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Abstract: In developing countries today, population growth and the penetration of higher standard
of living appliances in homes has resulted in a rapidly increasing residential load. In South Africa,
the recent rolling blackouts and electricity price increase only highlighted this reality calling for
sustainable measures to reduce the overall consumption and peak load. The dawn of the smart grid
concept, embedded systems, and ICTs have paved the way to novel HEMS design. In this regard,
the Internet of Things (IoT), an enabler for smart and efficient energy management systems is seeing
increasing attention for optimizing HEMS design and mitigating its deployment cost constraints.
In this work, we propose an IoT platform for residential energy management applications focusing
on interoperability, low cost, technology availability, and scalability. We focus on the backend com-
plexities of IoT Home Area Networks (HAN) using the OCF IoTivity-Lite middleware. To augment
the quality, the servicing, and reduce the cost and complexities of deployment, this work leverages
open-source Cloud technologies from Back4App as Backend-as-a-Service (BaaS). This architecture
provides consumers and Utilities with a data communication platform within an experimental
study illustrating time and space agnostic “mind-changing” energy feedback, Demand Response
Management (DRM), and appliance operation control via a HEM App via an Android smartphone.

Keywords: Internet of Things; IoTivity; HEMS; HAN; Cloud; Backend-as-a-Service (BaaS); RTOS,
Contiki-OS

1. Introduction

The growing energy consumption in South Africa causes a serious problem to energy
supply sustainability. This situation is particularly alarming in domestic places from
which originate a great share of peak loads and energy wastage. The recent rolling black-
outs and electricity price increase only highlighted this reality and call for sustainable
measures to reduce overall consumption [1]. But in such context, the cost and complexities
of grid interventions in the residential sector has limited the Energy utility initiatives to
awareness and educational campaign and flash addresses on digital media to address en-
ergy wastage [2].

However, the growing demand emphasized the limitation of these interventions,
therefore it is required for the grid to extend its technological tools to residential buildings.
HEMS provides consumers with feedback on appliances or equipment operation as well
as an automation platform for implementing energy management strategies [3]. However,
traditional HEMS, designs suffer interoperability, granularity, reusability, scalability, and
computing power constraints as well as cost-related limitations that have impeded their
performance and restricted their penetration in domestic space [4].

Nevertheless, the advent of 10T, cloud computing, and related technologies mitigate
these factors and open novel opportunities in HEM design and deployment. Furthermore,
the reduction in the size of embedded systems, as well as the proliferation of networking
equipment in living spaces, offers the opportunity to build sophisticated and cost-effective
Home area Networks (HAN).

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202111.0162.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 November 2021 d0i:10.20944/preprints202111.0162.v1

Focusing on the “everything connects to each other” principle, IoT bridges the se-
mantic gap regarding the ubiquity of IoT networks devices [5]. It mitigates the cost and
device resources limitations as well as the cost factor that restrict HEM real-world appli-
cation. However, IoT is not a stand-alone paradigm; rather it is an assortment of several
technologies working alongside it. In recent times the interaction between IoT devices and
the surrounding environment has expanded thus generating a huge amount of data to be
handled [6].

The resource-limited nature of IoT demands expensive hardware and software to
store the bulk amount of data [7]. To avoid these limitations, data communications in IoT
leverage Cloud-based computing infrastructures to accommodate Big Data requirements,
provide protocols translation, data abstraction, and higher computing power (Figure 1)
[8]. Lately, numerous research ventures have focused on combining Cloud Computing
and IoT to provide users improved services accessible anywhere at the same time.
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Figure 1. IoT Heterogeneity and computing constraints

As stated in [10], the Cloud “promises high reliability, scalability, and autonomy”
for future IoT applications. That is, cloud-based platforms make anything accessible in a
time and space agnostic manner favoring user-friendless and performance through
backend services( computing, storage, connectivity) or BaaS [11].

Currently, studies on IoT middleware have shown that issues related to devices
interoperability, network scalability, and devices management within HEM networks can
be greatly alleviated thus offering real-world deployment to HEMS. As stated in [7],
middleware in the IoT shall address internet and things issues, handling semantics gap,

context awareness, device discovery, manage devices resources, big data, and privacy.

2. Related Works

The IoT is a novel ICT paradigm showing interest from various studies regarding IoT
platforms for HEM. The authors in [12] designed and implemented a home automation
system that leverages IoT to control most household appliances over an easily adaptable
web interface. The planned system offers great flexibility by using Wi-Fi technology to
connect its spread-out sensing devices to a home automation server. Such an implemen-
tation is aimed at decreasing the system deployment cost and facilitating future upgrades,
and reconfiguration.

