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Abstract: An approach to estimating the objective function value of minimization maximum1

lateness problem is proposed. It is shown how to use transformed instances to define a new2

continuous objective function. After that, using this new objective function, the approach itself is3

formulated. We calculate the objective function value for some polynomially solvable transformed4

instances and use them as interpolation nodes to estimate the objective function of the initial5

instance. What is more, two new polynomial cases, that are easy to use in the approach, are6

proposed. In the end of the paper numeric experiments are described and their results are7

provided.8

Keywords: discrete mathematics; scheduling; optimization; interpolation; approximation; objec-9

tive function.10

1. Introduction11

The vast majority of scheduling theory problems are NP-hard [1]. To solve such12

problems, it is common to use algorithms, the performance of which strongly depends on13

the input data. A new approach to estimating the objective function value of scheduling14

theory problems is proposed - the interpolation approach.15

Algorithms for solving problems in the theory of schedules, considered, for example,16

in [1,2], can be used. Algorithms and methods from [3] can be used to work with random17

data, and metric interpolation speeds up their execution when processing difficult cases.18

Since the interpolation approach works only with the values of the objective func-19

tion, it can also be used to create schedules for multi-stage systems, solving problems,20

for example, using algorithms from [4].21

For certainty, this article considers the solution of the problem of minimizing the22

maximum time offset 1|rj|Lmax.23

New polynomial cases, that can be easily used in the interpolation approach, are24

defined. Using these cases and Lagrange interpolation [5,11], the objective function25

value is approximated.26

Other interpolation methods[5] also can be used in the approach: for instance,27

Chebyshev interpolation[20] or Spline interpolation [21]. However these methods will28

be considered in our future work, while in this paper we will keep using Lagrange29

interpolation polynome.30

2. The problem of minimizing the maximum lateness for single machine31

2.1. The problem statement32

In the problem 1|rj|Lmax[1,7,10], which we will consider, a set of n jobs is given
A = {1, ..., n}. For each job j, the following parameters are set: the release time rj, the
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processing time pj and the due date dj [1]. By schedule π we mean some permutation of
the jobs of the set A. Let’s enter the completion time of the job j with the schedule π:

Cj(π) = max
π

{
rj, max

(k→j)π

Ck(π)

}
+ pj. (1)

Here (k → j)π is the set of jobs that are processed before the work of j with the33

schedule of π.34

The lateness of the job j in the schedule π is defined as follows:35

Lj(π) = Cj(π)− dj. (2)

Thus, the task of minimizing the maximum lateness is to find such schedule π0, at
which the objective function obtains the minimum value:

Lmax(π0) = min
π

max
j=1,...n

{Cj(π)− dj}. (3)

This problem is NP-hard in the strong sense[6].36

3. The feature space37

In the paper each instance of the scheduling problem [1], consisting of n jobs, is38

considered as a point in a 3n-dimensional feature space [8,9] with coordinates39

(r1, r2, ..., rn, p1, p2, ..., pn, d1, d2, ..., dn).40

For convenience, we will denote each instance as a 3× n matrix:41 r1 r2 ... rn
p1 p2 ... pn
d1 d2 ... dn


Let pick a point A in this space. Then the instance for which we want to solve the42

scheduling problem is an instance consisting of n jobs with rj, pj, dj parameters specified43

by the coordinates of the point A.44

More about the 3n-dimensional feature space can be found in [7].45

4. The r′ = αr transform46

Definition 1. The r′ = αr (where α is an arbitrary non-negative real value) is a transform47

that matches the initial instance A =

r1 r2 ... rn
p1 p2 ... pn
d1 d2 ... dn

 with the transfromed instance48

A′ =

αr1 αr2 ... αrn
p1 p2 ... pn
d1 d2 ... dn

.49

Thus, the r′ = αr transform multiplies all the release times of the instance by some50

factor α while keeping the processing times and due dates constant.51

5. Introduction to the interpolation approach52

Notation 1. When writing Aα we refer to a transformed instance A′ obtained from the initial53

instance A using the r′ = αr transform with some coefficient α.54

Notation 2. The optimal value of the Lmax objective function obtained for the initial instance A55

will be denoted as L∗max.56

Now it is time to define the Lmax(α) function which will be used for interpolation57

later.58
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Definition 2. Function Lmax(α) recieves a real non-negative transform coefficient α value and59

returns the optimal value of the objective function obtained on the transformed instance Aα.60

