occur at & = 1 and & = —1 (see fig. 7),

222 and are associated with the transfer of states |J; = F(X —2Y — 1/2)) in the opposite direction. Four
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223 states changing superbands under control parameter variation are named edge in fig. 7 and marked by
224 two shades of red. In order to visualize better internal structure of superbands formed by 480 bulk
225 states, three different colors are used to represent bulk states depending on their j; value. Note that
22 the internal structure of superbands strongly depends on the numerical values of ¢;; but we do not
22z discuss it in this paper devoted to redistribution phenomenon.

228 We conclude that the crossover of the trivial limit (uncoupled) band structure of (10), which takes
220 place when we make a vary between —oco and +co (or, in the concrete example in fig. 7, from « < —3
20 to a 3> 3), engages four elementary one-state transfers, each localized at a different point in the total
231 control parameter space (cf. the red point in fig. 2), i.e., a different pole of S*xS? and a different isolated
232 critical value of «. It follows that a universal description of such phenomena is intrinsically local. We
233 turn to such local analysis in the next section.

23a 3. Local spin-oscillator approximation and large-spin systems

235 The local approximation of quantum Hamiltonians (1) and (10) near one of the degeneracy
236 points of the eigenvalues of their semi-quantum forms leads to a class of systems which can be
237 named spin-oscillators [1,25]. In the particular case of (10), its local approximations represent a “fast”
2ss  half-integer spin subsystem coupled to a “slow” two-dimensional oscillator in resonances 1:(+1):(£2)

230 or 1:(£1):(F2). Specifically, this quaternionic spin-oscillator is described by Hamiltonian

52
Htlfcal = (S% — 3) + c14 (a';( (S1S+ +S+51) +ax (S1S+ + Si51)>
+ g (aJ;S%F + aysi) , 19)

240 Where ax and ay are annihilation operators of the two-dimensional harmonic oscillator, which replace
21 angular momentum operators X_ or X4 and Y_ or Y, in (10), respectively, depending on which of the
22 four poles in (18) is taken as the origin of the linearization [16]. The system has the flat slow phase
203 space Plo@l = R* with symplectic coordiantes {qx, px, §y, py} which is the tangent space to S*xS? at
2aa  the chosen pole. The latter maps to the origin of P!,

245 The so obtained dynamical system with Hamiltonian (19) can be also regarded as a particular
26 (quaternionic) realization of the two-dimensional Dirac oscillator [16,22], which is invariant with
2a7 regard to the specific weighted (resonant) diagonal action of the dynamical symmetry group SO(2)
2¢s on subspaces associated with dynamical variables S, {ax,a%}, and {ay,al}. The two cases with
20 weights 1:1:2 and 1:1:(—2) are essentially different. Since P'°! is not compact, the spectrum of (19) is
20 unbounded. As the control parameter, we retain the diagonal parameter «. Its variation corresponds
21 to the crossover of the trivial superband structure and is associated with the transfer of energy levels
22 between energy superbands in the neighborhood of « = 0.

Due to the invariance of (19) under spin-inversion (7), all eigenvalues of its semi-quantum form
are double degenerate, i.e., they constitute Kramers doublets. At the pointa = 0,q = 0,p = 0 (cf.
fig. 2), all semi-quantum eigenvalues become degenerate. For half integer S > 3, this means that the
qualitative phenomenon of the redistribution of energy levels is not elementary, and therefore—not
generic. Nevertheless, it is possible to calculate the number of quantum energy levels, which should
be transferred between the superbands by using the correlation diagram relating the & — £oo limits of
the entire band structure. This can be done for each super-band directly by comparing the distributions
of states over the values of momentum

et =S+ Ix +21y

23 of the SO(2) action, where Ix and Iy are actions of the X and Y oscillators, respectively, and the & sign
2sa  refers to two qualitatively different spin-oscillator resonances..
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Figure 8. Schematic representation of the redistribution of surplus states between the superbands
during the crossover of the band structure for the local model with Hamiltonian (19) and S = 7/2 in
case of resonance 1:1:2. For each superband, surplus states are shown by red filled circles and arranged
by the value of j;. The whole set of surplus and bulk states for the S = 7/2 system is represented in
figure 9, left.

