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 Abstract: The incorporation of unmanned aircraft terminal operations into the scope of Detect and 

Avoid systems necessitates analysis of the safety performance of those systems—principally, an 

assessment of how well those systems prevent loss of well clear from and collision with other air-

craft. This type of analysis has typically been conducted by Monte Carlo simulation with synthetic, 

statistically representative encounters between aircraft drawn from an appropriate encounter 

model. While existing encounter models include terminal airspace classes, none explicitly repre-

sents the structure expected while engaged in terminal operations, e.g., aircraft in a traffic pattern. 

The work described herein is an initial model of such operations, scoped at this time specifically for 

assessment of unmanned aircraft landings and encounters with other aircraft either landing or 

taking off. The model shares the Bayesian network foundation of other MIT Lincoln Laboratory 

encounter models but tailors those networks to address structured terminal operations, i.e., corre-

lations between trajectories and the airfield and each other. This initial model release is intended to 

elicit feedback from the standards-writing community. 
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1. Introduction 

The continuing integration of uncrewed aircraft system (UAS) operations into the 

National Airspace System (NAS) requires new or updated regulations, policies, and 

technologies to maintain safety and enable efficient use of the airspace. One such tech-

nology is detect and avoid (DAA), which enables uncrewed aircraft to comply with ap-

plicable operating rules of Title 14 of the Code of Federal Regulations (14 CFR). These 

rules include Part 91, §.3, .111, .113(b), .115, .123, and .181(b), which prescribe that aircraft 

must remain well clear from and prevent a midair collision (MAC) with other aircraft.  

DAA is part of a multi-layered airspace conflict management architecture and DAA 

is often not employed until prior strategic mitigations have failed[1]. While there is a 

singular standard for crewed aircraft collision avoidance, there are a variety of standards 

for UAS DAA systems. DAA standards are primarily organized by size of the aircraft; 
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expected operations by airspace class or altitude; and how prescriptive the standard is 

written.  

A foundational element to these standards is modeling and simulation activities to 

design and evaluate the safety and suitability of a DAA system. Monte Carlo simulations 

in particular enable surveillance systems and algorithms to be tested under an exhaustive 

set of circumstances not possible through live flight testing. The simulations are often 

validated through human-in-the-loop experiments and flight testing. For example, an 

update to the standard prescribing a collision avoidance system for crewed aircraft was 

validated in part using this approach[2]. 

1.1. Motivation 

RTCA Special Committee (SC)-228 is developing performance standards for a vari-

ety of UAS technologies, with DAA standards being developed in multiple phases[3]. 

Phase one focused on enabling UAS transit operations in Class D and G airspaces when 

flying to/from Class A airspace or special use airspace. This phase was based on guidance 

from the U.S. UAS Executive Committee Science and Research Panel[4]; validated pri-

marily in simulation[5]; and published as the DAA Minimum Operating Performance 

Standards (MOPS), DO-365 revision A[6]. Phase two included UAS expanded en route 

operations with new types of sensors, along with take-off and landing operations in some 

terminal airspaces. Phase two has been published as DO-365 revision B in 2021, and 

example implementations include the DAIDALUS[7] and ACAS Xu DAA systems[8]. 

Phase three activities will initiate in 2021 and address more specialized UAS operations 

that require more tailored performance or constrained guidance, such as operations in 

Class B airspace or vertical takeoff and landing operations for advance air mobility 

(AAM) use cases. 

Across all RTCA SC-228 phases, the MIT Lincoln Laboratory (MIT LL) statistical 

encounter models have been used to model aircraft behavior. These are trained on re-

al-world observations of individual aircraft or observations of encounters between two 

aircraft. The majority of these models are uncorrelated[9]–[12], which assume that the 

aircraft are not participating in the air traffic control system and their behavior is inde-

pendent of other aircraft. For encounters in the terminal environment, such as considered 

by RTCA SC-228, a correlated encounter model was required that assumes that aircraft 

behavior and the relatively geometry between aircraft was dependent upon an air traffic 

service. While MIT LL previously developed[13] and updated[14] a correlated model, it 

was designed to model encounters that occur away from airports in terminal airspaces, or 

while one or both aircraft are merely passing through the terminal airspace. This previ-

ous model did not represent the standardized approach and departure routes that de-

scribe the permissible flight paths for large airports, or smaller airports employing a 

standardized flight pattern to regulates flow into and out of the airport. In response, a 

new correlated model that better represents the structure and encounter dynamics of the 

terminal airspace was required to support RTCA SC-228 and the evaluation of DAA 

systems. 