The concept of the approach is that it is possible to draw a straight line through the61

point A in the 3n-dimensional feature space mentioned above, pick some other points62

on that line, solve the instances specified by those points and then, using interpolation63

[1,5], find an approximate value of the objective function at the point A.64

Lagrange interpolation polynomial is defined as follows [5]:65

Lm(x) =
m

∑
k=0

∏
i 6=k

(x− xi)

∏
j 6=k

(x− xj)
f (xk). (4)

Let presume we have calculated the objective function values for the n transformed66

instances Aα1 . . . Aαn . Now we are willing to find the Lmax value of the initial instance A.67

Using Lagrange interpolation polynomial (4) we will obtain the following formula:68

L∗max = Ln(1) =
n

∑
k=1

∏
i 6=k

(1− Lmax(αi))

∏
j 6=k

(1− Lmax(αj))
Lmax(αk). (5)

This procedure is formalized in the following algorithm.69

Algorithm 1. The algorithm receives the initial instance N and returns the estimated objective70

function value L∗max.71

1. Create a set A = {α1, α2, . . . αn}, αi ≥ 0 containing the α values for all the n points we72

want to use for interpolation.73

2. For each αi in A create a transformed instance Aαi using the r′ = αr transform. Obtain74

the Lmax(αi) value for this instance.75

3. Using Lagrange interpolation and the calculated objective function values - return the76

L∗max value using the formula (5).77

Figure 1. An illustration for the Algorithm 1. The round points are the interpolation nodes, the
objective function value is known for each of them. Then the interpolating curve is plotted and the
initial instance objective function value is estimated using this curve. The square point is the true
value of the objective function so we can compare the true value with its approximation found by
the interpolation curve.
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It would be highly effective, however, to use polynomially solvable instances as the78

interpolation nodes to be able to estimate the L∗max value in polynomial time. For this79

purpose we have developed two polynomial classes of instances which can be easily80

used in the interpolation approach avoiding massive calculations.81

These classes are called the "highly different r" polynomial subcase and "slightly82

different r" polynomial subcase.83

6. The "highly different r" polynomial subcase84

Definition 3. An instance A = {j1 . . . jn} is a case of "highly different r" if the following85

inequality is true for this instance:86

rj − ri ≥ pi, where i, j = 1 . . . n, i 6= j, rj > ri. (6)

To get an intuitive understanding of the situation described in the definition, let87

consider the following Gantt chart[12].88

Figure 2. Gantt chart example for the "highly different r" case.

Each ri, rj are so far away from each other on the timeline, that the processor has89

enough time to complete the previous job before receiving the next one. So it is obvious90

that the optimal schedule π∗ for this case is obtained by sorting the jobs by increasing91

receivement time order.92

However, a strict proof of this fact is given below.93

Lemma 1. For an instance N of n jobs we will consider such schedule π = j1 . . . jn, for which94

the inequality rj1 < rj2 < · · · < rjn is obtained. Then in the "highly different r" the following95

equality is true:96

rj = sj ∀j ∈ A. (7)

Proof.97

1. For the job j1 the equality (7) s1 = r1 is true, because it is the first job in the schedule98

and so it will start being processed right after the receivement time.99

2. May the equality (7) be true for the job ji: si = ri. Then for the job ji+1: si+1 =100

max(Ci, ri+1) = max(si + pi, ri+1) = max(ri + pi, ri+1). According to the definition101

3: ri+1 − ri ≥ pi, which means that102

ri+1 ≥ ri + pi. (8)

From (8) we can conclude that max(ri + pi, ri+1) = ri+1. Then, si+1 = ri+1. The103

equality (7) is obtained and hereby the lemma is proven.104

105

Theorem 1. The optimal schedule π∗ = j1 . . . jn for the "highly different r" case is such106

schedule, in which the jobs are ordered by increasing release times: rj1 < rj2 < · · · < rjn .107
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Proof. Let consider the job ji on which the maximum lateness value is obtained: Lji (π
∗) =108

Lmax(π∗). Let suppose that a schedule π exists, for which Lmax(π) < Lmax(π∗). This109

means that also Lmax(π) < Lji (π
∗).110

By definition Lji (π
∗) = Cji (π

∗) − dji = sji (π
∗) + pji − dji . Using Lemma 1 we111

obtain the following equality:112

Lji (π
∗) = sji (π

∗) + pji − dji = rji + pji − dji .

