

Article

AN INTERPOLATION-BASED POLYNOMIAL METHOD OF ESTIMATING THE OBJECTIVE FUNCTION VALUE IN SCHEDULING PROBLEMS OF MINIMIZING THE MAXIMUM LATENESS

Alexander Lazarev ¹, Darya Lemtyuzhnikova ^{1,2} and Andrey Tyunyatkin ^{1,*}

¹ Institute of Control Sciences, 65 Profsoyuznaya street, 117997, Moscow, Russia

² Moscow Aviation Institute, 4 Volokolamskoe highway, Moscow, 125993, Russia

* Correspondence: a@tuniatk.in

1 Abstract: An approach to estimating the objective function value of minimization maximum lateness problem is proposed. It is shown how to use transformed instances to define a new continuous objective function. After that, using this new objective function, the approach itself is formulated. We calculate the objective function value for some polynomially solvable transformed instances and use them as interpolation nodes to estimate the objective function of the initial instance. What is more, two new polynomial cases, that are easy to use in the approach, are proposed. In the end of the paper numeric experiments are described and their results are provided.

9 Keywords: discrete mathematics; scheduling; optimization; interpolation; approximation; objective function.

11 1. Introduction

12 The vast majority of scheduling theory problems are NP-hard [1]. To solve such
13 problems, it is common to use algorithms, the performance of which strongly depends on
14 the input data. A new approach to estimating the objective function value of scheduling
15 theory problems is proposed - the interpolation approach.

16 Algorithms for solving problems in the theory of schedules, considered, for example,
17 in [1,2], can be used. Algorithms and methods from [3] can be used to work with random
18 data, and metric interpolation speeds up their execution when processing difficult cases.

19 Since the interpolation approach works only with the values of the objective function,
20 it can also be used to create schedules for multi-stage systems, solving problems,
21 for example, using algorithms from [4].

22 For certainty, this article considers the solution of the problem of minimizing the
23 maximum time offset $1|r_j|L_{\max}$.

24 New polynomial cases, that can be easily used in the interpolation approach, are
25 defined. Using these cases and Lagrange interpolation [5,11], the objective function
26 value is approximated.

27 Other interpolation methods[5] also can be used in the approach: for instance,
28 Chebyshev interpolation[20] or Spline interpolation [21]. However these methods will
29 be considered in our future work, while in this paper we will keep using Lagrange
30 interpolation polynome.

31 2. The problem of minimizing the maximum lateness for single machine

32 2.1. The problem statement

In the problem $1|r_j|L_{\max}$ [1,7,10], which we will consider, a set of n jobs is given
 $A = \{1, \dots, n\}$. For each job j , the following parameters are set: the release time r_j , the

processing time p_j and the due date d_j [1]. By *schedule* π we mean some permutation of the jobs of the set A . Let's enter the completion time of the job j with the schedule π :

$$C_j(\pi) = \max_{\pi} \left\{ r_j, \max_{(k \rightarrow j)_{\pi}} C_k(\pi) \right\} + p_j. \quad (1)$$

33 Here $(k \rightarrow j)_{\pi}$ is the set of jobs that are processed before the work of j with the
34 schedule of π .

35 The lateness of the job j in the schedule π is defined as follows:

$$L_j(\pi) = C_j(\pi) - d_j. \quad (2)$$

Thus, the task of minimizing the maximum lateness is to find such schedule π_0 , at which the objective function obtains the minimum value:

$$L_{\max}(\pi_0) = \min_{\pi} \max_{j=1, \dots, n} \{C_j(\pi) - d_j\}. \quad (3)$$

36 This problem is NP-hard in the strong sense [6].

37 3. The feature space

38 In the paper each instance of the scheduling problem [1], consisting of n jobs, is
39 considered as a point in a $3n$ -dimensional feature space [8,9] with coordinates
40 $(r_1, r_2, \dots, r_n, p_1, p_2, \dots, p_n, d_1, d_2, \dots, d_n)$.

41 For convenience, we will denote each instance as a $3 \times n$ matrix:

$$\begin{pmatrix} r_1 & r_2 & \dots & r_n \\ p_1 & p_2 & \dots & p_n \\ d_1 & d_2 & \dots & d_n \end{pmatrix}$$

42 Let pick a point A in this space. Then the instance for which we want to solve the
43 scheduling problem is an instance consisting of n jobs with r_j, p_j, d_j parameters specified
44 by the coordinates of the point A .

45 More about the $3n$ -dimensional feature space can be found in [7].

46 4. The $r' = \alpha r$ transform

47 **Definition 1.** The $r' = \alpha r$ (where α is an arbitrary non-negative real value) is a transform
48 that matches the initial instance $A = \begin{pmatrix} r_1 & r_2 & \dots & r_n \\ p_1 & p_2 & \dots & p_n \\ d_1 & d_2 & \dots & d_n \end{pmatrix}$ with the transformed instance

$$49 A' = \begin{pmatrix} \alpha r_1 & \alpha r_2 & \dots & \alpha r_n \\ p_1 & p_2 & \dots & p_n \\ d_1 & d_2 & \dots & d_n \end{pmatrix}.$$

50 Thus, the $r' = \alpha r$ transform multiplies all the release times of the instance by some
51 factor α while keeping the processing times and due dates constant.

52 5. Introduction to the interpolation approach

53 **Notation 1.** When writing A_{α} we refer to a transformed instance A' obtained from the initial
54 instance A using the $r' = \alpha r$ transform with some coefficient α .

55 **Notation 2.** The optimal value of the L_{\max} objective function obtained for the initial instance A
56 will be denoted as L_{\max}^* .

57 Now it is time to define the $L_{\max}(\alpha)$ function which will be used for interpolation
58 later.

59 **Definition 2.** Function $L_{\max}(\alpha)$ receives a real non-negative transform coefficient α value and
 60 returns the optimal value of the objective function obtained on the transformed instance A_α .

61 The concept of the approach is that it is possible to draw a straight line through the
 62 point A in the 3n-dimensional feature space mentioned above, pick some other points
 63 on that line, solve the instances specified by those points and then, using interpolation
 64 [1,5], find an approximate value of the objective function at the point A .

