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Abstract: The incorporation of unmanned aircraft terminal operations into the scope of Detect and
Avoid systems necessitates analysis of the safety performance of those systems—principally, an
assessment of how well those systems prevent loss of well clear from and collision with other air-
craft. This type of analysis has typically been conducted by Monte Carlo simulation with synthetic,
statistically representative encounters between aircraft drawn from an appropriate encounter
model. While existing encounter models include terminal airspace classes, none explicitly repre-
sents the structure expected while engaged in terminal operations, e.g., aircraft in a traffic pattern.
The work described herein is an initial model of such operations, scoped at this time specifically for
assessment of unmanned aircraft landings and encounters with other aircraft either landing or
taking off. The model shares the Bayesian network foundation of other MIT Lincoln Laboratory
encounter models but tailors those networks to address structured terminal operations, i.e., corre-
lations between trajectories and the airfield and each other. This initial model release is intended to
elicit feedback from the standards-writing community.
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1. Introduction

The continuing integration of uncrewed aircraft system (UAS) operations into the
National Airspace System (NAS) requires new or updated regulations, policies, and
technologies to maintain safety and enable efficient use of the airspace. One such tech-
nology is detect and avoid (DAA), which enables uncrewed aircraft to comply with ap-
plicable operating rules of Title 14 of the Code of Federal Regulations (14 CFR). These
rules include Part 91, §.3, .111, .113(b), .115, .123, and .181(b), which prescribe that aircraft
must remain well clear from and prevent a midair collision (MAC) with other aircraft.

DAA is part of a multi-layered airspace conflict management architecture and DAA
is often not employed until prior strategic mitigations have failed[1]. While there is a
singular standard for crewed aircraft collision avoidance, there are a variety of standards
for UAS DAA systems. DAA standards are primarily organized by size of the aircraft;
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expected operations by airspace class or altitude; and how prescriptive the standard is
written.

A foundational element to these standards is modeling and simulation activities to
design and evaluate the safety and suitability of a DAA system. Monte Carlo simulations
in particular enable surveillance systems and algorithms to be tested under an exhaustive
set of circumstances not possible through live flight testing. The simulations are often
validated through human-in-the-loop experiments and flight testing. For example, an
update to the standard prescribing a collision avoidance system for crewed aircraft was
validated in part using this approach][2].

1.1. Motivation

RTCA Special Committee (5C)-228 is developing performance standards for a vari-
ety of UAS technologies, with DAA standards being developed in multiple phases[3].
Phase one focused on enabling UAS transit operations in Class D and G airspaces when
flying to/from Class A airspace or special use airspace. This phase was based on guidance
from the U.S. UAS Executive Committee Science and Research Panel[4]; validated pri-
marily in simulation[5]; and published as the DAA Minimum Operating Performance
Standards (MOPS), DO-365 revision A[6]. Phase two included UAS expanded en route
operations with new types of sensors, along with take-off and landing operations in some
terminal airspaces. Phase two has been published as DO-365 revision B in 2021, and
example implementations include the DAIDALUS[7] and ACAS Xu DAA systems[8].
Phase three activities will initiate in 2021 and address more specialized UAS operations
that require more tailored performance or constrained guidance, such as operations in
Class B airspace or vertical takeoff and landing operations for advance air mobility
(AAM) use cases.

Across all RTCA SC-228 phases, the MIT Lincoln Laboratory (MIT LL) statistical
encounter models have been used to model aircraft behavior. These are trained on re-
al-world observations of individual aircraft or observations of encounters between two
aircraft. The majority of these models are uncorrelated[9]-[12], which assume that the
aircraft are not participating in the air traffic control system and their behavior is inde-
pendent of other aircraft. For encounters in the terminal environment, such as considered
by RTCA SC-228, a correlated encounter model was required that assumes that aircraft
behavior and the relatively geometry between aircraft was dependent upon an air traffic
service. While MIT LL previously developed[13] and updated[14] a correlated model, it
was designed to model encounters that occur away from airports in terminal airspaces, or
while one or both aircraft are merely passing through the terminal airspace. This previ-
ous model did not represent the standardized approach and departure routes that de-
scribe the permissible flight paths for large airports, or smaller airports employing a
standardized flight pattern to regulates flow into and out of the airport. In response, a
new correlated model that better represents the structure and encounter dynamics of the
terminal airspace was required to support RTCA SC-228 and the evaluation of DAA
systems.

1.2. Scope

The model development scope was directly informed by the terms of reference of
RTCA SC-228|3], specifically those associated with phase two activities for DAA MOPS
development. This standard was designed for UAS weighing greater than 55 pounds and
whose maximum dimensions are likely greater than 25 feet. Considered was geograph-
ically limited operations and operations within a terminal environment, which include:
Class D airspace, towered airfields within Class E airspace, nontowered airfields within
Class E airspace, non-towered airfields within Class G airspace, take-off and landing
operations in Class C, D, E, and G airspace, and off-airfield launch and recovery sites
within Class G airspace. To support RTCA SC-228, we assume UAS land via a straight-in
instrument approach or an analogous departure route.
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RTCA SC-228 defined the terminal environment as within 8 nautical miles laterally
and 3000 feet vertically of a runway. We adopted a slightly larger definition of 8 nautical
miles laterally and 5000 vertically of a runway. Within this environment, we defined an
encounter as when two aircraft are within 4 nautical miles laterally and 2000 feet verti-
cally of each other for at least one second. Aircraft must overlap in time for at least thirty
seconds too. Notably this volume is larger than the volume for many Class C and D air-
spaces; thus, the defined terminal environment may consist of multiple airspace classes
for a specific airport. For example, the terminal environment for a notional airport in
Class D airspace will consist of the Class D airspace within 2.5 nautical miles and up to
2500 feet AGL from the airport; along with the surrounding Class G airspace.

Out of scope use cases included very low level UAS operations exclusively below
500 feet AGL; high altitude Class E above A operations; and 14 CFR Part 135 cargo oper-
ations. Some of these out of scope concepts are being addressed through RTCA
SC-147[15] and ASTM F38[16]. These out of scope efforts leverage different MIT LL en-
counter models.

1.3. Objectives and Contributions

The primary objectives were to develop a statistical model that represents aircraft
behavior in the terminal environment and then sample this model to create an encounter
set to support RTCA SC-228 safety analyses. Since terminal airspaces can be traffic dense,
the developed model needed to be cognizant of the airspace structure that provides im-
plicit coordination and communicates intent amongst all the airspace users. Although
every airport is different and traffic patterns likewise vary, assessing encounters specific
to the traffic at one airport would not be sufficient to deem a DAA system safe for ter-
minal operations at all airports. Traffic patterns may be tailored to account for various
configurations of runways as well as external factors like surrounding terrain or other
natural or man-made features

Accordingly, the primary contribution was a set of Dynamic Bayesian models rep-
resentative of single runway airports in Class C, D, or E/G airspace and potentially rep-
resentative of Class B. These models characterized the interaction between two aircraft.
One aircraft must be either on a straight-in approach or straight-out departure while the
other can approach or depart without restrictions, along with simply transiting through
the airspace. Similar to other recently developed models[17], this terminal model con-
sidered the type of aircraft (e.g. fixed-wing, rotorcraft, etc.). Additionally, while trained
solely on observations of crewed aircraft, the model can be sampled such that the dy-
namics and behavior of one modeled aircraft is a surrogate for a large UAS. These models
were released as open source software in July 2021[18], with software to sample the
models released in October 2021[19].

The primary contribution was preceded by an initial prototype model (version 1.0)
narrowly scoped to aircraft on straight-in approach to a Class D single runway airport
encountering a second aircraft either landing or taking off; and a subsequent prototype
(version 2.0) that added Class E/G single runway airports, straight-out departures, and
transiting aircraft. A dataset of sampled encounters using the version 1.0 was publicly
released, but the Bayesian models for the two prototypes were not made publicly avail-
able. Only version 3.0 was released as open source software[18], [19]. None of the models,
as of October 2021, fully represent all airport or terminal environment use cases; and
development is ongoing.

A secondary contribution was an analysis of which data source to leverage for
model training, with specific consideration for spatial extent and transponder equipage.
Some of the software and data developed for this effort have been released under per-
missive open source licenses.

2. Materials and Methods
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This section overviews the training datasets; how aircraft intent was classified in the
terminal environment; how the models were trained; and rejection sampling approach
used when sampling the models to create encounters. Encounters consist of two aircraft,
with the first aircraft referred to as the ownship and the other aircraft referred to as the
intruder. For DAA evaluations, we assume ownship to be a UAS. Specifically, for evalu-
ations related to RTCA SC-228 DO-365B, we assumed the UAS to be operating under In-
strument Flight Rules (IFR); however, we enforce this when sampling, not when training,
the model. Many, not all, of our assumptions were derived from DO-365B. Important
assumptions for developing and training the model included:
¢ Anencounter is when ownship and intruder are within 4 nautical miles laterally and

2000 feet vertically of each other for at least one second over at least a thirty second

duration;

e  Ownship is on a straight-in takeoff or approach;

e Intruder aircraft may be landing, taking off, or transiting the area;

e Intruder aircraft may not be landing or taking off from a nearby airport;

e  Sampled trajectories are constrained to within 8 NM of the airfield and 5000 ft above
airfield elevation (minimum altitude is 200 ft above airport elevation); and

e  Sampled trajectories are a maximum of 300 seconds long.

The trained models align with the Bayesian network framework of other MIT LL en-
counter models[10] but are reformulated to account for the structured behavior aircraft
employ when landing or taking off. Like the existing radar-based en route correlated
encounter model[14], this terminal encounter model represents the relative geometry of
two aircraft. While the other correlated model defined relative geometry based on the
horizontal and vertical separation between aircraft, the geometry of this terminal en-
counter model was based on the relative geometry between each aircraft and the runway.

Notably, our approach also does not identify and model turning points, a concept
popularized by Gariel et al.[20]. Mahboubi and Kochenderfer[21] demonstrated that a
turning point model performs well on simulated data; due to its reliance on noisy head-
ing rates, it has difficulty with real-world data. Our approach also differs from Barrett[22]
et al. who used an unsupervised cluster algorithm to identify departure and approach
procedures and fit the clusters to a generative model based on intra-cluster covariance
matrices. Barrett[22] et al. was inspired by the clustering approach previous proposed by
Li et al.[23], [24]. Similar to these other efforts, we also do not leverage filed or amended
flight plans like Krozel[25] or Georgiou et al.[26]. Additionally, we did not consider air-
craft trajectories on the surface, such as Churchill and Bloem[27].

Instead, our approach clustered and classified tracks based on assumptions of air-
port design, approach and departure routes, and aviation heuristics, such as the 1 in 60
rule (one degree offset angle equates to one nautical mile displacement at 60 nautical
miles from a origin). Additionally, we did not employ unsupervised learning techniques
as we wanted to take advantage of known physical states during takeoff or landing op-
erations. Namely, aircraft taking-off or landing should have a low AGL altitude when
close to the runway and that aircraft transiting over the airport would do so at higher al-
titudes. Consequently, our approach was computationally efficient, enabling us to train a
model based on billions of observations. Furthermore, RTCA SC-228 and the immediate
users of the developed model, expressed a preference for the newly trained model to be
consistent with previous encounter models for improved usability, which resulted in
using a similar Bayesian framework. Specifically, our approach consists of the following:

1. Download and pre-process (i.e. interpolate, outlier detection etc.) training data

2. Coarsely spatially filter training data to terminal airspace
3. (lassify track intent (e.g. landing, taking-off, transiting) for training data within
terminal airspace
4. Given classified tracks, identify encounters between aircraft
Train model using identified encounters
6. Sample model to create representative encounters

o
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2.1. Training Data

Two sets of data were used to train two separate encounter models: 1) FAA collected
terminal radar track data over the period January through September 2015 at select air-
ports throughout the NAS and 2) 190+ days of data over the period January 2019 through
February 2020 from the OpenSky Network, a database consisting of ADS-B and Mode S
reports[28]. These two sources of data have different assumptions and surveilled differ-
ent types of aircraft. Training multiple models enabled us to assess the sensitivity of the
models to different biases, while mitigating some weakness for a given dataset. Biases
include the type of aircraft observed, the metadata associated with each surveilled track,
or surveillance error. Data near fixed-runway airports in Class C, D, E, and G airspaces
were in scope for version 3.0 of the model, while Appendix A lists the airports that were
in scope for version 2.0 of the model. As noted in Section 1.3, the focus of this paper is
version 3.0.