Nevertheless, this setup is archaic and incurs a scalability issue added to the fact that
the connection to the home gateway via its IP requires private DNS which is restrictive in
many contexts as this suggests a payable subscription to some ISP. Here the Cloud is used
as SaaS to forward an email notification to users. However, the non-real-time nature and
textual format of email limit the depth of feedback and analytics that can be done on con-
sumption data.

In [16], the authors propose an IoT platform targeting residential consumers leverag-
ing smartphone and Cloud technologies to offer Smart grid empower energy management
(DRM signal) and home automation as services. Toward this objective, the authors pro-
posed, a UHG responsible for data collection and transmission to the Cloud via the net-
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work layer. Openfire, middleware on the gateway server provides the pub-sub mecha-
nism to push information to subscribers. This alleviates the need for private DNS at the
consumer's side greatly mitigating implementation constrained and cost.

Nonetheless, the XMPP used within their platform is TCP-oriented (heavyweight)
and is expensive for lower-end devices. Moreover, XMPP is part of the IETF standard for
IoT. Opentfire essentially lacks functionalities such as discovery, provisioning. In [8], is
proposed the software architecture for efficient and secure energy management within
the smart grid. At the heart of their platform is the IoT gateway (raspberry-PI) running on
the Eclipse Kura framework, a free and scalable framework built on Java/OSGi used as
middleware to offer hardware interoperability.

Moreover, Cloud connectivity is done through the Mosquito MQTT enabling the
platform to push the stream of smart meter data to a message broker at the edge for ana-
lytics and knowledge extraction and further, push the aggregated data securely to the
Cloud preserving privacy. In this work, less attention is given to devices and resource
provisioning, discovery, and security. Furthermore, the middleware being used required
higher category hardware (see Figure 1) that can run the Java Virtual machine (JVM). This
has the drawback of mitigating the expected miniaturization of IoT implementation, in-
creasing cost, and limiting scalability in developing contexts.

In [6], a fog computing-based platform for energy management focusing on interop-
erability, scalability, adaptability, and local and remote monitoring while leveraging
open-source software/hardware featured to allow users to implement the energy manage-
ment with the customized control-as-services. The authors focused on facilitating the de-
ployment of their platform in residential places by mitigating the cost associated with
computing and communications devices, software stack. Thus, they focused on using
popular, open-source hardware within their HAN, in this regard, The Raspberry PI acts
as a home gateway and TelsoB mote running TinyOS communicating over Zigbee.

To support device-to-device communication, security, and device management, the
Author used the Devices Profile for Web Services (DPWS) middleware to abstract the
management of HAN devices and provide web connectivity. However, the Web interface
provided relies on local router DNS info. These DNS constraints restrict operations to
the local network and increase the cost of implementation for remote operations.

[13] proposed an energy management Cloud platform based on the SaaS Cloud
model to enhance interoperability via the use of a universal intelligent energy manage-
ment gateway based on a free Internet of Things (IoT) framework named IoTivity. Here,
the authors used the IoTivity middleware to abstract from the monolithic, ad hoc imple-
mentation that locks traditional HEMS to private protocol or mechanism limited the
choice and spectrum of possible HAN. Therefore, the authors provided a completed ar-
chitecture that handles the platform requirement for data communication and device
management from appliances on the HAN to services in the Cloud. However, because
IoTivity is CoAP based framework, the authors proposed a REST framework for bridging
CoAP to HTPP to access their dedicated Cloud infrastructure.

In [14], the authors proposed a framework for energy management applications run-
ning on a home gateway offering energy services for multi-homes running on Azure
Cloud using dedicated 3rd party providers. Each home is incorporate a gateway (Intel(R)
Core (TM) i3-2100 CPU) powered with Microsoft Lab of Things (HomeOS) middleware.
The authors provided an Android mobile terminal and Web dashboard using pub-
lish/subscribe MQTT model and azure push notification for front-end interfacing. Never-
theless, being a gateway dedicated middleware, LoT limits the miniaturization of IoT
HAN devices, thus increasing implementation costs.

2.1. Research Challenges and Concept Overview

In summary, the implementation of the HEM platform poses the following major issue:
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e Semantic gap (interoperability) and interactivity amongst various manufacturer
and communication protocols.

e Miniaturization and performance of IoT devices for seamless penetration of
HEM platform.

e Middleware for hardware abstraction, device management, device discovery,
connectivity, scalability, adaptability, services customization, and security.

e Cloud platform either as Baa$S to export processing and add computing power,
remote connectivity, and services.

e Cost of implementing the HEM platform, hardware availability, and protocol

stack.

