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Abstract

New notion of dimension as set, as two optimal numbers including metric number,
dimension number and as optimal set are introduced in individual framework and in
formation of family. Behaviors of twin and antipodal are explored in
fuzzy(neutrosophic) graphs. Fuzzy(neutrosophic) graphs, under conditions, fixed-edges,
fixed-vertex and strong fixed-vertex are studied. Some classes as path, cycle, complete,
strong, t-partite, bipartite, star and wheel in the formation of individual case and in the
case, they form a family are studied in the term of dimension. Fuzzification
(neutrosofication) of twin vertices but using crisp concept of antipodal vertices are
another approaches of this study. Thus defining two notions concerning vertices which
one of them is fuzzy(neutrosophic) titled twin and another is crisp titled antipodal to
study the behaviors of cycles which are partitioned into even and odd, are concluded.
Classes of cycles according to antipodal vertices are divided into two classes as even and
odd. Parity of the number of edges in cycle causes to have two subsections under the
section is entitled to antipodal vertices. In this study, the term dimension is introduced
on fuzzy(neutrosophic) graphs. The locations of objects by a set of some junctions
which have distinct distance from any couple of objects out of the set, are determined.
Thus it’s possible to have the locations of objects outside of this set by assigning partial
number to any objects. The classes of these specific graphs are chosen to obtain some
results based on dimension. The types of crisp notions and fuzzy(neutrosophic) notions
are used to make sense about the material of this study and the outline of this study
uses some new notions which are crisp and fuzzy(neutrosophic).

Keywords: Fuzzy Graphs, Neutrosophic Graphs, Dimension
AMS Subject Classification: 05C17, 05C22, 05E45

1 Background 1

To clarify about the definitions, I use some examples and in this way, exemplifying has 2

key role to make sense about the definitions and to introduce new ways to use on these 3

models in the terms of new notions. The concept of complete is used to classify specific 4

graph in every environment. To differentiate, I use an adjective or prefix in every 5

definition. Two adjectives “fuzzy” and “neutrosophic” are used to distinguish every 6

graph or classes of graph or any notion on them. 7

G : (V,E) is called a crisp graph where V is a set of objects and E is a subset of 8

V × V such that this subset is symmetric. A crisp graph G : (V,E) is called a fuzzy 9
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graph G : (σ, µ) where σ : V → [0, 1] and µ : E → [0, 1] such that µ(xy) ≤ σ(x) ∧ σ(y) 10

for all xy ∈ E. A crisp graph G : (V,E) is called a neutrosophic graph G : (σ, µ) 11

where σ = (σ1, σ2, σ3) : V → [0, 1] and µ = (µ1, µ2.µ3) : E → [0, 1] such that 12

µ(xy) ≤ σ(x) ∧ σ(y) for all xy ∈ E. A crisp graph G : (V,E) is called a crisp 13

complete where ∀x ∈ V, ∀y ∈ V, xy ∈ E. A fuzzy graph G : (σ, µ) is called fuzzy 14

complete where it’s complete and µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A neutrosophic 15

graph G : (σ, µ) is called a neutrosophic complete where it’s complete and 16

µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. An N which is a set of vertices, is called 17

fuzzy(neutrosophic) cardinality and it’s denoted by |N | such that 18

|N | = Σn∈Nσ(n). A crisp graph G : (V,E) is called a crisp strong. A fuzzy graph 19

G : (σ, µ) is called fuzzy strong where µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A 20

neutrosophic graph G : (σ, µ) is called a neutrosophic strong where 21

µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A distinct sequence of vertices v0, v1, · · · , vn in a 22

crisp graph G : (V,E) is called crisp path with length n from v0 to vn where 23

vivi+1 ∈ E, i = 0, 1, · · · , n− 1. If one edge is incident to a vertex, the vertex is called 24

leaf. A path v0, v1, · · · , vn is called fuzzy path where 25

µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. A path v0, v1, · · · , vn is called neutrosophic path 26

where µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. Let P : v0, v1, · · · , vn be fuzzy(neutrosophic) 27

path from v0 to vn such that it has minimum number of vertices as possible, then 28

d(v0, vn) is defined as Σni=0µ(vi−1vi). A path v0, v1, · · · , vn with exception of v0 and vn 29

in a crisp graph G : (V,E) is called crisp cycle with length n for v0 where v0 = vn. A 30

cycle v0, v1, · · · , v0 is called fuzzy cycle where there are two edges xy and uv such that 31

µ(xy) = µ(uv) =
∧
i=0,1,··· ,n−1 µ(vivi+1). A cycle v0, v1, · · · , v0 is called neutrosophic 32

cycle where there are two edges xy and uv such that 33

µ(xy) = µ(uv) =
∧
i=0,1,··· ,n−1 µ(vivi+1). A fuzzy(neutrosophic) cycle is called odd if 34

the number of its vertices is odd. Similarly, a fuzzy(neutrosophic) cycle is called even if 35

the number of its vertices is even. A fuzzy(neutrosophic) graph is called 36

fuzzy(neutrosophic) t-partite if V is partitioned to t parts, V1, V2, · · · , Vt and the 37

edge xy implies x ∈ Vi and y ∈ Vj where i 6= j. If it’s fuzzy(neutrosophic) complete, 38

then it’s denoted by Kσ1,σ2,··· ,σt
where σi is σ on Vi instead V which mean x 6∈ Vi 39

induces σi(x) = 0. If t = 2, then it’s called fuzzy(neutrosophic) complete bipartite 40

and it’s denoted by Kσ1,σ2
especially, if |V1| = 1, then it’s called fuzzy(neutrosophic) 41

star and it’s denoted by S1,σ2
. In this case, the vertex in V1 is called center and if a 42

vertex joins to all vertices of fuzzy(neutrosophic), it’s called fuzzy(neutrosophic) 43

wheel and it’s denoted by W1,σ2 . A set is n-set if its cardinality is n. A fuzzy vertex