65 Lagrange interpolation polynomial is defined as follows [5]:

$$L_m(x) = \sum_{k=0}^m \frac{\prod_{i \neq k} (x - x_i)}{\prod_{j \neq k} (x - x_j)} f(x_k). \quad (4)$$

66 Let presume we have calculated the objective function values for the n transformed
 67 instances $A_{\alpha_1} \dots A_{\alpha_n}$. Now we are willing to find the L_{\max} value of the initial instance A .
 68 Using Lagrange interpolation polynomial (4) we will obtain the following formula:

$$L_{\max}^* = L_n(1) = \sum_{k=1}^n \frac{\prod_{i \neq k} (1 - L_{\max}(\alpha_i))}{\prod_{j \neq k} (1 - L_{\max}(\alpha_j))} L_{\max}(\alpha_k). \quad (5)$$

69 This procedure is formalized in the following algorithm.

70 **Algorithm 1.** The algorithm receives the initial instance N and returns the estimated objective
 71 function value L_{\max}^* .

- 72 1. Create a set $A = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, $\alpha_i \geq 0$ containing the α values for all the n points we
 73 want to use for interpolation.
- 74 2. For each α_i in A create a transformed instance A_{α_i} using the $r' = \alpha r$ transform. Obtain
 75 the $L_{\max}(\alpha_i)$ value for this instance.
- 76 3. Using Lagrange interpolation and the calculated objective function values - return the
 77 L_{\max}^* value using the formula (5).

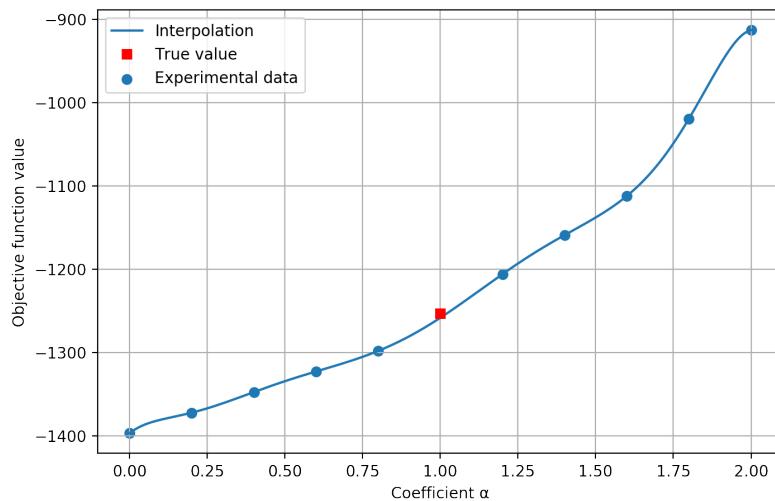


Figure 1. An illustration for the Algorithm 1. The round points are the interpolation nodes, the objective function value is known for each of them. Then the interpolating curve is plotted and the initial instance objective function value is estimated using this curve. The square point is the true value of the objective function so we can compare the true value with its approximation found by the interpolation curve.

78 It would be highly effective, however, to use polynomially solvable instances as the
 79 interpolation nodes to be able to estimate the L_{\max}^* value in polynomial time. For this
 80 purpose we have developed two polynomial classes of instances which can be easily
 81 used in the interpolation approach avoiding massive calculations.

82 These classes are called the "highly different r " polynomial subcase and "slightly
 83 different r " polynomial subcase.

84 **6. The "highly different r " polynomial subcase**

85 **Definition 3.** An instance $A = \{j_1 \dots j_n\}$ is a case of "highly different r " if the following
 86 inequality is true for this instance:

$$r_j - r_i \geq p_i, \text{ where } i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (6)$$

87 To get an intuitive understanding of the situation described in the definition, let
 88 consider the following Gantt chart[12].

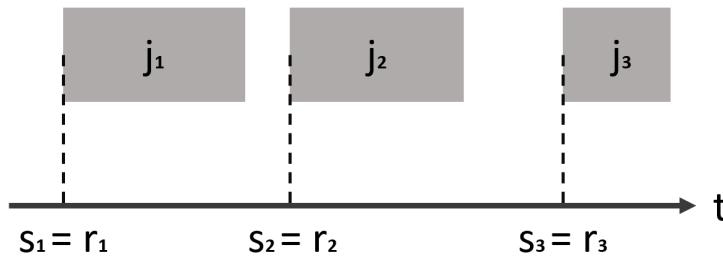


Figure 2. Gantt chart example for the "highly different r " case.

89 Each r_i, r_j are so far away from each other on the timeline, that the processor has
 90 enough time to complete the previous job before receiving the next one. So it is obvious
 91 that the optimal schedule π^* for this case is obtained by sorting the jobs by increasing
 92 receivement time order.

93 However, a strict proof of this fact is given below.

94 **Lemma 1.** For an instance N of n jobs we will consider such schedule $\pi = j_1 \dots j_n$, for which
 95 the inequality $r_{j_1} < r_{j_2} < \dots < r_{j_n}$ is obtained. Then in the "highly different r " the following
 96 equality is true:

$$r_j = s_j \quad \forall j \in A. \quad (7)$$

97 **Proof.**

- 98 1. For the job j_1 the equality (7) $s_1 = r_1$ is true, because it is the first job in the schedule
 99 and so it will start being processed right after the receivement time.
- 100 2. May the equality (7) be true for the job j_i : $s_i = r_i$. Then for the job j_{i+1} : $s_{i+1} =$
 101 $\max(C_i, r_{i+1}) = \max(s_i + p_i, r_{i+1}) = \max(r_i + p_i, r_{i+1})$. According to the definition
 102 3: $r_{i+1} - r_i \geq p_i$, which means that

$$r_{i+1} \geq r_i + p_i. \quad (8)$$

103 From (8) we can conclude that $\max(r_i + p_i, r_{i+1}) = r_{i+1}$. Then, $s_{i+1} = r_{i+1}$. The
 104 equality (7) is obtained and hereby the lemma is proven.

