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Abstract: Classical methods for inverse problems are mainly based on regularization theory. In1

particular those which are based on optimization of a criterion with two parts: a data-model matching2

and a regularization term. Different choices for these two terms and great number of optimization3

algorithms have been proposed. When these two terms are distance or divergence measures, they4

can have a Bayesian Maximum A Posteriori (MAP) interpretation where these two terms correspond,5

respectively, to the likelihood and prior probability models.6

The Bayesian approach gives more flexibility in choosing these terms, and in particular, the prior7

term via hierarchical models and hidden variables. However, the Bayesian computations can become8

very heavy computationally. The Machine Learning (ML) methods such as classification, clustering,9

segmentation and regression, based on Neural Networks (NN) and in particular Convolutional NN10

and Deep NN, Physics-Informed Neural Networks, etc. can become helpful to obtain approximate,11

but good quality and practical solutions to inverse problems.12

In this tutorial, particular examples of image denoising, image restoration and Computed13

Tomography (CT) image reconstruction will illustrate this cooperation between ML and Inversion.14

Keywords: Inverse problems; Regularization; Bayesian inference; Machine Learning; Artificial15

Intelligence; Gauss-Markov-Potts; Variational Bayesian Approach (VBA); Physics Informed ML16

1. Introduction17

Inverse problems arise in almost any scientific and engineering application. In fact, whenever18

we want to infer a quantity which is not directly measured. Noting the unknown quantity f and19

the measurement data g, we may have a mathematical relation between them: g = H( f ) where f20

can be a 1D function (signal), 2D function (Image), 3D or more (e.g. video, hyperspectral images,21

etc. ). H is a mathematical model, called forward operator and g can also be 1D, 2D, 3D or more22

function. In practice, we may only have discrete values of it available and for this reason the inverse23

problem which is inferring f from this limited data is an ill-posed problem. When discretized, we may24

write the relations between them as g = H( f ) + ε where g contains all the data, f all the discretized25

representation of the unknown quantity and H a multidimensional operator connecting them. Finally,26

ε represents all the errors of discretisation and measurement uncertainties.27

Handling inverse problems, even in the discretized version linear model g = H f + ε is not easy,28

at least for two reasons: one is the ill-conditioning of the matrix H and its great dimensions; second is29

accounting for the errors.30
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Classical methods for inverse problems are mainly based on regularization theory. In particular31

those which are based on optimization of a criterion with two parts: a data-model matching32

part ∆1(g, H f ) and a regularization term ∆2( f , f 0) with a balancing term between them: J( f ) =33

∆1(g, H f ) + λ∆2( f , f 0) where ∆1 and ∆2 are two distances (L2, L1, etc.) or divergence measure such34

as Kullback-Leibler (KL) or any other divergence. f 0 can be equal to zero or any other prior default35

solution. Different choices for these two terms and great number of optimization algorithms have been36

proposed with success in very diversified domains and applications [1–5].37

Bayesian inference based methods also had great success for handling inverse problems,38

in particular, when the data are noisy, uncertain, some missing and some outliers and where there39

is a need to account and to quantify uncertainties. In fact, when the two terms of the regularization40

methods are distance or divergence measures, they can have a Bayesian Maximum A Posteriori41

(MAP) interpretation where these two terms correspond, respectively, to the likelihood and prior42

probability models. Indeed, the Bayesian approach gives more flexibility in choosing these terms, and43

in particular, the prior term via hierarchical models and hidden variables [6–9] However, the Bayesian44

computations can become very heavy computationally. The Machine Learning (ML) methods such45

as classification, clustering, segmentation and regression, based on Neural Networks (NN) and in46

particular Convolutional NN and Deep NN, Physics-Informed Neural Networks, etc. can become47

helpful to obtain approximate, but good quality and practical solutions to inverse problems [10–13].48

However, even if in many domains of Machine Learning such as classification and clustering these49

methods have shown success, their use in real scientific problems are limited. The main reasons are50

twofold: First, the users of these tools can not explain the reasons when they are successful and when51

they are not. The second is that, in general, these tools can not quantify the remaining uncertainties.52

Model based and Bayesian inference approach have been very successful in linear inverse53

problems. However, adjusting the hyper parameters is complex and the cost of the computation54

is high. The Convolutional Neural Networks (CNN) and Deep Learning (DL) tools can be useful55

for pushing farther these limits. At the other side, the Model based methods can be helpful for the56

selection of the structure of CNN and DL which are crucial in ML success. In this tutorial paper, first57

an overview and a survey of the aforementioned methods are presented and the possible interactions58

between them are explored [14,15].59

The rest of the paper is organized as follows: First a survey of inverse problems examples,60

analytical inversion methods, Generalized inversion and regularization methods and finally the61

Bayesian inference methods, is presented. Then, a discussion on the process and final objectives of62

imaging systems, for example in health survey systems, going from the data acquisition to image63

reconstruction, its segmentation, feature extraction and finally its interpretation and usage is presented64

to prepare the more advanced part of this tutorial. For example, the Bayesian joint reconstruction65

and segmentation using Gauss-Markov-Potts prior modelling [16–19]. In the third part, first an66

introduction to Machine Learning (ML) tools and process and basic notions and notations on Neural67

Networks (NN) is given. The last part is related to the relations between all these methods via forward68

modeling, identification, learning and inversion. These relations are shown via a few simple examples69

and then we discuss about the fully learned and Physics informed partially learned ML methods for70

inverse problems.71

After mentioning some successful case studies in which the ML tools have been successful72