Table 1. Crisp-fying, Fuzzy-fying and Neutrosophic-fying

Crisp Graphs Fuzzy Graphs Neutrosophic Graphs
Crisp Complete Fuzzy Complete Neutrosophic Complete
Crisp Strong Fuzzy Strong Neutrosophic Strong
Crisp Path Fuzzy Path Neutrosophic Path
Crisp Cycle Fuzzy Cycle Neutrosophic Cycle
Crisp t-partite Fuzzy t-partite Neutrosophic t-partite
Crisp Bipartite Fuzzy Bipartite Neutrosophic Bipartite
Crisp Star Fuzzy Star Neutrosophic Star
Crisp Wheel Fuzzy Wheel Neutrosophic Wheel

44

set is the subset of vertex set of (neutrosophic) fuzzy graph such that the values of these 45

vertices are considered. A fuzzy edge set is the subset of edge set of (neutrosophic) 46

fuzzy graph such that the values of these edges are considered. Let G be a family of 47

fuzzy graphs or neutrosophic graphs. This family have fuzzy(neutrosophic) 48

common vertex set if all graphs have same vertex set and its values but edges set is 49

subset of fuzzy edge set. A (neutrosophic) fuzzy graph is called fixed-edge 50
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fuzzy(neutrosophic) graph if all edges have same values. A (neutrosophic) fuzzy 51

graph is called fixed-vertex fuzzy(neutrosophic) graph if all vertices have same 52

values. A couple of vertices x and y is called crisp twin vertices if either N(x) = N(y) 53

or N [x] = N [y] where ∀x ∈ V, N(x) = {y| xy ∈ E}, N [x] = N(x) ∪ {x}. Two vertices t 54

and t′ are called fuzzy(neutrosophic) twin vertices if N(t) = N(t′) and 55

µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). maxx,y∈V (G) |E(P (x, y))| is called diameter of

Table 2. Crisp-fying, Fuzzy-fying and Neutrosophic-fying

Crisp Vertex Set Fuzzy Vertex Set Neutrosophic Vertex Set
Crisp Edge Set Fuzzy Edge Set Neutrosophic Edge Set
Crisp Common Fuzzy Common Neutrosophic Common
Crisp Fixed-edge Fuzzy Fixed-edge Neutrosophic Fixed-edge
Crisp Fixed-vertex Fuzzy Fixed-vertex Neutrosophic Fixed-vertex
Crisp Twin Fuzzy Twin Neutrosophic Twin

56

G and it’s denoted by D(G) where |E(P (x, y))| is the number of edges on the path from 57

x to y. For any given vertex x if there’s exactly one vertex y such that 58

minP (x,y) |E(P (x, y))| = D(G), then a couple of vertices x and y are called antipodal 59

vertices. For using material look at [1–15]. 60

2 Definitions 61

We use the notion of vertex in fuzzy(neutrosophic) graphs to define new notions which 62

state the relation amid vertices. In this way, the set of vertices are distinguished by 63

another set of vertices. 64

Definition 2.1. Let G = (V, σ, µ) be a fuzzy(neutrosophic) graph. A vertex m
fuzzy(neutrosophic)-resolves vertices f1 and f2 if d(m, f1) 6= d(m, f2). A set M is
fuzzy(neutrosophic)-resolving set if for every couple of vertices f1, f2 ∈ V \M, there’s a
vertex m ∈M such that m fuzzy(neutrosophic)-resolves f1 and f2. |M | is called
fuzzy(neutrosophic)-metric number of G and

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

is called fuzzy(neutrosophic)-metric dimension of G and if

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

where M is fuzzy(neutrosophic)-resolving set, then M is called 65

fuzzy(neutrosophic)-metric set of G. 66

Example 2.2. Let G be a fuzzy(neutrosophic) graph as figure (1). By applying Table 67

(3), the 1-set is explored which its cardinality is minimum. {f6} and {f4} are 1-set 68

which has minimum cardinality amid all sets of vertices but {f4} isn’t 69

fuzzy(neutrosophic)-resolving set and {f6} is fuzzy(neutrosophic)-resolving set. Thus 70

there’s no fuzzy(neutrosophic)-metric set but {f6}. f6 fuzzy(neutrosophic)-resolves all 71

given couple of vertices. Therefore one is fuzzy(neutrosophic)-metric number of G and 72

0.13 is fuzzy(neutrosophic)-metric dimension of G. By using Table (3), f4 doesn’t 73

fuzzy(neutrosophic)-resolve f2 and f6. f4 doesn’t fuzzy(neutrosophic)-resolve f1 and f5, 74

too. 75
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Figure 1. Black vertex {f6} is only fuzzy(neutrosophic)-metric set amid all sets of
vertices for fuzzy(neutrosophic) graph G.