The terminal area radars data provided to MIT LL included standard aviation
transponders with Mode A, C, and S capabilities. The OpenSky Network surveils aircraft
only equipped with ADS-B, where ADS-B aircraft also generally support Mode C while
not all Mode C aircraft are also equipped with ADS-B. However, the terminal area radars
have a more limited spatial and temporal scope, whereas the OpenSky Network has
better theoretical surveillance coverage. Additionally, the OpenSky Network was freely
and easily available whereas the terminal area radar data was not.

2.1.1. OpenSky Network

Observations of crewed aircraft were sourced from the OpenSky Network[28], a
community network of ground-based sensors that observe aircraft equipped with Au-
tomatic Dependent Surveillance-Broadcast (ADS-B) Out. The OpenSky Network offers a
historical database using Cloudera Impala. It is a full database requiring terabytes of
storage. Impala is a distributed query engine and does not index structures for query
optimization. Queries can be formulated based on mean sea level (MSL) altitude, time,
latitude, longitude, and the ICAO 24-bit address. The raw observations are only in MSL
altitude and the OpenSky Network does not estimate the AGL altitude for any observa-
tions. Observations can be one second apart. In response, we developed and publicly re-
leased the software, em-download-opensky[29], to generate queries based on above
ground level altitude, location of airports, airspace class, and time zones. Using this
software, we generated 136,884 queries for 196 days across 695 bounding boxes across
Class B, C, and D airspace across the United States. Temporally, we queried for the first
14 days of each month from January 2019 through February 2020. This time window was
largely unaffected by the COVID-19 pandemic, as the Schengen Area travel ban didn’t
take effect until March 2020[30].

Prior to model training, the OpenSky Network data was (1) parsed and organized;
(2) archived; and (3) processed and interpolated into track segments[31]. Processing in-
cluded removing track segments with less than ten observations; calculating the above
ground level altitude was calculated; identifying airspace class; and estimating dynamic
rates (e.g. vertical rate) were calculated. Once processed, track segments were ready for
model training. For details on how this dataset was curated and processed, please see [32]
where this dataset is referred to as the aerodrome dataset.

The aerodromes dataset differed from the Mondays dataset, that was curated from
the OpenSky Network to train the recent uncorrelated encounter models [32]. The Mon-
days dataset was curated from OpenSky Networks from 104 Mondays spanning from
2018-02-05 to 2020-11-16; not all Mondays in this span were included. The software used
to query the OpenSky Network for the aerodromes dataset has been released as open
source software [29]. This dataset was not spatially limited to regions around airports but
had a more restrictive temporal scope of just Mondays. The COVID-19 pandemic was
also in scope for this dataset. The Mondays dataset was continued expanded upon after
model development, as of August 2021 the Mondays dataset now consists of Mondays
through 2021-08-02.
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2.1.2. Terminal Area Radars

Observations of crewed aircraft were sourced from raw secondary radar reports
from terminal radars (ASR-9) that participated in the TCAS RA Monitoring System
(TRAMS) from January through September 2015. Radars included the ASR-9 located at
MIT LL and radars associated with the following airports: KATL, KDEN, KDFW, KFLL,
KHPN, KJFK, KLAS, KLAX, KOAK, KORD, KPDX, KPHL, KSDF, KSEA, KSTL. The
specific radar identifiers were respectively: ATL, DEN, DFW, FLL, HPN, JFK, LAS, LAX,
LAXN, MOD, OAK, ORDA, PDX, PHL, PHX, SDF, SEA, STL. These radars support the
TCAS Operational Performance Assessment (TOPA) program that was established over a
decade ago[33]. While TOPA is ongoing program, the data made available to support
model development varied in quantity and temporal scope. For example, KDFW had
data from January through August while KOAK only from June through August.

These radar reports provide latitude, longitude and barometric altitude for tran-
sponder-equipped aircraft within the radar’s surveillance volume. All of these radars
were located within a Mode C veil, where aircraft, with few exemptions, are required to
be transponder-equipped. While these radars surveil standard aviation transponders, not
all surveillance information was made available to MIT LL. Specifically, the Mode S ad-
dress was not included in this dataset, preventing classification of aircraft type using
aircraft registries. This proximity to a large airport was a source of biases for this training
data, which we further discuss in Section 2.2.

2.1.3. Altitude and Airspace Class Characterization

To identify potential biases in the training data, we characterized the different da-
tasets, leveraging software and a methodology previously described in [34]. This char-
acterization was also important in assessing if the different training datasets were similar
or different and if there was a sufficient difference between datasets to warrant training a
model with each dataset. For each dataset, the altitude distributions given airspace class
was calculated using all latitude, longitude, and barometric altitude reports using the
workflow described in [31]. Unlike [34], we did not consider the number of seats onboard
the aircraft, as we lacked the metadata in the terminal area radar dataset required for that
characterization. Figure 1 illustrates the distribution for the OpenSky Network aero-
dromes dataset, Figure 2 for the terminal area radar dataset, and for comparison, Figure 3
is the distribution of the “Mondays” dataset used for the recent uncorrelated encounter
models. Note that the limit of the y-axis is greater in Figure 1 than Figures 2-3, due to the
terminal area radar dataset being significantly larger. Table 1 reports that each dataset
had billions of interpolated observations of aircraft at altitudes below 5,000 feet AGL,
based on barometric altitude reports, and prior to any spatial filtering performed as part
of model training. To calculate Table 1 and Figures 1-3, the computations were paralleled
across 1007 xeon-e5 processes on the LLSC TX-Green. Computations required an hour or
less for all datasets, if computed serially without parallelization, an estimated 16.1 (aer-
odromes), 31.7 (Mondays), 980.7 (terminal area radars) hours would had been required.

Table 1. Data points below 5,000 feet AGL for each dataset, organized by airspace class.

Airspace Mondays Aerodromes Terminal Area Radars
Class B 251,671,725 505,322,452 1,026,076,842
Class C 79,874,269 108,969,262 126,863,443
Class D 57,887,219 81,304,346 214,349,345
Other 667,255,320 696,368,992 2,282,086,215
Total 1,056,688,533 1,391,965,052 3,649,375,845

First, note that in Figures 1-3 the Class C and D distributions taper off at 2500 and
4000 feet AGL, the nominal ceilings for the respective airspace classes. Regardless of
airspace class, the majority of observations were above 500 feet AGL. The peak in all
figures between 500 and 1000 feet was hypothesized to aircraft trying to maintain an al-
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titude below the nominal Class E floor of 700 feet AGL or the Class G ceiling of 1,200 feet
AGL. The decrease in observations at 3000 feet AGL and upward can be partly attributed
to behavior induced by 14 CFR § 91.159 that regulates the hemispheric flight rules and
when VER must navigate using MSL altitude. This was especially evident in the terminal
area radars dataset. We also hypothesized the peak between 1500-2000 feet AGL could be
attributed to general aviation cross-country operations, but no analysis was conducted to
make a definitive conclusion.

Next, by comparing the figures, we observed that the terminal area radar dataset
(Figure 1) had the most observations, below 1000 feet, in Class B and other airspaces,
followed by the aerodromes dataset (Figure 2) and lastly by the “Mondays” dataset
(Figure 3). As the terminal area radars were largely co-located at Class B airports, this
was expected. The aerodromes dataset had the most observations for the Class C and D
airspaces. At higher altitudes, there was less of a difference between the terminal area
radar and aerodrome datasets for Class B but the terminal area radars consistently had
significantly more observations for the other airspace classes.
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Figure 1. Altitude and airspace distributions below 5,000 feet AGL for the terminal area radars
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odromes dataset.
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Figure 3. Altitude and airspace distributions below 5,000 feet AGL for the Mondays dataset used to
train the OpenSky Network-based uncorrelated encounter models.

Since the model encompassed the airspace within 8 nautical miles of the airport,
identified encounters can cross multiple airspaces, as noted in Section 1.2. Generally be-
low 1200 feet AGL, Class C and D airspaces extend 2.5-5 nautical miles from a controlled
runway. Given our encounter range criteria of 4 nautical miles, an encounter could occur
when one aircraft was in Class D airspace and another in other airspace. An aircraft could
also transition between airspaces over the course of the 30 second encounter duration.
Thus, the significantly more observations of aircraft in other airspace at low altitudes was
advantageous for the terminal radar dataset. The terminal area radar dataset had the
most observations for a given location, if lower altitude surveillance was available, but
this dataset was also the most restricted spatially and temporally.

Furthermore, when comparing the two OpenSky Network-based datasets, the per-
cent difference between datasets for Class E and G (other) airspace was only 4.27%, yet it
was 30% or greater for the other airspace classes. These percent differences demonstrate
the advantage of curating a dataset, based on areas of interest, by querying the OpenSky
Network. While the “Mondays” dataset has theoretically the best spatial coverage, as all
data observed in the United States is in scope for that dataset, the OpenSky Network does
not have universal low altitude coverage across the United States. The OpenSky Network
has significant coverage gaps in rural or low population areas. However, these regions
also typically have a low density of crewed aircraft traffic and these coverages gaps are
not a significant impediment for model training. Accordingly, the wider temporal scope
of the aerodromes dataset and surveillance of more types of transponders with the ter-
minal area radar dataset results in these datasets having more observations than the
“Mondays” dataset. The “Mondays” dataset also included 2018, when fewer aircraft
were equipped with ADS-B and fewer sensors were participating in the OpenSky Net-
work, and 2020 when aviation activity sharply decreased due to the COVID-19 pandem-
ic[30].

2.2. Initial Spatial Filtering

All track segments at least 30 seconds in duration (assuming one second updates),
within a 10 NM radius of an airport of interest, and up to 4,000 ft altitude relative to the
airport surface were identified as within the vicinity of an airport. The FAA airport open
dataset! was used to define the latitude and longitude coordinates of the airports. Addi-
tionally, observations with transponders squawking specific special use transponder

! https://ais-faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093d3b5_0
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codes, such as those reserved for law enforcement aircraft, were also filtered out. Refer to
Appendix B for a complete list of these codes. Tracks that did meet all these conditions
were filtered out and not considered in the subsequent processing. Parallelized across
1008 xeon-eb5 processes on the LLSC TX-Green with a block task distribution, 782 seconds
was required to identify 19,293,916 OpenSky ADS-B tracks and 10,045 seconds for
36,701,193 terminal radar Mode C tracks.

The initial spatial filtering was primarily executed to reduce the computational
complexity and requirements for other processing steps. The quantity of data reported in
Table 1 is not a good indicator of where encounters were identified for model training.

2.2.1. Data per National Plan of Integrated Airport Systems

Table 2 reports the data identified as spatial filtering for select airports. For each
airport, we also noted if the airport was designated as a primary airport in the 2015-2019
FAA National Plan of Integrated Airports Systems (NPIAS)[35]. Primary airports are
grouped into categories of large (L), medium (M), small (S), and nonhub (N). Large hubs
are those airports that each account for at least 1% total U.S. passenger enplanements;
while nonhub primaries enplane less than 0.05% of all commercial passenger enplane-
ments but have more than 10,000 annual enplanements. Medium and small hubs are
grouped between large and nonhub primaries.

Table 2. Total track points after initial spatial filtering for select airports.

FAAID Class Hub OpenSky Network Terminal Area Radar

BOS B L 10,881,938 13,270,494
ABE C N 1,816,670 2,285,593
BUR C M 16,789,410 29,748,003
FLL C L 10,342,130 50,856,891
SMF C M 6,876,029 0
XNA C S 1,466,794 0
ACK D N 21,934 0
ADS D - 20,954,315 68,151,579
BED D N 2,740,664 6,220,588
EYW D S 0 0
MVY D N 820,654 0
RNT D - 21,892,547 46,653,226
TTD D - 5,360,106 14,106,809
7N7 E/G - 7,968,295 18,523,179
17N E/G - 2,252,995 13,006,900
19N E/G - 5,818,462 18,784,328
DDH E/G - 0 0

As hubs increased in enplanements, we generally identified more potential tracks;
although there was not a strong correlation. The quantity of data was dependent more on
the surveillance source, which likely has some correlation with NPIAS categorization. For
example, Addision Airport (ADS), a nonprimary national airport, had one of the largest
datasets. The size of the ADS dataset however was due to ADS located in the vicinity of
Dallas Love Field (DAL) and Dallas Fort Worth International (DFW) which are medium
and large hubs, respectively. Additionally, more data was available for BED and ABE,
nonhub primaries, than XNA or EYW, small hubs. These four airports all had less data
identified than Oldsman Township Airport (7N7), a non-towered single runway airport
approximately 10 nautical miles from Philadelphia International. However, the majority
of the tracks identified near 7N7 failed to satisfy the runway or encounter criteria de-
scribed in subsequent sections.