105 \square

106 **Theorem 1.** The optimal schedule $\pi^* = j_1 \dots j_n$ for the "highly different r " case is such
 107 schedule, in which the jobs are ordered by increasing release times: $r_{j_1} < r_{j_2} < \dots < r_{j_n}$.

¹⁰⁸ **Proof.** Let consider the job j_i on which the maximum lateness value is obtained: $L_{j_i}(\pi^*) = L_{\max}(\pi^*)$. Let suppose that a schedule π exists, for which $L_{\max}(\pi) < L_{\max}(\pi^*)$. This means that also $L_{\max}(\pi) < L_{j_i}(\pi^*)$.

¹¹¹ By definition $L_{j_i}(\pi^*) = C_{j_i}(\pi^*) - d_{j_i} = s_{j_i}(\pi^*) + p_{j_i} - d_{j_i}$. Using Lemma 1 we ¹¹² obtain the following equality:

$$L_{j_i}(\pi^*) = s_{j_i}(\pi^*) + p_{j_i} - d_{j_i} = r_{j_i} + p_{j_i} - d_{j_i}.$$

¹¹³ As shown above for the schedule π : $L_{\max}(\pi) < L_{j_i}(\pi^*)$. It means that $L_{\max}(\pi) < r_{j_i} + p_{j_i} - d_{j_i}$. Then:

$$L_{j_i}(\pi) < r_{j_i} + p_{j_i} - d_{j_i}. \quad (9)$$

¹¹⁵ According to the definition 2, $L_{j_i}(\pi) = s_{j_i}(\pi) + p_{j_i} - d_{j_i}$. Then we obtain the ¹¹⁶ following inequality for the equation (9): $s_{j_i}(\pi) < r_{j_i}$. Which is impossible According to ¹¹⁷ the definition of the release time.

¹¹⁸ Therefore we came to a contradiction. Hence, there cannot exist a schedule π for ¹¹⁹ which $L_{\max}(\pi) < L_{\max}(\pi^*)$. π^* is the optimal schedule.

¹²⁰ \square

¹²¹ 7. The "slightly different r " polynomial subcase

¹²² **Definition 4.** An instance $A = \{j_1 \dots j_n\}$ is a case of "slightly different r " if the following ¹²³ inequality is true for this instance:

$$r_j - r_i \leq p_i, \text{ where } i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (10)$$

¹²⁴ **Remark 1.** Let note that the inequality (10) is equivalent to the following one:

$$r_j \leq p_i + r_i, \text{ where } i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (11)$$

¹²⁵ To get an intuitive understanding of the situation described in the definition 4, let ¹²⁶ consider the following Gantt chart.

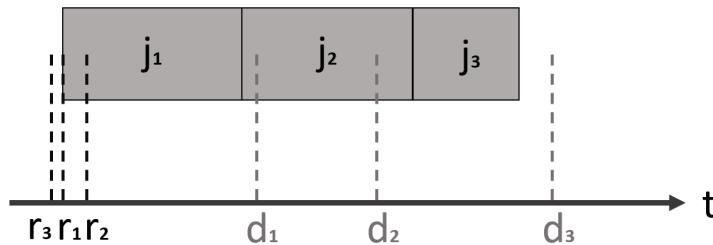


Figure 3. Gantt chart example for the "slightly different r " case.

¹²⁷ In this case all release times are so near to each other on the time line, that all the ¹²⁸ jobs in the instance will have been received after completing the first job in the schedule.

¹²⁹ **Algorithm 2** (Solution of the "slightly different r " case).

- ¹³⁰ 1. Create n different schedules $\pi_1 \dots \pi_n$ using the following rule: $\pi_i = \{i, \text{argsort}(\vec{d}) \setminus i\}$, $i = 1 \dots n$ - the job number i is put first in the schedule π_i , all other jobs are sorted by non-decreasing due date.
- ¹³³ 2. Choose the index k of the schedule π_k on which the minimum objective function value is obtained: $k = \text{argmin}_{i=1 \dots n} (L_{\max}(\pi_i))$.
- ¹³⁵ 3. $\pi^* = \pi_k$ - return the optimal schedule.

¹³⁶ A strict proof that the schedule π^* obtained by the algorithm is optimal follows.

¹³⁷ **Lemma 2.** *In the "slightly different r" case the following inequality is true for any schedule:*

$$s_{j_i} > r_{j_i}, \quad i = 2 \dots n. \quad (12)$$

¹³⁸ **Proof.**

¹³⁹ 1. Let

¹⁴⁰ According to (11): $s_{j_2} = r_{j_1} + p_{j_1}$.

¹⁴¹ 2. Assume the inequality (12) is true for the job j_i . Then for the job j_{i+1} : $s_{j_{i+1}} = \max(C_{j_i}, r_{j_{i+1}}) = \max(s_{j_i} + p_{j_i}, r_{j_{i+1}})$.

¹⁴³ According to (11) for the jobs j_i, j_{i+1} : $r_{j_i} + p_{j_i} > r_{j_{i+1}}$. And from the inequality (12) for the job j_i : $s_{j_i} + p_{j_i} > r_{j_i} + p_{j_i} > r_{j_{i+1}}$.

¹⁴⁵ Finally we obtain $s_{j_{i+1}} = \max(s_{j_i} + p_{j_i}, r_{j_{i+1}}) = s_{j_i} + p_{j_i} > r_{j_{i+1}}$. And for the job j_{i+1} the following is true: $s_{j_{i+1}} > r_{j_{i+1}}$.

¹⁴⁷ \square

¹⁴⁸ **Lemma 3.** *In the "slightly different r" case the following inequality is true for any schedule:*

$$C_{j_i}(\pi) = r_{j_1} + \sum_{k=1}^i p_{j_k}. \quad (13)$$

¹⁴⁹ **Proof.**

¹⁵⁰ $s_{j_{i+1}}(\pi) = \max(C_{j_i}(\pi), r_{j_{i+1}})$.

¹⁵¹ According to (12): $s_{j_{i+1}}(\pi) > r_{j_{i+1}}$. Thus, $s_{j_{i+1}}(\pi) = C_{j_i}(\pi), i = 2 \dots n$. This equality will be used in the proof further.

