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Abstract. Bonchev and Trinajstic defined two distance based entropy measures to measure the 

molecular branching of molecular graphs in 1977 [Information theory, distance matrix, and 

molecular branching, J. Chem. Phys., 38 (1977), 4517–4533]. In this paper we use these entropy 

measures which are based on distance matrices of graphs. The first one is based on distribution 

of distances in distance matrix and the second one is based on distribution of distances in upper 

triangular submatrix. We obtain the two entropy measures of paths, stars, complete graphs, 

cycles and complete bipartite graphs. Finally we obtain the minimal trees with respect to these 

entropy measures with fixed diameter. 
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1. Introduction 

 The entropy concept was introduced by Shannon in 1948 [1]. The Shannon entropy can be 

applied to different networks via the possibility of constructing a finite probality scheme for 

each network. The graph entropy concept was defined by Rashevsky [2] in 1955. His entropy 

measure is based on the partitioning of the vertices with respect to equivalent classes of vertex 

degrees. Trucco [3] extended this definition by using the automorphism groups of the graphs. 

Mowshowitz applied the information theory to different chemical structures and mathematical 

structures in 1968 [4 ]. Some properties of graph entropies were reported by Das and Shi[5]. 

Distance based entropy measures studied for example [6,7].  The entropy measure which is 

based on the dominating sets of the graphs was introduced recently [8]. More information about 

graph entropies can be found in the survey [9] and in the book [10]. 

  Many molecular properties of materials are obtained by molecular topologies [11]. This 

measures are called topological indices or molecular descriptors in chemical graph theory. 

Chemical, physical and biological properties of molecules have good correlations with this 

topological indices. Therefore many researchers from a wide range of sciences study on this 

topic. The first topological index was introduced by Wiener in 1947 [12]. The Wiener index 

equals to one half of total distances between every pair of vertices in a graph. More results about 

Wiener index can be found in the excellent survey [13]. Moreover, the minimal trees of fixed 

diameter with respect to the Wiener index are characterized by Liu and Pan [14]. 

Too many topological indices have been introduced in the last 50 years. It is understood that 

they have usually correlated more or less with the relative molecular properties of molecules 

but the same index can not has high discrimination ability for different molecules [11]. Bonchev 

and Trinajstic introduced entropy measures which are based on distances to interpret the 

molecular branching of molecular graphs [15]. Later they applied the information theory in 

characterization of chemical structures [16,17]. These molecular descriptors were called 
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information indices and it was shown that the information indices have greater discriminating 

power for molecules than the respective topological indices [18,19].  

2. Preliminaries 

 Let 𝐺 be a simple graph with the vertex set 𝑉(𝐺) and the edge set 𝐸(𝐺).  For a vertex 𝑢 ∈

𝑉(𝐺) the notation  𝑁𝐺(𝑢) = {𝑣| 𝑢𝑣 ∈ 𝐸(𝐺)}  denotes the vertices which are adjacent to  𝑢 and 

𝑁𝐺[𝑢] = {𝑢} ∪ 𝑁𝐺(𝑢).  The degree of a vertex 𝑢 is cardinality of  𝑁𝐺(𝑢) and it is denoted by  

𝑑𝑒𝑔𝐺(𝑢) or simply deg (𝑢). A vertex which has degree one is called a leaf. Moreover, the 

distance between the vertices 𝑢 and 𝑣 is denoted by 𝑑(𝑢, 𝑣). The maximum distance between  

two any vertices of a graph 𝐺 is called diameter and denoted by 𝑑𝑖𝑎𝑚(𝐺). The distance matrix 

𝐷 = [𝑑𝑖𝑗], 𝑖, 𝑗 = 1,2, … , 𝑛, contains the distances 𝑑𝑖𝑗 = 𝑑(𝑖, 𝑗) between two any vertices of a  

connected graph. 

 The number of vertices of a graph 𝐺 is called order and it is denoted by |𝑉(𝐺)| = 𝑛. The paths, 

cycles and stars of order 𝑛 are denoted by 𝑃𝑛, 𝐶𝑛 and 𝑆𝑛, respectively. Moreover complete 

graphs of order 𝑛 are denoted by 𝐾𝑛 and complete bipartite graphs are denoted by 𝐾𝑠,𝑡 with 

bipartite sets {𝑣1, 𝑣2, … , 𝑣𝑠} and {𝑣1, 𝑣2, … , 𝑣𝑡}.  

Definition 2.1. For a given probably vector 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛) such that 0 ≤ 𝑝𝑖 ≤ 1 and 

∑ 𝑝𝑖
𝑛
𝑖=1 = 1, the Shannon’s entropy of 𝑝 is presented by the following equation [1] 

𝐼(𝑝) = −∑𝑝𝑖

𝑛

𝑖=1

log 𝑝𝑖. 

 

Definition 2.2. For a vertex 𝑢 ∈ 𝑉(𝐺), the total distance of 𝑢 is introduced by the following 

equation 

𝐷(𝑢) = ∑ 𝑑(𝑢, 𝑣)

𝑣∈𝑉(𝐺)

. 

Definition 2.3. The Wiener index of a graph  is introduced by the following equation [12] 

𝑊(𝐺) =
1

2
∑ 𝐷(𝑢)

𝑢∈𝑉(𝐺)

. 