2.2.2. Joint Distributions of Relative Distance and Altitude
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In addition to Tables 1 and 2, we calculated the joint distributions of the relative
distance and altitude between the airport and all the nearby data. The joint distributions
are visualized as contours. While the initial filtering includes altitudes up to 4000 feet
relative to the airport, the contours are illustrated with relative altitude up to 2500 feet for
readability and to promote discussion about the lower altitudes, which are of greater in-
terest. By reviewing the joint distributions for specific airports, we can assess the poten-
tial local geospatial biases of the different datasets and visualize the surveillance cover-
age of each dataset.

For example, Figure 4 illustrates the relative distance distributions for Renton Mu-
nicipal (RNT), a single runway Class D airport about 4 nautical miles northeast of Seat-
tle-Tacoma International (SEA). These support colloquial statements such as “5% of the
identified traffic based on the OpenSky Network near RNT was within 2 nautical miles
and 1000 feet or less of the airport,” or “50% of the identified traffic based on the terminal
area radar dataset was at least 6 nautical miles and 500 feet above RNT.”

Terminal Area Radars

Relative Altitude (feet)

Distance from RNT (nm)

Figure 4. Fraction of aircraft positions relative to RNT.

RNT exemplifies the effect of nearby airports on identified tracks. Because the
OpenSky Network is a distributed network of sensors, there was potentially less of an
observation bias towards one specific location. This bias was exemplified by the gradual
gradient around 4 nautical miles from the OpenSky Network-based tracks and the steep
gradient from the terminal area radars dataset. The terminal radar located at SEA was
expectantly observing very low altitude traffic operating to and from SEA. Section 2.3
will discuss how the nearby airport traffic will be filtered out prior to model training.

However not all low altitude traffic can be attributed to nearby airports. Of the more
than 21 million points from the OpenSky Network dataset near RNT, 921,958 or about
4%, were associated with rotorcraft. Similarly, about 4% and 6% of OpenSky Net-
work-based data were rotorcraft for FLL and ADS, yet 12% and 15% were rotorcraft for
BED and SMF. The tendency for rotorcraft to operate at lower altitudes has also been
observed with the uncorrelated encounter models [12].


https://doi.org/10.20944/preprints202111.0051.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2021 do0i:10.20944/preprints202111.0051.v1

Rotorcraft

Relative Altitude (feet)

Distance from RNT (nm)

Figure 5. Fraction of aircraft positions based on the OpenSky Network relative to RNT, organized
by aircraft type.

Relative location to the terminal radars was a source of bias, and sensor location was
also a bias with the OpenSky Network. ACK and MVY are the Class D airports respec-
tively for Nantucket and Martha’s Vineyards, islands off the southern coast of Massa-
chusetts. They are more than 50 nautical miles from the nearest terminal area radar and
about 26 nautical miles apart from each other. Due to the distance away from the terminal
radars, it was expected that neither airport would have any processed tracks from that
dataset. As offshore islands, they are a good example of some the advantages and dis-
advantages of crowdsourced data. Foremost, particularly with MVY, the OpenSky Net-
work provided hundreds of flight hours for ADS-B equipped aircraft for a location where
the other dataset had no coverage. However, these crowdsourced sensors often have
limited range, which is exemplified by comparing the distance contours for ACK and
MVY. These contours suggested that a sensor was located on Martha’s Vineyard, as MVY
had relatively good low altitude coverage but that all observations over Nantucket were
also from this MVY-based sensor. There was substantially less data near ACK and a bias
towards higher altitudes.

OpenSky Network

2500

2000

1500

1000

500

Relative Altitude (feet)

0 2 4 6 8
Distance from MVY (nm)

Figure 6. Fraction of aircraft positions relative to MVY. No data was available in the terminal area
radars dataset.
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Figure 7. Fraction of aircraft positions relative to ACK.

Similar to MVY and ACK, the importance of sensor location is also illustrated by the
distributions for Lehigh Valley International (ABE), a Class C airport in Pennsylvania
about 40 nautical miles north of Philadelphia, PA and 60 nautical miles west of Newark,
NJ. Table 2 reports that the terminal radar dataset had at least 450,000 observations,
within 10 nautical miles and 4000 feet of ABE, more than the OpenSky Network-based
tracks. However, the following figure illustrates that nearly all the terminal radar-based
tracks are at least 1,5000 feet above ABE, while the OpenSky Network had significantly
better low altitude coverage of the region. This would ultimately result in no encounters
identified for model training with the terminal radar dataset while encounters were
identified using the OpenSky Network-based dataset. Similar trends were exhibited with
Hollywood Burbank (BUR), a Class C airport serving northern greater Las Angeles.

2500 OpenSky Network Terminal Area Radars

2000
1500
1000

500

Relative Altitude (feet)

0 2 4 6 8 0 2 4 6 8

Distance from ABE (nm)

Figure 8. Fraction of aircraft positions relative to ABE.
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Figure 9. Fraction of aircraft positions relative to BUR.

All of the discussed biases can be observed when comparing Laurence G. Hanscom
Field (BED) to Boston Logan International (BOS). BOS is located about one nautical mile
from the densely populated downtown of Boston while BED is located in the less popu-
lated suburbs about 13 nautical miles away from BOS. This region is unique in that the
terminal area radar, MOD, is located at BED, a Class D airport, and not BOS, the nearest
Class B airport. The proceeding discussion suggests that BOS should benefit from a
greater nearby population density for the OpenSky Network-based data and that BED
should have a greater percentage of tracks below 500 feet for the terminal radar data due
to the location of the radar. This hypothesis was supported by percent differences be-
tween BOS and BED, with BOS having 119.5% more observations for the Open Sky
Network-based data and 72.3% more using terminal radar dataset. The percent difference
indicates that a greater percentage of data was gained from switching the target airport of
BED in the suburbs to BOS in the city. Additionally, note that for distances greater than
2.5 nautical miles with the terminal area radars, the 5% contour relative to BED is below
500 feet in Figure 10 but above 500 feet in Figure 11 relative to BOS. This indicates a
greater percentage of low altitude traffic below 500 feet observed by the terminal area
radars were observed closer to the radar’s location at BED than away from the radar at
BOS.

Terminal Area Radars
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Figure 10. Fraction of aircraft positions relative to BED.
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Figure 11. Fraction of aircraft positions relative to BOS.

Figures 4-11 all indicate that aircraft are rarely observed within 2 nautical miles and
no more than 500 feet above airports. While the contours are dependent upon the sur-
veillance performance of the OpenSky Network or terminal area radars (with perfor-
mance likely better at higher altitudes), the general shape and conclusions drawn from
the different airports are similar. The surveillance performance differs for each of the
airports but drawing similar conclusions for each airport lends confidence to the analysis.
Figures 1-3 also indicated that aircraft operate largely above 500 feet AGL. Assuming the
contours are representative, the associated aircraft behavior aligns with many FAA reg-
ulations, such as 14 CFR § 91.119 - Minimum safe altitudes or 14 CFR § 91.129 - Opera-
tions in Class D airspace. Namely, crewed aircraft rarely should operate low and close to
airports and that the majority of the time aircraft are not operating in the terminal envi-
ronment. The contours could be used to estimate a quantitative bound on how often air-
craft operate near airports, with an upper bound potentially of 5%.

Given our objective to identify encounters where aircraft are operating low and
close to an airport, this analysis helps characterizes a challenge of meeting this objective.
For model training, we’re inherently seeking to identify rare events, encounter geome-
tries that could led to a collision within a few minutes, given another rare event, a loss of
separation between aircraft[36]. Accordingly, the subsequent processing steps must
maximize the utility of these rare events while having a high confidence that such events
transpired.

2.3. Track Intent and Runway Identification

After the initial filtering, we identified the intent for the tracks and which runway a
track was interacting with when taking off or landing. Tracks are considered inde-
pendently. For this processing step, there were six different intents identified. A transit-
ing intent was indicative of a track not interacting with any runways and assumed to be
transiting through the airspace. General aviation cross country flights or en route aircraft
are example behaviors we sought to identify as transiting. There were two landing in-
tents, straight and other, where straight corresponds to a straight-in landing and other is
any other type of landing, such as 45 degrees, downwind, or crosswind. Similarly, there
were two takeoff intents, one for straight-out and another for all other types. Finally,
there was an unknown intent if a track was not assigned any of the other intents.

2.3.1. Clustering using Airport Boundaries
First, we identified if a track was operating near the airport of interest or near any
airports within 10 nautical miles of the airport of interest. For each airport, an airport

bounding polygon was created based on assumed airport design and traffic pattern.
Assumptions based on airport design and runway approach and departure standards
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were based on the FAA Advisory Circular (AC) 150/5300-13A, Airport Design, which
could differ than the approach surfaces defined in 14 CFR § 77. For generating the airport
boundary, an approach and departure corridor was generated for each runway. These
corridors were trapezoids (isosceles trapezium)?, extending 2.5 nautical miles out from
the runway, and 800 and 3800 feet along the narrowest and widest parallel sides. Also,
the traffic pattern was estimated by a circle centered on the airport with a radius of 1.2
nautical miles. The FAA airplane flying handbook[37] states that aircraft are well clear
approximately two miles away from the pattern, so the radius needed to be smaller
than that. Traffic patterns are also typically defined based on the end of a runway, not the
center of an airport as assumed here, but the estimated approach surfaces mitigated
consequences from the simple estimation of the traffic pattern. To generate the airport
boundary, a boundary was created around all the estimated approach surfaces and traffic
pattern. Boundaries were not enforced to be convex.

Figure 12 illustrates the boundaries, trapezoids, traffic circles, and runways for ABE
and XLL; and Figure 13 illustrates these for EWR, JRB, and LD]J. ABE and XLL each have
two crossing runways in a nominal configuration. The trapezoids do not overlap and
extend out in different headings. The widest parallel side of the trapezoids form part of
the airport boundaries. The runway and trapezoid orientations result in the traffic pat-
tern not influencing the shape of the airport boundary. Conversely, the traffic circles
were important for the LD] and JRB airport boundaries in Figure 13. JRB is the Down-
town Manhattan heliport without a fixed runway. Without runway information, no
trapezoids were calculated and the airport boundary was just the traffic circle. LDJ has a
single runway, so an airport boundary for LDJ] based only on the trapezoids would be
narrow and just as wide as the trapezoid which would insufficiently cover the traffic
pattern. However, for larger airports, like EWR, the traffic circle may barely extend past
the runways and provide limited utility.

Furthermore, airport boundaries can overlap, such as EWR and LD]J. Since the
model assumes intruder aircraft are not taking off or landing from nearby airports, the
proximity and overlap of airport boundaries was important. This relative positioning
would influence how the intent of a track was classified. After the initial spatial filtering,
if a track flew through the airport boundary for any nearby airport, at any altitude, it
could not be classified as taking off or landing from the airport of interest. Although this
criterion was stringent, it was intended to minimize the risk of including undesired
tracks landing and taking off from other airports when training the model.

2 Trapezoid shape based on dimensions B, C, D from Figure 3-2 and Table 3-2 from AC 150/5300-13A.
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Figure 12. Airport boundaries for ABE and XLL. Runways are colored in black and the approach
trapezoids and traffic circles are colored in white.
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Figure 13. Airport boundaries for EWR, JRB, and LD]. Runways are colored in black and the ap-
proach trapezoids and traffic circles are colored in white.
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2.3.2. Clustering using Runway Corridors

Next, if a track was within the airport boundary for only the airport of interest, we
determined if the track was also within the runway two-dimensional approach and de-
parture corridor. These corridors were similar to the trapezoids used to generate the
airport boundary but also extended 8 nautical miles from each runway?. A track must be
in a runway’s corridor for at least 30 seconds. Each runway corridor was assessed inde-
pendently and a track could be assigned multiple runways. Figures 14 illustrate these
corridors for ABE. Observe how the XLL airport boundary intersects with one of the ABE
runway corridors. Given the requirement that a track can only intersect the airport
boundary for the airport of interest, ABE in Figure 14, the majority of the tracks in the
overlapping could not considered as taking off or landing from ABE.

40°45'N

40°40'N
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40°35'N

Bucks County, PA, Lehigh County PA, State of New Jersey,
‘JJ Esri, HERE, Garmin, USGS, EPA, NPS |

75°40'W 75°30'W 75°20'W 75°10'W
Longitude

Figure 14. Runway corridors for ABE with airports boundaries for ABE and XLL.