2.2. Research Contributions

To address the above-mentioned challenges, our HEMS platform employs:

e Open-source Middleware using free and accepted IoT protocol stack scalable to
lower-end hardware providing disaggregated interoperability, scalability, adapt-
ability, HAN device management, discovery provisioning, and seamless device-
to-device(D2D) connectivity and security.

e Leverage, ubiquitous and low—cost and low-power embedded devices as HAN
node enhancing technologies availability and penetration in developing context.

e Open-source cloud computing and storage as Software-as-a-Service and Baa$S off-
setting heavy computation and storage to cloud infrastructure as well providing
service for two-way connectivity via subscriptions mechanism and free APIs to
both local gateways and mobile device for end users providing integration and
control that is both time and space agnostic.

3. Cloud-enabled IoTivity Platform

Novel platforms for HEM should incorporate the features and requirements defined
(1) to be economical, affordable to ease their penetration in living places. In this regard, a
cloud-based energy management platform leveraging the OCF IoTivity-Lite middleware
is proposed. This platform's purpose is to provide energy management based on the
Software-as-a-Service (SaaS) model for deploying energy services. The architectural struc-
ture leverages the BaaS model for backend computing, data storage, and communication
services. The proposed system relies on standard protocols, open-source services, and
software and hardware.

An overview of the system architecture is depicted in Figure 2. It uses a three-layer
platform consisting of a HAN that gathers consumption data and control appliances, a
home gateway to manage devices, and cloud connectivity. A Cloud layer for heavy com-
puting, data storage, and remote services over the third-party tools. a Smartphone App as
user front-end for enhanced feedback. Additionally, the Cloud provides an interface to
smart grid services as there are made available by Utilities.

3.1. Hardware Architecture
The hardware of the HEM platform comprises multiple device categories.
¢ Though the traditional HEM platform disaggregates devices in terms of
connecting, sensing, actuating, and communicating, today's advances in
the embedded system allow having all these functionalities in one
package within the HAN known as a network node. Our platform uses
the popular Arduino AVR&ARM and ESP32 hardware as central slaves

processing units.
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e Gateway: Communication within IoTivity middleware is mainly IP-
based ( WIFI and Ethernet). The gateway thus offers protocol translation
from the Local COAP based HAN to HTTP/S-based cloud connectivity
either as BaaS/SaaS providing the platform with pub-sub( Live-Query)
mechanism.

e Computing: The devise that store, process, and analyze data within the
platform. Low-level computation is performed at the HAN servers or
nodes. However high-level computation and storage are distributed
between the local gateway and the Back4App BaaS infrastructure for

performance and processing disaggregation.

Figure 2 shows the hardware architecture used for two-way communication, data ac-
quisition, processing, and storage within the proposed platform. As described in 1, our
novel platform incorporates all state-of-art, open-source IoT Enabling technologies for
higher-end HEM deployment.

Although each node can be interacted with outside the Local COAP Network, Minia-
turization and cost-effectiveness required the gateway to primary handle all non-local re-
source and data requests and computation acting as a proxy server for a local node to re-

mote clients.
3.2. Software Architecture

A certain number of technologies facilitating IoT application development and de-
ployment in smart homes were adopted. Adopting state-of-the-art solutions, we focus on
open-source software technology to alleviate the complexity of proprietary software and
the related cost.

Resource server nodes sensing, and actuating firmware leverage open real-time op-
erating system (RTOS). This research used the Contiki OS, a bundle whose memory foot-
print is scaled to fully run-on different Arduino architecture (AVR & ARM), thus adding
more consistency, scalability, modularity, and compactness to the local server firmware.

3.2.1. HAN Middleware

The platform handles local networks' interoperability, scalability as well device man-
agement complexities using the OCF-IoTivity framework. IoTivity is a communications
framework for IoT enabling smooth peer-to-peer connectivity amongst devices irrespec-
tive of the underlying OS or protocol satisfying several requisites of the internet of things
[8].

Therefore, loTivity eases the home area network management by handling resource
discovery, device management, protocol conversion, and security requirement for the plat-
form. IoTivity-Lite, the OCF release for the constrained devices was recently released pri-
marily for devices within category 3 (Figure 1). Thus, porting was developed to support

lower category devices.

3.2.2. IoTivity-Lite Arduino Port
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To sustain the goal of low cost within the platform, we decided to port the IoTivity-
Lite framework to lower category devices (category 1&2). In this regard, we targeted the
popular Arduino MCU and the Espressif ESP32 Wi-Fi MCU. However, the Port of the
IoTivity framework, rely on OS running on the MCU.