1.2. Scope 

The model development scope was directly informed by the terms of reference of 

RTCA SC-228[3], specifically those associated with phase two activities for DAA MOPS 

development. This standard was designed for UAS weighing greater than 55 pounds and 

whose maximum dimensions are likely greater than 25 feet. Considered was geograph-

ically limited operations and operations within a terminal environment, which include: 

Class D airspace, towered airfields within Class E airspace, nontowered airfields within 

Class E airspace, non-towered airfields within Class G airspace, take-off and landing 

operations in Class C, D, E, and G airspace, and off-airfield launch and recovery sites 

within Class G airspace. To support RTCA SC-228, we assume UAS land via a straight-in 

instrument approach or an analogous departure route.  
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RTCA SC-228 defined the terminal environment as within 8 nautical miles laterally 

and 3000 feet vertically of a runway. We adopted a slightly larger definition of 8 nautical 

miles laterally and 5000 vertically of a runway. Within this environment, we defined an 

encounter as when two aircraft are within 4 nautical miles laterally and 2000 feet verti-

cally of each other for at least one second. Aircraft must overlap in time for at least thirty 

seconds too. Notably this volume is larger than the volume for many Class C and D air-

spaces; thus, the defined terminal environment may consist of multiple airspace classes 

for a specific airport. For example, the terminal environment for a notional airport in 

Class D airspace will consist of the Class D airspace within 2.5 nautical miles and up to 

2500 feet AGL from the airport; along with the surrounding Class G airspace. 

Out of scope use cases included very low level UAS operations exclusively below 

500 feet AGL; high altitude Class E above A operations; and 14 CFR Part 135 cargo oper-

ations. Some of these out of scope concepts are being addressed through RTCA 

SC-147[15] and ASTM F38[16]. These out of scope efforts leverage different MIT LL en-

counter models. 

1.3. Objectives and Contributions 

The primary objectives were to develop a statistical model that represents aircraft 

behavior in the terminal environment and then sample this model to create an encounter 

set to support RTCA SC-228 safety analyses. Since terminal airspaces can be traffic dense, 

the developed model needed to be cognizant of the airspace structure that provides im-

plicit coordination and communicates intent amongst all the airspace users. Although 

every airport is different and traffic patterns likewise vary, assessing encounters specific 

to the traffic at one airport would not be sufficient to deem a DAA system safe for ter-

minal operations at all airports. Traffic patterns may be tailored to account for various 

configurations of runways as well as external factors like surrounding terrain or other 

natural or man-made features 

Accordingly, the primary contribution was a set of Dynamic Bayesian models rep-

resentative of single runway airports in Class C, D, or E/G airspace and potentially rep-

resentative of Class B. These models characterized the interaction between two aircraft. 

One aircraft must be either on a straight-in approach or straight-out departure while the 

other can approach or depart without restrictions, along with simply transiting through 

the airspace. Similar to other recently developed models[17], this terminal model con-

sidered the type of aircraft (e.g. fixed-wing, rotorcraft, etc.). Additionally, while trained 

solely on observations of crewed aircraft, the model can be sampled such that the dy-

namics and behavior of one modeled aircraft is a surrogate for a large UAS. These models 

were released as open source software in July 2021[18], with software to sample the 

models released in October 2021[19]. 

The primary contribution was preceded by an initial prototype model (version 1.0) 

narrowly scoped to aircraft on straight-in approach to a Class D single runway airport 

encountering a second aircraft either landing or taking off; and a subsequent prototype 

(version 2.0) that added Class E/G single runway airports, straight-out departures, and 

transiting aircraft. A dataset of sampled encounters using the version 1.0 was publicly 

released, but the Bayesian models for the two prototypes were not made publicly avail-

able. Only version 3.0 was released as open source software[18], [19]. None of the models, 

as of October 2021, fully represent all airport or terminal environment use cases; and 

development is ongoing.  

A secondary contribution was an analysis of which data source to leverage for 

model training, with specific consideration for spatial extent and transponder equipage. 

Some of the software and data developed for this effort have been released under per-

missive open source licenses.  

2. Materials and Methods 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   doi:10.20944/preprints202111.0051.v1

https://doi.org/10.20944/preprints202111.0051.v1


 

 

This section overviews the training datasets; how aircraft intent was classified in the 

terminal environment; how the models were trained; and rejection sampling approach 

used when sampling the models to create encounters. Encounters consist of two aircraft, 

with the first aircraft referred to as the ownship and the other aircraft referred to as the 

intruder. For DAA evaluations, we assume ownship to be a UAS. Specifically, for evalu-

ations related to RTCA SC-228 DO-365B, we assumed the UAS to be operating under In-

strument Flight Rules (IFR); however, we enforce this when sampling, not when training, 

the model. Many, not all, of our assumptions were derived from DO-365B. Important 

assumptions for developing and training the model included: 

• An encounter is when ownship and intruder are within 4 nautical miles laterally and 

2000 feet vertically of each other for at least one second over at least a thirty second 

duration; 

• Ownship is on a straight-in takeoff or approach; 

• Intruder aircraft may be landing, taking off, or transiting the area; 

• Intruder aircraft may not be landing or taking off from a nearby airport; 

• Sampled trajectories are constrained to within 8 NM of the airfield and 5000 ft above 

airfield elevation (minimum altitude is 200 ft above airport elevation); and 

• Sampled trajectories are a maximum of 300 seconds long. 