[20–24], [25–30], [31–35], we arrive at the main conclusions of this paper and the future of the possible73

interactions between Model based and Machine Learning tools. We conclude by mentioning the Open74

problems and challenges in both classical, model based and the ML tool.75

2. Inverse problems example76

Inverse problems arise almost every where in science and engineering, every where we want to77

infer on an unknown quantity f which is not accessible (observable) directly. We have only access to78

another observable quantity g which is related to it via a linear or non linear relation H [36–38].79
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As you could see, I am going to use a color code: red for unknown quantities and blue for80

observed or assumed known quantities. The Forward operator linking the two quantities is noted81

H. In general the forward operator is well-posed, but the inverse problem is ill-posed. This means82

that either the classical inverse operator does not exist (existence), or we can define many generalized83

inverse operators, so many solutions to the problem can be defined (uniqueness), or even if we can84

define an inverse operator, it may be unstable (stability) [39].85

Let us mention a few examples of common inverse problems here.86

2.1. Image restoration87

Any photographic system (camera, microscope or telescope) has limited field of view and limited
resolution. If we note by r f (x, y) the original image and by the bg(x, y) the observed image and if we
assume a linear and space invariant operator between them, then the forward relation can be written
as a convolution operator:

g(x′, y′) =
∫

f (x, y)h(x′ − x, y′ − y)dx dy (1)

where h(x, y) represents the point spread function (psf) of the imaging system.88

Many examples can be given [40,41]. In Figure 1, two synthetic examples are shown.89

blurred and noisy g(x′, y′) ⇐= original image f (x, y)
Forward

g

Data g(x′, y′) =⇒ Unknown f (x, y)
g Inverse f

Figure 1. Forward and inverse problems in image restoration. Forward operation is a convolution and
the inverse operation is called deconvolution.

2.2. X ray Computed Tomography90

In X-ray Computed Tomography (CT), the relation between the data and the object can be modeled
via the Radon Transform:

g(r, φ) =
∫

f (x, y)δ(r− x cos φ− y sin φ)dx dy (2)

where g(r, φ) represents the line integrals over the lines of angles φ of the object function f (x, y).91

Forward operation is called projection and the inversion process is called image reconstruction. In92

Figure 2, one synthetic examples is shown.93

2.3. Acoustical imaging94

Acoustic source localization in acoustical imaging can also be considered as an inverse problems,95

where the positions of acoustical sources have to estimated from the signal received by the microphone96

arrays. Each microphone receives the sum of the delayed sources sounds [42].97

In Figure 3, one synthetic examples is shown to explain the main idea.98
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line integrals g(r, φ) ⇐= attenuation distribution f (x, y)
Forward

Data g(r, φ) =⇒ Unknown f (x, y)
g Inverse f

Figure 2. Forward and Inverse problems in Computed Tomography. The horizontal axis on the left is r,
the vertical is φ and the values of g(r, φ) are presented as the gray levels. On the right the object section
f (x, y) is presented. Forward operation is called projection and the inversion process is called image
reconstruction.

Array of microphones ⇐= acoustic sources
Forward

Data =⇒ Unknown
g Inverse f

Figure 3. Forward and inverse problems in acoustical imaging. Each microphone receives the sum
of the delayed sources sounds. The inverse problem is to estimate the sources distribution from the
received signals by the microphones array.

2.4. Microwave imaging for Breast cancer detection99

In microwave imaging, the body is illuminated by microwaves. As the elecrical properties100

(conductivity and permeability) of the healthy and tumor tissues are different, their corresponding101

induced sources are different. These differences can be measured via the electrodes outside of the102

breast. The inverse problem, in this case, consists in estimation these induced sources or even directly103

the distribution of the conductivity and permeability inside the breast. Looking to such images, the104

tumor area can be visualized [43,44].105

2.5. Brain imaging106

In Brain imaging, the electrical activity of the neurons inside the brain brain are propagated and107

can be measured at the surface of the sculpt via the electrodes fixed on it. These signals are called108

Electroencephalography (EEG). It is also possible to measure the magnetic field created by this activity.109

This time the signals are called (MEG). In both cases, the inversion process consists in estimating the110

distribution of the brain activity from the measured signals.111
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Many other imaging systems to see inside the human body or inside any industrial object in Non112

destructive testing (NDT) applications exist. Here, a few of them have been illustrated. We can just113

mention a few more: Magnetic resonance imaging (MRI), Ultrasound imaging such as echography,114

Positron emission tomography (PET), Single emission computed tomography (SPECT), Electrical115

impedence tomography, Eddy current tomography [45].116

3. Classification of Inverse problems methods117

Inverse problems methods can be classified in the following categories:118

• Analytical inversion methods119

• Generalized inversion approach120

• Regularisation methods121

• Bayesian inference methods122

In the first category, the main idea is to recognize the forward operator as one of the well known123

mathematical invertible operator and thus to use the appropriate inversion operator. Typical examples124

are Fourier Transform (FT) and Radon Transform (RT). In the second category, the notion of Generalized125

inversion is used. The corresponding methods are either based on Singular value decomposition (SVD)126

or the iterative projection based algorithms. The regularization methods are mainly based on the127

optimization of a criterion, often made in two parts: Data-model adequation and the regularization128

with a regularization parameter. Finally the Bayesian inference approach, which I consider to be the129

most general and complete has all the necessary tools to go beyond the regularization methods.130

4. Analytical Methods131

Figure 4 shows the main idea behind the analytical methods via two classical cases of image132

deconvolution and X ray image reconstruction. In the first case, as the forward model is a Fourier133

Transform (FT), the operation consists in going to the Fourier domain, doing Inverse Filtering and134

coming back. In the second case, the forward model is Radon transform (RT). Using the relation135

between FT and RT (Fourier slice theorem), the analytical inversion process becomes: i) for each angle136

φ, compute the 1D FT of bgφ(r) = bg(r, φ), ii) relate it to the 2D FT of f (x, y) via the Fourier slice137

theorem and interpolate to obtain the full 2D FT of f (x, y); and iii) Compute 2D IFT to obtain f (x, y)138

[46,47].139

g(x, y) −→ 2D FT −→ Inverse Filter −→ 2D IFT −→ f (x, y)

g(r, φ) −→ 1D FT for all φ −→ 2D FT interpolation −→ 2D 2DFT −→ f (x, y)

Figure 4. Transform based analytical methods. Two examples are given: Image deconvolution by
inverse filtering and image reconstruction in CT by using the relation between RT and FT.