We can give the definitions of the information entropies which are introduced by Bonchev and 

Trinajstic [15]. In a distance matrix of a graph 𝐺, a distance 𝑖 such that1 ≤ 𝑖 ≤ 𝑑𝑖𝑎𝑚(𝐺), 

appears 2𝑛𝑖 times. Then 𝑛2 matrix elements 𝑑𝑖𝑗 are partitioned into 𝑑𝑖𝑎𝑚(𝐺) + 1 groups with 

the 𝑛 zeros which are diagonal matrix elements. Therefore, the probability distribution of the 

𝑑𝑖𝑎𝑚(𝐺) + 1 groups for each 𝑖-th group is presented in the following table [11]: 

 

 

 

Table 1. The distance and probability distributions of distance matrix 
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Distance 0 1 2 ⋯ 𝑑𝑖𝑎𝑚(𝐺) 

Frequency 𝑛 2𝑛1 2𝑛2 ⋯ 2𝑛𝑑𝑖𝑎𝑚(𝐺) 

Probability 1

𝑛
 

𝑝1 𝑝1 ⋯ 𝑝𝑑𝑖𝑎𝑚(𝐺) 

 

where  𝑝𝑖 = 2𝑛𝑖 𝑛
2⁄  and 𝑝0 = 𝑛 𝑛2⁄ = 1 𝑛⁄ . 

Since distance matrix is symmetric, in order to simplify the calculations, only the upper 

triangular submatrix can be used. Then, 𝑛(𝑛 − 1) 2⁄  upper off-diagonal elements are used for 

this calculation.  

Definition 2.4. For a given distance 𝑖 in a graph 𝐺 such that  1 ≤ 𝑖 ≤ 𝑑𝑖𝑎𝑚(𝐺), the information 

entropies 𝐼(𝐺) and 𝐼∗(𝐺) are defined as follows [11,15] 

𝐼(𝐺) = −
1

𝑛
log

1

𝑛
− ∑

2𝑛𝑖
𝑛2

log
2𝑛𝑖
𝑛2

𝑑𝑖𝑎𝑚(𝐺)

𝑖=1

, 

𝐼∗(𝐺) = − ∑
2𝑛𝑖

𝑛(𝑛 − 1)
log

2𝑛𝑖
𝑛(𝑛 − 1)

.

𝑑𝑖𝑎𝑚(𝐺)

𝑖=1

 

 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱
⋯

⋮
𝑎𝑛𝑛

] 

In order to make some calculations, we ordered the diagonals of square matrix 𝐴. We can order 

the diagonals of 𝐴 as follows. 

𝑑𝑖𝑎𝑔(1) = {𝑎1𝑛}, 

𝑑𝑖𝑎𝑔(2) = {𝑎1𝑛−1, 𝑎2𝑛 }, …, 

𝑑𝑖𝑎𝑔(𝑛 − 1) = {𝑎12, 𝑎23, … , 𝑎𝑛−1𝑛}, 

𝑑𝑖𝑎𝑔(𝑛) = {𝑎11, 𝑎22, … , 𝑎𝑛𝑛}, 

𝑑𝑖𝑎𝑔(𝑛 + 1) = {𝑎21, 𝑎32, … , 𝑎𝑛𝑛−1},…, 

𝑑𝑖𝑎𝑔(2𝑛 − 2) = {𝑎𝑛−11, 𝑎𝑛2 }, 

𝑑𝑖𝑎𝑔(2𝑛 − 1) = {𝑎𝑛1 }. 

It is understood that if 𝐴 is a symmetric matrix, the following relations are obtained, 

𝑑𝑖𝑎𝑔(1) = 𝑑𝑖𝑎𝑔(2𝑛 − 1), 

𝑑𝑖𝑎𝑔(2) = 𝑑𝑖𝑎𝑔(2𝑛 − 2) =,…, 

 𝑑𝑖𝑎𝑔(𝑛 − 1) = 𝑑𝑖𝑎𝑔(𝑛 + 1). 
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 We note that 𝑑𝑖𝑎𝑔(𝑛) is the main diagonal of the matrix 𝐴 and |𝑑𝑖𝑎𝑔(𝑛)| = 𝑛. Moreover, the 

number of elements which are  appear in 𝑖-th diagonal is 

|𝑑𝑖𝑎𝑔(𝑖)| = |𝑑𝑖𝑎𝑔(2𝑛 − 𝑖)| = 𝑖 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1. 

 

3. Information Entropies of Some Graphs 

Theorem 3.1. The information entropies 𝐼 and 𝐼∗  of path graph 𝑃𝑛 of order 𝑛 is given by the 

following formulas,  

 

𝐼(𝑃𝑛) = −
1

𝑛
log

1

𝑛
−∑

2𝑖

𝑛2

𝑛−1

𝑖=1

log
2𝑖

𝑛2
 

𝐼∗(𝑃𝑛) = −∑
2𝑖

𝑛2 − 𝑛

𝑛−1

𝑖=1

log
2𝑖

𝑛2 − 𝑛
 

Proof.  The distance matrix of 𝑃𝑛 is presented as follows. 

 

It can be seen that distance 𝑛 − 1 appears in 𝑑𝑖𝑎𝑔(1), 𝑑𝑖𝑎𝑔(2𝑛 − 1). 