Based on the literature review on RTOS and the state-of-art, we considered two OS,
mainly FreeRTOS and ContikiOS. First, we consider these two as being popular RTOS for
low power, low-cost MCU. However, we used the ContikiOS on the Arduino MCU be-
cause of its low memory footprint and simplicity in developing firmware that is seamless
to IoTivity-Lite integration using ContikiOS itself within its stack. In the case of the
ESP32 (~500Kbytes of RAM), we adapted an Initial IoTivity port based on the FreeRTOS
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Figure 2. Cloud-based IoTivity-Lite platform HEM architecture

3.2.3. Gateway to Local HAN server interaction

The OCF IoTivity group avails a JavaScript port of the IoTivity stack running on the
Node engine or IoTivity-node for the high-level device. Using the IoT-rest-API-server, a
NodeJS REST server for HTTP-based communication leveraging IoTivity-node as a client
for the local CoAP network devices.

Thus, we used the IoTivity-node empowered IoT-rest-API-server on the gateway
device (Raspberry PI) to manage discovery and resources access within the IoTivity-Lite
network.

3.2.4. Gateway to Local HAN server interaction

In this work, the Cloud is mainly used as Backend-as-a-service (BaaS), offering the
pub-sub mechanism (Live Query) offering subscriptions service on the platform data. It
provides storage, backend service related to computation, feedback Home Automation
(HA) services. We used Parse an open-source server providing a RESTful API for a pleth-
ora of devices and OS on the different programming languages (We use the JavaScript
API).

Parse server is flexible and can be hosted and migrated from one cloud platform to
another. Though Google Cloud and Amazon are the most popular in terms of Cloud
Hosting, there are no native Parse server environments and lack important Parse BaaS
tools. In this regard, we used the back4App Cloud platform to provide computing, stor-
age (mango DB), server management, Live-Query, Cloud background Jobs and third-
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party login (i.e., Facebook), and mobile push notification (mainly Android) all as BaaS for
an IoT platform centered on a mobile or web application.

3.3. Communication Architecture

Local network configuration and data communication within the platform is pre-
sented in Figure 3. The IoTivity-Lite platform integrates with existing network (WIFI and
Ethernet) infrastructure in the residential place. All IoTivity-Lite servers have dynami-
cally assigned IP addresses on the private network 192.168.0.X starting at 192.168.0.100 for
the Gateway (Raspberry PI).
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Figure 3. Local and Cloud configuration and communication in the Platform

When powered on, the IoT-rest-API-server provides the gateway with HTTP/HTTPS
access to IoTivity-Lite HAN slave servers. Next, is the “main server” process initialized
connectivity to the Cloud Baa$ infrastructures on Back4App Cloud? On the cloud Baa$,
we create an App, databases table, namely, “Loads” storing appliances data, “Smar-
tHomes” storing all registered smart home,” DRM” storing DRM data for each smart
home (Figure 4). To scale this deployment to multiple smart homes, we implemented an
“owning” relationship amongst the different classes.

This mechanism scales the system by enabling many owners in the “User” table to
own a specific “smart home” that owns many different appliances in the “Loads” table
and a specific “DRM” object (Figure 4). Moreover, this method allows us not to create a
class/table for each smart home context, thus keeping all related data together, easing de-
velopment and maintenance. Following a user login/signup process, the “main server”
starts a pub-sub subscription to the related “smart home”, DRM and Loads resources on
the Cloud platform using the Parse Server Live Query mechanism (Figure 3).

This connection is realized by authenticating the user and defining the “smart home”
against the username that was authenticated. This tool is part of the Back4App BaaS ser-
vices and is user-configurable by adding the classes (holding database entries/objects) that
will be part of the subscription services. It enables each client endpoint to receive events
on the entry in the subscription list.
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Amongst other events emitted within the subscription are the “create” and “update”
events which are received in real-time by the subscribed client alongside meta-data re-
garding the specific entry that was created/updated. We initialized the Parse server Live
Query mechanism using our Back4App App application ID, JavaScript Key, and its Mas-
ter Key for authentication purposes.

An important feature of the Parse server on the Back4App platform is the cloud code
functionality. This tool enables the developer to run NodeJS functions directly on the
Back4App Cloud. This step immediately makes the Cloud Code Functions available to the
IoT platform and can be used to implement services (Utility DRM portal). After configu-
ration, the gateway server initiates a login/signup sequence with the Cloud user authen-
tication services.
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Figure 4. Platform databases structure and connections on Back4App BaaS

Next, the gateway server initiates the local DBs (monitor and Load tables are created
if not existing already) for offline storage (we used MySQL DB engine). The offline storage
is synchronized with an initial DB query to the online storage which returns the provi-
sioned number of loads. This process is two-fold.