¹⁵³ 1. $i = 2$: $C_{j_2}(\pi) = s_{j_2}(\pi) + p_{j_2} = C_{j_1}(\pi) + p_{j_2} = r_{j_1} + p_{j_1} + p_{j_2}$. The equality (13) is true.

¹⁵⁵ 2. Assume the inequality (13) is true for the job j_i . Then for the job j_{i+1} :

$$C_{j_{i+1}}(\pi) = s_{j_{i+1}}(\pi) + p_{j_{i+1}} = C_{j_i}(\pi) + p_{j_{i+1}} = r_{j_1} + \sum_{k=1}^{j_i} p_k + p_{j_{i+1}}.$$

$$\text{For the job } j_{i+1}: C_{j_{i+1}}(\pi) = r_{j_1} + \sum_{k=1}^{j_{i+1}} p_k.$$

¹⁵⁸ \square

¹⁵⁹ **Corollary 1.** *In the "slightly different r" case the following inequality is true for any schedule:*

$$C_{j_i}(\pi) = C_{j_1} + \sum_{k=2}^i p_{j_k}. \quad (14)$$

¹⁶⁰ **Proof.** According to the definition, $C_{j_1} = r_{j_1} + p_{j_1}$. Then $C_{j_i}(\pi) = r_{j_1} + \sum_{k=1}^i p_{j_k} =$

$$C_{j_1} + \sum_{k=2}^i p_{j_k}. \quad \square$$

¹⁶² **Notation 3.** *The set $A_J(\pi) = A \setminus j_1$ is as a set of the jobs not placed on the first position in the current schedule π .*

¹⁶⁴ **Notation 4.** *The value $L_{\max}^J(\pi) = \max L_{j_i}(\pi), i = 2 \dots n$ is the maximum lateness value of all the n elements of N except the job that comes first in the current schedule π .*

¹⁶⁶ **Theorem 2.** *Algorithm 2 finds the optimal schedule for the "slightly different r" case.*

167 **Proof.**

168 1. According to the definition, $L_{\max}(\pi^*) = \max(L_{j_1}(\pi^*), L_{\max}^J(\pi^*))$. Let assume that
 169 a schedule π exists, for which $L_{\max}(\pi) < L_{\max}(\pi^*)$.
 170 2. If $\max(L_{j_1}(\pi^*), L_{\max}^J(\pi^*)) = L_{\max}^J(\pi^*)$ then $L_{\max}^J(\pi) < L_{\max}^J(\pi^*)$.
 171 According to the equation 14, the function $L_{\max}^J(\pi^*) = \max_{i=2 \rightarrow n} (C_{j_i}(\pi^*) - d_{j_i})$ is the
 172 objective function of Jackson polynomial instance [13] with $r = C_{j_1}(\pi^*)$. Because
 173 j_1 here is fixed, π^* is the schedule on which the minimum maximum lateness is
 174 achieved here as proven in [13].
 175 3. If $\max(L_{j_1}(\pi^*), L_{\max}^J(\pi^*)) = L_{j_1}(\pi^*)$ then the inequality $L_{\max}(\pi) < L_{\max}(\pi^*)$
 176 cannot be true because the algorithm puts each job on the first position in the
 177 schedule to obtain the minimum objective function value.

178 \square 179 **8. Estimating the α^* and α_* values**

180 In this section we will find the α coefficient values that are to be used in the $r' = \alpha r$
 181 transform to achieve each of the polynomial cases listed above.

182 **Theorem 3.** For an arbitrary instance $A = \{\vec{r}, \vec{p}, \vec{d}\}$, $\vec{r} = \text{asc}(\vec{r})$ there exists a set of trans-
 183 formed instances $A_\alpha = \{\alpha \vec{r}, \vec{p}, \vec{d}\}$ which are the cases of "highly different r ", if α satisfies the
 184 following inequality:

$$\alpha \geq \max \frac{p_i}{r_j - r_i}, \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i. \quad (15)$$

185 **Proof.** According to the definition, in the "highly different r " case the following inequal-
 186 ity is true:

$$r_j - r_i \geq p_i, \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i. \quad (16)$$

187 Let consider the $r' = \alpha r$ transform.

$$\alpha(r_j - r_i) \geq p_i, \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i,$$

$$\alpha \geq \frac{p_i}{r_j - r_i}, \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i.$$

188 For brevity we will denote ξ_i^j as $\xi_i^j = \frac{p_i}{r_j - r_i}$, then:

$$\alpha \geq \xi_i^j, \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i \Rightarrow \alpha > \max_{i, j} \xi_i^j.$$

189 And we finally obtain:

$$\alpha \geq \max \frac{p_i}{r_j - r_i}, \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i. \quad (17)$$

190 \square

191 So the coefficient α , to achieve the "highly different r " case should lie in the following
 192 interval: $\alpha \in [\max \frac{p_i}{r_j - r_i}; +\infty), \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i.$

193 **Definition 5.** The minimum value of the coefficient α to achieve the "highly different r " case is
 194 denoted as α^* and calculated, according to the Theorem 3, as follows:

$$\alpha^* = \max \frac{p_i}{r_j - r_i}, \quad i, j = 1 \dots n, \quad i \neq j, \quad r_j > r_i. \quad (18)$$

195 It can be concluded from the definition that $\alpha^* \geq 0$, because the numerator of the
 196 fraction there is non-negative and denominator is a positive value.

197 From the equation (18) the condition of existence of the "highly different r " case can
 198 also be easily concluded.

