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1 Abstract: An approach to estimating the objective function value of minimization maximum
2 lateness problem is proposed. It is shown how to use transformed instances to define a new
s continuous objective function. After that, using this new objective function, the approach itself is
4 formulated. We calculate the objective function value for some polynomially solvable transformed
s instances and use them as interpolation nodes to estimate the objective function of the initial
¢ instance. What is more, two new polynomial cases, that are easy to use in the approach, are
7 proposed. In the end of the paper numeric experiments are described and their results are
s provided.

o Keywords: discrete mathematics; scheduling; optimization; interpolation; approximation; objec-
10 tive function.

11 1. Introduction

12 The vast majority of scheduling theory problems are NP-hard [1]. To solve such
13 problems, it is common to use algorithms, the performance of which strongly depends on
1a the input data. A new approach to estimating the objective function value of scheduling
15 theory problems is proposed - the interpolation approach.

16 Algorithms for solving problems in the theory of schedules, considered, for example,
1z in[1,2], can be used. Algorithms and methods from [3] can be used to work with random
1e data, and metric interpolation speeds up their execution when processing difficult cases.
10 Since the interpolation approach works only with the values of the objective func-
20 tion, it can also be used to create schedules for multi-stage systems, solving problems,
a1 for example, using algorithms from [4].

22 For certainty, this article considers the solution of the problem of minimizing the
23 maximum time offset 1 |rj|LmaX.
24 New polynomial cases, that can be easily used in the interpolation approach, are

»  defined. Using these cases and Lagrange interpolation [5,11], the objective function
26 value is approximated.

27 Other interpolation methods[5] also can be used in the approach: for instance,
2 Chebyshev interpolation[20] or Spline interpolation [21]. However these methods will
20 be considered in our future work, while in this paper we will keep using Lagrange
30 interpolation polynome.

a1 2. The problem of minimizing the maximum lateness for single machine
sz 2.1. The problem statement

In the problem 1|r]-|LmaX[1,7,1O], which we will consider, a set of n jobs is given
A = {1,..,n}. For each job j, the following parameters are set: the release time r;, the
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processing time p; and the due date d; [1]. By schedule 7t we mean some permutation of
the jobs of the set A. Let’s enter the completion time of the job j with the schedule 7:

Ci(n) = ’ C . 1
i(70) m;;X{r] [max k(ﬂ)}JFP] ©)

Here (k — j) is the set of jobs that are processed before the work of j with the
schedule of 7.
The lateness of the job j in the schedule 7 is defined as follows:

L]‘(T[) = C](T[) — d] (2)

Thus, the task of minimizing the maximum lateness is to find such schedule 7, at
which the objective function obtains the minimum value:

Lmax(7t0) = min max {Cj(7) —d;}. ©)]
T j=1,.n

This problem is NP-hard in the strong sense[6].

3. The feature space
In the paper each instance of the scheduling problem [1], consisting of n jobs, is
considered as a point in a 3n-dimensional feature space [8,9] with coordinates

(11,72, ooy Ty P1, P2y oo Pris B1, A2, oy d).
For convenience, we will denote each instance as a 3 X n matrix:

rh rp .. Iy
Pl pz pn
d do .. dy

Let pick a point A in this space. Then the instance for which we want to solve the
scheduling problem is an instance consisting of n jobs with r;, p;, d; parameters specified
by the coordinates of the point A.

More about the 3n-dimensional feature space can be found in [7].

4. The ' = ar transform

Definition 1. The v’ = ar (where « is an arbitrary non-negative real value) is a transform

Ty .. Iy
that matches the initial instance A = | p1 p2 .. pn | with the transfromed instance
di dy .. dy
ary  Qry ... @y
A=|p1 p - pau
di dy .. dy

Thus, the ¥’ = ar transform multiplies all the release times of the instance by some
factor « while keeping the processing times and due dates constant.

5. Introduction to the interpolation approach

Notation 1. When writing A, we refer to a transformed instance A’ obtained from the initial
instance A using the v’ = ar transform with some coefficient w.

Notation 2. The optimal value of the Limax objective function obtained for the initial instance A
will be denoted as L}, .

Now it is time to define the Lmax(a) function which will be used for interpolation
later.
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Definition 2. Function Lmax () recieves a real non-negative transform coefficient a value and
returns the optimal value of the objective function obtained on the transformed instance Ag.