First, the gateway server sends a DB query to get the number of known and provi-
sioned appliances and retrieve those from the local storage which is also able to store
newly discovered appliances. Secondly, resource discovery is sent to the IoT-rest-API-
server which generates a multicast request on the IoTivity COAP network to retrieve all
resources. Subsequently, each appliance in the local DB is updated after submitting GET
requests for their properties (state, power, and current).

Lately, the remote DB appliance properties are also updated. After initialization, an
observation service on the IoTivity network using the OBSERVE mechanism is started and
resources properties are regularly updated.

When a mobile client uses the energy, App participates in the platform information
exchange, first, the App establishes a connection to the cloud backend and starts a client
subscription (Figure 5). After the client is successfully login/signup as an authenticated
user, we make use of the Back4App BaaS security features on the client and on the home
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gateway side to provide secured data communication in both ways. All GET requests are
submitted as Parse GET queries for each mobile client to access the related homes data-
bases.

A PUT request is forwarded to the Parse server on the Cloud platform. As the gate-
way server is in Live Query mode, those requests are received as update events. The gate-
way server thus generates an HTTP POST request to the IoT-rest-API-server which gen-
erates a CoAP POST (i.e., /api/oic/ktn/kettle?di="") with the new state (i.e., state: true/false)
that turn the corresponding appliance on/off. Using the Parse Live query mechanism (ob-
servation), the smartphone App listens to updates on appliances' power properties from
the gateway server’s observer process and updates the App front-end.
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Figure 5. communication flow with remote/local Android smartphone App

4. Experimental Results on Case Study

To evaluate the performance of our cloud-based IoTivity platform in addressing the
challenges of HEM design, we implemented an experimental setup. Leveraging an energy
application on an Android smartphone tested the platform's performance in providing
real-time energy monitoring and home automation (HA). We then implemented a peak
load management DRM algorithm to manage consumption at home. The HEM platform
was deployed for the resistive load (appliances) as shown in Figure 6. The detailed

specification for the hardware used is listed in Table 1.
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Figure 6. Experimental setup under evaluation

The HAN'’s devices are augmented with motes designed and manufactured as plug-
and-play shields. These shields provided the sensing and actuating interface to existing
home appliances via non-invasive and safe electronics devices a DAQ shield on each mote
is embedded with sensing and actuating electronics for 1Vrms CT sensor signal output
and 30A AC actuating relays.

Communication within the HAN for the Arduino-based mote is Hardwire(Ethernet
using the Wiznet 5500 ethernet shield), whereas WIFI is used the ESP32 based motes.

Table 1: Experimental setup hardware used for the home area network

Devices Model Processors Operating
System
Arduino Mega 2560 Atmega 2560 ContikiOS
ARM(DUE) 32 bits SAM3X8E ARM Cortex-M3
ESP32 ESP-WROOM-32  Xtensa Dual-Core 32-bit LX6 MCP FreeRTOS
Eth(.ernet 2nd Generation Wiznet W5500 N/A
Shield
3rd Generation 64-bits BCM28374 ARM Cortex-A53, 32 Bits Rasp-
Raspberry PI

Model B+ 1.2 GHz bian Stretch

The AVR-based mote is augmented with an external memory bank to improve its
performance in handling the secured deployment of the iotivity-Lite stack. The firmware
running on the HAN devices (Arduino and ESP32) is composed of the IoTivity-Lite server
code and the low-level sensing code interfacing to the device’s ADC and GPIO registers to
control the mote actuation devices. This code is used by the higher-level server code within
the GET and PUT methods.

The power properties for an appliance connected to either a mote based on the
Arduino or ESP32 MCU were computed based on the algorithm that samples the current
and voltage for 25 cycles (at 50Hz) or 500ms to calculate the different root mean square
properties and accumulate those to calculate the power consumption. We use a 10bits ADC
setting on Arduino AVR and 12bits on ARM and ESP32.
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Figure 7. Iotivity HAN servers (appliances interface nodes): (a) AVR/ARM DAQ node prototype; (b)
ESP32 node DAQ Prototypes.

4.1. Experimental Results

In this section, we present the results of the case study focusing on the observation
of all scenarios executed to establish our platform performance. Using the setup in Figure
4, we test the feedback and home automation scenario within the platform. That is, we
present the response from the IoTivity-Lite HAN server device. That is the Arduino and
ESP32 slaves’ response to resources requests.

Then, we show the underlining software services handling the smart-home local and
remote connectivity. In this regard, describe the different initialization steps via curtailed
logs of each of the services running on our raspberry PI local home server. Secondly, we
present feedback results, that is home consumption real-time, and enhance visualization
anytime anywhere via the energy App.