199 **Corollary 2** (The condition of existence of the "highly different r " case). *The "highly
 200 different r " case exists for the initial instance A (which means that the value α^* is defined) if the
 201 following condition is met:*

$$r_i \neq r_j \forall i, j = 1 \dots n, i \neq j. \quad (19)$$

202 What is more, a sufficient condition of the "highly different r " case can be stated as
 203 follows.

204 **Theorem 4** (A sufficient condition of the "highly different r " case). *If the α^* value satisfies
 205 the inequality: $\alpha^* \leq 1$ then the instance is already a case of "highly different r ".*

206 **Proof.** According to the definition, $\alpha^*(r_j - r_i) = p_i$, $i, j = 1 \dots n, i \neq j, r_j > r_i$.
 207 Then, if $\alpha^* \leq 1$:

$$(r_j - r_i) \geq p_i, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (20)$$

208 This means that the initial instance A is already a case of "highly different r ". \square

209 Now we will proceed to proving the equivalent theorems for the "slightly different
 210 r " case.

211 **Theorem 5.** *For an arbitrary instance $A = \{\vec{r}, \vec{p}, \vec{d}\}$, $\vec{r} = \text{asc}(\vec{r})$ there exists a set of trans-
 212 formed instances $A_\alpha = \{\alpha \vec{r}, \vec{p}, \vec{d}\}$ which are the cases of "slightly different r " if α satisfies the
 213 following inequality:*

$$0 \leq \alpha \leq \min_{i,j} \frac{p_i}{r_j - r_i}, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (21)$$

214 **Proof.** According to the definition, the coefficient α should satisfy the following inequality:
 215

$$\alpha(r_j - r_i) \leq p_i, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (22)$$

216 Which means that

$$\alpha \leq \frac{p_i}{r_j - r_i}, i, j = 1 \dots n, i \neq j, r_j > r_i.$$

217 For brevity we will denote ξ_i^j as $\xi_i^j = \frac{p_i}{r_j - r_i}$. Then we obtain:

$$\alpha \leq \xi_i^j, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (23)$$

218 For this inequality to be true for any $i, j = 1 \dots n, i \neq j, r_j > r_i$, there is also the
 219 following requirement:

$$\alpha \leq \min_{i,j} \xi_i^j, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (24)$$

220 This means that

$$\alpha \leq \min_{i,j} \frac{p_i}{r_j - r_i}, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (25)$$

221 What is more, $p_i > 0$. Then,

$$0 \leq \alpha \leq \min_{i,j} \frac{p_i}{r_j - r_i}, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (26)$$

222 \square

223 So the coefficient α to achieve the "highly different r " case should lie in the following
 224 interval: $\alpha \in [0, \min \frac{p_i}{r_j - r_i}), i, j = 1 \dots n, i \neq j, r_j > r_i.$

225 **Definition 6.** *The maximum value of the coefficient α to achieve the "slightly different r " case
 226 is denoted as α_* and calculated, according to the theorem, as follows:*

$$\alpha_* = \min \frac{p_i}{r_j - r_i}, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (27)$$

227 From the equation (27) the condition of existence of the "slightly different r " case
 228 can be easily concluded.

229 **Corollary 3** (The condition of existence of the "slightly different r " case). *The "highly
 230 different r " case exists for the initial instance A (which means that the value α_* is defined) if the
 231 following condition is met:*

$$r_i \neq r_j \forall i, j = 1 \dots n, i \neq j. \quad (28)$$

232 **Theorem 6** (A sufficient condition of the "slightly different r " case). *If the α_* value satisfies
 233 the inequality: $\alpha_* \geq 1$ then the instance is already a case of "highly different r ".*

234 **Proof.** From the definition, $\alpha_*(r_j - r_i) = p_i, i, j = 1 \dots n, i \neq j, r_j > r_i.$
 235 Then, if $\alpha^* \geq 1$:

$$(r_j - r_i) \leq p_i, i, j = 1 \dots n, i \neq j, r_j > r_i. \quad (29)$$

236 This means that the initial instance A is already a case of "slightly different r ". \square

237 **Remark 2.** *It can also be shown that, for example, for Lazarev polynomial class of instances, the
 238 following inequality is obtained:*

$$\alpha \geq \frac{d_j - d_i - p_j + p_i}{r_j - r_i}, i, j = 1 \dots n, i \neq j, d_j > d_i. \quad (30)$$

239 *However, because the conditions in this and the other polynomial cases are more complex
 240 and may require different transforms, in this paper only the "highly different r " and "slightly
 241 different r " cases are defined and considered.*

242 9. The interpolation-based polynomial method of estimating the objective function 243 value

244 Now, since we have defined the general interpolation method algorithm and also
 245 have found the coefficient intervals related to the polynomial cases, let provide the
 246 interpolation-based polynomial algorithm.

247 **Algorithm 3.**

- 248 1. Calculate the values α^* (18) and α_* (27).
- 249 2. Choose k values (k is an arbitrary positive integer) $\alpha_1 \dots \alpha_k$ on the interval $[0, \alpha_*]$ so that
 250 $\alpha_1 = 0, \alpha_k = \alpha_*$ and the points are equally spaced. Denote the interval between two
 251 nearest points as Δ .
- 252 3. Choose k values $\alpha_{k+1} \dots \alpha_{2k}$ on the interval $[\alpha^*, \alpha^* + k\Delta]$ so that $\alpha_{k+1} = 0, \alpha_{2k} = \alpha^*$ and
 253 the points are equally spaced.

254 4. Calculate the values $L_{\max}(\alpha_1) \dots L_{\max}(\alpha_2k)$.
 255 5. Estimate the optimal value of the objective function of the initial instances using the
 256 $L_{\max}(\alpha_1) \dots L_{\max}(\alpha_2k)$ values and the formula (5):

$$L_{\max}^* = \sum_{n=1}^k \frac{\prod_{i \neq k} (1 - L_{\max}(\alpha_i))}{\prod_{j \neq k} (1 - L_{\max}(\alpha_j))} L_{\max}(\alpha_n). \quad (31)$$

257 **Remark 3.** The values $L_{\max}(\alpha_1) \dots L_{\max}(\alpha_2k)$ are independent and so can be calculated paral-
 258 lelly.