2.3.3. Vertical Rate, Altitude, and Relative Heading

If a track segment satisfied the spatial and temporal requirements based on the
runway corridor, it was furthered assessed based on vertical rate, altitude, and the rela-
tive distance from the runway. If these additional criteria were met, the track was classi-
fied as either taking off or landing. The vertical rate of the track when it was in the cor-
ridor was assessed to help determine if a track was taking off or landing. The vertical rate
had magnitude and duration components. When in a corridor, the magnitude of the ver-
tical rate had to be at least 300 feet per minute for a specific duration. This threshold du-
ration could either be the time to vertically transit from the minimum and maximum
track altitudes or 30% of the entire duration the track is in a corridor. These criteria also
were iterated upon between version 3.0 and 2.0 of the models. It was initially 50% and
500 feet per minute but the initial criteria excluded tracks with many points in the corri-
dors or with slower vertical rates near a runway. If the vertical rate was negative and the
track decreased altitude, it was classified as landing; and vice versa for takeoffs.

To be classified as taking off or landing, when in a corridor the track must fly within
2.5 nautical miles and 750 feet from the end of the runway of interest. This lateral and
vertical criterion corresponds to the aviation heuristic 1 in 60 rule and an assumed 3 de-
gree glide slope. This criterion was notably iterated on during model development. For
version 2.0 of the model, the criterion was not based on an assumed 3 degree glide slope
and was instead, 1 nautical mile and 475 feet. Version 1.0 of the model also did not con-

3 Shape based on dimensions B, C, D, E from Figure 3-2 and Table 3-2 from AC 150/5300-13A.
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sider a nominal glide slide. It employed an altitude ceiling of 1500 feet relative to the
runway and a single point must be within 4000 feet laterally of the runway.

Finally, to determine if the takeoff was straight-out or the landing was straight-in,
we calculated the magnitude heading relative to the runway for all track points in the
corridor. If the 95t percentile of all relative headings was 30 degrees or less, the track was
classified with an intent of either straight landing or take off. Otherwise it was classified
as a non-straight landing or takeoff. For straight takeoff and landings, any points imme-
diately before or after the track enters or exits the corridor that satisfied a 40 degree rela-
tive heading threshold were also assigned a straight landing or take off intent. For sub-
sequent processing steps, only the straight maneuvers would be considered for the
ownship.

For the other intents, a change in altitude criteria was used to classify points outside
of a corridor. For takeoffs, after exiting the corridor, points until the maximum altitude
was achieved were as labeled as with the takeoff intent. Conversely points descending
from the maximum altitude prior to entering the corridor were labeled with a landing
intent. For example, Figure 15 illustrates the filtered straight-in and other landing tracks
for an ABE runway.
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75°45'W 75°30'W 75°15'W 75°W
Longitude

Figure 15. Landing at ABE using the OpenSky Network-based aerodromes dataset.

Version 1.0 and 2.0 calculated relative heading differently. Instead of calculating the
relative heading for all points in a corridor, previous versions only considered the rela-
tive heading at two locations: the first and last points within the corridor. The corridors
were also not based on approach surfaces but rectangular bounding boxes extended from
each runway.

2.3.4. Transiting Aircraft

If the minimum altitude for all points within a corridor was greater than 1500 feet
relative to the runway and the maximum altitude was less than 5000 feet, then the track
would be labeled with an intent of transit. If a track intersected any airport boundary but
none of the corridors, the same altitude criteria would applied to determine if the track
was transiting over the airport. For example, any tracks that intersected solely the XLL
boundary would need a minimum altitude of 1500 feet to be classified as transiting. This
criterion was successful in filtering out low altitude traffic operating from nearby air-
ports, while not filtering en route traffic flying above the airport. Figure 16 illustrate
transiting aircraft for ABE and Figure 17 illustrates the notional condition if the altitude
criteria were changed from 1500 to O feet relative to ABE. Note the lack of low altitude
tracks colored blue within the centered ABE boundary in Figure 16 but the presence of
low altitude tracks in Figure 17. This difference illustrates tracks established in the traffic
pattern around ABE that satisfied the airport boundary but failed to satisfied the runway
corridors criteria. Also evident was the low altitude traffic operating near XLL that was
southwest from ABE and filtered out in Figure 16.
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Figure 16. Transiting tracks for ABE overlaid with runway corridors for ABE and airport bounda-
ries for ABE and XLL. The minimum transiting altitude was 1500 feet relative to ABE. This altitude
limit was used for model training. Tracks sourced from the OpenSky Network-based aerodromes
dataset.
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Figure 17. Transiting tracks for ABE overlaid with runway corridors for ABE and airport bounda-
ries for ABE and XLL. The minimum transiting altitude was 0 feet relative to ABE. This altitude
criteria and figure is illustrative and not used for model training. Tracks sourced from the OpenSky
Network-based aerodromes dataset.
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2.4. Encounter Identification

The previous step only identified the intent (e.g. landing, taking off, transiting) of
independent tracks, the next step was to identify pairs of tracks that encountered each
other. First, we identified pairs of tracks where one aircraft must have an intent of a
straight-in landing or straight-out takeoff. Next, for the pairs of tracks, we determined if
there was at least one second overlap in UTC time. After assessing intent and time, there
could had been tens to hundreds of thousands of potential encounters, at least one sec-
ond in duration, that needed to be further assessed. Subsequently, we calculated which
pairs had at least thirty seconds of overlap and for these also calculated the horizontal
and vertical separation between the pairs of aircraft when they overlapped in time. If the
tracks at any point were separated 4 nautical miles or less laterally and 2000 feet or less
vertically, the pair was designated as an encounter. Both separation criteria had to be
satisfied such that an encounter must be at least 30 seconds in duration when both air-
craft tracks exist. Satisfying all these criteria was challenging and an overwhelmingly
majority of pairs that had any overlap in time were rejected due to the spatial criteria.

2.4.1. Example Training Encounters

Figures 18-20 illustrate three example encounters identified for ABE using the
OpenSky Network-based aerodromes dataset. Figure 18 illustrates an encounter where
both aircraft are landing at the same runway. While versions 1.0 and 2.0 did not include
airports with multiple runways, this encounter is representative of the data used to train
the preliminary models. Particularly, this encounter highlights the RTCA SC-228 im-
posed constraints on the aircraft. While both aircraft are landing, the final approach and
landing for the intruder can be highly variable across encounters, whereas ownship must
always have a minor relative heading difference from the runway. Figure 19 also high-
lights this but for an example where the intruder is taking off from a different runway.
Lastly, Figure 20 demonstrates that ownship may exhibit some minor turning behavior
due to the relative heading threshold of 30 degrees or less. Also exhibited is that aircraft,
particularly intruders, can be oriented many nautical miles away from the runway. Spe-
cifically, in Figure 20, the nearest the intruder was to the runway was about 5.2 nautical
miles with a portion of the track not in Class C airspace.
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Figure 18. Example identified encounters at ABE. Both aircraft were landing at the same runway.
The encounter had a duration of 222 seconds.
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Figure 19. Example identified encounter at ABE. Ownship was landing and the intruder was taking
off from a crossing runway. The encounter had a duration of 94 seconds.
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Figure 20. Example identified encounter at ABE. Ownship was landing and the intruder was
transiting through the airspace. The encounter had a duration of 139 seconds.

2.4.2. Encounter Quantities

Table 3 summarizes how the data was filtered from the initial spatial filtering to the
final set of identified encounters for three representative airports.

Table 3. Processing summary when using the OpenSky Network aerodromes dataset.

Count ABE ADS LB]J
Points after initial spatial filtering 1,816,670 20,954,315 14,538,290
Takeoffs or landings (any) 877 2,913 3
Transiting intruders 4,522 38,917 71,881
Potential encounters based on intent and time 28,174 753,067 23,889
Final identified encounters for training 22 402 0

While we had significantly less data for ABE than LB], ABE had more potential en-
counters that satisfied the intent criteria for potential encounters and had more encoun-
ters identified. This was attributed to the differences of the airspace and design of air-
ports near ABE or LBJ. In particular, the immediate proximity of LBJ to the larger EWR
(Figure 13) resulted in the majority of the tracks filtered out for consideration as ownship.
Furthermore, the majority of traffic was likely operating from or to EWR, so the large
quantity of data was more reflective of EWR than the smaller LB]. Similarly, as discussed
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in Section 2.2, we observed significantly more traffic near ADS due the greater popula-
tion density of the Dallas Fort Worth metroplex and increased traffic around the Class B
airports of DFW and DAL. While ABE had less than a tenth of the data as ADS, more
potential ownship tracks were identified per observation points for ABE than ADS.

2.4.3. Encounter Duration

For all airspace classes when using the aerodromes dataset, the median duration of
identified encounters for model training was at least 87 seconds and 10% or fewer en-
counters had a duration of 39 seconds or less. The median was at least 100 seconds when
using the terminal area radars dataset. These two statistics indicate that the requirement
for an encounter to be at least 30 seconds was not overly burdensome and not a signifi-
cant factor when rejecting an encounter for model training. If the duration requirement
increased to 60 seconds when using the aerodromes dataset, about a third of the current
Class D and other encounters would be rejected, while only 15% of Class C encounters
would be rejected. Comparably, about a quarter of the current Class D and Other en-
counters and a smaller percentage of Class C encounters would be rejected when using
the terminal area radars dataset.
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Figure 21. Distribution for duration of encounters identified using the OpenSky Network-based
aerodromes dataset. For all airspace classes, the median duration was at least 87 seconds.
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Figure 22. Distribution for duration of encounters identified using the terminal area radars dataset.
For all airspace classes, the median duration was at least 100 seconds.
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While the duration of training encounters had a minimal dependence on airspace
class or dataset, the quantity of encounters identified for each airport of interest was bi-
ased towards a small percentage of airports. Table 4 reports the distribution of how many
encounters were identified for an airport. For example, Table 4 reports that no encounters
were identified for 29 Class C airports and that at least 100 encounters were identified at
24 Class C airports when using the OpenSky Network-based aerodromes dataset.

94% of the Class E or G (Other) airports when using the OpenSky Network-based
aerodromes dataset and 89% of other airports with the terminal area radar dataset had no
encounters identified. For the terminal area radars dataset, 48% of encounters in Other
airspace were identified from 1% of the airports (n = 4) with any data after the initial
spatial filtering. However, the surveillance coverage at low altitudes near an airport’s
surface was highly variable and why the initial spatial filtering (Section 2.2) was designed
to reduce the computational burden for track classification and encounter identification
rather than designed to identify encounters upfront.

Table 4. Airport count with quantity of training encounters.

Airspace Class Dataset 0 (0,10) [10,100) [100,) Total

C Aerodromes 29 9 12 24 74
C Terminal Radars 5 0 2 9 16
D Aerodromes 139 40 45 44 268
D Terminal Radars 43 6 25 44 118
Other Aerodromes 829 37 13 0 879
Other Terminal Radars 371 24 19 4 418

2.5. Model Training and Structure

With encounters identified, the statistical models could now be trained. The terminal
model consisted of an encounter geometry model and a trajectory propagation model.
The first component, the encounter geometry model, describes the geometrical condi-
tions of two encounter aircraft at their point of closest approach. The second component,
the trajectory generation model, then describes the flight path for each aircraft leading to
and continuing from their point of closest approach. Like the RADES-based correlated
model, this was a generic model with no dependency on geography or locations.

While the trained model was used subsequently in simulations where ownship was
assumed to be an UAS, the model itself was trained assuming that all encounters identi-
fied in Section 2.4 consisted of traditional crewed aircraft. Section 2.6 describes how the
trained model was sampled to enforce this UAS assumption.

2.5.1. Relative Local Coordinate System

Encounters are described in a coordinate system where all altitudes are relative to
the mean runway elevation. Angular units are represented on a standard polar grid in-
creasing in counterclockwise orientation. When training the model, the aircraft trajecto-
ries are rotated using a two-dimensional rotation matrix such that the runway the own-
ship is using lays directly on the y-axis, with the runway mean position located at (0,0).
The runway is assumed to be a single point, rather than a vector or polygon. When
training the model, positions and distances are relative to the mean runway position for
the airport of interest. Since we trained a generalized model, this is a potential source of
bias and error, as the mean runway position will vary for different airports.

Also, the runway is oriented above ownship on the y-axis: that is, ownship has a
relative angular position (bearing) with a range of [180, 360] degrees. When projected
onto a Cartesian coordinate system, the y-axis is oriented from 270 to 90 degrees, and
x-axis from 180 to 0 degrees.

Figure 23 illustrates the bearing distribution for the ownship forward trajectory
model, with similar distributions within the ownship backwards trajectory model. As
bearing is a relative position, the distribution given a landing or takeoff intent are similar.
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Figure 23. Bearing (angular position) distribution of the ownship forward trajectory model. Bin
widths are 10 degrees.