Table 3. Distances of Vertices from sets of vertices {f6} and {f4} in fuzzy(neutrosophic)
Graph G.

Vertices f1 f2 f3 f4 f5 f6
f6 0.22 0.26 0.39 0.24 0.13 0

Vertices f1 f2 f3 f4 f5 f6
f4 0.11 0.24 0.37 0 0.11 0.24

Definition 2.3. Consider G as a family of fuzzy(neutrosophic) graphs on a common
vertex set V. A vertex m simultaneously fuzzy(neutrosophic)-resolves vertices f1 and f2
if dG(m, f1) 6= dG(m, f2), for all G ∈ G. A set M is simultaneously
fuzzy(neutrosophic)-resolving set if for every couple of vertices f1, f2 ∈ V \M, there’s a
vertex m ∈M such that m resolves f1 and f2, for all G ∈ G. |M | is called
simultaneously fuzzy(neutrosophic)-metric number of G and

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

is called simultaneously fuzzy(neutrosophic)-metric dimension of G and if

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

where M is fuzzy(neutrosophic)-resolving set, then M is called simultaneously 76

fuzzy(neutrosophic)-metric set of G. 77

Example 2.4. Let G = {G1, G2, G3} be a collection of fuzzy(neutrosophic) graphs 78

with common fuzzy(neutrosophic) vertex set and a subset of fuzzy(neutrosophic) edge 79

set as figure (2). By applying Table (4), the 1-set is explored which its cardinality is 80

minimum. {f2} and {f4} are 1-set which has minimum cardinality amid all sets of 81

vertices. {f4} is as fuzzy(neutrosophic)-resolving set as {f6} is. Thus there’s no 82

fuzzy(neutrosophic)-metric set but {f4} and {f6}. f6 as fuzzy(neutrosophic)-resolves all 83

given couple of vertices as f4. Therefore one is fuzzy(neutrosophic)-metric number of G 84

and 0.13 is fuzzy(neutrosophic)-metric dimension of G. By using Table (4), f4 85

fuzzy(neutrosophic)-resolves all given couple of vertices. 86

3 General Relationships 87

Proposition 3.1. Let G be a fuzzy(neutrosophic) path. Then every leaf is 88

fuzzy(neutrosophic)-resolving set. 89
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Figure 2. Black vertex {f4} and the set of vertices {f2} are simultaneously
fuzzy(neutrosophic)-metric set amid all sets of vertices for family of fuzzy(neutrosophic)
graphs G.

Table 4. Distances of Vertices from set of vertices {f6} in Family of fuzzy(neutrosophic)
Graphs G.

Vertices of G1 f1 f2 f3 f4
f4 0.37 0.26 0.13 0

Vertices of G2 f1 f2 f3 f4
f4 0.11 0.22 0.13 0

Vertices of G3 f1 f2 f3 f4
f4 0.24 0.26 0.13 0

Proof. Let l be a leaf. For every given a couple of vertices fi and fj , we get
d(l, fi) 6= d(l, fj). Since if we reassign indexes to vertices such that every vertex fi and l
have i vertices amid themselves, then d(l, fi) = Σj≤iµ(fjfi) ≤ i. Thus j ≤ i implies

Σt≤jµ(ftfj) + Σj≤s≤iµ(fsfi) > Σj≤iµ(ffi) ≡ d(l, fj) + c = d(l, fi) ≡ d(l, fj) < d(l, fi).

Therefore, by d(l, fj) < d(l, fi), we get d(l, fi) 6= d(l, fj). fi and fj are arbitrary so l 90

fuzzy(neutrosophic)-resolves any given couple of vertices fi and fj which implies {l} is a 91

fuzzy(neutrosophic)-resolving set. 92

Corollary 3.2. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every leaf is 93

fuzzy(neutrosophic)-resolving set. 94

Proof. Let l be a leaf. For every given couple of vertices, fi and fj , we get 95

d(l, fi) = ci 6= d(l, fj) = cj. It implies l fuzzy(neutrosophic)-resolves any given couple of 96

vertices fi and fj which implies {l} is a fuzzy(neutrosophic)-resolving set. 97

Corollary 3.3. Let G be a fixed-vertex fuzzy(neutrosophic) path. Then every leaf is 98

fuzzy(neutrosophic)-metric set, fuzzy(neutrosophic)-metric number is one and 99

fuzzy(neutrosophic)-metric dimension is c where c = σ(f), f ∈ V. 100

Proof. By Proposition (3.1), every leaf is fuzzy(neutrosophic)-resolving set. By 101

c = σ(f), ∀f ∈ V, every leaf is fuzzy(neutrosophic)-metric set, 102

fuzzy(neutrosophic)-metric number is one and fuzzy(neutrosophic)-metric dimension is 103

c. 104

Proposition 3.4. Let G be a fuzzy(neutrosophic) path. Then a set including every 105

couple of vertices is fuzzy(neutrosophic)-resolving set. 106

Proof. Let f and f ′ be a couple of vertices. For every given a couple of vertices fi and 107

fj , we get either d(f, fi) 6= d(f, fj) or d(f ′, fi) 6= d(f ′, fj). 108

Corollary 3.5. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every set 109

containing couple of vertices is fuzzy(neutrosophic)-resolving set. 110
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Proof. Consider G is a fuzzy(neutrosophic) path. Thus by Proposition (3.4), every set 111

containing couple of vertices is fuzzy(neutrosophic)-resolving set. So it holds for any 112

given fixed-edge path fuzzy(neutrosophic) graph. 113

4 Fuzzy(Neutrosophic) Twin Vertices 114

Proposition 4.1. Let G be a fuzzy(neutrosophic) graph. An (k − 1)-set from an k-set 115

of fuzzy(neutrosophic) twin vertices is subset of a fuzzy(neutrosophic)-resolving set. 116