285 As can be seen in fig. 6, the structure of the trivial (uncoupled) limit superbands depends only
2ss  on |S1]| < S and not on spin S itself. We compute the number of quantum states transferred between
=7 the energy superbands during the crossover of the trivial limit band structure. This can be done
2ss  for an arbitrary S > 1, if we first compare all superbands with |S;| > 1 to the superband [S;| = %
20 with minimal number of states for each ji-value of the integral of motion. This comparison gives the
200 distribution over j; of the number of surplus states in superband |S1| (see fig. 8), i.e., states, which do
261 ot find counterparts in the superband |S;| = 3. Manipulation with generating functions [27] allows to
262 Obtain an explicit expression for the number of surplus states with given ]'110Cal for each superband with
26s  given |S1|. The same expression can be deduced directly from fig. 9, where the surplus states of the
26 1:1:2 spin-oscillator (left column) and missing states of the 1:1:(—2) spin-oscillator (right column) are
26s marked by filled and empty red circles, respectively. Thus the surplus state of the 1:1:2 Dirac oscillator
206 approximating Hamiltonian (10) with spin-3 near the pole (++) has extremal value of |j°<?!].

267 The number of surplus states in the superband for |Sl\ = %, %, ...,§—1,Sis
1. 1 1 1
1:1:2
N(siD = 3 (1511~ 3) (Isi1+ 3) 0)

2s  In the inverted energy limit, after the crossover, the superband with |S;| connects to the superband
200 with |S1| = S — |S1| + 1 and the number of the surplus states becomes

1. 1 1
Neage(IS =51+ 51) = (S = [S1)(S = [S1] +1). (21)

20 The difference in the number of surplus states for the two superbands connected in the crossover
ann gives the number of edge states which are lost/gained by the superband during the rearrangement
2z of the band structure. Even though the corresponding isolated degeneracy point of semi-quantum
s eigenvalues at (q, p) = 0 is highly non-generic for large spins S > 3 this works correctly. Figure 8
27a  illustrates rearrangement of surplus states during the crossover of superband structure for S = 7/2.

275 According to our general conjecture, which was already used for the C-systems in [16,24], and
2re  which we expect to apply to the H-systems as well, the number of gained/lost quantum levels,
2z or the spectral flow, equals the Chern number calculated for the A-eigenbundle over the closed
zre  surface surrounding the degeneracy point in the full parametric space whose coordinates include slow
270 dynamical variables and formal control parameter. Figure 2, which illustrates the model C-system
2e0 Hamiltonian (1) of [24], can also represent the full parameter space of the quaternionic Hamiltonian
21 (10) with two slow degrees of freedom or of its local approximations (19). To that end, it is sufficient
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1:1:2 bulk states 1:1:—2 bulk states

|S1|=1

|S1|=

00000000000
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(o e el N N N J
(ol N N N N J
00000009

0 S1+1x+21y S1+1x—21y 0

Figure 9. Representation of basis sets for quaternionic high-spin local models. Surplus states for1: 1 : 2
Dirac oscillator (left subfigure) are shown by fill red circles. For 1 : 1 : (—2) model (right subfigure) the
holes are shown by empty red circles. The representation for |Sq |-superband is valid for any S > |51 ].
The vertical axis for each superband can be labeled as (Iy + 1/2) sign(—S1).
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22 to imagine that the {q, p} planes in figure 2 are four dimensional (two degrees of freedom) and the
283 sphere surrounding the isolated degeneracy point at 0 is S*.

204 For any spin S > %, the spectral flow equals the difference between the number (20) of surplus
205 states in the trivial limit superband and the number (21) of such states in the reciprocal superband, to
2ss  which a given superband is connected by the crossover. This spectral flow depends on both S and |1,
2e7  and its general expression reproduces exactly that for the second Chern class

e2(S,[51]) = vs (5~ 151). 22)

s with vg = (25 + 1)/2 the number of superbands, calculated in [8,31] for the parametric
20 spin-quadrupole system, which we used as the initial point of our dynamical construction. The
200 appearence of the second Chern class (22) as the topological invariant of the model quaternionic
201 systems with Hamiltonians (10) and (19) comes naturally because their semi-quantum energies are
202 double degenerate (form Kramers pairs) everywhere, and the corresponding eigenbundles have rank

203 two.