As shown above for the schedule π: Lmax(π) < Lji (π
∗). It means that Lmax(π) <113

rji + pji − dji . Then:114

Lji (π) < rji + pji − dji . (9)

According to the definition 2, Lji (π) = sji (π) + pji − dji . Then we obtain the115

following inequality for the equation (9): sji (π) < rji . Which is impossible According to116

the definition of the release time.117

Therefore we came to a contradiction. Hence, there cannot exist a schedule π for118

which Lmax(π) < Lmax(π∗). π∗ is the optimal schedule.119

120

7. The "slightly different r" polynomial subcase121

Definition 4. An instance A = {j1 . . . jn} is a case of "slightly different r" if the following122

inequality is true for this instance:123

rj − ri ≤ pi, where i, j = 1 . . . n, i 6= j, rj > ri. (10)

Remark 1. Let note that the inequality (10) is equivalent to the following one:124

rj ≤ pi + ri, where i, j = 1 . . . n, i 6= j, rj > ri. (11)

To get an intuitive understanding of the situation described in the definition 4, let125

consider the following Gantt chart.126

Figure 3. Gantt chart example for the "slightly different r" case.

In this case all release times are so near to each other on the time line, that all the127

jobs in the instance will have been recieved after completing the first job in the schedule.128

Algorithm 2 (Solution of the "slightly different r" case).129

1. Create n different schedules π1 . . . πn using the following rule: πi = {i, argsort(~d) \130

i}, i = 1 . . . n - the job number i is put first in the schedule πi, all other jobs are sorted by131

non-decreasing due date.132

2. Choose the index k of the schedule πk on which the minimum objective function value is133

obtained: k = argmini=1...n(Lmax(πi)).134

3. π∗ = πk - return the optimal schedule.135
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A strict proof that the schedule π∗ obtained by the algorithm is optimal follows.136

Lemma 2. In the "slightly different r" case the following inequality is true for any schedule:137

sji > rji , i = 2 . . . n. (12)

Proof.138

1. Let139

According to (11): sj2 = rj1 + pj1 .140

2. Assume the inequality (12) is true for the job ji. Then for the job ji+1: sji+1 =141

max(Cji , rji+1) = max(sji + pji , rji+1).142

According to (11) for the jobs ji, ji+1: rji + pji > rji+1 . And from the inequality (12)143

for the job ji: sji + pji > rji + pji > rji+1 .144

Finally we obtain sji+1 = max(sji + pji , rji+1) = sji + pji > rji+1 . And for the job ji+1145

the following is true: sji+1 > rji+1 .146

147

Lemma 3. In the "slightly different r" case the following inequality is true for any schedule:148

Cji (π) = rj1 +
i

∑
k=1

pjk . (13)

Proof.149

sji+1(π) = max(Cji (π), rji+1).150

According to (12): sji+1(π) > rji+1 . Thus, sji+1(π) = Cji (π), i = 2 . . . n. This equality151

will be used in the proof further.152

1. i = 2: Cj2(π) = sj2(π) + pj2 = Cj1(π) + pj2 = rj1 + pj1 + pj2 . The equality (13) is153

true.154

2. Assume the inequality (13) is true for the job ji. Then for the job ji+1:155

Cji+1(π) = sji+1(π) + pji+1 = Cji (π) + pji+1 = rj1 +
ji
∑

k=1
pk + pji+1 .156

For the job ji+1: Cji+1(π) = rj1 +
ji+1

∑
k=1

pk.157

158

Corollary 1. In the "slightly different r" case the following inequality is true for any schedule:159

Cji (π) = Cj1 +
i

∑
k=2

pjk . (14)

Proof. According to the definition, Cj1 = rj1 + pj1 . Then Cji (π) = rj1 +
i

∑
k=1

pjk =160

Cj1 +
i

∑
k=2

pjk .161

Notation 3. The set AJ(π) = A \ j1 is as a set of the jobs not placed on the first position in the162

current schedule π.163

Notation 4. The value LJ
max(π) = max Lji (π), i = 2 . . . n is the maximum lateness value of164

all the n elements of N except the job that comes first in the current schedule π.165