Proof. If t and t′ are fuzzy(neutrosophic) twin vertices, then N(t) = N(t′) and 117

µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). 118

Corollary 4.2. Let G be a fuzzy(neutrosophic) graph. The number of 119

fuzzy(neutrosophic) twin vertices is n− 1. Then fuzzy(neutrosophic)-metric number is 120

n− 2. 121

Proof. Let f and f ′ be two vertices. By supposition, the cardinality of set of 122

fuzzy(neutrosophic) twin vertices is n− 2. Thus there are two cases. If both are 123

fuzzy(neutrosophic) twin vertices, then N(f) = N(f ′) and µ(fs) = µ(f ′s′), ∀s ∈ N(f), 124

∀s′ ∈ N(f ′). It implies d(f, t) = d(f, t) for all t ∈ V. Thus suppose if not, then let f be 125

a vertex which isn’t fuzzy(neutrosophic) twin vertices with any given vertex and let f ′ 126

be a vertex which is fuzzy(neutrosophic) twin vertices with any given vertex but not f. 127

By supposition, it’s possible and this is only case. Therefore, any given distinct vertex 128

fuzzy(neutrosophic)-resolves f and f ′. Then V \ {f, f ′} is fuzzy(neutrosophic)-resolving 129

set. It implies fuzzy(neutrosophic)-metric number is n− 2. 130

Corollary 4.3. Let G be a fuzzy(neutrosophic) graph. The number of 131

fuzzy(neutrosophic) twin vertices is n. Then G is fixed-edge fuzzy(neutrosophic) graph. 132

Proof. Suppose f and f ′ are two given edges. By supposition, every couple of vertices 133

are fuzzy(neutrosophic) twin vertices. It implies µ(f) = µ(f ′). f and f ′ are arbitrary so 134

every couple of edges have same values. It induces G is fixed-edge fuzzy(neutrosophic) 135

graph. 136

Corollary 4.4. Let G be a fixed-vertex fuzzy(neutrosophic) graph. The number of 137

fuzzy(neutrosophic) twin vertices is n− 1. Then fuzzy(neutrosophic)-metric number is 138

n− 2, fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is 139

fuzzy(neutrosophic) twin vertex with a vertex. Every (n− 2)-set including 140

fuzzy(neutrosophic) twin vertices is fuzzy(neutrosophic)-metric set. 141

Proof. By Corollary (4.2), fuzzy(neutrosophic)-metric number is n− 2. By G is a 142

fixed-vertex fuzzy(neutrosophic) graph, fuzzy metric dimension is (n− 2)σ(m) where m 143

is fuzzy(neutrosophic) twin vertex with a vertex. One vertex doesn’t belong to set of 144

fuzzy(neutrosophic) twin vertices and a vertex from that set, are out of fuzzy metric set. 145

It induces every (n− 2)-set including fuzzy(neutrosophic) twin vertices is fuzzy metric 146

set. 147

Proposition 4.5. Let G be a fixed-vertex fuzzy(neutrosophic) graph such that it’s 148

fuzzy(neutrosophic) complete. Then fuzzy(neutrosophic)-metric number is n− 1, 149

fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is a given vertex. Every 150

(n− 1)-set is fuzzy(neutrosophic)-metric set. 151

Proof. In fuzzy(neutrosophic) complete, every couple of vertices are twin vertices. By G 152

is a fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic) complete, every 153

couple of vertices are fuzzy(neutrosophic) twin vertices. Thus by Proposition (4.1), the 154

result follows. 155
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Proposition 4.6. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 156

set. Then simultaneously fuzzy(neutrosophic)-metric number of G is n− 1. 157

Proof. Consider (n− 1)-set. Thus there’s no couple of vertices to be 158

fuzzy(neutrosophic)-resolved. Therefore, every (n− 1)-set is 159

fuzzy(neutrosophic)-resolving set for any given fuzzy(neutrosophic) graph. Then it 160

holds for any fuzzy(neutrosophic) graph. It implies it’s fuzzy(neutrosophic)-resolving set 161

and its cardinality is fuzzy(neutrosophic)-metric number. (n− 1)-set has the cardinality 162

n− 1. Then it holds for any fuzzy(neutrosophic) graph. It induces it’s simultaneously 163

fuzzy(neutrosophic)-resolving set and its cardinality is simultaneously 164

fuzzy(neutrosophic)-metric number. 165

Proposition 4.7. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 166

set. Then simultaneously fuzzy(neutrosophic)-metric number of G is greater than the 167

maximum fuzzy(neutrosophic)-metric number of G ∈ G. 168

Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic)-metric number of G and 169

fuzzy(neutrosophic)-metric number of G ∈ G. Thus t is fuzzy(neutrosophic)-metric 170

number for any G ∈ G. Hence, t ≥ t′. So simultaneously fuzzy(neutrosophic)-metric 171

number of G is greater than the maximum fuzzy(neutrosophic)-metric number of 172

G ∈ G. 173

Proposition 4.8. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 174

set. Then simultaneously fuzzy(neutrosophic)-metric number of G is greater than 175

simultaneously fuzzy(neutrosophic)-metric number of H ⊆ G. 176

Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic)-metric number of G and 177