Distance 𝑛 − 2 appears in 𝑑𝑖𝑎𝑔(2), 𝑑𝑖𝑎𝑔(2𝑛 − 2) and generally distance 𝑛 − 𝑖 appears in 

𝑑𝑖𝑎𝑔(𝑖), 𝑑𝑖𝑎𝑔(2𝑛 − 𝑖) with the frequency 2𝑛𝑖 = 2𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 1). The 𝑑𝑖𝑎𝑔(𝑛) contains 𝑛 

zeros. 

From the 𝐷(𝑃𝑛) matrix, we obtain the frequency of distances (Freq.), probability distributions 

of distances in distance matrix (𝑝𝑖) and probability distributions of distances in upper triangular 

distance matrix (𝑝𝑖
∗)  in Table 2. 

 

Table 2. Probability distributions for path graph 𝑃𝑛 

𝑖 0 1 2 3 ⋯ 𝑛 − 2 𝑛 − 1 

Freq. 𝑛 2𝑛 − 2 2𝑛 − 4 2𝑛 − 6 ⋯ 4 2 

𝑝𝑖 1

𝑛
 
2𝑛 − 2

𝑛2
 
2𝑛 − 4

𝑛2
 
2𝑛 − 6

𝑛2
 
⋯ 4

𝑛2
 

2

𝑛2
 

𝑝𝑖
∗ 0 2𝑛 − 2

𝑛2 − 𝑛
 
2𝑛 − 4

𝑛2 − 𝑛
 
2𝑛 − 6

𝑛2 − 𝑛
 
⋯ 4

𝑛2 − 𝑛
 

2

𝑛2 − 𝑛
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By the definitions of the information entropies 𝐼 and 𝐼∗, we obtain the 𝐼(𝑃𝑛) and 𝐼∗(𝑃𝑛) as given 

in the following eqautions 

 

𝐼(𝑃𝑛) = −
1

𝑛
log

1

𝑛
−∑

2𝑖

𝑛2

𝑛−1

𝑖=1

log
2𝑖

𝑛2
, 

𝐼∗(𝑃𝑛) = −∑
2𝑖

𝑛2 − 𝑛

𝑛−1

𝑖=1

log
2𝑖

𝑛2 − 𝑛
. 

 

Theorem 3.2. The information entropies 𝐼 and 𝐼∗ of star graph 𝑆𝑛 of order 𝑛 is given by the 

following formulas, 

𝐼(𝑆𝑛) = −
1

𝑛
log

1

𝑛
−
2𝑛 − 2

𝑛2
log

2𝑛 − 2

𝑛2
−
𝑛2 − 3𝑛 + 2

𝑛2
log

𝑛2 − 3𝑛 + 2

𝑛2
, 

𝐼∗(𝑆𝑛) =
2𝑛 − 2

𝑛2 − 𝑛
log

2𝑛 − 2

𝑛2 − 𝑛
−
𝑛2 − 3𝑛 + 2

𝑛2 − 𝑛
log

𝑛2 − 3𝑛 + 2

𝑛2 − 𝑛
. 

Proof.  Let 𝑆𝑛 be a star of order 𝑛 with the vertex set {𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝑣𝑛 is the central 

vertex of the 𝑆𝑛. Then, the distance matrix of 𝑆𝑛 is presented as follows. 

 

It can be seen that the distance 1 appears in 𝑛-th row and 𝑛-th column with 2𝑛 − 2 times. Out 

of 𝑛 zeros and 2𝑛 − 2 times 1, the distance 2 appears 𝑛2 − 3𝑛 + 2 times. 

From the 𝐷(𝑆𝑛) matrix, we obtain the frequency of distances (Freq.), probability distributions 

of distances in distance matrix (𝑝𝑖),  and probability distributions of distances in upper 

triangular  submatrix (𝑝𝑖
∗)  in Table 3. 

 

Table 3. Probability distributions for star graph 𝑆𝑛 

𝑖 0 1 2 

Freq. 𝑛 2𝑛 − 2 𝑛2 − 3𝑛 + 2 

𝑝𝑖 1

𝑛
 
2𝑛 − 2

𝑛2
 
𝑛2 − 3𝑛 + 2

𝑛2
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𝑝𝑖
∗ 0 2𝑛 − 2

𝑛2 − 𝑛
 
𝑛2 − 3𝑛 + 2

𝑛2 − 𝑛
 

 

By the definitions of the information entropies 𝐼 and 𝐼∗, we obtain the 𝐼(𝑆𝑛) and 𝐼∗(𝑆𝑛) as 

presented in the following eqautions 

𝐼(𝑆𝑛) = −
1

𝑛
log

1

𝑛
−
2𝑛 − 2

𝑛2
log

2𝑛 − 2

𝑛2
−
𝑛2 − 3𝑛 + 2

𝑛2
log

𝑛2 − 3𝑛 + 2

𝑛2
, 

𝐼∗(𝑆𝑛) = −
2𝑛 − 2

𝑛2 − 𝑛
log

2𝑛 − 2

𝑛2 − 𝑛
−
𝑛2 − 3𝑛 + 2

𝑛2 − 𝑛
log

𝑛2 − 3𝑛 + 2

𝑛2 − 𝑛
. 

 

Theorem 3.3. The information entropies 𝐼 and 𝐼∗ of complete graph 𝐾𝑛 of order 𝑛 is given by 

the following formulas, 

𝐼(𝐾𝑛) = −
1

𝑛
log

1

𝑛
−
𝑛 − 1

𝑛
log

𝑛 − 1

𝑛
 

𝐼∗(𝐾𝑛) = 0. 