5. Generalized inversion approach140

In this approach, the main idea is based on the fact that the forward operator is in general a
singular one. This means there are many possible solutions to the inverse problem. In this approach
there are mainly two categories of methods. The first are based on Singular values decomposition
(SVD). The second is based on optimization of a criterion such as the Least Squares (LS). In both, the
main idea is to define a set of possible solutions, called Generalized inverse solutions:

{ f † : H f † = g} (3)
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or pseudo solutions:
{ f † : ‖H f † − g‖2 < ε} (4)

Then, between those possible solutions, one tries to define a criterion, such as the minimum norm, to
choose a solution. For the linear inverse problems, the corresponding solutions are given by

f † = [H ′H]−1H ′g = H†g or f † = H ′[H ′H]−1g = H†g (5)

In great dimensional problems, even if we have these analytical expression, in practice, the solutions
are computed by using iterative optimization algorithms, for example to optimize the LS criterion
J( f ) = ‖H f − g‖2 by a gradient based algorithm:

f (k+1) = f (k) + αH ′(g − H f (k)) (6)

with a stopping criteria or just after some fixed number of iterations. We will see in the next sections141

how this can lead to a Deep Learning NN structure.142

6. Model Based and Regularization Approach143

The model based methods are related to the notions of forward model and inverse problems144

approach. Figure 5 shows the main idea:145

Physical Model of some
unknown quantity

f

=⇒
g = H( f )

Prediction of
measurement of sensors

g

Forward problem

Estimate of
that unknown quantity

f̂

⇐=
f̂ = H†g

f̂ = arg min f
{
‖g −H( f )‖2 + λR( f )

} Real gathered data
via measurement sensors

g

Inverse problem

Figure 5. Model based methods: Forward and inverse problems. The solution of the inverse problem
is defined either by the generalized inversion or by a regularization method.

Given the forward modelH and the source f , the prediction of the data g can be done, either in a
deterministic way: g = H( f ) or via a probabilistic model: p(g| f ,H) as we will see in the next section.
In the same way, given the forward modelH and the data g, the estimation of the unknown source f
can be done either via a deterministic method or probabilistic one. One of the deterministic method is
the Generalized inversion: f = H†(g). A more general method is the regularization:

f̂ = arg min
f
{J( f )} with J( f ) = ‖g −H( f )‖2 + λR( f ). (7)

As we will see later, the only probabilistic method which can be efficiently used for the inverse146

problems is the Bayesian approach.147

6.1. Regularization Methods148

Let consider the discretized linear inverse problem: g = H f + ε, and the regularization criterion

J( f ) =
1
2
‖g − H f‖2

2 + λR( f ). (8)
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The first main issue in such regularization method is the choice of the regularizer. The most common
examples are:

R( f ) =

{
‖ f‖2

2, ‖ f‖β
β, ‖D f‖2

2, ‖D f‖β
β, ∑

j
φ([D f ]j)

}
, 1 ≤ β ≤ 2 (9)

The second main issue in regularization is the the choice of appropriate optimization algorithm. This,149

mainly depends on the type of the criterion, we have:150

• R( f ) quadratic: Gradient based, Conjugate Gradient algorithms are appropriate.151

• R( f ) non quadratic, but convex and differentiable: Here too the Gradient based and Conjugate152

Gradient (CG) methods can be used, but there are also great number of convex criterion153

optimization algorithms.154

• R( f ) convex but non-differentiable: Here, the notion of sub-gradient is used.155

Specific cases are:156

• L2 or quadratic: J( f ) = 1
2‖g − H f‖2

2 + λ‖D f‖2
2.157

In this case we have an analytic solution: f̂ = (H ′H + λD′D)−1H ′g. However, in practice158

this analytic solution is not usable in high dimensional problems. In general, as the gradient159

∇J( f ) = −H ′(g − H f ) + 2λD′D f can be evaluated analytically, gradient based algorithms160

are used.161

• L1 (TV): convex but not differentiable at zero: J( f ) = 1
2‖g − H f‖2

2 + λ‖D f‖1.162

The algorithms in this case use the notions of Fenchel conjugate, Dual problem, sub gradient and163

proximal operator [11,48–50]164

• Variable splitting and Augmented Lagrangian

( f , ẑ) = arg min
f ,z

{
1
2
‖g − H f‖2

2 + λ‖z‖1 + q‖z‖2
2

}
s.t. z = D f (10)

A great number of optimization algorithms have been proposed: ADMM, ISTA, FISTA, etc. [1,5,165

51].166

Main limitations of deterministic regularization methods are:167

• Limited choice of the regularization term. Mainly, we have: a) Smoothness (Tikhonov), b) Sparsity,168

Piecewise continuous (Total Variation).169

• Determination of the regularization parameter. Even if there are some classical methods such as170

L-Curve and Cross validation, there are still controversial discussions about this.171

• Quantification of the uncertainties: This is the main limitation of the deterministic methods,172

in particular in medical and biological applications where this point is important.173

The best possible solution to push further all these limits is the Bayesian approach which has:174