The concept of the approach is that it is possible to draw a straight line through the
point A in the 3n-dimensional feature space mentioned above, pick some other points
on that line, solve the instances specified by those points and then, using interpolation
[1,5], find an approximate value of the objective function at the point A.

Lagrange interpolation polynomial is defined as follows [5]:

. l;[k(x - x;)
Li(x) = kg) mf(xk)- 4)
itk

Let presume we have calculated the objective function values for the n transformed
instances Ay, ... Ay,. Now we are willing to find the Lyax value of the initial instance A.
Using Lagrange interpolation polynomial (4) we will obtain the following formula:

[T(1 — Lmax(a;))

n

. itk
L =Ly(1) = Lmax .
max ( ) kgl ]I;;Ik(l — Lmax(“]‘)) (“k) ®)

This procedure is formalized in the following algorithm.

Algorithm 1. The algorithm receives the initial instance N and returns the estimated objective
function value L} ...

1. Createaset A ={ay,a,...0n}, a; > 0 containing the a values for all the n points we
want to use for interpolation.

2. Foreach w; in A create a transformed instance A, using the v’ = ar transform. Obtain
the Lmax (a;) value for this instance.

3. Using Lagrange interpolation and the calculated objective function values - return the
L} ax value using the formula (5).

e — Interpolation
B True value
® Experimental data
—1000 -
—1100 -

—1200 A

Objective function value

—1300 A

—1400 A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Coefficient

Figure 1. An illustration for the Algorithm 1. The round points are the interpolation nodes, the
objective function value is known for each of them. Then the interpolating curve is plotted and the
initial instance objective function value is estimated using this curve. The square point is the true
value of the objective function so we can compare the true value with its approximation found by
the interpolation curve.
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It would be highly effective, however, to use polynomially solvable instances as the
interpolation nodes to be able to estimate the Ly, ,, value in polynomial time. For this
purpose we have developed two polynomial classes of instances which can be easily
used in the interpolation approach avoiding massive calculations.

These classes are called the "highly different #" polynomial subcase and "slightly

different r" polynomial subcase.

6. The "highly different " polynomial subcase

Definition 3. An instance A = {ji...j,} is a case of "highly different r” if the following
inequality is true for this instance:

rj—rini,wherei,j:l...n,i;éj,r]->rl-. 6)

To get an intuitive understanding of the situation described in the definition, let
consider the following Gantt chart[12].

v
—t

S1= 1 S2= 12 S3=13
Figure 2. Gantt chart example for the "highly different r" case.

Eachr;, rj are so far away from each other on the timeline, that the processor has
enough time to complete the previous job before receiving the next one. So it is obvious
that the optimal schedule 77* for this case is obtained by sorting the jobs by increasing
receivement time order.

However, a strict proof of this fact is given below.

Lemma 1. For an instance N of n jobs we will consider such schedule 7t = jj ... j, for which
the inequality rjy <rj, <--- <r;, is obtained. Then in the "highly different r” the following
equality is true:

rp=5; V] € A. 7)

Proof.

1. For thejob j; the equality (7) s; = rq is true, because it is the first job in the schedule
and so it will start being processed right after the receivement time.

2. May the equality (7) be true for the job j;: s; = r;. Then for the job ji11: s;41 =
max(C;, riy1) = max(s; + p;, riy1) = max(r; + p;, riy1). According to the definition
3: tiy1 — i > pi, which means that

fig1 = 1i + pi 8)

From (8) we can conclude that max(r; + p;,7;i11) = 7iy1. Then, s;i 1 = riy1. The
equality (7) is obtained and hereby the lemma is proven.
O

Theorem 1. The optimal schedule * = jy...j, for the "highly different r” case is such
schedule, in which the jobs are ordered by increasing release times: rj; <'rj, < -+ <71,
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Proof. Let consider the job j; on which the maximum lateness value is obtained: L; (7*) =
Lmax(7t*). Let suppose that a schedule 7t exists, for which Lmax(77) < Lmax(7t*). This
means that also Lmax(77) < Lj(77%).
By definition L (7*) = C;(7t*) —d;, = s;,(7t") + pj, —d;,. Using Lemma 1 we
obtain the following equality:
Ly, (") = s, (1) + pj — dj = 15+ pj; — dj-

As shown above for the schedule 71: Liax(77) < L; (7t%). Tt means that Lyax(77) <
rj; +pj; — dj;- Then:

Lji(n) <Tj+Ppj— dfi' ©)

According to the definition 2, L; () = s;,(71) + pj, — dj;. Then we obtain the
following inequality for the equation (9): s;,(7r) < r;,. Which is impossible According to
the definition of the release time.