Theorem 2. Algorithm 2 finds the optimal schedule for the "slightly different r" case.166
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Proof.167

1. According to the definition, Lmax(π∗) = max(Lj1(π
∗), LJ

max(π
∗)). Let assume that168

a schedule π exists, for which Lmax(π) < Lmax(π∗).169

2. If max(Lj1(π
∗), LJ

max(π
∗)) = LJ

max(π
∗) then LJ

max(π) < LJ
max(π

∗).170

According to the equation 14, the function LJ
max(π

∗) = max
i=2→n

(Cji (π
∗)− dji ) is the171

objective function of Jackson polynomial instance [13] with r = Cji (π
∗). Because172

j1 here is fixed, π∗ is the schedule on which the minimum maximum lateness is173

achieved here as proven in [13].174

3. If max(Lj1(π
∗), LJ

max(π
∗)) = Lj1(π

∗) then the inequality Lmax(π) < Lmax(π∗)175

cannot be true because the algorithm puts each job on the first position in the176

schedule to obtain the minimum objective function value.177

178

8. Estimating the α∗ and α∗ values179

In this section we will find the α coefficient values that are to be used in the r′ = αr180

transform to achieve each of the polynomial cases listed above.181

Theorem 3. For an arbitrary instance A = {~r,~p, ~d},~r = asc(~r) there exists a set of trans-182

formed instances Aα = {α~r,~p, ~d} which are the cases of "highly different r", if α satisfies the183

following inequality:184

α ≥ max
pi

rj − ri
, i, j = 1 . . . n, i 6= j, rj > ri. (15)

Proof. According to the definition, in the "highly different r" case the following inequal-185

ity is true:186

rj − ri ≥ pi, i, j = 1 . . . n, i 6= j, rj > ri. (16)

Let consider the r′ = αr transform.187

α(rj − ri) ≥ pi, i, j = 1 . . . n, i 6= j, rj > ri,

α ≥ pi
rj − ri

, i, j = 1 . . . n, i 6= j, rj > ri.

For brevity we will denote ξ
j
i as ξ

j
i =

pi
rj−ri

, then:188

α ≥ ξ
j
i , i, j = 1 . . . n, i 6= j, rj > ri ⇒ α > max

i,j
ξ

j
i .

And we finally obtain:189

α ≥ max
pi

rj − ri
, i, j = 1 . . . n, i 6= j, rj > ri. (17)

190

So the coefficient α, to achieve the "highly different r" case should lie in the following191

interval: α ∈ [max pi
rj−ri

;+∞), i, j = 1 . . . n, i 6= j, rj > ri.192

Definition 5. The minimum value of the coefficient α to achieve the "highly different r" case is193

denoted as α∗ and calculated, according to the Theorem 3, as follows:194

α∗ = max
pi

rj − ri
, i, j = 1 . . . n, i 6= j, rj > ri. (18)
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It can be concluded from the definition that α∗ ≥ 0, because the numerator of the195

fraction there is non-negative and denominator is a positive value.196

From the equation (18) the condition of existence of the "highly different r" case can197

also be easily concluded.198

Corollary 2 (The condition of existence of the "highly different r" case). The "highly199

different r" case exists for the initial instance A (which means that the value α∗ is defined) if the200

following condition is met:201

ri 6= rj ∀i, j = 1 . . . n, i 6= j. (19)

What is more, a sufficient condition of the "highly different r" case can be stated as202

follows.203

Theorem 4 (A sufficient condition of the "highly different r" case). If the α∗ value satisfies204

the inequality: α∗ ≤ 1 then the instance is already a case of "highly different r".205

Proof. According to the definition, α∗(rj − ri) = pi, i, j = 1 . . . n, i 6= j, rj > ri.206

Then, if α∗ ≤ 1:207

(rj − ri) ≥ pi, i, j = 1 . . . n, i 6= j, rj > ri. (20)

This means that the initial instance A is is already a case of "highly different r".208

Now we will proceed to proving the equivalent theorems for the "slightly different209

r" case.210

Theorem 5. For an arbitrary instance A = {~r,~p, ~d},~r = asc(~r) there exists a set of trans-211

formed instances Aα = {α~r,~p, ~d} which are the cases of "slightly different r" if α satisfies the212

following inequality:213

0 ≤ α ≤ min
i,j

pi
rj − ri

, i, j = 1 . . . n, i 6= j, rj > ri. (21)

Proof. According to the definition, the coefficient α should satisfy the following inequal-214

ity:215

α(rj − ri) ≤ pi, i, j = 1 . . . n, i 6= j, rj > ri. (22)

Which means that216

α ≤ pi
rj − ri

, i, j = 1 . . . n, i 6= j, rj > ri.