(a) Many possibilities to choose prior models, (b) possibility of the estimation of the hyper-parameters,175

and most important (c) accounting for the uncertainties.176

7. Bayesian Inference Methods177

7.1. Basic idea178

The simple case of the Bayes rule is:

p( f |g,H) =
p(g| f ,H) p( f |H)

p(g|H)
where p(g|H) =

∫∫
p(g| f ,H) p( f |H)d f (11)
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where H is a model, p(g| f ,H) is the likelihood of f in the data through the model, p( f |H) is the179

prior knowledge about the unknown quantity f and p( f |g,H) called the posterior is the result of the180

combination of the likelihood and prior. The denominator p(g|H), called the evidence, is the overall181

likelihood of the model in the data g.182

When there are some hyper parameters, for example the parameters of the likelihood and those
of the prior law, which have also to be estimated, we have:

p( f , θ|g,H) =
p(g| f ,θ,H) p( f |θ,H) p(θ|H)

p(g|H)
where p(g|H) =

∫∫
p(g| f , θ,H) p( f |θ,H)dθ d f (12)

This is called the joint posterior law of all the unknowns. From that joint posterior distribution, we
may also obtain the marginals:

p( f |g,H) =
∫∫

p( f , θ|g,H)d f and p(θ|g,H) =
∫∫

p( f , θ|g,H)d f (13)

7.2. Gaussian priors case183

To be more specific, let consider the case of linear inverse problems g = H f + ε,. Then, assuming
Gaussian noise, we have:

p(g| f ) = N (g|H f , vε I) ∝ exp
[
−1
2vε
‖g − H f‖2

2

]
(14)

Assuming also a Gaussian prior:

p( f ) ∝ exp

[
−1
2v f
‖ f‖2

2

]
or exp

[
−1
2v f
‖D f‖2

2

]
, (15)

it is easy to see that the posterior is also Gaussian and the MAP and Posterior Mean (PM) estimates
become the same and can be computed as the minimizer of : J( f ) = ‖g − H f‖2

2 + λR( f ):

p( f |g) ∝ exp
[
−1
2vε

J( f )
]
→ f̂ MAP = arg max

f
{p( f |g)} = arg min

f
{J( f )} (16)

In summary, we have:

{
p(g| f ) = N (g|H f , vε I)
p( f ) = N ( f |0, v f I)

→


p( f |g) = N ( f | f̂ , Σ̂)

f̂ = [H ′H + λI]−1H ′g
Σ̂ = vε[H ′H + λI]−1, λ = vε

v f

(17)

This case is also summarized in (Figure 6).184

v f vε

f

g
H

p(g| f , vε) = N (g|H f , vε I)

p( f |v f ) = N ( f |0, v f I)

p( f |g, v f , vε) = N ( f | f̂ , Σ̂)

Figure 6. Bayesian inference scheme in linear systems and Gaussian priors. The posterior is also
Gaussian and all the computations can be done analytically.
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7.3. Gaussian priors with unknown parameters185

For the case where the hyper parameters vε and v f are unknown (Unsupervised case), we can
derive the following:


p(g| f , vε) = N (g|H f , vε I)
p( f |v f ) = N ( f |0, v f I)
p(vε) = IG(v f |αε0 , βε0)

p(v f ) = IG(v f |α f0 , β f0)

→



p( f |g, vε, v f ) = N ( f | f̂ , Σ̂)

f̂ = [H ′H + λ̂I]−1H ′g
Σ̂ = v̂ε[H ′H + λ̂I]−1, λ̂ = v̂ε

v̂ f

p(vε|g, f ) = IG(vε|α̃ε, β̃ε)

p(v f |g, f ) = IG(v f |α̃ f , β̃ f )

α̃ε, β̃ε, α̃ f , β̃ f

(18)

where all the details and in particular the expressions for α̃ε, β̃ε, α̃ f , β̃ f can be found in [19].186

This case is also summarized in Figure 7.187

α f , β f αε, βε

v f vε

f

g

p(vε) = IG(vε|αε, βε)p(v f ) = IG(v f |α f , β f )

p(g| f , vε) = N (g|H f , vε I)

p( f |v f ) = N ( f |0, v f I)

p( f , v f , vε|g) ∝ N (g|H f , vε I)N ( f |0, v f I)IG(vε|αε, βε)IG(v f |α f , β f )

Figure 7. Bayesian inference scheme in linear systems and Gaussian priors. The posterior is also
Gaussian and all the computations can be done analytically.

The joint posterior can be written as:

p( f , vε, vξ |g) ∝ exp
[
−J( f , vε, vξ)

]
(19)

From this expression, we have different expansion possibilities:188

• JMAP: Alternate optimization with respect to f , vε, v f :

J( f , vε, v f ) =
1

2vε
‖g − H f‖2

2 +
1

2v f
‖ f‖2

2 + (αε0 + 1) ln vε +
βε0

vε
+ (α f0 + 1) ln v f +

β f0

v f
(20)

• Gibbs sampling MCMC:

f ∼ p( f , vε, v f |g)→ vε ∼ p(vε|g, f )→ v f ∼ p(v f |g, f ) (21)

• Variational Bayesian Approximation: Approximate p( f , vε, v f |g) by a separable one q( f , vε, v f ) =189

q1( f )q2(vε)q3(v f ) minimizing KL(q|p) [19,52–55].190

8. Imaging inside the Body: From Data acquisition to Decision191

To introduce the link between the different model based methods and the Machine Learning tools,192

let consider the case of medical imaging, from the acquisition to the decision steps:193

• Data acquisition :

Object f → CT scan, MRI, TEP, US,Microwave imaging → Data g
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• Image Reconstruction by analytical methods:

Data g → Reconstruction → Image f̂

• Post Processing (Segmentation, Contour detection, selection of Region of interest):

Image f̂ → Segmentation → ẑ

• Understanding and Decision:194

Image f̂
Segmentation ẑ

→ Interpretation
Decision

→ Tumor or
Not Tumor

195

8.1. Bayesian Joint reconstruction and segmentation196

The questions now are: Can we join any of these steps? Can we go directly from the image to the
decision? For the first one, the Bayesian approach can provide a solution:

Data g → Reconstruction
Segmentation

→ Reconstruction f̂
→ Segmentation ẑ

The main tool here is to introduce a hidden variable which can represent the segmentation.197

A solution is to introduce a classification hidden variable z with zj = {1, 2, · · · , K} which can be used198

to show the segmented image. See Figure 8199

f (r) z(r) c(r) = 1− δ(z(r)− z(r′))

γ

?
z����
?