208 Figure 9 presents another illustration of the above results. It shows the distriburtion of both
20 edge (surplus) and bulk states for superbands with S = 7/2. In this figure, the set of uncoupled
206 spin-oscillator basis functions |Sy, Ix, Iy), with S = =S, —-S+1,...,S, Ix = 0,1,2..., and Iy =

27 0,1,2,... is represented for each superband |S;| in the form of a lattice in coordinates {S; + Ix £
20s  2Iy, (Iy +1/2) - sign(—57) }. This figure allows to compare resonances 1:1:2and 1:1: (—2) which
200 correspond to two diferent types of degeneracies of semi-quantum eigenvalues. As we have seen in
s0  sec. 2 and fig. 7, both types appear in the example system with Hamiltonian (10) and compact slow
so1  classical phase space P = S? x S2. To see the similarity between the 1:1:(£2) resonances, it is sufficient
sz to replace the concept of “surplus states” by “missing states” or “holes”. This modifies the direction
s0s  Of redistribution while keeping the number of redistributed states (more details will be discussed
;s separately [29]).

208 Figure 6 represents graphically the way how local figures for spin-oscillators fit within the global
s0s  Trepresentation of the number of state functions for the superbands for quaternionic model with the
sz slow phase space S? x S2. Two regions surrounded by red dash lines in the central subfigure of fig. 6
s correspond to local lattices represented in fig. 9, left. In these regions, the superbands with |S;| > 1/2
;00 have surplus states shown by red dots in figure 9, left. In a similar way, two fragments surrounded
s10 by red dash lines in the bottom part of fig. 6 correspond to lattices for the local 1 : 1 : (—2)-resonant
au  oscillator models in fig. 9, right. They indicate that the number-of-states distribution of the superbands
sz with |S1] = 1/2 and |S1| > 1/2 differ in the absence of certain states (or the presence of missing states,
sz which we call “holes”) for |S1| > 1/2. The latter are represented by red empty circles in fig. 9, right.
sis The interpretations of the redistribution of quantum states between superbands in terms of surplus
as  states and in terms of holes are complementary. In fact, the replacement of surplus states by holes
s corresponds to the inverion of the direction of redistribution.

siz 4. Conclusion

218 Our main result in this paper is the demonstration of the topological origin of the rearrangement
a0 Of energy levels between the superbands of quaternionic slow-fast dynamical systems. Such systems
;20 comprise a fast subsystem with one degree of freedom (spin) and a slow subsystem with two degrees of
sz2 freedom, and provide the dynamical realization of the model by Avron et al [7,8] which generalizes the
sz geometric phase setup of Berry [9,35] to the non-Abelian geometric phase. We constructed our example
;23 dynamical system with Hamiltonian (10) as a quaternionic generalization of our initial example (1) in
222 [24] which was introduced as a dynamical analog of the original complex parametric Berry Hamiltonian
:2s  in [9]. The one-parameter family of Hamiltonians (10) describes the generic qualitative phenomenon
226 consisting in redistribution of energy levels between doubly degenerate Kramers superbands. We
;27 demonstrate the correspondence between the number of redistributed energy levels and the second
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22 Chern class for the eigenbundle of the corresponding semi-quantum Hamiltonian. The most simple
;20 elementary qualitative phenomenon for quaternionic Hamiltonians with two slow degrees of freedom,
330 the minimal fast subsystem with two Kramers doublets, and with one additional general control
31 parameter corresponds to the transfer of a single quantum level between two quantum superbands.
32 This transition is associated with the formation of the degeneracy point (Pdeg, “deg) of the eigenvalues
a3 of the semi-quantum Hamiltonian. The latter form eigenbundles Ak(Pdegr “deg) with k = 1,2 over
s3s the sphere S* surrounding the degeneracy point in the total 5-dimensional parameter space of the
35 semi-quantum system. The bundles Ay are characterized by the second Chern class c; = 1. A
a3s  more detailed and systematic analysis of the model Hamiltonians, which describe such qualitative
sz modifications of the superband structure, will be given in a separate publication [29] within the
s framework of constructing dynamical analogs of the complex (C) geometric phase setup by Berry, its
339 generalizations to the quaternionic non-Abelian case (IH), and its restriction to the real (R) systems, all
sa0  inspired by the R — C — H trinity concept in [3].
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