Thirdly, we demonstrate home automation using the Energy App to turn home
appliances on/off. Lastly, we detailed the DRM scenario condition and assumption and

show the result of our peak shaving algorithm.

1 apps/server/server_arduino_master.cpp<ConnectToNetwork: : Co

: apps/server/server_arduino_master.cpp<process_thread_sample_server processlnltlallzlng server for arduino

- ../.4/. /api/oc_buffer.c<process_thread_message_buffer_handler:14 Started buffer handler process
./ap1/oc_introspection.c<oc create lntrospectlon resource: : oc_introspection: Initializing int

: 1padapter‘ <oc_connectivity init: 163> lnltlallzlng IPv4 connectivity for device 0

: 1padapter. _udp_add_socks_to_SD SET 261>: reset sockets descriptor: 0

: ipadapter.c<process_thread_ip_adapter | process 289>: 1padapter: Initialized ip_adapter_process
G: 1padapter.c<oc_connectivity 1nit:187 =1p port nto ==

: 1padapter. _connectivity_1n1t:188 1pv4 port

: 1padapter.c<oc_connectivity 1nit:192>: Success / 1nitialized connectivity for device 0

: ../../../ap1/oc_main.c<oc_main_1in1t:210> il : stack initialized

: apps/server/server_ardulno_master.cpp<process_thread_sample_server processServer process init!

Figure 8. HAN slavers Initialisation logs

The firmware on the resource server on the HAN runs the IoTivity-Lite core that was
ported to the AVR and ARM Arduino Arch. In figure 8 above, we see the initialization logs
for the devices, which request a local IP address within the 192.168.0.1 subnet, initializing
the IoTivity core, and starting a listening server on IPv4 port 56789 for Arduino devices.
The ESP32 slaves use both IPv4 and IPv6 listening sockets as provided by the IoTivity-Lite

stack.

4.1.1. Feedback via Energy App
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Regarding the Energy monitoring scenario, we evaluated the platform's ability to
provide space agnostic, real-time feedback. Using a Sony Xperia Z5 smartphone we tested
Energy feedback on our platform using the IotSmartApp as shown in Figure 6.

The energy consumption is presented in engaging visual tools both graphic and
textual with compelling colors (red under the consumption curve). The evaluation shows
that feedback can be dispatched via the platform within ~3 seconds from HAN to the

Back4App BaaS then to the smartphone App.

GET GEYSER:

DBG: ../../../messaging/coap/transactions.c<coap_send_transaction:116>: Sending transaction(len: zd) 74: 0x6fbf
G: ../..,/../messagmg/coap/transactlons.c-:(oap_semd_transactlon:117t-: 68 45 6F BF OE 45 99 B2 B6 46 1F 82 C1 3C EF
: ../../../messaging/coap/coap.c<coap_send_message:1105>: -sending OCF message (74)-

: ../../../messaging/coap/transactions.c<coap_clear_transaction:194>: Freeing transaction 28607: 0x20073558
¢ ../../../ap1/oc_buffer.c<process_thread_message_buffer_handler:193>: Outbound network event: unicast message
]:59264

Figure 9. HAN server GET response

The firmware loaded in all slaves allows these devices to serve the client with
resources data handling those as GET/POST requests. The IoT-rest-API-server provisioned
devices and resource on the IoTivity-Lite local network after issuing a multicast request on
the endpoint (localhost:8000/ioc/res).

A client can thus request local resources to issue HTTP requests to the REST server.
Figure 9 shows the logs of GET requests received from the slaves, followed by the IoTivity-
Lite stack processing of the request and a response (74 bytes of resource data) to the client
on 192.168.0.111:59264.

= lotSmartApp —+ X
= consumption
=
Oven stove
State: false State: true
Power: 1000.0W Power: 0.0W

oy

Figure 10. Energy Consumption Monitoring on IotSmartApp

4.1.2. Home automation via Energy App

We evaluated the ability of our platform to provide space agnostic on/off control of
the home appliances under consideration. In Figure 11, a POST interaction is executed
whenever the client request and update an appliance status (On/Off).

After updating the state of an appliance from a POST request, the resource server

sends a 39 bytes acknowledgment response to the requesting client at 192.168.0.111:8000.
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Figure 11. HAN server POST response

In Figure 12, we present feedback about home automation via our IotSmartApp. This
experimentation targets an iron-rated 1200W within the tested setup. On (a) the iron is off,
thus its state is false (the lamp is grey). On (b) the iron is turned on (lamp is yellow), the
consumption (power) at that instant was recorded as 1.16 KW. This is practically
demonstrated in Figure 6, the Arduino server connected to the physical appliance control

circuit is activated (red light is on).
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Figure 12. Home Automation via the IoTSmartApp; (a) Appliance is turned off; (b) Appliance
is turned on.