αε0 , βε0

?
vε����
?

a0
m0, v0
α0, β0

?

����
θ

@
@R f����

�
��	

ε����
?

H

����
g



p( f (r)|z(r) = k, mk, vk) = N ( f (r)|mk, vk)

p( f |z, θ) = ∑k ∏r∈Rk
akN ( f (r)|mk, vk),

θ = {(ak, mk, vk), k = 1, · · · , K}
p(θ) = D(a|a0)N (a|m0, v0)IG(v|α0, β0)

Potts MRF:
p(z|γ) ∝ exp

[
γ ∑r ∑r′∈N (r) δ(z(r)− z(r′))

]
p( f , z, θ|g) ∝ p(g| f , vε) p( f |z, θ) p(z|γ)
MCMC: Gibbs Sampling

VBA: Alternate optimization.

Figure 8. Gauss-Markov-Potts prior model for Bayesian image reconstruction and segmentation.

Figures 8 and 9 summarize this scheme:200

A few comments for these relations:201

• p(g| f , z) does not depend on z, so it can be written as p(g| f ).202

• We may choose a Markovian Potts model for p(z) to obtain more compact homogeneous203

regions [18,19].204
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Real word
f , z

p( f |z) p(z) p(g| f )
Hierarchical Prior Likelihood

=⇒

Measurement
g

Estimation
f̂ , ẑ

⇐=
p( f , z|g)

Joint Posterior

Data
g

p( f , z|g) ∝ p(g| f , z) p( f |z) p(z) ∝ p(g| f ) p( f |z) p(z)

Figure 9. Bayesian approach with hierarchical prior model for joint reconstruction and segmentation.

• If we choose for p( f |z) a Gaussian law, then p( f , z|g) becomes a Gauss-Markov-Potts model [19].205

• We can use the joint posterior p( f , z|g) to infer on ( f , z): We may just do JMAP: ( f̂ , ẑ) =206

arg max {p( f , z|g)} or trying to access to the expected posterior values by using the Variational207

Bayesian Approximation (VBA) techniques [19,56], [57,58], [17,55,59].208

This scheme can be extended to consider the estimation of the hyper parameters too. Figure 10 shows209

this.210

Real word
f , z, θ

p( f |θ2, z) p(z|θ3) p(g| f , θ1)
Hierarchical Prior Likelihood

=⇒

Measurement
g

Estimation
f̂ , ẑ, θ

⇐=
p( f , z, θ|g)

Joint Posterior

Data
g

p( f , z, θ|g) ∝ p(g| f , θ1) p( f |z, θ2) p(z|θ3)

Figure 10. Advanced Bayesian approach for joint reconstruction, segmentation and parameter
estimation.

Again, here, we can use the joint posterior p( f , z, θ|g) to infer on all the unknowns [17].211

8.2. Advantages of the Bayesian Framework212

Between the main advantages of the Bayesian framework for inverse problems, we can mention213

the following:214

• Large flexibility of prior models prior215

– Smoothness (Gaussian, Gauss-Markov)216

– Direct Sparsity (Double Exp, Heavy-tailed distributions)217

– Sparsity in the Transform domain (Double Exp, Heavy-tailed distributions on the WT coefficients)218

– Piecewise continuous (DE or Student-t on the gradient)219

– Objects composed of only a few materials (Gauss-Markov-Potts), ...220

• Possibility of estimating hyper-parameters via JMAP or VBA221

• Natural ways to take account for uncertainties and quantify the remaining uncertainties.222

8.3. Imaging inside the Body: From data to decision: Classical or Machine Learning223

From previous sections, we see that we have many solutions to go from data to an image by224

inversion (image reconstruction), then extraction of interesting features (segmentation) and finally the225

interpretation and decision. The question that we may ask now is : Can we do all together in a more easily226

way? Machine Learning and Artificial Intelligence tools may propose such a solution. See Figure 11227

To be able to use ML to go from data to decision, there is a crucial need of a great and rich data228

base obtained by experts to let the machine to Learn from that great data base. In the next section, we229

go a little more in details to see the advantages, limitations and drawbacks.230
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Data g → Reconstruction → Image f̂ → Segmentation → ẑ→ Interpretation
Decision → Tumor or

Not Tumor

Data g → Machine Learning and
Artificial Intelligence → Tumor or

Not Tumor

Figure 11. Two approaches going from the data to decision: Top: from data, first reconstruct an
image via inversion, then post-process to obtain segmentation and do pattern recognition to extract
the contours of region of interest and finally make a decision. Bottom: Try to use Machine Learning
methods to go directly from data to decision.

9. Machine Learning Basic Idea231

The main idea in Machine Learning is first to learn from a great number of data-decisions:
(gi, di), i = 1, · · ·N:

Learning Data
(gi, di)

N
i=1

→ Learning step
The weights W of the NN are obtained

→W

and then, when a new case (Test g j) appears, it uses the learned weights W to give a decision dj232

Test case Data
g j

→ Testing step
The learned weights W are used

→ Tumor or
Not Tumor

dj

Figure 12 shows the main process of ML.233

Figure 12. Basic Machine Learning process: First Learn a model, then use it. Learning step needs a rich
enough data base which costs a lot. When the model is learned and tested, its use is easy, fast and its
cost is low.