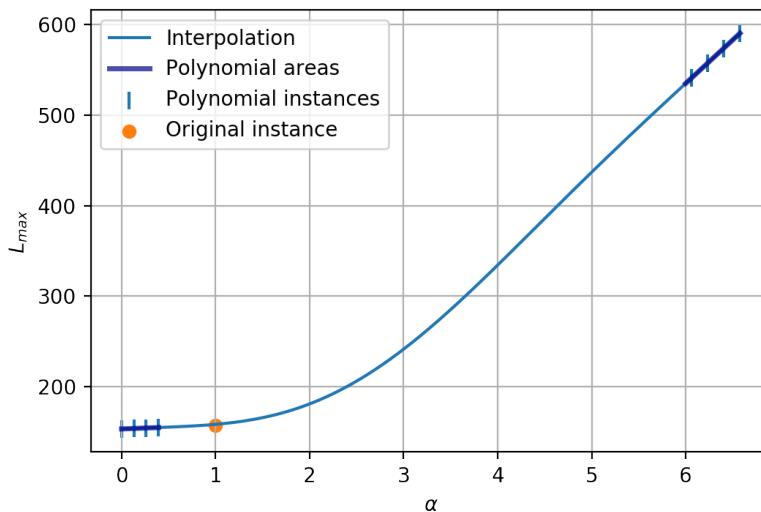


Figure 4. An illustration for the Algorithm 3. The thick dark segments are the polynomial areas. The vertical dashes are the polynomial interpolation nodes. The round point is the true value of the initial instance optimal objective function.

259 10. Numeric experiments

260 Before proceeding to the numerical experiments' results, here is some information
 261 on how these experiments have been carried on.

OS	Windows 10
CPU	Intel core i3
RAM	6Gb
Programming language	Python 3.7 [14]
Environment	Jupyter Notebook [14]
Main calculation library	numpy [15]
Graphic library	matplotlib/pyplot [16]
Random generation of r, p, d	Uniform integers $\in [0, 100]$

262 263 100 instances of size 8 have been generated. This same set of instances was used
 264 in all of the following numerical experiments to make it possible to compare different
 265 experiments' results.

266 267 The first experiment was conducted to calculate the optimal interpolation nodes
 268 number k . The results are presented on the following plot.

269 270 The nodes were selected according to the Algorithm 3, the parameter k was being
 271 changed.

272 273 The relative error value for each instance N was calculated using the following
 274 formula:

$$\text{Err}_i = \left| \frac{L_i^T - L_i^*}{L_i^T} \right| \times 100\%, \quad (32)$$

272 where subscript i is the number of the instance in the set of 100 generated instances, L_i^T
 273 is the true optimal value of the initial instance objective function (obtained by the dual
 274 algorithm [10]) and L_i^* is the optimal value of the objective function estimated using the
 275 Algorithm 3.

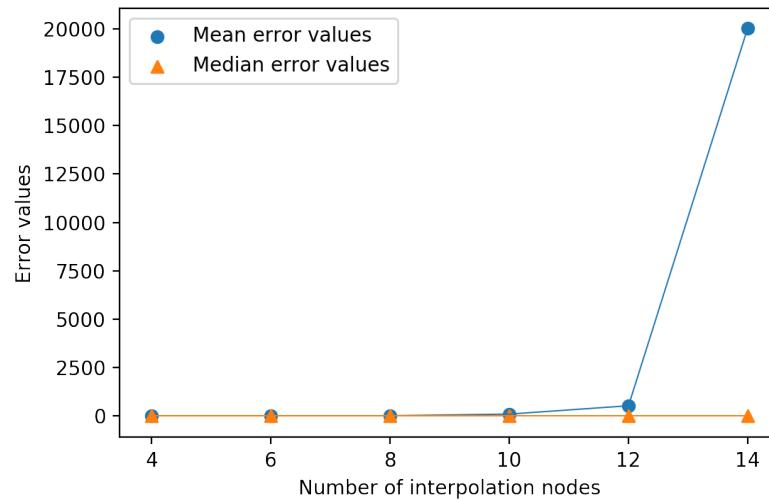


Figure 5. The plot shows the dependence of mean and median relative error values on the total number of the interpolation nodes.

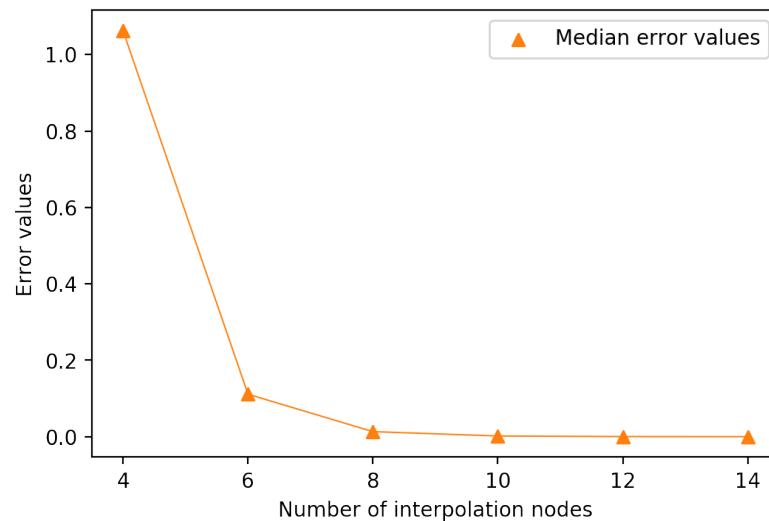


Figure 6. The plot shows the dependence of median relative error values on the total number of the interpolation nodes.

277 We can see that while median relative error decreases with the growth of the
 278 parameter k , the mean relative error increases. This means that although most of the
 279 instances are approximated more correctly, some instances become outliers with really
 280 high error values.

281 So to finally figure out the optimal number k , the following plot, showing the the
 282 dependence of the product of median and mean relative error values on the total number
 283 of the interpolation nodes, was created.