Proof. It is known that the distance matrix of complete graph 𝐾𝑛 is consisted of 𝑛 times 0 which 

are main diagonal elements and  𝑛2 − 𝑛 times 1 which are the off-diagonal elements of distance 

matrix 𝐷(𝐾𝑛). Therefore, we obtain the probablity distributions of 𝐾𝑛 as in the following table. 

 

Table 4. Probability distributions for complete graph 𝐾𝑛 

𝑖 0 1 

Freq. 𝑛 𝑛2 − 𝑛 

𝑝𝑖 1

𝑛
 
𝑛2 − 𝑛

𝑛2
 

𝑝𝑖
∗ 0 1 

 

By the definitions of the information entropies 𝐼 and 𝐼∗, we obtain the 𝐼(𝐾𝑛) and 𝐼∗(𝐾𝑛) as 

given in the following eqautions. It is clear that the upper trianguar matrix contains the distance 

1. Then its entropy measure equals to zero. 

𝐼(𝐾𝑛) = −
1

𝑛
log

1

𝑛
−
𝑛 − 1

𝑛
log

𝑛 − 1

𝑛
, 

𝐼∗(𝐾𝑛) = 0. 

 

Theorem 3.4. The information entropies 𝐼 and 𝐼∗ of cycle graph 𝐶𝑛 of order 𝑛 is given by the 

following formulas, 

𝑖) If the order of cycle is even, then entropy values are presented by 
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𝐼(𝐶𝑛) = −
2

𝑛
log

1

𝑛
−
𝑛 − 2

𝑛
log

2

𝑛
, 

𝐼∗(𝐶𝑛) = −
𝑛 − 2

𝑛 − 1
log

2

𝑛 − 1
−

1

𝑛 − 1
log

1

𝑛 − 1
. 

 

𝑖𝑖) If the order of cycle is odd, then entropy values are presented by 

𝐼(𝐶𝑛) = −
1

𝑛
log

1

𝑛
−
𝑛 − 1

𝑛
log

2

𝑛
, 

𝐼∗(𝐶𝑛) = log
𝑛 − 1

2
. 

Proof. 𝑖) If the order of a cycle is even, then its diameter equals to 𝑛 2⁄ . Therefore, the distance 

matrix of 𝐶𝑛 is presented as follows for 𝑛 is even. 

 

It can be seen that distance 1 appears in 𝑑𝑖𝑎𝑔(1), 𝑑𝑖𝑎𝑔(𝑛 − 1) in upper triangular submatrix 

and in 𝑑𝑖𝑎𝑔(𝑛 + 1), 𝑑𝑖𝑎𝑔(2𝑛 − 1) in lower triangular submatrix. Then  

2𝑛1 = |𝑑𝑖𝑎𝑔(1)| + |𝑑𝑖𝑎𝑔(𝑛 − 1)| + |𝑑𝑖𝑎𝑔(𝑛 + 1)| + |𝑑𝑖𝑎𝑔(2𝑛 − 1)| 

= 1 + 𝑛 − 1 + 𝑛 − 1 + 1 = 2𝑛. 

It can be seen that distance 2 appears in 𝑑𝑖𝑎𝑔(2), 𝑑𝑖𝑎𝑔(𝑛 − 2) in upper triangular submatrix  

and in 𝑑𝑖𝑎𝑔(𝑛 + 2), 𝑑𝑖𝑎𝑔(2𝑛 − 2) in lower triangular submatrix. Then  

2𝑛2 = |𝑑𝑖𝑎𝑔(2)| + |𝑑𝑖𝑎𝑔(𝑛 − 2)| + |𝑑𝑖𝑎𝑔(𝑛 + 2)| + |𝑑𝑖𝑎𝑔(2𝑛 − 2)| 

= 2 + 𝑛 − 2 + 𝑛 − 2 + 2 = 2𝑛. 

Generally we obtain that 2𝑛𝑖 = 2𝑛 for 1 ≤ 𝑖 ≤
𝑛

2
− 1. We can investigate the frequency of the 

𝑑𝑖𝑎𝑚(𝐶𝑛) = 𝑛 2⁄ . The distance 𝑛 2⁄  appears in 𝑑𝑖𝑎𝑔 (
𝑛

2
)  in upper triangular submatrix  and 

in 𝑑𝑖𝑎𝑔 (
3𝑛

2
) in lower triangular submatrix. Therefore, we obtain that 

2𝑛
(
𝑛
2
)
= |𝑑𝑖𝑎𝑔 (

𝑛

2
)| + |𝑑𝑖𝑎𝑔 (

3𝑛

2
)| =

𝑛

2
+
𝑛

2
= 𝑛. 
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From the 𝐷(𝐶𝑛) matrix, the probability distributions of distances is shown in Table 5. 