Nowadays, ML methods and tools have made great progress in many different area of applications.234

No need here to go more in details. Just mentioning a few main components of all of them. Between235

the basic tasks we can mention:236

• Classification (supervised, semi-supervised);237

• Clustering (unsupervised classification when the data have not yet labels);238

• Regression (Continuos parameter estimation)239

Figure 13 shows these three main tasks.240
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Classification Clustering Regression

Figure 13. Basic Machine Learning Tasks: Classification, Clustering, Regression

Between the existing ML tools we may mention: Support Vector Machines (SVM), Decision-Tree241

learning (DT), Artificial Neural Networks (ANN), Bayesian Networks (BN), HMM and Random Forest242

(RF), Mixture Models (GMM, SMM, ...), KNN, Kmeans,...243

Also, the combination of Imaging technology and systems, Image processing, Computer vision,244

Machine Learning & Artificial intelligence has been the seed for many great progress in all area of245

health and our environment. The frontiers between these science and technology has become less246

precise as it is shown in Figure 14.247

Image technology

Image Processing

Computer Vision

Machine Learning

Artificial Intelligence

2D, 3D, Hyperspectral Acquisition, Compression, Transmission;
Representation, Compression, Segmentation;
Enhancement, Restoration;
Segmentation, Contour detection;
Segments, Edges, Patterns, RoIs, Features extraction;
Pattern matching and localization;
Objects detection and identification;
2D & 3D pattern recognition, Interpretation;
Classification, Clustering, Recognition, Decision making, ...

Figure 14. Frontiers between Image technology, Image processing (IP), Computer vision (CV), Machine
Learning (ML) and Artificial intelligence (AI).

Between the Machine learning tools using NN, the Convolutional NN (CNN), Recurrent NN248

(RNN), Deep Learning (DL), Generative Artificial Networks (GAN) had greater success in different249

area such as Speech Recognition, Computer Vision and specifically in Segmentation, Classification and250

Clustering and in Multi-modality and cross-domain information fusion.251

However, there are still many limitations: Lack of interpretability, reliability and uncertainty and252

No reasoning and explaining capabilities. To overcome, there still much to do with the Fundamentals.253

10. Neural Networks, Machine Learning and Inverse problems254

10.1. Neural Networks255

Let starts this section by a few words on Neurons and Neural Networks. The following figures256

show the basic idea. The following figure shows the main idea about a Neuron in a mathematical257

framework. Figure 15 shows this graphically.258

Figure 16 shows the components of a neuron and an example of a two layers NN.259
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Figure 15. A neuron and its mathematical representation.

Figure 16. A neuron with its inputs and outputs and and a Neural Network with two hidden layers
neurons.

10.2. NN and Learning260

A Neural Network can be used for Modeling a universal relation between its inputs X and261

outputs Y. This model can be written as Y = FW(X) where W represents the parameters of the model262

represented by the weights of network nodes relation. They are commonly used for:263

• Classification (Supervised learning)264

A set of data {(xi, yi)} with labels (classes) {ci} are given. The objective during the training is to265

use them for training the network which is then used for classifying a new income (xj, yj)266

• Clustering (Unsupervised learning)267

A set of data {(xi, yi)} are given. The objective is to cluster them in different classes {ci}.268

• Regression with all data (Supervised learning)269

A set of data {(xi, yi)} are given. The objective is to find a function F describing the relation270

between them: F(x, y) or explicitly y = F(x) for any x (extrapolation or interpolation).271

10.3. Modeling, identification and inversion272

Here, we make a connection between the classical and ML tools and show the links between273

Forward modeling and Inversion or Inference, Model identification and Learning or Training and274

Inversion and using the NN:275

• Forward modeling and Inversion

f → Forward
modeling

→ data g ‖ data g → Inversion
Inference

→ f̂

• Identification of a system and Training step of NN

f → Identification
W

→ data g ‖ {gi, f i} →
Learning
Training

→ Learned
Model W
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• Inversion (Inference) or Using the NN trained model

g → Inversion
Inference

→ f̂ ‖ g −→ Learned
Model W

−→ f̂

11. ML for inverse problems276

Now, to show the possibilities of the interaction between all these, nothing is better than a few277

examples.278

11.1. First example: A linear two layers feed-forward NN279

The first one is the case of linear inverse problems and quadratic regularization or the Bayesian
with Gaussian priors. The solution has an analytic expression and we have the following relations:

g = H f + ε −→ f̂ = (HHt + λDDt)−1Htg = BHtg

which can be presented schematically as

g → Ht → B → f̂ or equivalently g → Two layers linear CNN → f̂

As we can see, this induces directly a linear feed forward NN structure. In particular, if H280

represents a convolution operator, then Ht and HtH are too and probably the operator B can also be281

well approximated by a convolution and the whole inversion can be modelled by a CNN [60].282

11.2. Second example: Image denoising with a two layers CNN283

The second example is the denoising g = f + ε with L1 regularizer:

f̂ = Dẑ and ẑ = arg min
z

{J(z)} with J(z) = ‖g − Dz|+ λ‖z‖1 (22)

where D is a filter, i.e., a convolution operator. This can also be considered as the MAP estimator
with a double exponential prior. It is easy to show that the solution can be obtained by a convolution
followed by a thresholding [61–63].

f̂ = Dẑ and ẑ = S 1
λ
(Dtg)

where Sλ is a Thresholding operator.

g → Dt → Thresholding → ẑ→ D → f̂ or equivalently g → Two layers CNN → f̂

11.3. Third example: A Deep learning equivalence284

One of the classical iterative methods in linear inverse problems algorithm is based on just a
gradient based method to optimize J( f ) = ‖g − H f‖2:

f (k+1) = f (k) + αHt(g − H f (k)) = αHtg + (I − αHtH) f (k) (23)

where the solution of the problem is obtained recursively. Every body knows that, when the forward285

model operator H is singular or ill-conditioned, this iterative algorithm starts by converging, but it286

may diverge easily. One of the experimental method to obtain an acceptable approximate solution287

is just to stop the iterations after K iterations. This idea can be translated to a Deep Learning NN by288

using K layers. Each layer representing one iteration of the algorithm. See Figure 17 and 18289

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2021                   doi:10.20944/preprints202111.0092.v1

https://doi.org/10.20944/preprints202111.0092.v1


Version November 1, 2021 submitted to Entropy 16 of 23

g����
?