Bearing is the angular position, whereas heading is the correspondingly angular
vector, that is the direction of flight. Figure 24 illustrates the heading distribution for the
ownship forward trajectory model. Unlike the bearing distribution in Figure 23, the
heading distribution is dependent upon whether ownship is taking off or landing. When
landing, the average heading is 90 degrees, as the ownship is flying along the negative
y-axis towards the mean runway position at (0,0); whereas when taking off, the ownship
is flying away from the runway such that the mean heading is 270 degrees. The heading
and bearing also reflect that ownship takeoffs and landing were constrained to be
straight-out or straight-in; the distribution for the intruder models are different with the
distribution over a wider range of values.

Landing Takeoff
90 90
120 075 60 120 075 60
150 0.5 30 150 0.5 30
vs 0.25
180 0 180 0
210 330 210 330
240 300 240 300
270 270

Figure 24. Heading (angular vector) distribution of the ownship forward trajectory model. Bin
widths are 10 degrees.

The differences with the intruder distributions is best illustrated by Figure 25 with
the bearing and heading distributions of the intruder forward trajectory model given that
the intruder is transiting through the airspace. Compared to the more constrained own-
ship distributions, the intruder distribution has a wider distribution over bearing and a
significantly more encompassing distribution over the full 360 degree range of headings.
The intruder bearing distribution is reflective of the encounter separation criteria. Since
ownship predominantly has a bearing in the range of [260, 280] degrees and encounters
occur when aircraft are close to each other, it is not surprising that the intruder has a
similar mean bearing. However, since transiting intruders are not flying to or from the
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mean runway position at (0,0), they operate more liberally throughout the airspace, as
represented by the more diverse heading distribution. Note that Figure 25 is not de-
pendent upon ownship intent and we do not observe an equal quantity of ownship

landings and takeoffs.
Bearing Heading
90 90
120 02 60 120 02 60
150 30 150 30
0.1 0.1
180 0 180 0
210 330 210 330
240 300 240 300
270 270

Figure 25. Bearing and heading distributions for the intruder forward trajectory model given an
intruder intent of transiting through the airspace. Bin widths are 10 degrees.

2.5.2. Encounter Geometry Model

The encounter geometry model describes the position, speed, and direction of two

aircraft at their horizontal closest approach. Some variables were smoothed using a lo-
cally weight temporal smoother with a Gaussian kernel. It uses the following variables:

Airspace class: Airspace class of the airport.

Ownship intent: The intent of the ownship, per Section 2.3, of either a straight
landing or take off.

Intruder intent: The intent of the intruder, per Section 2.3, of either landing, taking
off, or transiting. Unlike the ownship, the intruder’s intent is not assumed to be
straight.

Intruder type: The type of aircraft of the intruder: can either be fixed-wing or ro-
torcraft. Note that while the OpenSky Network-based uncorrelated models are in-
dividually organized by aircraft type[12], aircraft type is an explicit model variable
here.

Intruder runway: The runway the intruder was leveraging relative to the ownship.
Designated as “same” if both aircraft were operating from the same runway; paral-
lel” if the intruder was operating from a runway that did not intersect the ownship’s
runway; as “crossing” if the intruder was operating from an runway that intersected
the ownship’s runway; and “none” if the intruder intent was transiting.

Ownship distance from runway: The horizontal distance between the ownship po-
sition at CPA and the runway mean position;

Ownship bearing from runway: The polar angle of the ownship’s position at CPA ;
Ownship altitude: The altitude of the ownship relative to the runway elevation at
CPA;

Ownship speed: The smoothed speed of the ownship at CPA as estimated by a finite
difference of the trajectory position data;

Ownship heading: The direction of flight of the ownship at CPA ;

Intruder distance from runway: The horizontal distance between the intruder posi-
tion at CPA and the runway mean position

Intruder bearing from runway: The polar angle of the intruder’s position at CPA;
Intruder altitude: The altitude of the intruder relative to the runway elevation at
CPA;
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e Intruder speed: The smoothed speed of the intruder at CPA as estimated by a finite
difference of the trajectory position data;
e Intruder heading: The direction of flight of the intruder at CPA.

Some of these variables were more constrained in versions 1.0 and 2.0. The initial model
constrained ownship intent to just landing, intruder intent could not be transiting, and
the intruder runway was always the same as the ownship. Version 2.0 introduced taking
off ownships and transiting intruders, but the same runway assumption was still en-
forced. Version 3.0 expanded intruder runway to the four options while also improving
the assumptions about transiting intruders when other airports were nearby (Section
2.3.4).

These variables were associated via a graphical model that indicates dependency
relationships. In this graph, the variables are nodes and the dependencies are directed
edges. Thus, in Figure 26 below, the intruder’s track is dependent on its distance and its
bearing from the runway. Those variables in turn are dependent on several other varia-
bles. There are numerous ways the variables could be connected, but at this stage the
graph has been structured based on engineering judgement. Future work could optimize
the graph structure to best characterize the data with the fewest connections. The de-
pendencies in this model are conditional probabilities, so the graph can be referred to as a
Bayesian network.

Figure 26. Bayesian network for the encounter geometry model.

Some variables, as identified in Table 5 below, are inherently discrete. Other varia-
bles, identified in the Table 6 below, are inherently continuous. For representation in this
model, the continuous values in the observed data must be discretized during training
per the cutpoints identified in the table. Sampling the model yields discrete values for
these variables, with a continuous value subsequently sampled from the bin with a uni-
form distribution.

Table 5. Encounter geometry model discrete variables.

Variable Node Label Values
Airspace Class class [1-B,2-C,3-D, 4 - Other]
Ownship Intent Ownship_intent [1-Land, 2 — Takeoff]
Intruder Intent int_intent [1-Land, 2 — Takeoff, 3 — Transit]
Intruder Type int_type [1 - Fixed-Wing, 2 — Rotorcraft]

Intruder Runway int_runway [1 - Same, 2 — Parallel, 3 — Cross-
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ing, 4 — None (Transit)]

Table 6. Encounter geometry model continuous variables.

Variable (Units) Node Label Cutpoints
Ownship Altitude (feet) own_alt [200, 500, 1000, ..., 3000, 5000]
Ownship Bearing (degrees) own_bearing 10, 15, 30, ..., 165, 175, 185, 195,

210, 225, ..., 360]
Ownship Distance (nautical miles) own_distance [0,05,1,2,3,4,5,8]

Ownship Speed (feet per second) own_speed [75, 150, 225, 300, 375, 450]

Ownship Track (degrees) own_trk_angle [-180, -175, -165, ..., 175, 180]

Intruder Altitude (feet) int_alt [200, 500, 1000, ..., 3000, 5000]
. . . [0, 15, 30, ..., 165,175, 185, 195,

Intruder Bearing (degrees) int_bearing 210, 225, ..., 360]

Intruder Distance (nautical miles) int_distance [0,05,1,2,3,4,5,8]

Intruder Speed (feet per second) int_speed [75, 150, 225, 300, 375, 450]

Intruder Track (degrees) int_trk_angle [-180, -175, -165, ..., 175, 180]

2.5.3. Trajectory Propagation Model

The trajectory generation models describe how the position of the two encountering air-
craft evolves before and after their closest point of approach (CPA). It is important to note
that the ownship and intruder models are trained separately. While the encounter gen-
eration model considered the relatively geometry between aircraft, the trajectory propa-
gation models assumed track independence. The training data for this model were the
independent sets of ownship and intruder tracks from identified encounters. Figure 24
highlights this by visualizing all the ownship and intruder tracks for ABE used as train-
ing data for the trajectory propagation models; while Section 2.4.1 depicted specific en-
counters included in the set of tracks visualized by Figure 27. Once again, note the lim-
ited behavior and diversity of ownship tracks due to the RTCA SC-228 imposed con-
straints of limiting ownship to straight takeoff and landings.

Ownship

Intruder
40°45'N Runway

40°40'N

Latitude

40°35'N

4 Bucks County, PA, Lehigh County PA, State of New Jersey,
B Esri, HERE, Garmin, INCREMENT P, USGS, EPA

75°35'W 75°30'W 75°25'W 75°20'W 75°15'W
Longitude

Figure 27. Example ownship and intruder tracks near ABE used for model training.
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The ownship and intruder trajectory propagation models have a similar model
structure with a difference in the temporal variables. The forward propagation models
transition from time (t) to (t+1) after CPA has occurred, while the backwards propagation
model is for time (t) to (t-1) prior to CPA. Specifically, they use the following variables:

e Intent: The aircraft’s intent, same as defined for the encounter geometry model.

e  Distance from runway: The horizontal distance between the aircraft position and the
runway mean position over time;

e  Bearing angle from runway: The polar angle of the aircraft’s position;

. Heading angle: The direction of flight of the aircraft;

e  Altitude: The altitude of the aircraft relative to the runway elevation over time.

e  Speed: The smoothed speed of the aircraft over time as estimated by a finite differ-
ence of the trajectory position.

As with the encounter geometry model, the relationships between variables are
represented as a graph. Here, time dependencies are introduced into the graph as well.
As illustrated in Figure 28 below, the aircraft’s track at the next time step is dependent on
its current track, its bearing from the runway, and its distance from the runway. These
dependencies are relied on to emulate, e.g., an intruder flying a traffic pattern: as the
aircraft flies downwind, the likelihood increases that it will make a turn onto the base leg.
The strength of that likelihood is learned from the observed trajectory data. Since the
dependencies in the model are conditional probabilities, the graph forms a Bayesian
network. In this case, since it incorporates time dependencies, it is referred to as a Dy-
namic Bayesian network. Note that the bearing and distance variables change over time
when sampling the model, but those changes must be computed after sampling for the
heading and speed at each time step. This model structure was based on the Dynamic
Bayesian network of the uncorrelated encounter models, which did not model distance or
bearing with respect to some spatial point.

Figure 28. Dynamic Bayesian network for the trajectory forwards propagation model.

All of the variables in the trajectory generation model, defined in Table 7, are in-
herently continuous. Note that some cutpoints are different from those for the same
variable in the encounter geometry model (e.g., altitude is more finely discretized here).
For a given training dataset, different forward and backwards propagation models are
trained for each intent of landing, taking off, and transiting. Forwards propagation
models are trained on time-ordered trajectory data while backwards propagation models
use reverse-time-ordered trajectory data for training. Future work may consolidate some
or all of these separate models.

Table 7. Trajectory generation model continuous variables.

Variable (Units) Node Label Cutpoints
Intent intent [1-Land, 2 — Takeoff, 3 — Transit]
Distance (nautical miles) distance [0,05,1,2,3,4,5,8]
Bearing (degrees) bearing [0, 5, 15, 25, ..., 355, 360]
Altitude (feet) ) [200, 300, ..., 2000, 2500, 3000,
altitude
5000]
Speed (feet per second) speed [75, 100, 150, 200, ..., 350, 450]

Track (degrees) trk_angle [-180, -175, -165, ..., 175, 180]
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2.6. Model Sampling and Encounter Generation

Once the model has been trained with the observed trajectory data, it can be sam-
pled to generate new encounters (“synthetic encounters”) representative of observed
behavior. Encounter generation is completed in three steps: sampling the geometry
model, sampling the trajectory models, and rejecting or accepting the encounter based on
criteria derived from assumptions when training the model.

2.6.1. Sampling the Encounter Geometry Model

First the encounter geometry is sampled to identify the geometry at CPA. The en-
counter geometry model is sampled with a uniform prior (i.e., absent any additional in-
formation, that all combinations of variables are equally likely). Since this model is not a
Dynamic Bayesian network with a transition model, sampling is a one step process. The
model samples describe the aircraft positions at CPA given distance and bearing relative
to a runway’s mean position. We translate this into a local Cartesian coordinate system
where the runway mean position is at (0,0). Figures 29 and 30 illustrate 500 samples from
the geometry model where ownship is taking off and the intruder is landing or transiting.

® CPA - Ownship

- 51 - m  CPA - Intruder
=
g 0r —1
da -
]
£ . .- "
~ 5| ;. " ’

L] - [y . - L] -

X (nautical miles)

Figure 29. Sampled positions at CPA when ownship is taking off and intruder is landing.
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Figure 30. Sampled positions at CPA when ownship is taking off and intruder is transiting.