H. Thus t is fuzzy(neutrosophic)-metric number for any G ∈ G. It implies t is 178

fuzzy(neutrosophic)-metric number for any G ∈ H. So t is simultaneously 179

fuzzy(neutrosophic)-metric number of H. By applying Definition about being the 180

minimum number, t ≥ t′. So simultaneously fuzzy(neutrosophic)-metric number of G is 181

greater than simultaneously fuzzy(neutrosophic)-metric number of H ⊆ G. 182

Theorem 4.9. Fuzzy(neutrosophic) twin vertices aren’t fuzzy(neutrosophic)-resolved in 183

any given fuzzy(neutrosophic) graph. 184

Proof. Let t and t′ be fuzzy(neutrosophic) twin vertices. Then N(t) = N(t′) and 185

µ(ts) = µ(t′s), for all s, s′ ∈ V such that ts, t′s ∈ E. Thus for every given vertex 186

s′ ∈ V, dG(s′, t) = dG(s, t) where G is a given fuzzy(neutrosophic) graph. It means that 187

t and t′ aren’t resolved in any given fuzzy(neutrosophic) graph. t and t′ are arbitrary so 188

fuzzy(neutrosophic) twin vertices aren’t resolved in any given fuzzy(neutrosophic) 189

graph. 190

Proposition 4.10. Let G be a fixed-vertex fuzzy(neutrosophic) graph. If G is 191

fuzzy(neutrosophic) complete, then every couple of vertices are fuzzy(neutrosophic) twin 192

vertices. 193

Proof. Let t and t′ be couple of given vertices. By G is fuzzy(neutrosophic) complete, 194

N(t) = N(t′). By G is a fixed-vertex fuzzy(neutrosophic) graph, µ(ts) = µ(t′s), for all 195

edges ts, t′s ∈ E. Thus t and t′ are fuzzy(neutrosophic) twin vertices. t and t′ are 196

arbitrary couple of vertices, hence every couple of vertices are fuzzy(neutrosophic) twin 197

vertices. 198

Theorem 4.11. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 199

set and G ∈ G is a fixed-vertex fuzzy(neutrosophic) graph such that it’s 200

fuzzy(neutrosophic) complete. Then simultaneously fuzzy(neutrosophic)-metric number 201
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is n− 1, simultaneously fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is 202

a given vertex. Every (n− 1)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 203

Proof. G is fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic) 204

complete. So by Theorem (4.10), we get every couple of vertices in fuzzy(neutrosophic) 205

complete are fuzzy(neutrosophic) twin vertices. So every couple of vertices, by Theorem 206

(4.9), aren’t resolved. 207

Corollary 4.12. Let G be a family of fuzzy(neutrosophic) graphs with 208

fuzzy(neutrosophic) common vertex set and G ∈ G is a fuzzy(neutrosophic) complete. 209

Then simultaneously fuzzy(neutrosophic)-metric number is n− 1, simultaneously 210

fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is a given vertex. Every 211

(n− 1)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 212

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex set, G 213

is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic) complete. So by 214

Theorem (4.11), we get intended result. 215

Theorem 4.13. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 216

set and for every given couple of vertices, there’s a G ∈ G such that in that, they’re 217

fuzzy(neutrosophic) twin vertices. Then simultaneously fuzzy(neutrosophic)-metric 218

number is n− 1, simultaneously fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) 219

where m is a given vertex. Every (n− 1)-set is simultaneously 220

fuzzy(neutrosophic)-metric set for G. 221

Proof. By Proposition (4.6), simultaneously fuzzy(neutrosophic)-metric number is 222

n− 1. By Theorem (4.9), simultaneously fuzzy(neutrosophic)-metric dimension is 223

(n− 1)σ(m) where m is a given vertex. Also, every (n− 1)-set is simultaneously 224

fuzzy(neutrosophic)-metric set for G. 225

Theorem 4.14. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 226

set. If G contains three fixed-vertex fuzzy(neutrosophic) stars with different center, then 227

simultaneously fuzzy(neutrosophic)-metric number is n− 2, simultaneously 228

fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is a given vertex. Every 229

(n− 2)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 230

Proof. The cardinality of set of fuzzy(neutrosophic) twin vertices is n− 1. Thus by 231

Corollary (4.4), the result follows. 232

Corollary 4.15. Let G be a family of fuzzy(neutrosophic) graphs with 233

fuzzy(neutrosophic) common vertex set. If G contains three fuzzy(neutrosophic) stars 234

with different center, then simultaneously fuzzy(neutrosophic)-metric number is n− 2, 235

simultaneously fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is a given 236

vertex. Every (n− 2)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 237

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex set, G 238

is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic) complete. So by 239

Theorem (4.14), we get intended result. 240

5 Antipodal Vertices 241

5.1 Even Fuzzy(Neutrosophic) Cycle 242

Proposition 5.1. Consider two antipodal vertices x and y in any given fixed-edge even 243

fuzzy(neutrosophic) cycle. Let u and v be given vertices. Then d(x, u) 6= d(x, v) if and 244