Table 5. Probability distributions for path graph 𝐶𝑛 for 𝑛 is even 

𝑖 0 1 2 3 ⋯ 𝑛 2⁄ − 1 𝑛 2⁄  

Freq. 𝑛 2𝑛 2𝑛 2𝑛 ⋯ 2𝑛 𝑛 

𝑝𝑖 1

𝑛
 

2

𝑛
 

2

𝑛
 

2

𝑛
 

⋯ 2

𝑛
 

1

𝑛
 

𝑝𝑖
∗ 0 2

𝑛 − 1
 

2

𝑛 − 1
 

2

𝑛 − 1
 
⋯ 2

𝑛 − 1
 

1

𝑛 − 1
 

 

By the definitions of the information entropies 𝐼 and 𝐼∗, we obtain the 𝐼(𝐶𝑛) and 𝐼∗(𝐶𝑛)  as 

given in the following eqautions for 𝑛 is even. 

𝐼(𝐶𝑛) = −2
1

𝑛
log

1

𝑛
− (

𝑛

2
− 1)

2

𝑛
log

2

𝑛
 

= −
2

𝑛
log

1

𝑛
−
𝑛 − 2

𝑛
log

2

𝑛
, 

𝐼∗(𝐶𝑛) = −(
𝑛

2
− 1)

2

𝑛 − 1
log

2

𝑛 − 1
−

1

𝑛 − 1
log

1

𝑛 − 1
 

= −
𝑛 − 2

𝑛 − 1
log

2

𝑛 − 1
−

1

𝑛 − 1
log

1

𝑛 − 1
. 

 

𝑖𝑖) If the order of a cycle is odd, then its diameter equals to (𝑛 − 1) 2⁄ . Therefore, the distance 

matrix of 𝐶𝑛 is presented as follows for 𝑛 is odd. 

 

 

It can be seen that distance 1 appears in 𝑑𝑖𝑎𝑔(1), 𝑑𝑖𝑎𝑔(𝑛 − 1) in upper triangular submatrix  

and in 𝑑𝑖𝑎𝑔(𝑛 + 1), 𝑑𝑖𝑎𝑔(2𝑛 − 1) in lower triangular submatrix. Then  

2𝑛1 = |𝑑𝑖𝑎𝑔(1)| + |𝑑𝑖𝑎𝑔(𝑛 − 1)| + |𝑑𝑖𝑎𝑔(𝑛 + 1)| + |𝑑𝑖𝑎𝑔(2𝑛 − 1)| 

= 1 + 𝑛 − 1 + 𝑛 − 1 + 1 = 2𝑛. 
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It can be seen that distance 2 appears in 𝑑𝑖𝑎𝑔(2), 𝑑𝑖𝑎𝑔(𝑛 − 2) in upper triangular submatrix  

and in 𝑑𝑖𝑎𝑔(𝑛 + 2), 𝑑𝑖𝑎𝑔(2𝑛 − 2) in lower triangular submatrix. Then  

2𝑛2 = |𝑑𝑖𝑎𝑔(2)| + |𝑑𝑖𝑎𝑔(𝑛 − 2)| + |𝑑𝑖𝑎𝑔(𝑛 + 2)| + |𝑑𝑖𝑎𝑔(2𝑛 − 2)| 

= 2 + 𝑛 − 2 + 𝑛 − 2 + 2 = 2𝑛. 

This continues and finally, we compute the frequency of the 𝑑𝑖𝑎𝑚(𝐶𝑛) = (𝑛 − 1) 2⁄ . The 

distance (𝑛 − 1) 2⁄  appears in 𝑑𝑖𝑎𝑔 (
𝑛−1

2
) , 𝑑𝑖𝑎𝑔 (

𝑛+1

2
),    in upper triangular submatrix and in 

𝑑𝑖𝑎𝑔 (
3𝑛−1

2
) , 𝑑𝑖𝑎𝑔 (

3𝑛+1

2
) in lower triangular submatrix. Therefore, 

2𝑛
(
𝑛−1
2
)
= |𝑑𝑖𝑎𝑔 (

𝑛 − 1

2
)| + |𝑑𝑖𝑎𝑔 (

𝑛 + 1

2
)| + |𝑑𝑖𝑎𝑔 (

3𝑛 − 1

2
)| + |𝑑𝑖𝑎𝑔 (

3𝑛 + 1

2
)| 

=
𝑛 − 1

2
+
𝑛 + 1

2
+
𝑛 − 1

2
+
𝑛 + 1

2
= 2𝑛. 

 

From the 𝐷(𝐶𝑛) matrix, the probability distributions of distances are shown in Table 6. 

Table 6. Probability distributions for path graph 𝐶𝑛 for 𝑛 is odd 

𝑖 0 1 2 3 ⋯ 𝑛 − 1

2
 

Freq. 𝑛 2𝑛 2𝑛 2𝑛 ⋯ 2𝑛 

𝑝𝑖 1

𝑛
 

2

𝑛
 

2

𝑛
 

2

𝑛
 

⋯ 2

𝑛
 

𝑝𝑖
∗ 0 2

𝑛 − 1
 

2

𝑛 − 1
 

2

𝑛 − 1
 
⋯ 2

𝑛 − 1
 

 

By the definitions of the information entropies 𝐼 and 𝐼∗, we obtain the 𝐼(𝐶𝑛) and 𝐼∗(𝐶𝑛) as in 

the following eqautions for 𝑛 is odd, 

𝐼(𝐶𝑛) = −
1

𝑛
log

1

𝑛
− (

𝑛 − 1

2
)
2

𝑛
log

2

𝑛
 

= −
1

𝑛
log

1

𝑛
−
𝑛 − 1

𝑛
log

2

𝑛
, 

𝐼∗(𝐶𝑛) = −(
𝑛 − 1

2
)

2

𝑛 − 1
log

2

𝑛 − 1
 

= log
𝑛 − 1

2
. 