4.1.3. DRM via Energy App

We implemented a DRM algorithm for peak load management as a service that aims
to demonstrate the impact of our platform on residential load efficiency. We followed re-
lated works in the area of HEM to define our experimental model.

To demonstrate the performance of their IoT architecture for residential load, the
author in [15], implemented an experiment based on a maximum allowable peak threshold
of 33KW. The author's algorithm control light bulbs at each house in peak time by slotting
a 24 hours’ time duration into 8640-time periods. That is their smart grid simulation de-
tected the total demand every 10 seconds.

The author in [6], implemented a smart transformer control-as-a-service over Fog
computing limiting the load of each home at 4KW. The algorithm monitors the status of
the power source and activates a DR signal when overload by cycling all homes and shed-
ding load in a home that has exceeded the 4KW thresholds. In both studies, the demon-

strated DRM does not consider user preferences. In [16], the authors introduced three-level
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priority scheduling for home appliances so users can switch on home appliances subject
to their satisfaction level and preferences. Peak load DRM depends on mathematical mod-
els. In this case study, we focus on regularly operated or fixed appliances and develop an
algorithm based on equations from works [17].

However, a default value of 5KW based on literature and the appliances of Table 2
will be used by the algorithm that will be implemented. Figure 13 depicts the experimental
platform and the data flow for this case study.

The algorithm is implemented with an electricity price per unit considering a
household in the research context (here the city of Cape Town) with consumption equal to
or above 600Kwh/months. Municipality regulated rated the unit in this context at 278.46
¢/kWh (City of Cape Town, 2019).

AC appliance 1: read/write capabilities

IP 1is gateway address. It is the only one that can be seen externally to this network. all
other device(IP 2 to IP 6 can only communicate on the Local network and are block from

external access. All IP adress on the local network must be static
This router must allow IP multicasting i

Services and direct com to Galeway(an
AC appliance 2: read/write capabilities
$ host o Upload data
2a$ hosting
S /\‘ AUTOMATION picad sensor gl sense[ZKW]
v Back4App
aatiis ENERGY ((- ))) ((( ))) Actuate [ OniOM on]
MANAGEMENT oTivity
. Load config/Control cmd
mongo
ENERGY
U Qz srse | MONITORING

. @ -
® i—U -
- @ Local Client MysaL DB g

2 Local/Offline access

Remote client
AC appliance 5: read/write capabilities

Figure 13. Case study system architecture

The DRM scenario was tested via our developed Energy App. In Figure. 14, configuration
windows are proposed to the user to set up the current DRM algorithm threshold, reset
the smart home's appliance IDs, and activate/de-activate the DRM service running on the
gateway server. When the user activates the DRM service, both the new status and
threshold are passed to the listening home server via the Parse Live Query mechanism.
The output of the algorithm for analysis was logged and plotted to appreciate the benefit
of the peak-saving algorithm that was implemented. For this scenario, the maximum
allowable peak demand is 5KW with a 10% positive margin (5.5KW) based on appliances
properties and priority setting in Table 2. At the end of each peak period, we calculate the
average power, average energy cost as well as maximum power peak and maximum peak
energy consumption. This data is made available as statistical info to each smart home user.

The guiding equation (3) for digitized for the DRM algorithm is presented in Appendix A.
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smartdevs <(anonymous) :308>: Updating smarthome Ids flag
smartdevs <(anonymous) :375>: yannsmarthome appliance Id succesfully updated

Configurations Configurations Configurations
1 T 1
"B° °H° "H°

Load Limit . Load Limit Load Limit .

Enable DSM Enable DSM Enable DSM @
Update Appliance ids [ ] Update Appliance Ids Update Appliance Ids

smartdevs <startDsm: 39 starting dsm process
smartdevs <(anonymous) : Updating DSM threshold: 4000

Figure 14. DRM with Energy App

We sampled appliances consumption at 10 min duration. However, a timeframe of 5 min
was used for peak simulation running the algorithm at 10s interval then normalizing the
results. The grey and blue curve of the figure denote the load profile with and without the
demand management respectively whereas the brown and green curves represent the
peak cost of consumption with and without demand management. The red line shows the
maximum allowable demand threshold (about 5.5KW). When the demand exceeds the
peak limit, the DRM service turns some appliances off according to the priority assigned.
We can see the DRM load profile (brown curve) peak is lowered and the valleys are filled

as expected of a peak shaving algorithm.
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Figure 15. Peak load profiling via IoTivity HEM platform
5. Discussions