For brevity we will denote ξ
j
i as ξ

j
i =

pi
rj−ri

. Then we obtain:217

α ≤ ξ
j
i , i, j = 1 . . . n, i 6= j, rj > ri. (23)

For this inequality to true for any i, j = 1 . . . n, i 6= j, rj > ri, there is also the218

following requirement:219

α ≤ min
i,j

ξ
j
i , i, j = 1 . . . n, i 6= j, rj > ri. (24)

This means that220

α ≤ min
i,j

pi
rj − ri

, i, j = 1 . . . n, i 6= j, rj > ri. (25)

What is more, pi > 0. Then,221
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0 ≤ α ≤ min
i,j

pi
rj − ri

, i, j = 1 . . . n, i 6= j, rj > ri. (26)

222

So the coefficient α to achieve the "highly different r" case should lie in the following223

interval: α ∈ [0, min pi
rj−ri

), i, j = 1 . . . n, i 6= j, rj > ri.224

Definition 6. The maximum value of the coefficient α to achieve the "slightly different r" case225

is denoted as α∗ and calculated, according to the theorem, as follows:226

α∗ = min
pi

rj − ri
, i, j = 1 . . . n, i 6= j, rj > ri. (27)

From the equation (27) the condition of existence of the "slightly different r" case227

can be easily concluded.228

Corollary 3 (The condition of existence of the "slightly different r" case). The "highly229

different r" case exists for the initial instance A (which means that the value α∗ is defined) if the230

following condition is met:231

ri 6= rj ∀i, j = 1 . . . n, i 6= j. (28)

Theorem 6 (A sufficient condition of the "slightly different r" case). If the α∗ value satisfies232

the inequality: α∗ ≥ 1 than the instance is already a case of "highly different r".233

Proof. From the definition, α∗(rj − ri) = pi, i, j = 1 . . . n, i 6= j, rj > ri.234

Then, if α∗ ≥ 1:235

(rj − ri) ≤ pi, i, j = 1 . . . n, i 6= j, rj > ri. (29)

This means that the initial instance A is is already a case of "slightly different r".236

Remark 2. It can also be shown that, for example, for Lazarev polynomial class of instances, the237

following inequality is obtained:238

α ≥
dj − di − pj + pi

rj − ri
, i, j = 1 . . . n, i 6= j, dj > di. (30)

However, because the conditions in this and the other polynomial cases are more complex239

and may require different transforms, in this paper only the "highly different r" and "slightly240

different r" cases are defined and considered.241

9. The interpolation-based polynomial method of estimating the objective function242

value243

Now, since we have defined the general interpolation method algorithm and also244

have found the coefficient intervals related to the polynomial cases, let provide the245

interpolation-based polynomial algorithm.246

Algorithm 3.247

1. Calculate the values α∗ (18) and α∗ (27).248

2. Choose k values (k is an arbitrary positive integer) α1 . . . αk on the interval [0, α∗] so that249

α1 = 0, αk = α∗ and the points are equally spaced. Denote the interval between two250

nearest points as ∆.251

3. Choose k values αk+1 . . . α2k on the interval [α∗, α∗ + k∆] so that αk+1 = 0, α2k = α∗ and252

the points are equally spaced.253
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4. Calculate the values Lmax(α1) . . . Lmax(α2k).254

5. Estimate the optimal value of the objective function of the initial instances using the255

Lmax(α1) . . . Lmax(α2k) values and the formula (5):256

L∗max =
k

∑
n=1

∏
i 6=k

(1− Lmax(αi))

∏
j 6=k

(1− Lmax(αj))
Lmax(αn). (31)

Remark 3. The values Lmax(α1) . . . Lmax(α2k) are independent and so can be calculated paral-257

lelly.258

Figure 4. An illustration for the Algorithm 3. The thick dark segments are the polynomial areas.
The vertical dashes are the polynomial interpolation nodes. The round point is the true value of
the initial instance optimal objective function.