  

Theorem 3.5. The information entropies 𝐼 and 𝐼∗ of complete bipartite graph 𝐾𝑛

2
,
𝑛

2
 of order 𝑛 is 

given by the following formulas, 

𝐼 (𝐾𝑛
2
,
𝑛
2
) = −

1

𝑛
log

1

𝑛
−
1

2
log

1

2
−
𝑛 − 2

2𝑛
log

𝑛 − 2

2𝑛
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𝐼∗ (𝐾𝑛
2
,
𝑛
2
) = −

𝑛

2𝑛 − 2
log

𝑛

2𝑛 − 2
−
𝑛 − 2

2𝑛 − 2
log

𝑛 − 2

2𝑛 − 2
 

 

 

Proof. Let  𝐾𝑛

2
,
𝑛

2
 be a complete bipartite graph with bipartite sets 𝐴 = {𝑣1, 𝑣3, … , 𝑣𝑛−1} and 𝐵 =

{𝑣2, 𝑣4, … , 𝑣𝑛}. 

Therefore, the distance matrix of 𝐾𝑛

2
,
𝑛

2
 is presented as follows. 

 

It is obtained that distance 1 appears in 𝑑𝑖𝑎𝑔(1), 𝑑𝑖𝑎𝑔(3),… , 𝑑𝑖𝑎𝑔(𝑛 − 1) in upper triangular 

submatrix  and in 𝑑𝑖𝑎𝑔(𝑛 + 1), 𝑑𝑖𝑎𝑔(𝑛 + 3),… , 𝑑𝑖𝑎𝑔(2𝑛 − 1) in lower triangular submatrix. 

Then  

2𝑛1 = 2(|𝑑𝑖𝑎𝑔(1)| + |𝑑𝑖𝑎𝑔(3)| + ⋯+ |𝑑𝑖𝑎𝑔(𝑛 − 1)|) 

= 2(1 + 3 +⋯+ 𝑛 − 1) =
𝑛2

2
 

It is obtained  that distance 2 appears in 𝑑𝑖𝑎𝑔(2), 𝑑𝑖𝑎𝑔(4),… , 𝑑𝑖𝑎𝑔(𝑛 − 2) in upper triangular 

submatrix  and in 𝑑𝑖𝑎𝑔(𝑛 + 2), 𝑑𝑖𝑎𝑔(𝑛 + 4),…, 𝑑𝑖𝑎𝑔(2𝑛 − 2) in lower triangular submatrix. 

Then  

2𝑛2 = 2(|𝑑𝑖𝑎𝑔(2)| + |𝑑𝑖𝑎𝑔(4)| + ⋯+ |𝑑𝑖𝑎𝑔(𝑛 − 2)|) 

= 2(2 + 4 +⋯+ 𝑛 − 2) =
𝑛2 − 2𝑛

2
 

 

From the 𝐷(𝐾𝑛

2
,
𝑛

2
) matrix, the probability distributions of distances are shown in Table 7. 

Table 7. Probability distributions for  the complete bipartite graph 𝐾𝑛

2
,
𝑛

2
 

𝑖 0 1 2 

Freq. 𝑛 𝑛2

2
 

𝑛2 − 2𝑛

2
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𝑝𝑖 1

𝑛
 

1

2
 

𝑛 − 2

2𝑛
 

𝑝𝑖
∗ 0 𝑛

2𝑛 − 2
 

𝑛 − 2

2𝑛 − 2
 

By the definitions of the information entropies 𝐼 and 𝐼∗, we obtain the 𝐼 (𝐾𝑛

2
,
𝑛

2
) and 𝐼∗ (𝐾𝑛

2
,
𝑛

2
) as 

in the following eqautions, 

 

𝐼 (𝐾𝑛
2
,
𝑛
2
) = −

1

𝑛
log

1

𝑛
−
1

2
log

1

2
−
𝑛 − 2

2𝑛
log

𝑛 − 2

2𝑛
, 

𝐼∗ (𝐾𝑛
2
,
𝑛
2
) = −

𝑛

2𝑛 − 2
log

𝑛

2𝑛 − 2
−
𝑛 − 2

2𝑛 − 2
log

𝑛 − 2

2𝑛 − 2
. 

 

4. Some Relations with Respect to Information Entropies 𝑰 and 𝑰∗ 

 In order to make some comparisons, we use majorization method [5]. We consider non-

increasing arrangement of each vector in 𝑅𝑛 such that for a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅
𝑛. 

Thus, we use  𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛. 

Definition 4.1. For  𝑥, 𝑦 ∈ 𝑅𝑛, 𝑥 ≺ 𝑦 if ([5]) 

{
 
 

 
 
∑𝑥𝑖

𝑘

𝑖=1

≤∑𝑦𝑖

𝑘

𝑖=1

, 𝑖 = 1,2, … , 𝑛 − 1,

∑𝑥𝑖

𝑛

𝑖=1

=∑𝑦𝑖

𝑛

𝑖=1

.

 

When , 𝑥 ≺ 𝑦, 𝑥 is said to be majorized by 𝑦 (𝑦 majorizes 𝑥).  