Therefore we came to a contradiction. Hence, there cannot exist a schedule 7t for
which Limax(77) < Lmax(77*). 77* is the optimal schedule.

O

7. The "slightly different " polynomial subcase

Definition 4. An instance A = {ji...jn} is a case of "slightly different r” if the following
inequality is true for this instance:

rj—ri < pi, wherei,j=1...n,i#jr;>1; (10)
Remark 1. Let note that the inequality (10) is equivalent to the following one:
ri < pitri, wherei,j=1...n,i%#jr;>1 (11)

To get an intuitive understanding of the situation described in the definition 4, let
consider the following Gantt chart.

o
N

v
—t

ds

NQ______.__

1

1

] I

] I

] I

] I

1 I
EYET§! d:
Figure 3. Gantt chart example for the "slightly different r" case.

In this case all release times are so near to each other on the time line, that all the
jobs in the instance will have been recieved after completing the first job in the schedule.

Algorithm 2 (Solution of the "slightly different r" case).

1. Create n different schedules 71y . .. 71, using the following rule: 7t; = {i,argsort(d) \
i}, i =1...n - the job number i is put first in the schedule 7t;, all other jobs are sorted by
non-decreasing due date.

2. Choose the index k of the schedule 1t;, on which the minimum objective function value is
obtained: k = argmin,_; , (Lmax(7T;)).

3. " = my - return the optimal schedule.


https://doi.org/10.20944/preprints202111.0169.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 November 2021 d0i:10.20944/preprints202111.0169.v1

6 of 15

136 A strict proof that the schedule r* obtained by the algorithm is optimal follows.

137 Lemma 2. In the "slightly different r” case the following inequality is true for any schedule:

sjl.>rjl.,i:2...n. (12)
13s  Proof.
130 1. Let
140 According to (11): s;, =7}, + pj,.
1 2. Assume the inequality (12) is true for the job j;. Then for the job ji,1: s, =
12 max(Cj,1j,,,) = max(sj; + pj, 1)
143 According to (11) for the jobs j, ji1: 7j, + pj; > 7j,,,- And from the inequality (12)
144 for the ]Ob ji: 5j; + Pj; > 1, + pj; > Vi
125 Finally we obtain s;,,, = max(s;, + pj,,7j,,,) = 8, + pj, > 7j,.,- And for the job ji 1
146 the following is true: s;, | > 7.
147 D

1 Lemma 3. In the "slightly different r” case the following inequality is true for any schedule:

i
Cj.(m) = rjy + 3 i (13)
k=1
4o Proof.
150 Sj;.1 (1) = max(Cj, (), 7j,.,)-
151 According to (12): sj,,, (1) > 7j,,,. Thus, s;,, () = Cj;(71),i = 2...n. This equality

152 will be used in the proof further.

ws 1. i=2:Cj,(m) =sj,(m) +pj, = Cj, () + pj, =1}, +pj, + pj,- The equality (13) is
154 true.
s 2. Assume the inequality (13) is true for the job j;. Then for the job j;1:

Ji
18 Cipr (1) = 8ju,, () + Pjyy = G (70) + Py = 7j1 + kgl Pk Pjisa-
o Jixa
157 For the job ji;1: Cj,, (1) = rj, + kzl Pk-
158 D B

1o Corollary 1. In the "slightly different r” case the following inequality is true for any schedule:

i
qm:q+;m. (14)
=2

i
10 Proof. According to the definition, C; = rj + pj,. Then C;(7) = r;, + ¥ pj, =
k=1
i
161 C; + Z oo O
]1 = Pii

12 Notation 3. The set Aj(mw) = A\ jj is as a set of the jobs not placed on the first position in the
w3 current schedule .

1s  Notation 4. The value Ll (77) = max L (7),i = 2...nis the maximum lateness value of
s all the n elements of N except the job that comes first in the current schedule .