αHt

?

f (k) -(I − αHt H) -����
+ - f (k+1)

Figure 17. One bloc of iteration which can be considered as one layer of a NN

g����
?

αHt

?

-(I − αHt H)-����
+
?
--(I − αHtH)-����

+
?
- ... -(I − αHtH)-����

+
?
-f (1) f K)

Figure 18. A K layers DL NN equivalent to K iterations of the basic optimization algorithm.

This DL structure can easily be extended to a regularized criterion: J( f ) = 1
2‖g−H f‖2 +λ‖D f‖2,

where
f (k+1) = f (k) + α[Ht(g − H f (k))− λDtD] = αHtg + (I − αHtH − αλDtD) f (k) (24)

We just need to replace (I − αHtH) by (I − αHtH − αλDtD).290

This structure can also be extended to all the sparsity enforcing regularization terms such as `1291

and Total Variation (TV) using appropriate algorithms such as ISTA, FISTA, ADMM, etc. by replacing292

the update expression and by adding a NL operation much like the ordinary NNs. A simple example293

is given in the following subsection.294

11.4. Fourth example: `1 regularization and NN295

Let us to consider the linear inverse problem g = H f + ε with `1 regularization criterion:

J( f ) = ‖g − H f‖2
2 + λ‖ f‖1

and an iterative optimization algorithm, such as ISTA

f (k+1) = Prox`1

(
f (k), λ

) 4
= Sλα

(
αHtg + (I − αHtH) f (k)

)
where Sθ is a soft thresholding operator and α ≤ |eig(HtH)| is the Lipschitz constant of the normal296

operator. When H is a convolution operator, then:297

• (I − αHtH) f (k) can also be approximated by a convolution and thus considered as a filtering298

operator;299

• 1
α Htg can be considered as a bias term and is also a convolution operator; and300

• Sθ=λα is as nonlinear point wise operator. In particular when f is a positive quantity, this soft301

thresholding operator can be compared to ReLU activation function of NN.302

In all these three examples, we directly could obtain the structure of the NN from the Forward303

model and known parameters. However, in this approaches there are some difficulties which consist304

in the determination the structure of the NN. For example, in the first example, obtaining the structure305

of B depends on the regularization parameter λ. The same difficulty arise for determining the shape306

and the threshold level of the Thresholding bloc of the network in the second example. The same need307
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f (k)- (I − αHtH) -����
+ - �

�
- f (k+1)

?

αHt
?

g����

Figure 19. One block of a NN correspond to one iteration of `1 regularization

of the regularization parameter as well as many other hyper parameters are necessary to create the308

NN structure and weights. In practice, we can decide, for example on the number and structure of DL309

network, but as their corresponding weights depend on many unknown or difficult to fix parameters,310

ML may become of help. In the following we first consider the training part of a general ML method.311

Then, we will see how to include the physics based knowledge of the forward model in the structure312

of learning.313

12. ML general approach314

The ML approach can become helpfully if we could have a great number of data: inputs-outputs315

{( f , g)k, k = 1, 2, ..., K} examples. Thus, during the Training step, we can learn the coefficients of the316

NN and then use it for obtaining a new solution f̂ for a new data g.317

The main issue is the number of data input-output examples {( f , g)k, k = 1, 2, ..., K} we can have318

for the training step of the network.319

12.1. Fully learned method320

Let consider a one layer NN where the relation between its input gk and output f k is given by
f k = φ(W gk) where W is the weighting parameters of the NN and φ is the point wise non linearity
function of the output NN output layer. The estimation of W from the training data in the learning
step is done by an optimization algorithm which optimizes a Loss function L defined as

L =
K

∑
k=1

`k( f k, φ(W gk)) (25)

with
`k( f k, φ(W gk) = ‖ f k −φ(W gk)‖2 (26)

a quadratic distance or any other appropriate distance or divergence or a probabilistic one

`k( f k, φ(W gk) = E
{
‖ f k, φ(W gk)‖2

}
(27)

When, the NN is trained and we obtain the weights Ŵ , then we can use it easily when a new case321

(Test g j) appears, just by applying: f k = φ(Ŵ gk). These two steps of Training and Using (called also322

Testing) are illustrated in Figure 20323

Learning Data
(gk, f k)

K
k=1

→
Learning or Training

Ŵ = arg minW
{

∑K
k=1 ‖ f k −φ(W gk)|2)

} → Ŵ

Test case Data
g j

→ Using or Testing
f̂ j = φ(Ŵ g j)

→ f̂ j

Figure 20. Training (top) and Testing (bottom) steps in a ML approach

The scheme that we presented is general and can be extended to any multi-layer NN and DL.324

In fact, if we had a great number of data-ground truth examples {( f , g)k, k = 1, 2, ..., K} with K much325

more than the number of elements Wm,n of the weighting parameters W , then, we did not even have326
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any need for forward model H. This can be possible for very low dimensional problems [64–67]. But,327

in general, in practice we do not have enough data. So, some prior or regularizer is needed to obtain a328

usable solution. This can be just by adding a regularizer R(W) to the loss function 25 and 26, but we329

can also use the physics of the forward operator H.330

13. Physics based ML331

As mentioned above, in general, in practice, a rich enough and complete data set is not often332

available in particular for inverse problems. So, some prior or regularizer is needed to obtain a usable333

solution. Using a regularizer R(W) to the loss function 25 is good, but not enough. We have to use the334

physics of the forward operator H. This can be done in different ways.335

13.1. Decomposition of the NN structure to fixed and trainable parts336

The first easiest and understandable method consists in decomposing the structure of the network337