only if d(y, u) 6= d(y, v). 245
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Proof. (⇒). Consider d(x, u) 6= d(x, v). By 246

d(x, u) + d(u, y) = d(x, y) = D(G), D(G)− d(x, u) 6= D(G)− d(x, v). It implies 247

d(y, u) 6= d(y, v). 248

(⇐). Consider d(y, u) 6= d(y, v). By 249

d(y, u) + d(u, x) = d(x, y) = D(G), D(G)− d(y, u) 6= D(G)− d(y, v). It implies 250

d(x, u) 6= d(x, v). 251

Proposition 5.2. Consider two antipodal vertices x and y in any given fixed-edge even 252

fuzzy(neutrosophic) cycle. Let u and v be given vertices. Then d(x, u) = d(x, v) if and 253

only if d(y, u) = d(y, v). 254

Proof. (⇒). Consider d(x, u) = d(x, v). By 255

d(x, u) + d(u, y) = d(x, y) = D(G), D(G)− d(x, u) = D(G)− d(x, v). It implies 256

d(y, u) = d(y, v). 257

(⇐). Consider d(y, u) = d(y, v). By 258

d(y, u) + d(u, x) = d(x, y) = D(G), D(G)− d(y, u) = D(G)− d(y, v). It implies 259

d(x, u) = d(x, v). 260

Proposition 5.3. The set contains two antipodal vertices, isn’t 261

fuzzy(neutrosophic)-metric set in any given fixed-edge even fuzzy(neutrosophic) cycle. 262

Proof. Let x and y be two given antipodal vertices in any given even 263

fuzzy(neutrosophic) cycle. By Proposition (5.1), d(x, u) 6= d(x, v) if and only if 264

d(y, u) 6= d(y, v). It implies that if x fuzzy(neutrosophic)-resolves a couple of vertices, 265

then y fuzzy(neutrosophic)-resolves them, too. Thus either x is in 266

fuzzy(neutrosophic)-metric set or y is. It induces the set contains two antipodal vertices, 267

isn’t fuzzy(neutrosophic)-metric set in any given even fuzzy(neutrosophic) cycle. 268

Proposition 5.4. Consider two antipodal vertices x and y in any given fixed-edge even 269

fuzzy(neutrosophic) cycle. x fuzzy(neutrosophic)-resolves a given couple of vertices, z 270

and z′, if and only if y does. 271

Proof. (⇒). x fuzzy(neutrosophic)-resolves a given couple of vertices, z and z′, then 272

d(x, z) 6= d(x, z′). By Proposition (5.1), d(x, z) 6= d(x, z′) if and only if d(y, z) 6= d(y, z′). 273

Thus y fuzzy(neutrosophic)-resolves a given couple of vertices z and z′. 274

(⇐). y fuzzy(neutrosophic)-resolves a given couple of vertices, z and z′, then 275

d(y, z) 6= d(y, z′). By Proposition (5.1), d(y, z) 6= d(y, z′) if and only if d(x, z) 6= d(x, z′). 276

Thus x fuzzy(neutrosophic)-resolves a given couple of vertices z and z′. 277

Proposition 5.5. There are two antipodal vertices aren’t fuzzy(neutrosophic)-resolved 278

by other two antipodal vertices in any given fixed-edge even fuzzy(neutrosophic) cycle. 279

Proof. Suppose x and y are a couple of vertices. It implies d(x, y) = D(G). Consider u 280

and v are another couple of vertices such that d(x, u) = D(G)
2 . It implies d(y, u) = D(G)

2 . 281

Thus d(x, u) = d(y, u). Therefore, u doesn’t fuzzy(neutrosophic)-resolve a given couple 282

of vertices x and y. By D(G) = d(u, v) = d(u, x) + d(x, v) = D(G)
2 + d(x, v), 283

d(x, v) = D(G)
2 . It implies d(y, v) = D(G)

2 . Thus d(x, v) = d(y, v). Therefore, v doesn’t 284

fuzzy(neutrosophic)-resolve a given couple of vertices x and y. 285

Proposition 5.6. For any two antipodal vertices in any given fixed-edge even 286

fuzzy(neutrosophic) cycle, there are only two antipodal vertices don’t 287

fuzzy(neutrosophic)-resolve them 288
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Proof. Suppose x and y are a couple of vertices such that they’re antipodal vertices. 289

Let u be a vertex such that d(x, u) = D(G)
2 . It implies d(y, u) = D(G)

2 . Thus 290

d(x, u) = d(y, u). Therefore, u doesn’t fuzzy(neutrosophic)-resolve a given couple of 291

vertices x and y. Let v be a antipodal vertex for u such that u and v are antipodal 292

vertices. Thus v d(x, v) = D(G)
2 . It implies d(y, v) = D(G)

2 . Therefore, v doesn’t 293

fuzzy(neutrosophic)-resolve a given couple of vertices x and y. If u is a vertex such that 294

d(x, u) 6= D(G)
2 and v is a vertex such that u and v are antipodal vertices. Thus 295

d(x, v) 6= D(G)
2 It induces either d(x, u) 6= d(y, u) or d(x, v) 6= d(y, v). It means either u 296

fuzzy(neutrosophic)-resolves a given couple of vertices x and y or v 297

fuzzy(neutrosophic)-resolves a given couple of vertices x and y. 298

Proposition 5.7. In any given fixed-edge even fuzzy(neutrosophic) cycle, for any 299

vertex, there’s only one vertex such that they’re antipodal vertices. 300

Proof. If d(x, y) = D(G), then x and y are antipodal vertices. 301

Proposition 5.8. Let G be a fixed-edge even fuzzy(neutrosophic) cycle. Then every 302

couple of vertices are fuzzy(neutrosophic)-resolving set if and only if they aren’t 303

antipodal vertices. 304

Proof. If x and y are antipodal vertices, then they don’t fuzzy(neutrosophic)-resolve a 305

given couple of vertices u and v such that they’re antipodal vertices and d(x, u) = D(G)
2 . 306