1es Theorem 2. Algorithm 2 finds the optimal schedule for the "slightly different r” case.


https://doi.org/10.20944/preprints202111.0169.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 November 2021 d0i:10.20944/preprints202111.0169.v1

7 of 15

167 Proof.

s 1. According to the definition, Lmax(77*) = max(L;, (7*), Lhax(77%)). Let assume that

160 a schedule 7t exists, for which Lmax(77) < Lmax(7T*).

wo 2. Ifmax(Lj (), Lhax (7)) = Lhax(7*) then Lhax(7) < Lhax(7*).

i According to the equation 14, the function L{nax(rc*) = max (Cj, (") —dj,) is the
i=2—n

172 objective function of Jackson polynomial instance [13] with r = C;;(77*). Because

173 j1 here is fixed, 7t* is the schedule on which the minimum maximum lateness is

174 achieved here as proven in [13].

s 3. If max(le(n*),L{naX(n*)) = Lj (7t*) then the inequality Lmax(77) < Lmax(7T")

176 cannot be true because the algorithm puts each job on the first position in the

177 schedule to obtain the minimum objective function value.

178 D

170 8. Estimating the a* and «., values

180 In this section we will find the a coefficient values that are to be used in the ' = ar
11 transform to achieve each of the polynomial cases listed above.

w2 Theorem 3. For an arbitrary instance A = {7, 7,d}, 7 = asc() there exists a set of trans-
13 formed instances A, = {a7, P, d} which are the cases of "highly different r”, if a satisfies the
«  following inequality:

1

3

pi

1’]' i

& > max ,i,jzl...n,i;«éj,r]->ri. (15)

15 Proof. According to the definition, in the "highly different r" case the following inequal-
186 ity is true:

1’]—1’12}?1/ Z/]::lnll7£]/r]>rl (16)

187 Let consider the ' = ar transform.

w(ri—r:) > py, ij=1..ni#j,r>1

az%, j=1..n it r>n
] 1

188 For brevity we will denote d as §§ = r]_’i" o then:

w>¢g i j=1...ni#j, rp>r = oc>n}a}1x§f.

189 And we finally obtain:
a > max Pi ,i,jzl...n,i;éj,rj>ri. (17)
7’]‘ — 7t
190 D
101 So the coefficient «, to achieve the "highly different 7" case should lie in the following
102 interval: & € [max r]_’fri;—koo), i,j=1...ni#], ri >

13 Definition 5. The minimum value of the coefficient « to achieve the "highly different r” case is
e denoted as a* and calculated, according to the Theorem 3, as follows:

Pi
1"]' — 7t

a® = max

,i,jzl...n,i#j,rj>ri. (18)
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105 It can be concluded from the definition that a* > 0, because the numerator of the
1 fraction there is non-negative and denominator is a positive value.
107 From the equation (18) the condition of existence of the "highly different r" case can

10 also be easily concluded.

s Corollary 2 (The condition of existence of the "highly different r" case). The "highly
200 different r” case exists for the initial instance A (which means that the value ™ is defined) if the
201 following condition is met:

1

©

ri#rVij=1.ni#j. (19)

202 What is more, a sufficient condition of the "highly different 7" case can be stated as
203 follows.

20 Theorem 4 (A sufficient condition of the "highly different r" case). If the a* value satisfies
205 the inequality: a* < 1 then the instance is already a case of "highly different r”.

206 Proof. According to the definition, a*(rj —r;) = p;, i,j=1...n, i #j, r; > ;.

207 Then, if a* S 1:

(ri—r)>pii,j=1...ni#jr>r. (20)
208 This means that the initial instance A is is already a case of "highly different r". [J
209 Now we will proceed to proving the equivalent theorems for the "slightly different
210 1" case.