Let 𝑝(𝐺) = (𝑝(𝑣1), 𝑝(𝑣2), … , 𝑝(𝑣𝑛)) is a probably vector of the graph 𝐺 for the vertex set 

{𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝑝(𝑣1) ≥ 𝑝(𝑣2) ≥ ⋯ ≥ 𝑝(𝑣𝑛) and ∑ 𝑝(𝑣𝑖) = 1
𝑛
𝑖=1 . Since the 

information entropy 𝐼(𝐺) = −∑ 𝑝(𝑣𝑖) log 𝑝(𝑣𝑖)
𝑛
𝑖=1 , it is obtained that the fuction ℎ(𝑥) =

−𝑥 log 𝑥 is a concave function for 𝑥 > 0. Therefore, we can give an essential theorem as used 

in [5]. 

Theorem 4.2. Let 𝐻 and 𝐺 be two non-isomorphic graphs of order 𝑛 and 𝑝(𝐻), 𝑝(𝐺) be the 

probability vectors of 𝐻 and 𝐺, respectively. If  𝑝(𝐻) ≺ 𝑝(𝐺) , then we obtain that 𝐼(𝐺) ≤
𝐼(𝐻). 

If the diameter of two graphs are equal, then the distance matrices of these graphs are consisted 

same group distances but their frequencies can be different. It implies that the entropy measures 

𝐼, 𝐼∗ can be compared by majorization method. 

Lemma 4.3. Let 𝐺 be a graph and 𝑢, 𝑣 ∈ 𝑉(𝐺). Let  𝐺𝑠,𝑡 be a graph which is obtained from 𝐺 

by attaching 𝑠, 𝑡 pendant vertices to the vertices 𝑣, 𝑢 (respectively) such that 𝑠 and 𝑡 are almost 
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equal. Therefore, the infornation entropies of the graphs 𝐺𝑠,𝑡, 𝐺𝑠−𝑖,𝑡+𝑖 and 𝐺𝑠+𝑖,𝑡−𝑖 (see Figure 

1) are compared by the following inequalities with fixed diameter 

𝑖) 𝐼(𝐺𝑠−𝑖,𝑡+𝑖) ≤ 𝐼(𝐺𝑠,𝑡) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑠 

 𝑜𝑟     𝐼(𝐺𝑠+𝑖,𝑡−𝑖) ≤ 𝐼(𝐺𝑠,𝑡)   𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑡. 

𝑖𝑖) 𝐼∗(𝐺𝑠−𝑖,𝑡+𝑖) ≤  𝐼
∗(𝐺𝑠,𝑡)  𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑠 

 𝑜𝑟  𝐼∗(𝐺𝑠+𝑖,𝑡−𝑖) ≤  𝐼
∗(𝐺𝑠,𝑡)     𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑡. 

Proof. 𝑖) Assume that a leaf 𝑦 is removed from 𝑣 and it is attached to 𝑢. Therefore the tree 

𝐺𝑠−1,𝑡+1 is obtained. Let 𝑥 = (… , 𝑝2(𝐺𝑠,𝑡), … ) and 𝑥′ = (… , 𝑝2(𝐺𝑠−1,𝑡+1), … )  be 

nonincreasing probably vectors of 𝐺𝑠,𝑡 and 𝐺𝑠−1,𝑡+1. The total distance from 𝑦 to other leaves 

which are incident to 𝑣 is 2(𝑠 − 1).  Moreover, the total distance from  𝑠 − 1 leaves to 𝑦 is also 

2(𝑠 − 1). It means that if 𝑦 is removed from 𝑣, the frequency of distance 2 is decreased 

2(𝑠 − 1) times in the distance matrix of 𝐺𝑠,𝑡.  

In the graph  𝐺𝑠−1,𝑡+1 the frequency of distance 2 is increased 2𝑡 times becasuse of the leaf 𝑦 

is attached to 𝑢. Then the difference of probabilities of distance 2 in the distance matrices of 

𝐺𝑠−1,𝑡+1  and 𝐺𝑠,𝑡 is 

𝑝2(𝐺𝑠−1,𝑡+1) − 𝑝2(𝐺𝑠,𝑡) =
2𝑡

𝑛2
−
2(𝑠 − 1)

𝑛2
=
2𝑡 − 2𝑠 + 2

𝑛2
≥ 0. 

It implies that 𝑥 ≺ 𝑥′ and 𝐼(𝐺𝑠−𝑖,𝑡+𝑖) ≤ 𝐼(𝐺𝑠,𝑡) or 𝐼(𝐺𝑠+𝑖,𝑡−𝑖) ≤ 𝐼(𝐺𝑠,𝑡). 

𝑖𝑖) The same are argument is used for upper triangular submatrix and the result is obtained. 

 

 

Figure 1. The graph 𝐺𝑠,𝑡 

Let 𝑃𝑑+1: 𝑣0𝑣1…𝑣𝑑 be a path of order 𝑑 + 1. The graph which is obtained from 𝑃𝑑+1 by 

attaching 𝑘 = 𝑛 − 𝑑 − 1 leaves to 𝑖-th vertex of 𝑃𝑑+1 is denoted by 𝑃𝑑+1,𝑖,𝑘 (see Figure 2). 