These figures illustrate two important elements of the model. First, the coordinate
system is oriented such that ownship’s runway is parallel to the y-axis, with positive
down the runway from the threshold. This results in ownship predominately operating
to the “south” of the runway and the cone shape of ownship’s position is indicative of the
30 degree heading requirements for a straight landing or taking-off. Second, the intruder
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position is dependent on its intent. Note in Figure 29 that a cluster of intruder positions
are near (0,0) but this cluster is not evident in Figure 30. Also note that when transiting,
the intruder at CPA is more dispersed. This was expected as transiting aircraft should not
be operating predominantly along an approach or departure route. This is an outcome of
the intent classification described in Section 2.3 and visually demonstrates how encoun-
ter geometry is dependent on aircraft intent.

2.6.2. Sampling the Trajectory Models to Propagate Tracks

Next, the ownship and intruder trajectories are successively sampled using the as-
sociated forwards and backwards trajectory generation models. Trajectories are propa-
gated up to 120 one second timesteps before and after CPA, with initial positions pro-
vided by the geometry model sample. Propagation is halted if a trajectory is more than
eight nautical miles from the runway mean position. Propagating the trajectories is
achieved by successively sampling a trajectory model’s variables from the top of the
graph to the bottom, applying the learned conditional probabilities in conjunction with
Bayes Rule. The trajectory models are sampled using a non-transitioning prior: absent
observed information, dynamic variables remain constant. It is important to use these
priors because the large space of discrete-valued variable combinations make it likely
that there are gaps in the conditional probability tables. Sampling only gives discrete
values for each of the model variables. Continuous values for the continuous variables
must subsequently be sampled. In all cases, the model assumes this sampling will be
from a uniform distribution within the relevant bin per the earlier tables.

Unlike previous encounter models, with which all transition events throughout an
encounter can be sampled at once, the trajectory models can only be applied one time
step at a time, with the new aircraft position being computed after each step. The new
aircraft position is used to calculate the distance and bearing the track is away from the
runway, with distance and bearing being model variables. This is required because dis-
tance from or bearing to the runway are not temporal variables in the Dynamic Bayesian
network, as previously illustrated in Figure 14. The consequences of not dynamically
modeling distance and bearing are illustrated by example encounters in Section 3.3 and
further discussed in Section 4.

Also, unlike other MIT LL developed models, tracks do not need to fully overlap in
time. It is possible for an encounter to start or end with only one aircraft in the vicinity of
the runway. For example, an encounter could start at t = -120 seconds (prior to CPA) with
the intruder initially positioned within 8 nautical miles of the runway. An ownship could
be initialized at t = - 30 seconds near the runway at a low altitude to simulate the ownship
beginning to take-off. In this example, CPA would occur at t = 0. At t = 30 seconds, the
intruder could be more 8 nautical miles from the runway and no more track updates
would be generated for it. From t =31 and onward, only ownship would be simulated.

2.6.3. Rejection Sampling

Given an encounter of two aircraft tracks, we assess if its valid or should be rejected.
If an encounter fails any of the described criteria, it is rejected and the encounter genera-
tion process is restarted with a new sample from the encounter geometry model. Criteria
are organized into three categories: those based on training assumptions, assumptions
unique to ownship, and dynamic constraints. The criteria based on training assumptions
are designed such that the sampled synthetic encounters are subject to similar constraints
and assumptions used to identify encounters for training, as described in Sections 2.2-2.4.
These assumptions include:
e Encounter CPA must occur within 5 seconds of the sampled CPA from the ge-
ometry model;
e Tracks must overlap at least 30 seconds in time;
e If taking-off or landing, a track must have at least one track update within 2.5
nautical miles of the runway mean position;
e For track updates within 2.5 nautical miles of the runway mean position, at least
one point must have an altitude of 750 feet or less;


https://doi.org/10.20944/preprints202111.0051.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2021 d0i:10.20944/preprints202111.0051.v1

e A track must have sufficient quantity of updates with a vertical rate magnitude
of 300 feet per minute or greater. If landing, the rate must be negative and if
taking off, the rate must be positive.

e A track ends if it is within 0.25 nautical miles of the runway.

Similar to when classifying track intent, ownship must satisfy a relative heading criteri-
on, so it is representative of a straight landing or take-off. Given the coordinate system
where the runway is parallel to the y-axis, a heading of 90 degrees would have the air-
craft move positively (“north”) along the y-axis and a heading of 270 degrees would have
the aircraft move negatively along the y-axis. Thus, if an aircraft is initialized on the
negative y-axis, a heading of 90 degrees would be towards of the runway and a heading
of 270 degrees would be moving away from the runway. The Cartesian coordinate sys-
tem is visualized with the example encounters in Figures 31-34. Accordingly, the own-
ship heading criteria is dependent upon intent:

e If landing, at least 95% of heading updates need to have a heading of 90 + 30

degrees; and

o If taking off, at least 95% of heading updates need to have a heading of 270 + 30

degrees.

The last set of criteria are enabled such that the ownship or intruder satisfied a set of
dynamic limits on speed, acceleration, vertical rate, turn rate, and pitch angle. To support
RTCA SC-228, we defined four sets of dynamic limits, summarized by Table 7. “Generic”
limits are general limits applicable for a wide range of crewed aircraft. “RTCA228-A1”
corresponds to the RTCA SC-228 assumptions for a HALE (High Altitude, Long Endur-
ance) UAS, “RTCA228-A2” for an assumed MALE (Medium Altitude, Long Endurance)
UAS and “RTCA228-A3” for an assumed LEPR (Low End Performance Representative).
When rejection sampling for certain aircraft characteristics, that we are assume that the
encounters for UAS will be the same as similarly operated crewed aircraft (e.g., same
speeds, vertical rates, encounter geometry).

Of the dynamic limits, the acceleration limit was specifically based on the model
structure and how trajectories are propagated. Since the trajectory models are sampled
incrementally with intra-bin uniform sampling, it is possible to sample speed such that it
transitions from 100 (bin 1) to 199 (bin 2) feet per second in one timestep. Since this would
not be realistic, the maximum acceleration is based on the widest speed bin of 50 feet per
second. This sampling criteria often results in tracks not changing speed during an en-
counter; this is illustrated in Section 3.2 and discussed as part of future work in Section 4.

Table 7. Dynamic limits when sampling encounters.

Variable (Units) Generic RTCA228-A1 RTCA228-A2 RTCA228-A3
Minimum speed 50 169 68 68
(feet per second)

Maximum speed 506 491 338 186
(feet per second)
Acceleration 50 50 50 50
(feet per second?)
Maximum vertical rate

100.00 41.67 25.00 8.34
(feet per second)
Maximum turn rate 1 15 3 7
(degrees per second)
Maximum pitch - 15 15 15

(degrees)

3. Results
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This section discusses the output of the model training with some statistics about the
trained models, example encounters, and an overview of a dataset leveraged by RTCA
SC-228 during FAA validation of the standard.

3.1. Encounter Statistics

Table 8 reports the number of encounters used to train the current encounter geom-
etry model given airspace class and data source; Table 9 reports the distribution for the
deprecated version 2 of the model. This distribution is synonymous with the encounters
identified from the processing described in Section 2.5.

First, the quantity of Class C encounters significantly increased from version 2.0 to
3.0. Because version 2.0 assumed both aircraft were operating from the same runway,
there were only 5 single-runway Class C airports considered to be in scope. We had rel-
atively poor surveillance coverage for these airports and subsequently identified scant
encounters. Expanding the model scope in version 3.0 to include different runway con-
figurations and more airports resulted in a significant increase of identified encounters.

Second, expanding model scope in version 3.0 also resulted in a nearly 2000% in-
crease of Class D encounters when using the OpenSky Network-based aerodromes da-
taset. This indicates that the majority of identified encounters were at airports with mul-
tiple runways. However, this does not imply that encounters are more or less frequent at
single runway airports, because the ability to identify encounters was dependent on the
surveillance coverage of the airport. It could be possible that both datasets had relatively
poor surveillance coverage of single runway airports. Assessing surveillance coverage
given airport design could be future work.

Third, the reduction of identified encounters in other airspace when using the ter-
minal radar dataset was attributed to improvements in filtering traffic near other airports
(Section 2.3.4). When classifying tracks for version 2.0, we did not consider the runway
orientation and approach / departure corridors of nearby airports. As a result, tracks that
were landing or taking off from nearby airports were misclassified as transiting intrud-
ers. As discussed in Section 2.3, the more advanced airport boundaries were generated
for version 3.0 which reduced the misclassification of transiting tracks. This subsequently
reduced the total quantity of identified encounters but the confidence that each encounter
was within scope significantly improved.

Table 8. Model encounter based on data set and airspace class — Version 3.0.

Airspace Class Terminal Radar Aerodromes
B 2,396,048 1,038,390
C 103,566 81,253
D 85,514 45,066
Other (E/G) 1,209 432

Table 9. Model encounter based on data set and airspace class — Version 2.0 (deprecated).

Airspace Class Terminal Radar Aerodromes
B 0 0
C 10 5
D 65,859 2,150
Other (E/G) 6,784 169

Additionally, while the OpenSky Network-based training dataset had a greater
spatial and temporal scope, it was limited to only identifying encounters between aircraft
that both had ADS-B equipped. We hypothesize this bias is the key factor in the reduced
encounter count compared to the terminal area radar dataset. The consequence of this
bias was amplified because an ADS-B FAA mandate was not in effect until 2020, whereas
the majority of the OpenSky Network data was from 2019 and before this mandate. To-
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day, ADS-B has also been mandated in most busy ATC controlled airspaces in the United
States and there are various local, regional, and international roll-outs of ADS-B. As more
aircraft equip ADS-B, we expect more encounters to be identified. Under investigation is
how the training data, from any source, is dependent on ADS-B mandates, but this in-
vestigation is out of scope for this analysis.

Furthermore, when training version 2.0, we assessed that the transponder code fil-
tering (Appendix B) did not have a significant impact on identifying encounters with the
OpenSky Network based encounters. Without any Mode C filtering, 2,428 Class D en-
counters were identified, while with filtering 2,150 Class D encounters were identified.
We did not repeat this analysis when training version 3.0.

3.2. Example Encounters

Figures 31-34 illustrate example encounters sampled from the model trained from
terminal area radar tracks. Sampled encounters assume a generic aircraft type, and not
necessarily reflective of the UAS dynamics from Table 7. Examples are intended to high-
light the advantages and disadvantages of the model and rejection sampling approach to
create encounters. In all the examples, the runway is oriented parallel to the y-axis.
Tracks are illustrated as peri- or intra-. Track updates when only one aircraft is simulated
at the timestep are noted as peri- while track updates when both aircraft are simulated are
intra-.

3.2.1. Sampled Encounters

Figure 31 illustrates a sampled encounter where both aircraft are landing. While
ownship must land straight, the intruder happens to also land straight but is not required
to do so. The encounter starts at 120 seconds prior to CPA with only the ownship track
simulated until 91 seconds prior to CPA when the intruder track is initialized about 8
nautical miles away from the runway. The ownship track ends shortly after CPA because
it had a low enough altitude and close enough to the runway such that the tracks end.
The intruder aircraft continues to be simulated until it also “lands” at 82 seconds after
CPA. Since the models, as described in Section 2.5, have a minimum altitude of 200 feet,
the lowest a track can be simulated to is also 200 feet. We also do not simulate tracks on
the runway surface.
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Figure 31 Sampled encounter where both aircraft are landing.

Figure 32 illustrates an encounter where ownship is taking off and the intruder is
landing. Compared to Figure 31, Figure 32 demonstrates that a landing intruder does not
have to be initialized along the negative y-axis, although it is common as in Figure 31.
The intruder landing also has more heading changes and is not representative of a
straight landing. Conversely, the ownship only has some minor heading changes.
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Figure 32. Sampled encounter where ownship is taking off and the intruder is landing.

Both of these examples also illustrate how model structure influences the simulated
kinematics. Both vertical rate and speed are estimated from track updates with vertical
rate derived from the difference between altitude reports and speed based on distance
and bearing from the runway. Altitude is a temporal variable with (t) and (t+1) variables
in the trajectory model but distance and bearing from the runway are not. Consequently,
vertical rate is better modeled and more realistic. We rarely observe speed changes in
sampled tracks. While this is undesired, we discuss in Section 4 why this is acceptable to
support the RTCA SC-228 DAA validation but will be something explored further in the
future.

3.2.2. Sampled Encounter with Transiting Intruders

Figure 33 illustrates an ownship taking off, like Figure 32, but has an intruder trans-
iting through the airspace. Ownship exhibits similar features as in the previous examples
with minimal heading changes, a reasonable vertical rate, and a constant speed. Since the
coordinate system is centered on the assumed runway mean position, rather than an end
of a runway, a track can be initialized anywhere near the origin, not necessarily on the
y-axis. More importantly, this example illustrates how a transiting intruder behaves dif-
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ferently than one taking off or landing. The intruder has a relatively constant altitude,
more heading changes, and flies relatively farther away from the runway.
8 -
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Figure 33. Sampled encounter where ownship is taking off and the intruder is transiting.