W in two parts: a fixed part and a learnable part. As the simplest example, we can consider the338

case of analytical expression of the quadratic regularization: f̂ = (HHt + λDDt)−1Htg = BHtg339

which suggests to have a two layers network with a fixed part structure Ht and a trainable one340

B = (HHt + λDDt)−1. See Figure 21.341

Learning Data
(gk, f k)

K
k=1

→ Fixed Physics based part
f̃ k = H ′gk

→ f̃ k →
Trainable part

B̂ = arg minB
{

∑K
k=1 ‖ f k −φ(B f̃ k)|2)

} → B̂

Test case Data
g j

→ Physics based part
f̃ j = H ′g j

→ f̃ j →
Trained part
f̂ j = φ(B̂ f̃ j)

→ f̂ j

Figure 21. Training (top) and Testing (bottom) steps in the first use of physics based ML approach

It is interesting to note that in X-ray Computed Tomography (CT) the forward operator H is called342

Projection, the adjoint operator H ′ is called Back-Projection (BP) and the B operator is assimilated to a343

2D filtering (convolution).344

13.2. Using Singular value decomposition of forward and backward operators345

Using the eigenvalues and eigenvectors of the pseudo or generalized inverse operators

H† = [H ′H]−1H ′ or H† = H ′[HH ′]−1 (28)

and Singular value decomposition (SVD) of the operators [H ′H] and [HH ′] give another possible
decomposition of the NN structure. Let us to note

HH ′ = U∆V ′ or equivalently H ′H = V∆U ′ (29)

where ∆ is a diagonal matrix containing the singular values, U and V containing the corresponding
eigenvectors. This can be used to decompose the W to four operators:

W = V ′∆UH ′ or W = H ′V∆U ′ (30)

where three of them can be fixed and only one ∆ can be trainable. It is interesting to know that when346

the forward operator H has a shift-invariant (convolution) property, then the operators U and V ′ will347

correspond, respectively, to the FT and IFT operators and the diagonal elements of Λ correspond to348

the FT of the impulse response of the convolution forward operator. So, we will have a fixed layer349

corresponding to H ′ which can be interpreted as a matched filtering, then a fixed FT layer which is a350
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feed-forward linear network, a trainable filtering part corresponding the diagonal elements of Λ and a351

forth fixed layer corresponding to IFT. See Figure 22.352

Data
g → Fixed Physics based

f̃ = H ′g
→ f̃ → Fixed Physics based

U ′ or FT →〉 Trainable part
Λ → Fixed Physics based

V or IFT → f̂

Figure 22. A four layers NN with three physics based fixed corresponding to H ′, U ′ or FT and V or
IFT layers and one trainable layer corresponding to Λ.

13.2.1. DL structure based on iterative inversion algorithm353

Using the iterative gradient based algorithm with fixed number of iterations for computing a GI354

or a regularized one as explained in previous section can be used to propose a DL structure with K355

layers, K being the number of iterations before stopping. Figure 23 shows this structure for a quadratic356

regularization which results to a linear NN and Figure 24 for the case of `1 regularization.357

f (k)- (I − αHtH) -����
+ - �

�
- f (k+1)

?

αHt
?

g����

f (k)- W (k) -����
+ - �

�
- f (k+1)

?

W0

?

g����

Figure 23. A K layers DL NN equivalent to K iterations of a basic gradient based optimization algorithm.
A quadratic regularization results to a linear NN while a `1 regularization results to a classical NN
with a nonlinear activation function. Left: supervised case. Right: unsupervised case. In both cases, all
the K layers have the same structure.

- W (1) -����
+ - �

�
-

?

W0

?

g����

- W (2) -����
+ - �

�
-

?

W0

?

g����

- W (K) -����
+ - �

�
-

?

W0

?

g����

...f̂
(1)

f̂
(K)

Figure 24. All the K layers of DL NN equivalent to K iterations of an iterative gradient based
optimization algorithm. The simplest solution is to choose
W0 = αH and W (k) = W = (I − αH ′H), k = 1, · · · , K.
A more robust, but more costly is to learn all the layers W (k) = (I − α(k)H ′H), k = 1, · · · , K.

14. Conclusions and Challenges358

Signal and image processing (SIP), imaging systems (IS), computer vision (CV), Machine learning359

(ML) and artificial intellegence (AI) have made great progress in the last forty years. The first category360

of the methods in signal and image was based on linear transformation followed by a thresholding or361

windowing and coming back. The second generation was model based: forward modeling and inverse362

problems approach. The main successful approach was based on regularization methods using a363

combined criterion. The third generation was model based but probabilistic and in particular using the364

Bayes rule, the so called Bayesian approach. Nowadays, ML, Neural Networks (NN), Convolutional365

NN (CNN) and Deep Learning (DL) methods have obtained great success in classification, clustering,366
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object detection, speech and face recognition, etc. But, they need great number of training data and367

lack still explanation and they may fail very easily. For inverse problems, they need still progress to368

do. In fact, using only data based NN without any specific structure coming from the forward mode369

(Physics) is just un illusion. However, the progress arrive via their interaction with the model based370

methods. In fact, the successful of CNN and DL methods greatly depends on the appropriate choice of371

the network structure. This choice can be guided by the model based methods. In this work, a few372

examples of such interactions are described. As we could see the main contribution of ML and NN373

tools can be on reducing the costs of inversion method when an appropriate model is trained. However,374

to obtain a good model, there is a need for sufficiently rich data and a good network structure obtained375

from the physics knowledge of the problem in hand. For inverse problems, when the forward models376

are non linear and complex, NN and DL may be of great help. However, we may still need to choose377

the structure of the NN via approximate forward model and approximate Bayesian inversion.378
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