2 Theorem 5. For an arbitrary instance A = {7, §,d}, 7 = asc(7) there exists a set of trans-
2z formed instances A, = {a, B, d} which are the cases of "slightly different r” if a satisfies the
s following inequality:

2

[

0 <a <min Pi

L,i=1...n,i%jri>r. 21
in ni# gy > (21)

212 Proof. According to the definition, the coefficient & should satisfy the following inequal-

215 lfy
a(rj—ri)gpi,i,jzl...n,i;éj,rj>ri. (22)
216 Which means that
a < L,i,j =1...ni#jri>r.
- ri—ti /
217 For brevity we will denote C{: as d = % Then we obtain:
a<eij=1...ni#jr>r (23)
218 For this inequality to true for any i,j = 1...n,i # |, ri > 1, there is also the
210 following requirement:
« <mingl,ij=1...ni#j1; > (24)
L]
220 This means that
w<min—F i i1 ni#jy>r (25)
i,j T]' — Tt

221 What is more, p; > 0. Then,
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233

234

0§aSminL,i,jzl...n,i#j,rj>ri. (26)
i,j T’j—i’i

O

So the coeftficient a to achieve the "highly different 7" case should lie in the following
interval: a € [0, min r]_’fr ), ij=1..ni#]f, rj>r

i

Definition 6. The maximum value of the coefficient a to achieve the "slightly different r” case
is denoted as w, and calculated, according to the theorem, as follows:

pi
7']' — 71

Ay = mMin

sLj=1on i £, > (27)

From the equation (27) the condition of existence of the "slightly different " case
can be easily concluded.

Corollary 3 (The condition of existence of the "slightly different 1" case). The "highly
different v” case exists for the initial instance A (which means that the value a* is defined) if the
following condition is met:

ri#ErVij=1.ni#j. (28)

Theorem 6 (A sufficient condition of the "slightly different " case). If the a. value satisfies
the inequality: o, > 1 than the instance is already a case of "highly different r”.

Proof. From the definition, uc*(r]' —r)=pi,ij=1...ni#], rj >
Then, if a* > 1:
(ri—r)<pi,ij=1...ni#jr;>r. (29)

This means that the initial instance A is is already a case of "slightly different r". [

Remark 2. It can also be shown that, for example, for Lazarev polynomial class of instances, the

following inequality is obtained:

dj —di—pj+pi
1’]' — 71

> SLj=1on,i#j,d; > d;. (30)

However, because the conditions in this and the other polynomial cases are more complex
and may require different transforms, in this paper only the "highly different v” and "slightly
different r” cases are defined and considered.

9. The interpolation-based polynomial method of estimating the objective function
value

Now, since we have defined the general interpolation method algorithm and also
have found the coefficient intervals related to the polynomial cases, let provide the
interpolation-based polynomial algorithm.

Algorithm 3.

1. Calculate the values a* (18) and . (27).

2. Choose k values (k is an arbitrary positive integer) ay . .. ay on the interval [0, a,] so that
a1 = 0, ax = wa, and the points are equally spaced. Denote the interval between two
nearest points as A.

3. Choose k values a1 . .. o on the interval [a*, a* + kA] so that ax 1 = 0, ag = a* and
the points are equally spaced.
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257

258

262

4. Calculate the values Lax (1) - - . Lmax (a2k).
5. Estimate the optimal value of the objective function of the initial instances using the
Lmax (1) - .. Lmax (a2k) values and the formula (5):

k [T (1 - Lmax(“i))

i#k
= 17}}((1 — Lmax(l’éj)) Lmax(lxn). (31)
]

* —
Lmax -

Remark 3. The values Lax (1) . . . Lmax(a2k) are independent and so can be calculated paral-

lelly.

600 1 _ Interpolation
= Polynomial areas
| Polynomial instances
500 - —
® Original instance
. 400 H
£
~l
300 -
200 -

Figure 4. An illustration for the Algorithm 3. The thick dark segments are the polynomial areas.
The vertical dashes are the polynomial interpolation nodes. The round point is the true value of
the initial instance optimal objective function.

10. Numeric experiments

Before proceeding to the numerical experiments’ results, here is some information
on how these experiments have been carried on.

(08 Windows 10

CPU Intel core i3

RAM 6Gb

Programming language Python 3.7 [14]
Environment Jupyter Notebook [14]
Main calculation library numpy [15]

Graphic library matplotlib/pyplot [16]
Random generation of , p,d ~ Uniform integers € [0, 100]

100 instances of size 8 have been generated. This same set of instances was used
in all of the following numerical experiments to make it possible to compare different
experiments’ results.

The first experiment was conducted to calculate the optimal interpolation nodes
number k. The results are presented on the following plot.

