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Abstract: Autonomous differential equations of fractional order and non-singular kernel are1

solved. While solutions can be obtained through numerical, graphical, or analytical solutions, we2

seek an implicit analytical solution.3
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1. Introduction7

Fractional calculus has resurfaced and gained momentum due to its potential in8

engineering systems, multidisciplinary fields, biology, medicine, and applied sciences.9

Its wide range of applications includes areas like linear anomalous diffusion equation10

and its characteristics [1], modeling biological phenomena, respiratory tissue, and drug11

diffusion [2], and recently the global impact of the corona virus (COVID-19)and epidemic12

models [3]. At the same time, fractional calculus has found its way to sensors, analog13

filters and digital filters [4].14

The autonomous ordinary differential equations

dy
dt

= F(y(t)) (1.1)

play a major role in Engineering, Physics, Biology, and other fields like economics and
medicine. The solution to (1.1), for the given initial condition y(t0) = y0, is

y(t) = y(t0) +
∫ t

t0

dξ

F(y(ξ))
.

The logistic differential equation y′(t) = y(t)(1 − y(t)) represents a special case of (1.1).
It’s an autonomous ordinary differential equation with a wide range of engineering
applications.With an initial condition y(0) = 1/2, the logistic differential equation yields
the solution

y(t) =
1

1 + e−t . (1.2)

Recent advancements in calculus have allowed for different presentations of the au-
tonomous equation (1.1). In particular, the fractional representations of the autonomous
differential equation, , see [5–7]. Contrary to the Riemann-Liouville fractional deriva-
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tive, the Cupato fractional derivative is more suitable to applied problems. The initial
conditions are properly defined. The Caputo fractional derivative is defined as

(CDα f )(t) =
1

Γ(n − α)

∫ t

0

f (n)(τ) dτ

(t − τ)α+1−n ,

where n − 1 < α ≤ n.15

In this paper, we proceed to study the following fractional version of the au-
tonomous differential equation (1.1):

(CFDαy)(t) = F(y(t)). (1.3)

where CFDα is the Caputo-Fabrizio fractional derivative. We provide an example of a16

differential fractional version of the exponential growth function. Our findings are an17

extension to the results found in [7].18

2. Preliminaries19

M. Caputo and M. Fabrizio presented a definition of fractional derivative with a
non singular kernel:
For a real smooth function f and for α ∈ [0, 1], the Caputo-Fabrizio fractional deriva-
tive [9] is given by

(CFDα f )(t) =

{
1

1−α

∫ t
0 e−

α
1−α (t−u) f ′(u)du, 0 ≤ α < 1;

f ′(t), α = 1.
(2.1)

According to this definition, the following are the Caputo-Fabrizio fractional deriva-20

tives for some elementary functions.21

Proposition 2.1. For f (t) = c, then (CFDα f )(t) = 0.22

Proposition 2.2. For f (t) = t, then (CFDα f )(t) = 1−e−
αt

1−α

α .23

Proposition 2.3. For f (t) = tr;ℜ(r) > −1, then

(CFDα f )(t) =
1

1 − a
e−

at
1−a (

a
1 − a

)−r−1γ(r + 1,
at

1 − a
).

Proposition 2.4. For f (t) = ebt, then (CFDα f )(t) = b(e
at

a−1 −ebt)
a(b−1)−b .24

The following proposition gives the Laplace transform of the Caputo-Fabrizio25

fractional derivative. The following proposition defines the "antiderivative" of the26

Caputo-Fabrizio fractional derivative.27

Proposition 2.5. Let CFDα be the Caputo-Fabrizio fractional derivative. Let g(t) = (CFDα f )(t),
then

f (t) = f (0) + (1 − α)g(t) +
∫ t

0
g(ξ)dξ.

Proof. Since g(t) = (CFDα f )(t), then

g(t) =
1

1 − α

∫ t

0
e−

α
1−α (t−u) f ′(u)du.

Therefore, ∫ t

0
e

αu
1−α f ′(u)du = (1 − α)e

αt
1−α g(t).
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Differentiate both sides to get that,

f ′(t) = (1 − α)g′(t) + αg(t).

Integrating both sides and using g(0) = 0 give the desired result.28

29

Proposition 2.6. Let CFDα be the Caputo-Fabrizio fractional derivative. The Laplace transform30

of (CFDα f )(t) is 1
α+s(1−α)

(sF(s)− f (0));ℜ(s) > α
α−1 , where F(s) is the Laplace transform of31

f (t).32

Proof. Using (2.1), g(t) = (CFDα f )(t) satisfies

(1 − α)e
αt

1−α g(t) =
∫ t

0
e

αu
1−α f ′(u)du. (2.2)

Differentiating both sides of (2.2) and simplify to get:

(1 − α)g′(t) + αg(t) = f ′(t). (2.3)

Taking Laplace transform for both sides implies:

(1 − α)sG(s) + αG(s) = sF(s)− f (0), (2.4)

where F(s) = Lt[ f (t)](s) and G(s) = Lt[g(t)](s).33

Now, solving (3.2) for G(s), the result follows.34

This result is read as

(CFDα f )(t) = L−1[
1

α + s(1 − α)
(sF(s)− f (0))],

where L−1 is the inverse Laplace transform.35

Example 2.7. In this example, we solve a fractional version of the exponential growth (decay)
differential equation y′ = ky. Consider the differential equation

(CFDαy)(t) = ky(t). (2.5)

To solve this equation, take the Laplace transform for both sides of this equation to get:

1
α + s(1 − α)

(sY(s)− y(0)) = kY(s).