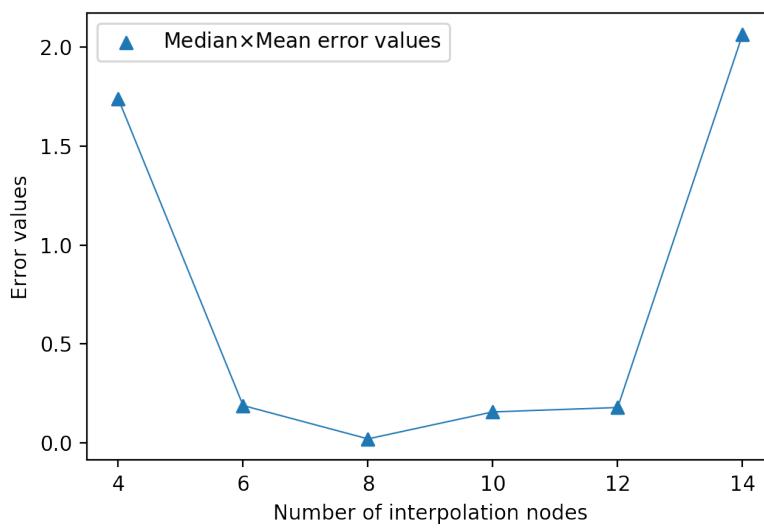


Figure 7. The plot shows the dependence of the product of median and mean relative error values on the total number of the interpolation nodes.

284 Now we can see from the graph that experimentally calculated optimal k value is
 285 $k = 8$.

286 The next experiment was conducted the following way. The parameter k value
 287 remained constant, but the distance Δ^* between each two neighboring points on the
 288 "highly different r " interval was increased in relation to the distance Δ_* between each
 289 two neighboring points on the "slightly different r " interval.

290 This can be done because, as shown above, "highly different r " interval has no
 291 higher bound on coefficient α .

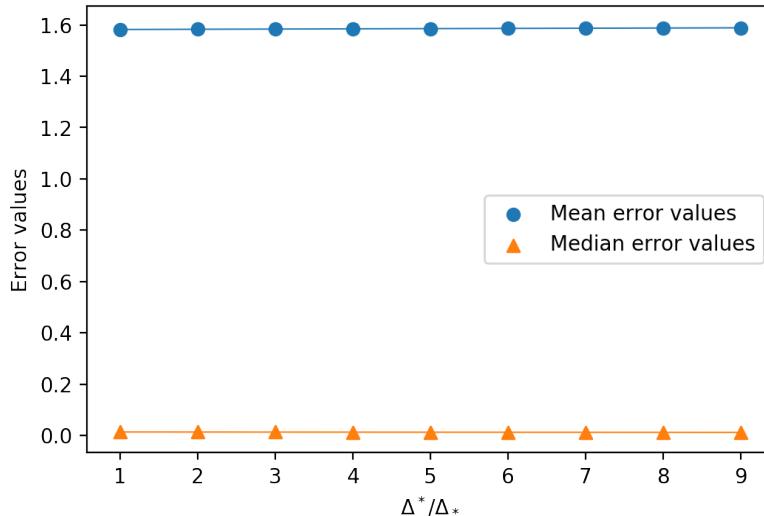


Figure 8. The plot shows the dependence of the median and mean relative error values on the step ratio $\frac{\Delta^*}{\Delta_*}$.

292 We can see that errors don't depend on the step ratio $\frac{\Delta^*}{\Delta_*}$, so we can just choose the
 293 steps to be equal: $\Delta^* = \Delta_* = \Delta$.

294 In the next experiment we have fixed the intervals $\Delta^* = \Delta_* = \Delta$ but were changing
 295 the number k^* of "highly different r " points. The results follow on the Figure 9.

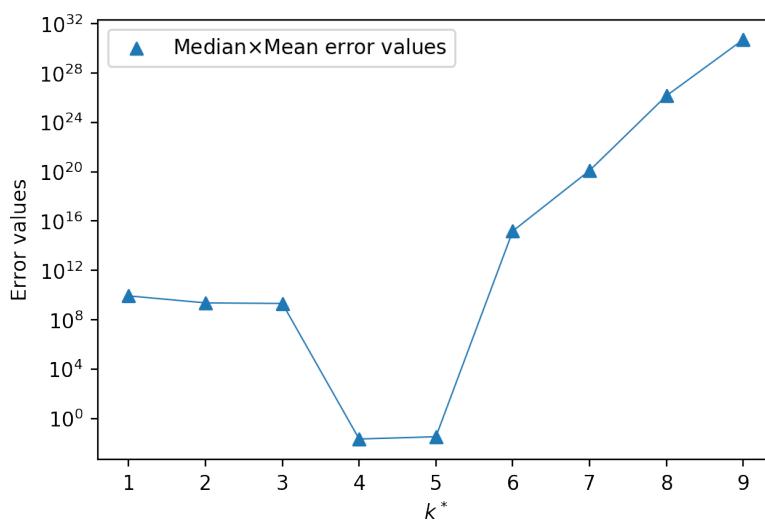


Figure 9. The plot shows the dependence of the product of median and mean relative error values on the number k^* of "highly different r " points.

296 The complexity[17] of the Algorithm 3 was evaluated as $O(n^p \log(n))$, where n is
 297 the number of jobs in the instance.

298 The resulting p value appeared to be $p \approx 2$, so the complexity can be estimated as
 299 $O(n^2 \log(n))$ (see Figure 10).

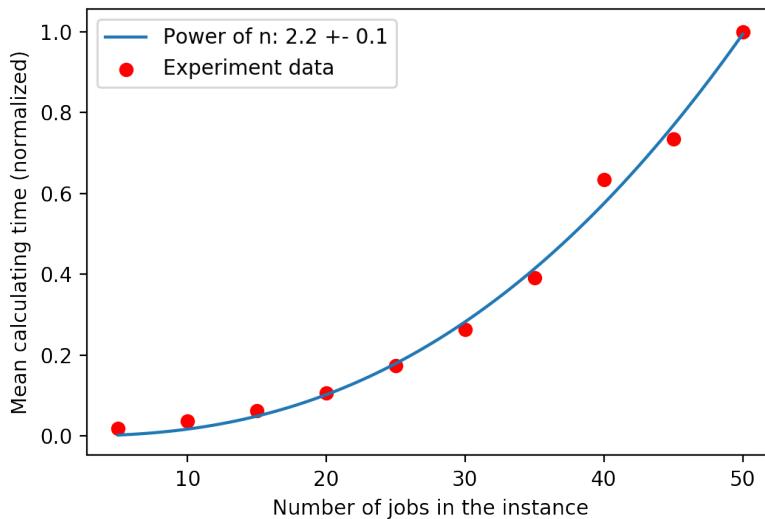


Figure 10. Complexity of the Algorithm 3.