Since d(x, u) = d(x, v) = d(y, u) = d(y, v) = D(G)
2 . 307

Corollary 5.9. Let G be a fixed-edge even fuzzy(neutrosophic) cycle. Then 308

fuzzy(neutrosophic)-metric number is two. 309

Proof. A set contains one vertex x isn’t fuzzy(neutrosophic)-resolving set. Since it 310

doesn’t fuzzy(neutrosophic)-resolve a given couple of vertices u and v such that 311

d(x, u) = d(x, v) = 1. Thus fuzzy(neutrosophic)-metric number ≥ 2. By Proposition 312

(5.8), every couple of vertices such that they aren’t antipodal vertices, are 313

fuzzy(neutrosophic)-resolving set. Therefore, fuzzy(neutrosophic)-metric number is 314

2. 315

Corollary 5.10. Let G be a fixed-edge even fuzzy(neutrosophic) cycle. Then 316

fuzzy(neutrosophic)-metric set contains couple of vertices such that they aren’t antipodal 317

vertices. 318

Proof. By Corollary (5.9), fuzzy(neutrosophic)-metric number is two. By Proposition 319

(5.8), every couple of vertices such that they aren’t antipodal vertices, are 320

fuzzy(neutrosophic)-resolving set. Therefore, fuzzy(neutrosophic)-metric set contains 321

couple of vertices such that they aren’t antipodal vertices. 322

Corollary 5.11. Let G be a family of fixed-edge odd fuzzy(neutrosophic) cycles with 323

fuzzy(neutrosophic) common vertex set. Then simultaneously fuzzy(neutrosophic)-metric 324

set contains couple of vertices such that they aren’t antipodal vertices and 325

fuzzy(neutrosophic)-metric number is two. 326

5.2 Odd Fuzzy(Neutrosophic) Cycle 327

Proposition 5.12. In any given fixed-edge odd fuzzy(neutrosophic) cycle, for any 328

vertex, there’s no vertex such that they’re antipodal vertices. 329

Proof. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. if x is a given vertex. Then 330

there are two vertices u and v such that d(x, u) = d(x, v) = D(G). It implies they aren’t 331

antipodal vertices. 332
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Proposition 5.13. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then every 333

couple of vertices are fuzzy(neutrosophic)-resolving set. 334

Proof. Let l and l′ be couple of vertices. Thus, by Proposition (5.12), l and l′ aren’t 335

antipodal vertices. It implies for every given couple of vertices fi and fj , we get either 336

d(l, fi) 6= d(l, fj) or d(l′, fi) 6= d(l′, fj). Therefore, fi and fj are 337

fuzzy(neutrosophic)-resolved by either l or l′. It induces the set {l, l′} is 338

fuzzy(neutrosophic)-resolving set. 339

Proposition 5.14. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then 340

fuzzy(neutrosophic)-metric number is two. 341

Proof. Let l and l′ be couple of vertices. Thus, by Proposition (5.12), l and l′ aren’t 342

antipodal vertices. It implies for every given couple of vertices fi and fj , we get either 343

d(l, fi) 6= d(l, fj) or d(l′, fi) 6= d(l′, fj). Therefore, fi and fj are 344

fuzzy(neutrosophic)-resolved by either l or l′. It induces the set {l, l′} is 345

fuzzy(neutrosophic)-resolving set. 346

Corollary 5.15. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then 347

fuzzy(neutrosophic)-metric set contains couple of vertices. 348

Proof. By Proposition (5.14), fuzzy(neutrosophic)-metric number is two. By 349

Proposition (5.13), every couple of vertices are fuzzy(neutrosophic)-resolving set. 350

Therefore, fuzzy(neutrosophic)-metric set contains couple of vertices. 351

Corollary 5.16. Let G be a family of fixed-edge odd fuzzy(neutrosophic) cycles with 352

fuzzy(neutrosophic) common vertex set. Then simultaneously fuzzy(neutrosophic)-metric 353

set contains couple of vertices and fuzzy(neutrosophic)-metric number is two. 354

6 Extended Results 355

Proposition 6.1. If we use fixed-vertex strong fuzzy(neutrosophic) cycles instead of 356

fixed-edge fuzzy(neutrosophic) cycles, then all results of Section (5) hold. 357

Proof. Let G be a fixed-vertex strong fuzzy(neutrosophic) cycles. By G is 358

fuzzy(neutrosophic) strong and it’s fixed-vertex, G is fixed-edge fuzzy(neutrosophic). 359

Proposition 6.2. Let G be a fixed-vertex strong fuzzy(neutrosophic) path. Then an 360