The main highlights from the experimental setup concerning the research objectives:

e  IoTivity-Lite Middleware: The IoTivity Middleware from OCF was selected to han-
dle interoperability, scalability, and resource management semantic gaps inherent in
IoT systems. Experimentation showed that indeed both WIFI, Ethernet devices could
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effectively and uniformly exchange data through the IoTivity-Lite HAN. Though the
essential functions of the IoTivity-lite middleware are effective; functionalities such
as provisioning and security are only available n Arduino DUE and ESP32 due to
AVR board limited RAM. Latencies in data delivery of ~4 seconds were observed for
Gateway-to-cloud communicating over the Back4App cloud services;

e  Porting IoTivity-Lite Arduino AVR&ARM: The IoTivity middleware is a recent on-
going project with a growing community and interest, however, this framework was
not available on low-memory, low-cost hardware such as the Arduino architecture,
therefore, porting the IoTivity Middleware to Arduino was performed in this work
and represented one of the novelties of this thesis. For this, Contiki OS was used and
adapted for Arduino Arch, the experimentation shows that Contiki on OS on Ar-
duino is stable and responsive and its memory footprint is lightweight enough to
allow enough space on the Arduino RAM for IoTivity stack features such as discov-
ery, CRDUN operations, device, and resource provisioning on AVR arch as well se-
curity on DUE devices:

From the above observations, further work and focus should be placed on.

e  Security can be increased in the platform using the IoTivity onboarding and provi-
sioning mechanism to authenticate the client that interfaces to the HAN resource
server. This capability was not fully implemented because of software inconsistency
with the IoT-rest-API-server

e  IoTivity Cloud, OCF has updated its IoTivity-Lite framework to add a cloud interface
to the IoTivity network. This facility can be used to remove the need for IoT-rest-API-
server, and thus easily implement all security mechanisms available. This also re-
duces the development load and facilitates maintenance.

e  Wireless communication, here WIFI should be adapted to all HAN devices for easier
penetration and adaptation in residential places. We recommend to used technology
with embedded wireless protocol to optimize the HAN data communication.

e  Smart grid signals from the Energy utility can take advantage of this platform. but
the interface needs to be fully defined from the cloud Backend this can be a cloud Job
provided as SaaS responding to request from the Utility

6. Conclusions

This article strives to participate in the growing research targeting the moderniza-
tion of the electric grid within the smart grid effort to handle the growing peak demand
and limitation of the traditional grid, mainly in the residential sector.

Therefore, “Cloud-based IoTivity platform for Home Energy management applica-
tions”, a cost-effective, efficient, and performing communication platform leveraging IoT
enabling tools were presented and deployed to provide smart energy management appli-
cations particularly in domestic places within the South African context.

The article addressed the IoT semantic gaps regarding interoperability, scalability,
and the cost and availability of technology issues related to HEM deployment. We thus
focused on the architectural design and backend requirements of the platform around
open source IoT technologies and developed a completed prototype providing an experi-
mental setup to test the platform performance for smart-grid-related interventions in
households.
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Appendix A

We consider a home focus on fixed consumption load comprises primarily those with
resistive load. Based on works from [18], we formulated equations (10 to (3). For this
model, let A,€ {a;, a,, as, . .., a,}, such thatay, a,, a3, ..., a, represents each appli-
ance. for this model we considered 6 appliances (table 5.4-1). The peak periods in the south
African context are two. The morning peak is from 6 am to 9 am while the evening peak
is from 6 pm to 9 pm. In the model each peak period is sliced into a horizon time slot series
Te{l,2,3, ..., T} since each peak period span the same time length of Tpeqr (4 hours),

considering that each time slot is 15 min long, thus T is a series of 16 elements. The total
power consumption during a peak period is expressed as G, r,

Saur, = Z (Z P(t) X «t)) &)
=1

t=1

Where P, (t) is the power consumption for appliance appliance a,, at time slot t €
T. {(t) €[0,1] is the operational state of appliances in time interval t € T. Similarly, the
total cost per peak period of the 4,

T An
Ear, = ). (Z P®) X £(0) X «t)) @

t=1 \n=1
Where &(t) represents the cost of electricity at time t € T.

Based on equation (1), we develop the algorithm for our DRM case study as below

T An
Sagr, = Y. (Z P6) X «t)) <y® ®)

t=1 \n=1
Where v(t)is the home T’Zhreshold? That is y(t) is the maximum allowable peak load at

time t € T. we start with a dynamic value for y(t) of 5 KW.
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