300 11. Conclusion

301 In this paper a new approach to approximating the objective function value of the
 302 $1|r_j|L_{\max}$ problem is proposed.

303 The approach is based on the $L_{\max}(\alpha)$ function (using the $r' = \alpha r$ transform) and
 304 Lagrange interpolation.

305 The numeric experiments that have been carried out show how to optimize the
 306 hyperparameters of the method. The average complexity of the proposed algorithm is
 307 $O(n^2 \log(n))$, where n is the number of jobs in the instance.

308 12. Further research

309 Further research into the features of the $L_{\max}(\alpha)$ will be conducted to develop a
310 method of error estimation for the approach. The results will be compared with the
311 results of error estimation of the metric approach[7].

312 There are also other transforms and polynomial cases that have to be studied.
313 What is more, we are planning to study combinations of different transforms and their
314 geometry in the 3n-dimensional feature space.

315 The Hypotheses stated in this paper will also be proven, so that we can boost the
316 efficiency and the accuracy of the approach.

317 Different interpolation methods, including Chebyshev interpolation[20] and spline
318 interpolation[21], can be used.

319 Also a combination of metric and interpolation approaches - the metric interpolation
320 method - is being studied and developed.

321 **Author Contributions:** For research articles with several authors, a short paragraph specifying
322 their individual contributions must be provided. The following statements should be used "Con-
323 ceptualization, Lazarev A.A., Lemtyuzhnikova D.V. and Tyunyatkin A.A.; methodology, Lazarev
324 A.A., Lemtyuzhnikova D.V. and Tyunyatkin A.A.; software, Tyunyatkin A.A.; validation, Lazarev
325 A.A., Lemtyuzhnikova D.V. and Tyunyatkin A.A.; formal analysis, Lazarev A.A., Lemtyuzhnikova
326 D.V. and Tyunyatkin A.A.; resources, Lazarev A.A., Lemtyuzhnikova D.V.; data
327 curation, Lazarev A.A.; writing—original draft preparation, Tyunyatkin A.A.; writing—review
328 and editing, Lazarev A.A., Lemtyuzhnikova D.V.; visualization, Tyunyatkin A.A.; supervision,
329 Lazarev A.A.; project administration, Lemtyuzhnikova D.V.; funding acquisition, Lazarev A.A.,
330 Lemtyuzhnikova D.V.

331 **Funding:** This research was partially supported by RFBR grant number 20-58-S52006.

332 **Data Availability Statement:** The code to reproduce the experiments can be found in [18]. Many
333 other experiments results, including numeric experiments with Chebyshev interpolation, are
334 available in [19].

References

1. Lazarev, A.A. *Scheduling Theory: Methods and Algorithms*; ICS RAS: Moscow, Russia, 2019.
2. Brucker P. *Scheduling algorithms*; Berlin: Springer, 2006.
3. Sotskov Y.N., Werner F. (Editors) *Sequencing and Scheduling with Inaccurate Data*. New York, USA: Nova Science Publishers, Inc., 2014.
4. Tanaev V.S., Sotskov Y.N., Strusevich V.A. *Scheduling theory: multi-stage systems*. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994.
5. Davis, P.J. *Interpolation and approximation*. Courier Corporation, 1975.
6. Lenstra J.K.; Rinnooy Kan A.H.G.; Brucker P. *Complexity of machine scheduling problems*; Annals of discrete mathematics. Elsevier, 1977. V. 1. pp. 343–362.
7. Lazarev A.A.; Lemtyuzhnikova D.V.; Werner F. *A metric approach for scheduling problems with minimizing the maximum penalty*, Appl. Math. Modell. 2021. No. 89. pp. 1163–1176.
8. Kansizoglou I.; Bampis L.; Gasteratos A. *Deep Feature Space: A Geometrical Perspective*; IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2021. pp. 1–1.
9. Efimov N.V.; Rozendorn E.R. *Linear algebra and multidimensional geometry*, Mir. 1975.
10. Lazarev A.A.; Pravdivets N.; Werner F. *On the Dual and Inverse Problems of Scheduling Jobs to Minimize the Maximum Penalty*, Mathematics, 8(7), p.1131. 2020.
11. Murty K.G. *Computational And Algorithmic Linear Algebra And N-Dimensional Geometry*. 2014.
12. Gantt H.L. *ASME Transactions*, 1903. 24. pp. 1322–1336.
13. Jackson J.R. *Scheduling a production line to minimize maximum tardiness*, Los Angeles, CA: University of California, 1955. Manag. Sci. Res. Project. Research Report N 43.
14. Kluyver T., Ragan-Kelley B., Pérez F., et.all. *Jupyter Notebooks – a publishing format for reproducible computational workflows*. Netherlands: InELPUB, 2016. P. 87–90.
15. Harris C.R., Millman K.J., van der Walt S.J., et al. *Array programming with NumPy*. Nature. 2020. V. 585. No. 7825. P. 357–362.
16. Hunter J.D. *Matplotlib: A 2D Graphics Environment*. Computing in Science & Engineering. 2007. V. 9. No. 3. P. 90–95.
17. Bovet D.P.; Crescenzi P.; Bovet D. *Introduction to the Theory of Complexity*, London: Prentice Hall. 1994.
18. Tyunyatkin A.A. *Schedule Research Repository*. Available online: <https://github.com/andtun/schedules> (accessed on 01.09.2021).

19. Tyunyatkin A.A. *Interpolation approach to minimizing the maximum lateness in scheduling problems*. Available online: <https://tuniatk.in/schedules.html> (accessed on 01.09.2021).
20. Mason, J.C., Handscomb, D.C. *Chebyshev polynomials*. CRC press, 2002.
21. Knott, G.D. *Interpolating cubic splines (Vol. 18)*. Springer Science & Business Media, 2000.