1-set contains leaf, is fuzzy(neutrosophic)-resolving set. An 1-set contains leaf, is 361

fuzzy(neutrosophic)-metric set. Fuzzy(neutrosophic)-metric number is one. 362

Fuzzy(neutrosophic)-metric dimension is σ(m) where m is a given vertex. 363

Corollary 6.3. Let G be a family of fuzzy(neutrosophic) paths with common vertex set 364

such that they’ve a common leaf. Then simultaneously fuzzy(neutrosophic)-metric 365

number is 1, simultaneously fuzzy(neutrosophic)-metric dimension is σ(m) where m is a 366

given vertex. 1-set contains common leaf, is simultaneously fuzzy(neutrosophic)-metric 367

set for G. 368

Proposition 6.4. Let G be a fixed-vertex strong fuzzy(neutrosophic) path. Then an 369

2-set contains every couple of vertices, is fuzzy(neutrosophic)-resolving set. An 2-set 370

contains every couple of vertices,, is fuzzy(neutrosophic)-metric set. 371

Fuzzy(neutrosophic)-metric number is two. Fuzzy(neutrosophic)-metric dimension is 372

2σ(m) where m is a given vertex. 373
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Corollary 6.5. Let G be a family of fuzzy(neutrosophic) paths with common vertex set 374

such that they’ve no common leaf. Then an 2-set is simultaneously 375

fuzzy(neutrosophic)-resolving set, simultaneously fuzzy(neutrosophic)-metric number is 376

2, simultaneously fuzzy(neutrosophic)-metric dimension is 2σ(m) where m is given 377

vertices. Every 2-set is simultaneously fuzzy(neutrosophic)-metric set for G. 378

Proposition 6.6. Let G be a fixed-edge fuzzy(neutrosophic) t-partite. Then every set 379

contains couple of vertices in different parts, is fuzzy(neutrosophic)-resolving set. 380

Corollary 6.7. Let G be a fixed-vertex strong fuzzy(neutrosophic) t-partite. Then 381

every (n− 2)-set excludes two vertices from different parts, is 382

fuzzy(neutrosophic)-resolving set. Every (n− 2)-set excludes two vertices from different 383

parts, is fuzzy(neutrosophic)-metric set. Fuzzy(neutrosophic)-metric number is n− 2. 384

Fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is a given vertex. 385

Corollary 6.8. Let G be a fixed-vertex strong fuzzy(neutrosophic) bipartite. Then 386

every (n− 2)-set excludes two vertices from different parts, is 387

fuzzy(neutrosophic)-resolving set. Every (n− 2)-set excludes two vertices from different 388

parts, is fuzzy(neutrosophic)-metric set. Fuzzy(neutrosophic)-metric number is n− 2. 389

Fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is a given vertex. 390

Corollary 6.9. Let G be a fixed-vertex strong fuzzy(neutrosophic) star. Then every 391

(n− 2)-set excludes center and a given vertex, is fuzzy(neutrosophic)-resolving set. An 392

(n− 2)-set excludes center and a given vertex, is fuzzy(neutrosophic)-metric set. 393

Fuzzy(neutrosophic)-metric number is (n− 2). Fuzzy(neutrosophic)-metric dimension is 394

(n− 2)σ(m) where m is a given vertex. 395

Corollary 6.10. Let G be a fixed-vertex strong fuzzy(neutrosophic) wheel. Then every 396

(n− 2)-set excludes center and a given vertex, is fuzzy(neutrosophic)-resolving set. 397

Every (n− 2)-set excludes center and a given vertex, is fuzzy(neutrosophic)-metric set. 398

Fuzzy(neutrosophic)-metric number is n− 2. Fuzzy(neutrosophic)-metric dimension is 399

(n− 2)σ(m) where m is a given vertex. 400

Corollary 6.11. Let G be a family of fixed-vertex strong fuzzy(neutrosophic) t-partite 401

with common vertex set. Then simultaneously fuzzy(neutrosophic)-metric number is 402

n− 2, simultaneously fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) Every 403

(n− 2)-set excludes two vertices from different parts, is simultaneously 404

fuzzy(neutrosophic)-resolving set for G. There’s an (n− 2)-set which is simultaneously 405

fuzzy(neutrosophic)-metric set for G. 406

Corollary 6.12. Let G be a family of fixed-vertex strong fuzzy(neutrosophic) bipartite 407

with common vertex set. Then simultaneously fuzzy(neutrosophic)-metric number is 408

n− 2, simultaneously fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) Every 409

(n− 2)-set excludes two vertices from different parts, is simultaneously 410

fuzzy(neutrosophic)-resolving set for G. There’s an (n− 2)-set which is simultaneously 411

fuzzy(neutrosophic)-metric set for G. 412

Corollary 6.13. Let G be a family of fixed-vertex strong fuzzy(neutrosophic) star with 413

common vertex set. Then simultaneously fuzzy(neutrosophic)-metric number is n− 2, 414

simultaneously fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) Every (n− 2)-set 415

excludes center and a given vertex, is simultaneously fuzzy(neutrosophic)-resolving set 416

for G. There’s an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric set for 417

G. 418

Corollary 6.14. Let G be a family of fixed-vertex strong fuzzy(neutrosophic) wheel with 419

common vertex set. Then simultaneously fuzzy(neutrosophic)-metric number is n− 2, 420
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simultaneously fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) Every (n− 2)-set 421

excludes center and a given vertex, is simultaneously fuzzy(neutrosophic)-resolving set 422

for G. There’s an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric set for 423

G. 424
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