10. Numeric experiments259

Before proceeding to the numerical experiments’ results, here is some information260

on how these experiments have been carried on.261

OS Windows 10
CPU Intel core i3
RAM 6Gb
Programming language Python 3.7 [14]
Environment Jupyter Notebook [14]
Main calculation library numpy [15]
Graphic library matplotlib/pyplot [16]
Random generation of r, p, d Uniform integers ∈ [0, 100]

262

100 instances of size 8 have been generated. This same set of instances was used263

in all of the following numerical experiments to make it possible to compare different264

experiments’ results.265

The first experiment was conducted to calculate the optimal interpolation nodes266

number k. The results are presented on the following plot.267

The nodes were selected according to the Algorithm 3, the parameter k was being268

changed.269

The relative error value for each instance N was calculated using the following270

formula:271
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Erri = |
LT

i − L∗i
LT

i
| × 100%, (32)

272

where subscript i is the number of the instance in the set of 100 generated instances, LT
i273

is the true optimal value of the initial instance objective function (obtained by the dual274

algorithm [10]) and L∗i is the optimal value of the objective function estimated using the275

Algorithm 3.276

Figure 5. The plot shows the dependence of mean and median relative error values on the total
number of the interpolation nodes.

Figure 6. The plot shows the dependence of median relative error values on the total number of
the interpolation nodes.

We can see that while median relative error decreases with the growth of the277

parameter k, the mean relative error increases. This means that although most of the278

instances are approximated more correctly, some instances become outliers with really279

high error values.280

So to finally figure out the optimal number k, the following plot, showing the the281

dependence of the product of median and mean relative error values on the total number282

of the interpolation nodes, was created.283
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Figure 7. The plot shows the dependence of the product of median and mean relative error values
on the total number of the interpolation nodes.

Now we can see from the graph that experimentally calculated optimal k value is284

k = 8.285

The next experiment was conducted the following way. The parameter k value286

remained constant, but the distance ∆∗ between each two neighboring points on the287

"highly different r" interval was increased in relation to the distance ∆∗ between each288

two neighboring points on the "slightly different r" interval.289

This can be done because, as shown above, "highly different r" interval has no290

higher bound on coefficient α.291

Figure 8. The plot shows the dependence of the median and mean relative error values on the step
ratio ∆∗

∆∗ .

We can see that errors don’t depend on the step ratio ∆∗
∆∗ , so we can just choose the292

steps to be equal: ∆∗ = ∆∗ = ∆.293

In the next experiment we have fixed the intervals ∆∗ = ∆∗ = ∆ but were changing294

the number k∗ of "highly different r" points. The results follow on the Figure 9.295
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Figure 9. The plot shows the dependence of the product of median and mean relative error values
on the number k∗ of "highly different r" points.

The complexity[17] of the Algorithm 3 was evaluated as O(np log(n)), where n is296

the number of jobs in the instance.297

The resulting p value appeared to be p ≈ 2, so the complexity can be estimated as298

O(n2 log(n)) (see Figure 10).299

Figure 10. Complexity of the Algorithm 3.

11. Conclusion300

In this paper a new approach to approximating the objective function value of the301

1|rj|Lmax problem is proposed.302

The approach is based on the Lmax(α) function (using the r′ = αr transform) and303

Lagrange interpolation.304

The numeric experiments that have been carried out show how to optimize the305

hyperparameters of the method. The average complexity of the proposed algorithm is306

O(n2 log(n)), where n is the number of jobs in the instance.307
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12. Further research308

Further research into the features of the Lmax(α) will be conducted to develop a309

method of error estimation for the approach. The results will be compared with the310

results of error estimation of the metric approach[7].311

There are also other transforms and polynomial cases that have to be studied.312

What is more, we are planning to study combinations of different transforms and their313

geometry in the 3n-dimensional feature space.314

The Hypotheses stated in this paper will also be proven, so that we can boost the315

efficiency and the accuracy of the approach.316

Different interpolation methods, including Chebyshev interpolation[20] and spline317

interpolation[21], can be used.318

Also a combination of metric and interpolation approaches - the metric interpolation319

method - is being studied and developed.320
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