The nodes were selected according to the Algorithm 3, the parameter k was being
changed.

The relative error value for each instance N was calculated using the following
formula:
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T *

Li — LZ 0
EITZ‘ = |T| x 100 /0, (32)
1
where subscript i is the number of the instance in the set of 100 generated instances, LiT
is the true optimal value of the initial instance objective function (obtained by the dual
algorithm [10]) and L} is the optimal value of the objective function estimated using the

Algorithm 3.

2000071 @ Mean error values

17500 4 A Median error values

15000 4
12500 4

10000 4

Error values

7500 4

5000 A

2500 4

04 & @ @ & A

6 8 10 12 14
Number of interpolation nodes

Figure 5. The plot shows the dependence of mean and median relative error values on the total
number of the interpolation nodes.

1.0 A Median error values

0.8 1

0.6 1

0.4 1

Error values

0.2 1

0.0 1 3 &

4

4 6 8 10 12 14
Number of interpolation nodes

Figure 6. The plot shows the dependence of median relative error values on the total number of
the interpolation nodes.

We can see that while median relative error decreases with the growth of the
parameter k, the mean relative error increases. This means that although most of the
instances are approximated more correctly, some instances become outliers with really
high error values.

So to finally figure out the optimal number k, the following plot, showing the the
dependence of the product of median and mean relative error values on the total number
of the interpolation nodes, was created.
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2.04 A MedianxMean error values

Error values

4 6 8 10 12 14
Number of interpolation nodes

Figure 7. The plot shows the dependence of the product of median and mean relative error values
on the total number of the interpolation nodes.

Now we can see from the graph that experimentally calculated optimal k value is
k = 8.

The next experiment was conducted the following way. The parameter k value
remained constant, but the distance A* between each two neighboring points on the
"highly different 7" interval was increased in relation to the distance A, between each
two neighboring points on the "slightly different " interval.

This can be done because, as shown above, "highly different r" interval has no
higher bound on coefficient a.

161 o—o —@ ® ® ® © *——o

1.4 1
1.2 1

1.0
® Mean error values

081 A Median error values

Error values

0.6 1

0.4 1

0.2 1

004 A A A A A A — A — A —A

1 2 3 4 5 6 7 8 9
A" /A

Figure 8. The plot shows the dependence of the median and mean relative error values on the step
ratio ﬁ—:.

We can see that errors don’t depend on the step ratio ﬁ—:, so we can just choose the
steps to be equal: A* = A, = A.

In the next experiment we have fixed the intervals A* = A, = A but were changing
the number k* of "highly different " points. The results follow on the Figure 9.
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Figure 9. The plot shows the dependence of the product of median and mean relative error values
on the number k* of "highly different r" points.

The complexity[17] of the Algorithm 3 was evaluated as O(n” log(n)), where n is
the number of jobs in the instance.

The resulting p value appeared to be p =~ 2, so the complexity can be estimated as
O(n?log(n)) (see Figure 10).

1.04 — Powerofn: 2.2 +-0.1
® Experiment data

Mean calculating time (normalized)

10 20 30 40 50
Number of jobs in the instance

Figure 10. Complexity of the Algorithm 3.

11. Conclusion

In this paper a new approach to approximating the objective function value of the
1|rj|Lmax problem is proposed.

The approach is based on the Lmax(«) function (using the v’ = ar transform) and
Lagrange interpolation.

The numeric experiments that have been carried out show how to optimize the
hyperparameters of the method. The average complexity of the proposed algorithm is
O(n?log(n)), where n is the number of jobs in the instance.
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sos 12. Further research

300 Further research into the features of the Lmax(a) will be conducted to develop a
s10 method of error estimation for the approach. The results will be compared with the
su  results of error estimation of the metric approach|[7].

312 There are also other transforms and polynomial cases that have to be studied.
a3 What is more, we are planning to study combinations of different transforms and their
;e geometry in the 3n-dimensional feature space.

315 The Hypotheses stated in this paper will also be proven, so that we can boost the
s1e  efficiency and the accuracy of the approach.

317 Different interpolation methods, including Chebyshev interpolation[20] and spline
a1 interpolation[21], can be used.

319 Also a combination of metric and interpolation approaches - the metric interpolation

20 method - is being studied and developed.
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