 

Figure 2. The graph 𝑃𝑑+1,𝑖,𝑘 
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Lemma 4.4. For any 1 ≤ 𝑗 < 𝑖 ≤ ⌊
𝑑

2
⌋, it is obtained that   

𝑖) 𝐼(𝑃𝑑+1,𝑖,𝑘) ≤ 𝐼(𝑃𝑑+1,𝑗,𝑘) 

𝑖𝑖) 𝐼∗(𝑃𝑑+1,𝑖,𝑘) ≤  𝐼
∗(𝑃𝑑+1,𝑗,𝑘). 

Proof. 𝑖) Assume that a leaf 𝑦 which is attached to 𝑖-th vertex of  𝑃𝑑+1 is move on 𝑖 + 1-th 

vertex of 𝑃𝑑+1 such that 𝑖 < 𝑖 + 1 ≤ ⌊
𝑑

2
⌋.  Now we ordered the distances from  𝑦 to other 

vertices 𝑣0, 𝑣1, … , 𝑣𝑑 such that  𝑖 + 1, 𝑖, … ,1,2, … , 𝑑 − 𝑖 + 1 in 𝑃𝑑+1,𝑖,1, respectively. Similarly, 

the distances from 𝑦 to other vertices 𝑣0, 𝑣1, … , 𝑣𝑑 are ordered 𝑖 + 2, 𝑖 + 1,… ,1,2, … , 𝑑 − 𝑖 in 

𝑃𝑑+1,𝑖+1,1, respectively.  It means that the frequencies of greater distances are decreased in the 

distance matrix and the frequencies of small distances are increased. This trend continues untill 

the the leaf 𝑦 arrives to the ⌊
𝑑

2
⌋-th vertex of the graph. Then the probably vector of 𝑃𝑑+1,𝑖,1 is 

majorized by the probably vector of 𝑃𝑑+1,𝑖+1,1 and 𝐼(𝑃𝑑+1,𝑖+1,1) ≤ 𝐼(𝑃𝑑+1,𝑖,1). It can be 

generalized for  𝑘 leaves as 𝐼(𝑃𝑑+1,𝑖,𝑘) ≤ 𝐼(𝑃𝑑+1,𝑗,𝑘). 

𝑖𝑖) It is obtained by a similar way to item (𝑖).  

By Lemma 4.4 the information indices 𝐼, 𝐼∗ of trees in the family of 𝑃𝑛−2,𝑖,1 for 𝑑 = 𝑛 − 2  and 

𝑘 = 1 are ordered as in the following corollary. 

Corollary 4.5.  For 1 ≤ 𝑖 ≤ ⌊
𝑑

2
⌋  the information indices are ordered as follows 

𝑖) 𝐼 (𝑃
𝑛−2,⌊

𝑑
2
⌋,1
) ≤ 𝐼 (𝑃

𝑛−2,⌊
𝑑
2
⌋−1,1

) ≤ ⋯ ≤ 𝐼(𝑃𝑛−2,1,1), 

𝑖𝑖) 𝐼∗ (𝑃
𝑛−2,⌊

𝑑
2
⌋,1
) ≤ 𝐼∗ (𝑃

𝑛−2,⌊
𝑑
2
⌋−1,1

) ≤ ⋯ ≤ 𝐼∗(𝑃𝑛−2,1,1). 

The results which are obtained in the previous corollary are generalized to graphs with diameter 

3 ≤ 𝑑 ≤ 𝑛 − 3 and 𝑘 = 𝑛 − 𝑑 − 1 by Lemma 4.3 and Lemma 4.4 as in the following corollary. 

Corollary 4.6. Assume that the diameter is 3 ≤ 𝑑 ≤ 𝑛 − 3 and the 𝑘 = 𝑛 − 𝑑 − 1. Then the 

information indices are ordered as follows. 

𝑖) 𝐼 (𝑃
𝑑,⌊
𝑑
2
⌋,𝑘
) ≤ 𝐼 (𝑃

𝑑,⌊
𝑑
2
⌋−1,𝑘

) ≤ ⋯ ≤ 𝐼(𝑃𝑑,1,𝑘), 

𝑖𝑖) 𝐼∗ (𝑃
𝑑,⌊
𝑑
2
⌋,𝑘
) ≤ 𝐼∗ (𝑃

𝑑,⌊
𝑑
2
⌋−1,𝑘

) ≤ ⋯ ≤ 𝐼∗(𝑃𝑑,1,𝑘). 

 

Conclusion 

Prof. Nenad Trinajstic passed away on 27 August  2021. The paper [15] was cited more than 

six hundred times and it is the most cited fifth paper according to his scholar page. Therefore 

we are very happy to improve the results about the entropy measures reported in [15].  
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 There are many open problems in this topic. The entropy measures of different graphs are 

obtained. Moreover, extremal trees, extremal unicyclic and bicyclic graphs can be obtained with 

respect to the entropy measures with different paramaters. 

 It is observed that the distribution of vertex degrees of graphs is well studied  but distribution 

of distances does not studied as long as degree distributions in the literature. Then, the entropy 

measures which are reported in this paper are usefull tools for distribution of distances in a 

graph. 

 Average distance of a graph 𝐺 (𝜇(𝐺)) is defined as [13] 

𝜇(𝐺) =
𝑊(𝐺)

𝑛(𝑛 − 1)
. 

It is more related to the entropy measure 𝐼∗. It is an interesting problem to find the relations 

between 𝜇 and 𝐼∗. 
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