3.2.3. Sampled Encounter Idiosyncrasies

Like Figure 33, the last example encounter in Figure 34 illustrates an ownship taking
off and an intruder transiting the airspace. The intruder maintains a relatively higher al-
titude and more lateral movement. Compared to the all the previous examples, transiting
intruders have a wider range of potential behavior, as illustrated by the greater than 360
degree turn. Similar to the previous examples, ownship has minimal heading changes
but exhibits an interesting altitude and vertical rate behavior. The ownship has an initial
position within 2.5 nautical miles of the runway but at an altitude greater than 750 feet.
The rejection sampling criteria, described in Section 2.6.3, is that at least one track update
within 2.5 nautical miles of the runway must have an altitude of 750 feet or less and given
that ownship is taking off, a sufficient number of track updates need to have a vertical
rate of at least 300 feet per minute. Since the ownship immediately descends to an alti-
tude below 750 feet, it satisfied the altitude criteria when near the runway. As the track
climbs after CPA, it then also satisfied the vertical rate criteria.
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Figure 34. Sampled encounter where ownship is taking off and the intruder is transiting.

This example illustrates an advantage of using encounter models to support Monte
Carlo simulations for safety evaluations. In practice, not all take-offs have a smooth ver-
tical ascent and not all landings have smooth descents. This encounter also is not physi-
cally impossible and further validation is future work. While encounters like Figure 30
should be rare, it is reasonable to include them in safety assessments because they stress
DAA systems in novel ways. Along with implications of a constant speed, the use of
models and their idiosyncrasies are further discussed in Section 4.

3.3. Sampled Encounters to Support RTCA SC-228

Six million encounters were generated in total using both models trained on the
terminal radar tracks and OpenSky Network. Three million encounters were sampled
from each model, with one million encounters generated using the aircraft dynamic
constraints for “RTCA228-A1,” “RTCA228-A2,” and “RTCA228-A3.” For each of these
million encounters, there was a uniform distribution over airspace class, ownship intent,
and intruder intent.
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The encounters were simulated with the DEGAS simulation environment[38]. En-
counters can be input to DEGAS as events or trajectories. Events specify the times at
which a change in dynamics (e.g., turn rate, vertical rate, or acceleration) occurs, whereas
trajectories specify the position (east, north, and altitude) of the aircraft at every time
step. Events are simulated using a basic 6 degrees-of-freedom dynamics model, whereas
trajectories, such as the encounters generated by sampling the terminal model, are fol-
lowed directly (bypassing the dynamics model).

These encounters were used to assess key safety metrics in simulation for UAS ter-
minal operations assuming a low latency networked terrestrial Command and
Non-Payload Communications (CNPC) link that is aligned with the RTCA C2 MOPS and
the use of a ground or airborne systems. The simulation assumed that the UAS was flying
under IFR and receiving ATC separation services. Additionally, the simulation was de-
signed to support a sensitivity analysis with the following objectives:

e Assessing the sensitivity of DAA system performance (safety and operational
suitability) to C2 performance levels, and evaluation of the impact of relaxing C2
performance requirements;

¢ Identifying areas that should be targeted for future safety enhancements priori-
tized by maximum benefit; and

e Determining areas where small modeling variations may have a large impact on
the safety metrics.

In response, we characterized the encounter sets based on aircraft kinematic states at
CPA and the horizontal miss distance (HMD) and vertical miss distance (VMD) at CPA.
Distributions were compared between the different models to characterize if the different
training datasets led to different sampled encounters. Ultimately, training data sources
have different biases and assumptions, so generating encounter sets using both modeled
improved the robustness of the final simulation results for RTCA SC-228. Our discussion
focuses on encounters with “RTCA228-A1"” dynamic limits to narrow the discussion but
we identified similar trends with the other encounter sets.

3.3.1. Kinematic Distributions at CPA

Figures 35 and 36 provide the distributions for distance from the runway, altitude,
speed, and vertical rate for ownship and intruder at CPA. Ownship is using the
“RTCA228-A1” dynamic limits while intruder is using the “generic” dynamic limits.
Figure 35 was generated using the model trained using the terminal area radar tracks
while Figure 36 used the OpenSky Network-based model. Histogram bins are based on
the bins used by the encounter geometry model and may not be uniform.

Foremost, the altitude and vertical rate magnitude distributions were similar be-
tween the models. In general, the intruder was at lower altitude than the ownship at
CPA, with both aircraft at 1500 feet or less. Extreme vertical rates were rarely observed at
CPA, with most vertical rates of 10 feet per second (600 feet per minute) or less.

The distance at which CPA occurred from the runway slightly differed between the
sampled encounter sets. While both encounter sets had about 75% of encounters within 4
nautical miles of the runway, the terminal area radar-based encounters had more en-
counters within one nautical mile of the runway, while the OpenSky Network-based
encounters had a few more encounters at two to four nautical miles from the runway
mean position. In support of the SRMD to assess DAA performance, these differences
aren’t particularly impactful because the DAA system is more influenced by the kine-
matics of which altitude and vertical rate had unimportant differences but there was a
notable difference in the speed distributions.

For the terminal radar-based encounters, about 60% of encounters had ownship
flying between 225 to 300 feet per second at CPA, while only 46% of OpenSky Net-
work-based encounters had ownship at that speed at CPA. Also, only about 12% of in-
truders had a speed of 75 to 150 feet per second at CPA with the terminal radar-based
encounters, compared to nearly 28% of the other encounter set. In general, the terminal
radar-based encounters had a relatively faster “RTCA228-A1” UAS and relatively faster
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“generic” intruder. Speeds greater than 300 feet per second (178 knots) at CPA were in-
frequently observed in about 7% of encounters in both sets.

Upon review of the encounters, we have a couple hypothesis to explain the differ-
ences in the speed distributions. Principally, aircraft type of fixed-wing or rotorcraft can
be identified when training with the OpenSky Network-based model but not when using
the terminal area radars. For the uncorrelated encounter models, we have observed
models trained solely using observations of rotorcraft will have a speed distribution
slower than models trained using solely fixed-wing aircraft[12]. An uncorrelated ro-
torcraft-based model also has a relatively slower speed distribution than a model trained
using heterogenous mix of aircraft types. We hypothesized a similar trend is occurring
with the terminal model, where the OpenSky Network-based model can leverage the
aircraft type information and generate tracks that are more representative of relatively
slower moving aircraft. An inspection of the model distributions given an aircraft type of
rotorcraft support this hypothesis but additional validation is required. Additionally,
due to ADS-B transponder equipage mandates, it is possible that more rotorcraft or gen-
eral aviation fixed-wing single engine were equipped with transponders in 2018 than in
2015 when the terminal area radar dataset was curated. The models also inherently were
trained based on different compositions of aircraft types, with the speed distributions
reflecting these different compositions. This does not make either model incorrect but
rather reflects a bias in the training data. We also enforced the desired uniform distribu-
tion over airspace, class, ownship intent, and intruder intent when rejection sampling.
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Figure 35. Distributions for kinematic variables at CPA for one million encounters with a
“RTCA228-A1” ownship and “generic” intruder when using the terminal area radar trained model.


https://doi.org/10.20944/preprints202111.0051.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2021 d0i:10.20944/preprints202111.0051.v1

Dist f Altitud
0.6 _Distance from runway 06 Altitude |
[ ]Ownship
o4 04 T iIntruder
02} - 1 02¢
0 —l ] o U e
5 SN Y ™ B b ] SOOI DD HD N\
g K SN ROIEANTAN N
3 Nautical miles F
o eet
]
o 0.6 ISpeedl 0.6 Vlerticall ratel(maglnitudle)
(1175 S - { 04}
02} | 02!
oL S| 0 A—
S R T R N

Feet per second Feet per second

Figure 36. Distributions for kinematic variables at CPA for one million encounters with a
“RTCA228-A1” ownship and “generic” intruder when using the OpenSky Network trained model.

3.3.2. Horizontal and Vertical Miss Distance Distributions

While independent aircraft speeds are important in characterizing an encounter, the
closing speed between aircraft significantly influences the risk of a collision given an
encounter and subsequently the HMD and VMD at CPA. The separation between aircraft
is also based on other kinematic variables as well, such as relative heading between air-
craft, aircraft turn rate, altitude, and vertical rate. Accordingly, Figures 37 and 38 plot the
HMD and VMD distributions for the terminal area radar and OpenSky Network-based
encounter sets with “RTCA228-A1” ownship and “generic” intruder. The distributions
are illustrated as two dimensional CDF contour plots. Table 10 summarizes the CDF
percentile given select HMD and VMD values. A positive VMD is indicative of the in-
truder above ownship and a negative VMD is when the ownship was above the intruder.
For example, Figure 37 indicates that 25% of encounters sampled from the terminal area
radar trained model, had an HMD of 7,000 feet or less and a VMD of 500 feet or less at
CPA. Whereas 40% of encounters sampled from the OpenSky Network-based model
satisfied these HMD and VMD thresholds.

These figures indicate that regardless of the model, majority of encounters had a
CPA where the intruder was above the ownship. This can be attributed to transiting in-
truders which tend to have higher relative altitudes and the glide slope constraints on the
ownship. The distributions also show that majority of encounters had a HMD and VMD
greater than 2,200 and 450 feet respectively at CPA. This combination of HMD and VMD
are notable as it a separation metric used by RTCA SC-228[39]-[41] and similar to sepa-
ration criteria used by a different UAS DAA standard published by ASTM F38[16]. As the
OpenSky Network-based model had 25% of encounters with a HMD and VMD of this or
less, that encounter set was slightly more stressing to the DAA system and had encoun-
ters to estimate safety metrics based on that separation. As HMD and VMD at CPA in-
creases, the distributions between the two encounter sets become more similar.
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Figure 37. Distributions for HMD and VMD at CPA for one million encounters with a
“RTCA228-A1"” ownship and “generic” intruder when using the terminal area radar trained model.
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Figure 38. Distributions for HMD and VMD at CPA for one million encounters with a
“RTCA228-A1"” ownship and “generic” intruder when using OpenSky Network trained model.
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Table 10. Select HMD and VMD fractiles for one million encounters with a “RTCA228-A1” own-
ship and “generic” intruder with models trained using different data.

Terminal Area  OpenSky Network

HMD (feet) VMD (feet) Radars Aerodromes
2200 450 0.17 0.25
2,500 0 0.10 0.15
2,500 250 0.16 0.25
7,000 500 0.25 0.40
16,400 0 0.25 0.34
23,600 0 0-50 051

4. Discussion on Future Work

Model development was still ongoing as of September 2021. We demonstrated the
viability of a clustering approach to identify encounters based on assumptions of airport
design, approach and departure routes, and aviation heuristics. When parallelizing
across multiple processors on the LLSC, the approach identified a sufficient set of en-
counters for model training. While a trained model can generate reasonable encounters,
the model structure introduces undesired dynamics and should be improved. Addition-
ally, track classification for training and the model structure can be improved to better
distinguish and model different track intents. Specifically, the current intruder intent of
“transiting” can be too vague and likely insufficiently captures behavior tailored to ter-
minal VFR or helicopter routes.

Regarding the use of the model for safety analyses, aircraft tracks were often ini-
tialized multiple nautical miles away from the runway and with faster airspeeds than
associated with landings of rotorcraft, fixed-wing single-engine or smaller fixed-wing
multi-engine aircraft. However, as discussed in Section 3.3.1, the modeled speeds at CPA
were reasonable. There was no indication that aircraft were modeled with speeds slower
than anticipated nor with unreasonably fast speeds at low altitudes. Collision risk in-
creases with aircraft speed because closing speed also increases, which reduces the time
required to loss of separation between aircraft. This was previously assessed for uncor-
related encounters with smaller UAS[42]. Given there exists some relationship between
closing speed and risk, we assumed that the sampled encounters likely did not underes-
timate risk because the sampled encounters were presumed to not be slower than reality.
Collision risk is not solely dependent on closing speed and there are other variables,
many of which are encoded in the model itself. So, while modeled aircraft are not slow-
ing down as they fly closer to the runway, additional validation is required to assess if
the encounters slightly overestimated the risk due to the higher than expected speeds.
Assuming fixed-wing aircraft have a minimum stall speed of 75-100 feet per second, we
hypothesize that tracks could experience a speed change up to 85 feet per second over the
course of an encounter in an improved model.