Solving this equation for Y(s) implies that

Y(s) =
y(0)

((α − 1)k + 1)s − αk
.

Therefore, the solution of (2.5) is y(t) = Ce
αkt

1−(1−α)k .36

3. The solution of the autonomous fractional differential equation37

Theorem 3.1. The solution of the autonomous fractional differential equation

(CFDαy)(t) = F(y(t)) (3.1)
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is given implicitly as

∫ y(t)

y(t0)

du
F(u)

− (1 − α) ln
( F(y(t))

F(y(t0))

)
= α(t − t0). (3.2)

Proof. Let y(t) be a solution of (3.1). Then the definition (2.1) gives:

1
1 − α

e−
α

1−α t
∫ t

0
e

α
1−α uy′(u)du = F(y(t)). (3.3)

Equivalently, ∫ t

0
e

α
1−α uy′(u)du =

(
1 − α

)
e

α
1−α tF(y(t)). (3.4)

Differentiate both sides and simplify to get:

y′(t) =
(

1 − α
)

F′(y(t))y′(t) + αF(y(t)). (3.5)

Rearrange the terms as:

y′(t)
F(y(t))

−
(

1 − α
) F′(y(t)y′(t))

F(y(t))
= α. (3.6)

Integrate both sides from t0 to t to get:∫ t

t0

y′(u)
F(y(u))

du −
(

1 − α
) ∫ t

t0

F′(y(u)y′(u))
F(y(u))

du = α
∫ t

t0

1du. (3.7)

Use integration by substitution for the integrals in the left side to get the desired re-38

sult.39

Example 3.2. To solve (2.5), use (3.2) to get that

∫ y(t)

y(t0)

du
ku

− (1 − α) ln
( ky(t)

ky(t0)

)
= α(t − t0).

Therefore,
ln(y(t))− k(1 − α) ln y(t) = kαt + C.

Hence,
(1 − k(1 − α)) ln(y(t)) = kαt + C.

This implies the solution of (2.5) is

y(t) = Ce
kαt

1−k(1−α) .

It yields same result as in Example 2.7.40

Example 3.3. We construct the solution of the fractional logistic differential equation and plot
for different values of α

(CFDαy)(t) = y(t)(1 − y(t)). (3.8)

According to (3.2), the solution is implicitely given as

∫ y(t)

y(t0)

du
u(1 − u)

− (1 − α) ln
( y(t)(1 − y(t))

y(t0)(1 − y(t0))

)
= α(t − t0). (3.9)
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After simplifications, we will get:

yα(1 − y)α−2 = Ceαt,

where C is a constant which depends on α and the initial conditions t0 and y(t0). If we assume
that y(0) = 1/2 then the resluting solution is

yα(1 − y)α−2 = 41−αeαt.

The set of solutions, for different values of α, along with the solution of the logistic differnetial41

equation (1.2) are represented by the figure 1.42

Figure 1. solutions of logistic fractional differential equation (3.8) with α = 0.05, 0.5, 0.95, 1

The same solution of the logistic fractional differential equation was obtained previously43

in [8].44

Example 3.4. We construct a solution to the fractional autonomous differential equation

(CFDαy)(t) = 1 + y2(t). (3.10)

According to (3.2), the solution is implicitly given as

∫ y(t)

y(t0)

du
1 + u2 − (1 − α) ln

( 1 + y2(t)
1 + y2(t0))

)
= α(t − t0). (3.11)

After simplifications, we will get:

arctan(y)− (1 − α) ln(1 + y2) = αt + C.

If we assume that y(0) = 0 then the resulting solution is

arctan(y)− (1 − α)ln(1 + y2) = αt.
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The set of solutions, for different values of α, along with the solution of the differential equation45

y′ = 1 + y2 are represented by the figure 2.

Figure 2. solutions of the autonomous fractional differential equation (3.10) with α =

0.05, 0.5, 0.95, 1
46

4. Conclusion47

Using the Caputo-Fabrizio fractional derivative we have shown a solution can be48

obtained for different examples of the fractional autonomous differential equations. For49

given initial conditions, we presented sets of solutions for different values of between 050

and 1. We have arrived at the same solution as [8].51
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