Using a classical Bayesian network to model where CPA occurred was shown to be
practical and scalable, whereas many of the issues can be attributed to propagating tracks
over the duration of the encounter. As such, model development will focus on improving
how aircraft move through the airspace with respect the runway, rather than identifying
where CPA or if an encounter was observed. Potential near-term future work includes
aggregating the trajectory models into a one or two trajectory model with additional
parent variables to denote if an aircraft is the ownship or intruder; or specifying addi-
tional, more specific intents such as “landing — straight,” or “landing — any.” Future work
could also explore training a model using a hidden semi-Markov model, like Mahoubi
and Kochenderfer[21], or with longer timesteps, such that, for example, track updates are
sampled every ten instead of every one second. However, neither of these proposed de-
velopments would address issue of sampled speeds generally remaining constant.

It was insightful that vertical rate estimated from a temporal variable, altitude,
was a better model than speed, which was not estimate from a temporal variable. While
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we could prototype modifying the trajectory model such that distance and bearing from
the runway are temporal variables, the current Dynamic Bayesian network structure is
reliant upon discretized variables, which could produce similar intra-bin sampling is-
sues.

One potential approach is to use aggregate or relative variables, instead of absolute
variables in the model structure. Speed and vertical rate are currently absolute variables
that models the absolute kinematics of the aircraft. An example aggregate variable would
be the sum of aircraft speeds or the sum of vertical rates; while a potential relative varia-
ble would be the relative speed difference between the ownship and intruder. Using ab-
solute, aggregate, and relative variables in combination could be memory efficient and
better model the combinatorial state space of different aircraft kinematics. The use of
aggregate states yielded promising results when previously exploring aircraft avoidance
Markov Decision Processes (MDP)s[43].

Another approach similar to Mahboubi and Kochenderfer[21] could be prototyped
where tracks can be classified by the probability of an aircraft transitioning from one
navigation goal to the next. While Mahboubi and Kochenderfer used Turning Points as a
navigation goal, goals could also be formulated origin and destination (O-D) pairs. O-D
pairs have been used to model potential air taxi traffic between locations, with O-D pairs
enabling models to assess various operational constraints between different structured
routes[44]. Mahboubi and Kochenderfer modeled aircraft navigation between stochastic
O-D pairs, the parameters and nodes of the models were hand engineered based on a
nominal traffic pattern, while demonstrating they could be learned from observations.

We hypothesize that instead of a network based on specific phases of a terminal
operation, such as states associated with a 45 degree entry into a downwind, turn onto
base, and a turn into final before landing. Using the existing or modified model structure,
Dynamic Bayesian Network(s) could be trained for each state. For example, consider a
terminal environment with a single runway and VFR route. The VFR route could be
composed of multiple waypoints but the proposed model would represent the entire
VER route as a single state. Similar to the cluster approach described in Section 2.3, we
could identify tracks with a VER route state. Subsequently, states associated with landing
or taking-off from the ends of the runway would have their own states. Given this state
classification, we could train models tailored to the states. Then similar to the encounter
identification approach from Section 2.4, we could identify encounters given navigational
state and relative position. This should enable the model to better distinguish between an
intruder flying along a VFR route with specific operating rules and assumptions and an
intruder transiting through the airspace at relatively higher altitudes. Each state could
have a Dynamic Bayesian network to model how aircraft operate within a state (i.e., fly-
ing along the VFR route) with a separate Bayesian network to model the transition be-
tween states. This hierarchical model would then enable modeling of both aircraft kine-
matics and the relative interactions between navigational states. Notwithstanding, future
work will focus on improving modeled speed and various intents.

Other avenues for future work include rotorcraft track identification with tech-
niques that do not leverage the aircraft registry, such as using an autoencoder[45] or
kinematic features[46]; considerations for nonconventional aircraft, such as gliders or
balloons; or incorporate traffic flow management concepts[47] into our model.

5. Conclusions

We overview the development of a statistical model of how crewed aircraft behave
when operating in terminal airspace and a rejection sampling approach to create en-
counters representative of those with uncrewed aircraft. Using the trained models, we
can develop and evaluate systems that mitigate airborne collision risk. Specifically, the
models directly support activities of the RTCA SC-228 standards development commit-
tee.

6. Patents
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Appendix A

This appendix lists the FAA airports that were in scope for the version 2.0 of the
terminal encounter model. The quantity of observations near these airports varied, due to
surveillance coverage and characteristics of the sources of aircraft tracks. Some locations
had little to no observations. Specifically, FAA Class C airports that were in scope in-

cluded:

e KAVL
e KBGR
e KGSP
e KMYR
e KRSW

FAA Class D airports that were in scope included:
e KADS
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e KARA
e KASE
e KASH
e KBCT
e KBLI

e KBVI

¢ KCGF
e KCHO
e KCKB
e KCRE
e KCRQ
e KCWF
e KEMT
e KEYW
e KFLG
. KFUL
e KFYV
e KGCN
. KGKY
e KGTR
e KGUS
e KGVT
e KGYR
. KHHR
¢ KHSA
. KHTS
e KIFP

. KJAC

e KLAW
e KLBE
e KLWB
e KLZU
e KMDT
¢ KMER
e KMFR
e KMGW
e KMRB
e KMTN
e KNOQA
e KOJC
e KOXC
¢ KOXR
e KPSM
¢ KRME
e KRNT
¢ KROG
e KRYY
e KSAW
e KSBD
e KWHP
e KPAO
e KGEU
e KSDL
e KSGR

e KSKF
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¢ KSMO
e KSQL
¢ KSUN
e KTBN
e KTIW
e KTTD
e KTUP
e KVOK
e KWIJF
e KWRB
¢ KXMR
e KHQZ
e KTKI

There were 873 FAA Class E and G airports considered in scope for this analysis.
Please contact the authors for a complete list of these airports.

Appendix B

When identifying encounters as part of model training, all observations of aircraft
transmitting any of the special transponder codes in the following table were rejected.

Table 6. Special use transponder codes not used for model training.

Code Purpose
VER law enforcement, first responder by L.A., may not be in
1206 .
contact with ATC
1255 Firefighting aircraft
1273-1275 Calibration and performance monitoring equipment
1976 Air defense identification zone penetration (when unable to

contact ATC or aeronautical facility)
4401-4433, 4466-4477 Special aircraft - sensitive unclassified

4434-4437 Weather reconnaissance

4447-4452 Special flight support codes

5000-5057, 5063-5077,

5400, 6100, 6400, DOD reserved codes only to be assigned by NORAD

7501-7577

5100-5300 More DOD aircraft

7400 Reserved for uncrewed aircraft with a lost link

7500 Hijack

7600 Radio failure

7601-7607, 7701-7707 Allocz?ted by the FAA for special use by law enforcement
agencies

7700 Emergency

DOD interceptor aircraft on active air defense missions

7777
-operating without ATC clearance

Appendix C

This appendix overviews the initial approach of version 1.0 to identify if a runway
was for taking off or landing. This approach was found to be sensitive to false positive
identifications (e.g., wrong runway identified or assessed as landing but actually trans-
iting). The criteria were tuned to minimize such false positives at the expense of exclud-
ing some otherwise relevant trajectories (i.e., false negatives). In response, the approach
described in Section 2 was developed to reduce misidentifications, enhance the robust-
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ness and improve scalability. For reference, we overview the original deprecated ap-
proach in this appendix.

Each trajectory was separately assessed for landing and for takeoff, so it can be
tagged as one or the other, both, or neither. The procedure for both takeoff runway and
landing runway identification entails transforming the latitude/longitude trajectory into
a Cartesian coordinate frame centered on each candidate runway.

For takeoffs, the assessment is limited to the first 30 seconds of trajectory data. That
trajectory segment is assessed against the following criteria to determine if the runway
remains a candidate:

e  Trajectory segment include altitude below 1500 feet (relative to runway elevation);

e  The segment is generally increasing in altitude;

e  The ground track is aligned within 45° of the runway; and

e  The segment includes positive points on the along-runway axis that are within 4000
feet of the runway laterally.

If no runways satisfy these criteria, the trajectory is not a takeoff. (Conceivably some
takeoff trajectories will be missed if they begin at the defined edge of the terminal area,
land, and immediately take off again.) If a single runway satisfies the criteria, the trajec-
tory is marked as a takeoff from that runway. If multiple runways satisfy the criteria, the
trajectory is marked as a takeoff from the runway with threshold closest in ground range
to the initial point on the trajectory.

For landings, a similar procedure is followed. The assessment uses the final 30 sec-
onds trajectory data, which must satisfy the following criteria for a runway to remain a
candidate:

e Includes altitudes below 1500 feet (relative to runway elevation);

e  Ground track is aligned within 35° of runway; and

¢ Includes negative points on the along-runway ways that are within 4000 feet of the
runway laterally.

As for takeoffs, if multiple runways satisfy the criteria, the runway with threshold
closest in ground range to the final point of the trajectory segment is identified as the
landing runway. Note that this procedure likewise will miss the scenario outlined above
where the landing and takeoff occur in the middle of the trajectory. Both assessments
neglect any events in the middle of the trajectory and do not assess, for example, inter-
mediate landings and takeoffs in trajectories with multiple go-arounds.

Any landing trajectories are also assessed for using a straight-in approach, which
would make the trajectory applicable as a surrogate UAS trajectory. Straight-in ap-
proaches require that the aircraft make no turns after passing the Final Approach Fix,
which is different for every airfield but typically four to five miles from the runway. This
criterion is simplified to whether the trajectory (not just the 60-second segment) passes
within one nautical mile laterally when it is at four nautical miles along the negative
along-runway axis.

Finally, encounters are identified amongst the landing and taking off trajectories. To
be identified as such, one track must be a straight-in landing (the surrogate uncrewed
aircraft) and the second track must be a landing (either straight-in or otherwise) and/or
takeoff.

Appendix D

For the encounter set generated to support RTCA SC-228, trajectory data is provided
in two forms: a single binary file containing position points for all encounters
(along-runway position (ft), cross-runway position (ft), and altitude (ft)), and full state
data (position/velocity/attitude) in individual text files for each aircraft and each en-
counter. The following variables are included in the full state data:

e Time (in seconds)
e Speed (in feet per second)
e Track Angle (in radians)
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e Bank Angle (in radians)

e Pitch Angle (in radians)

e Acceleration (in feel per second squared)

e Along-Runway Position (in feet)

e Cross-Runway Position (in feet)

e Altitude (relative to runway elevation, in feet)
e Along-Runway Velocity (in feet per second)
e Cross-Runway Velocity (in feet per second)
e Vertical Speed (in feet per second)

¢ Heading Rate (in radians per second)

e Latitude (in degrees)

¢ Longitude (in degrees)

The latitude and longitude values assume a runway at a fixed geodetic location
oriented due north. An additional metadata file indicates the sampled encounter condi-
tions as well as CPA information for each encounter. Metadata is formatted to align with
the DAIDALUS algorithm [7]. The following variables are included in the metadata:
e Encounter ID
e Airspace class (1 — Class D, 2 - Class E, 3 — Class G)

e  Ownship intent (-1 — landing, 1- takeoff)

e Intruder intent (-1 - landing, 0 — transit, 1- takeoff)

e Intruder type (1 — fixed wing)

e Intruder runway (1 — same)

¢ Ownship distance from runway at CPA (in nautical miles)

e  Ownship bearing relative to runway at CPA (in degrees)

e Ownship altitude at CPA (in feet relative to airport elevation)

e Ownship speed at CPA (in feet per second)

e Ownship track relative to runway at CPA (in degrees)

e Ownship vertical rate at CPA (in feet per minute)

e Intruder distance from runway at CPA (in nautical miles)

e Intruder bearing relative to runway at CPA (in degrees)

e Intruder altitude at CPA (in feet relative to airport elevation)

e Intruder speed at CPA (in feet per second)

e Intruder track relative to runway at CPA (in degrees)

e Intruder vertical rate at CPA (in feet per minute)

e Ownship initial altitude (in feet relative to airport elevation)

e Ownship initial speed (in feet per second)

e Ownship initial vertical rate (in feet per minute)

e Intruder initial altitude (in feet relative to airport elevation)

e Intruder initial speed (in feet per second)

e Intruder initial vertical rate (in feet per minute)

e Time of CPA (in seconds)

e Horizontal miss distance (in feet)

e Vertical miss distance (in feet)

e  Whether a Near Mid-Air Collision (500 ft horizontally, 100 ft vertically) occurred (1
=yes, 0 =no)
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