The trained models align with the Bayesian network framework of other MIT LL en-

counter models[10] but are reformulated to account for the structured behavior aircraft 

employ when landing or taking off. Like the existing radar-based en route correlated 

encounter model[14], this terminal encounter model represents the relative geometry of 

two aircraft. While the other correlated model defined relative geometry based on the 

horizontal and vertical separation between aircraft, the geometry of this terminal en-

counter model was based on the relative geometry between each aircraft and the runway. 

Notably, our approach also does not identify and model turning points, a concept 

popularized by Gariel et al.[20]. Mahboubi and Kochenderfer[21] demonstrated that a 

turning point model performs well on simulated data; due to its reliance on noisy head-

ing rates, it has difficulty with real-world data. Our approach also differs from Barrett[22] 

et al. who used an unsupervised cluster algorithm to identify departure and approach 

procedures and fit the clusters to a generative model based on intra-cluster covariance 

matrices. Barrett[22] et al. was inspired by the clustering approach previous proposed by 

Li et al.[23], [24]. Similar to these other efforts, we also do not leverage filed or amended 

flight plans like Krozel[25] or Georgiou et al.[26]. Additionally, we did not consider air-

craft trajectories on the surface, such as Churchill and Bloem[27]. 

Instead, our approach clustered and classified tracks based on assumptions of air-

port design, approach and departure routes, and aviation heuristics, such as the 1 in 60 

rule (one degree offset angle equates to one nautical mile displacement at 60 nautical 

miles from a origin). Additionally, we did not employ unsupervised learning techniques 

as we wanted to take advantage of known physical states during takeoff or landing op-

erations. Namely, aircraft taking-off or landing should have a low AGL altitude when 

close to the runway and that aircraft transiting over the airport would do so at higher al-

titudes. Consequently, our approach was computationally efficient, enabling us to train a 

model based on billions of observations. Furthermore, RTCA SC-228 and the immediate 

users of the developed model, expressed a preference for the newly trained model to be 

consistent with previous encounter models for improved usability, which resulted in 

using a similar Bayesian framework. Specifically, our approach consists of the following: 

1. Download and pre-process (i.e. interpolate, outlier detection etc.) training data 

2. Coarsely spatially filter training data to terminal airspace 

3. Classify track intent (e.g. landing, taking-off, transiting) for training data within 

terminal airspace 

4. Given classified tracks, identify encounters between aircraft 

5. Train model using identified encounters 

6. Sample model to create representative encounters 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   doi:10.20944/preprints202111.0051.v1

https://doi.org/10.20944/preprints202111.0051.v1


 

 

2.1. Training Data 

Two sets of data were used to train two separate encounter models: 1) FAA collected 

terminal radar track data over the period January through September 2015 at select air-

ports throughout the NAS and 2) 190+ days of data over the period January 2019 through 

February 2020 from the OpenSky Network, a database consisting of ADS-B and Mode S 

reports[28]. These two sources of data have different assumptions and surveilled differ-

ent types of aircraft. Training multiple models enabled us to assess the sensitivity of the 

models to different biases, while mitigating some weakness for a given dataset. Biases 

include the type of aircraft observed, the metadata associated with each surveilled track, 

or surveillance error. Data near fixed-runway airports in Class C, D, E, and G airspaces 

were in scope for version 3.0 of the model, while Appendix A lists the airports that were 

in scope for version 2.0 of the model. As noted in Section 1.3, the focus of this paper is 

version 3.0. 

The terminal area radars data provided to MIT LL included standard aviation 

transponders with Mode A, C, and S capabilities. The OpenSky Network surveils aircraft 

only equipped with ADS-B, where ADS-B aircraft also generally support Mode C while 

not all Mode C aircraft are also equipped with ADS-B. However, the terminal area radars 

have a more limited spatial and temporal scope, whereas the OpenSky Network has 

better theoretical surveillance coverage. Additionally, the OpenSky Network was freely 

and easily available whereas the terminal area radar data was not. 

2.1.1. OpenSky Network 

Observations of crewed aircraft were sourced from the OpenSky Network[28], a 

community network of ground-based sensors that observe aircraft equipped with Au-

tomatic Dependent Surveillance-Broadcast (ADS-B) Out. The OpenSky Network offers a 

historical database using Cloudera Impala. It is a full database requiring terabytes of 

storage. Impala is a distributed query engine and does not index structures for query 

optimization. Queries can be formulated based on mean sea level (MSL) altitude, time, 

latitude, longitude, and the ICAO 24-bit address. The raw observations are only in MSL 

altitude and the OpenSky Network does not estimate the AGL altitude for any observa-

tions. Observations can be one second apart. In response, we developed and publicly re-

leased the software, em-download-opensky[29], to generate queries based on above 

ground level altitude, location of airports, airspace class, and time zones. Using this 

software, we generated 136,884 queries for 196 days across 695 bounding boxes across 

Class B, C, and D airspace across the United States. Temporally, we queried for the first 

14 days of each month from January 2019 through February 2020. This time window was 

largely unaffected by the COVID-19 pandemic, as the Schengen Area travel ban didn’t 

take effect until March 2020[30]. 

Prior to model training, the OpenSky Network data was (1) parsed and organized; 

(2) archived; and (3) processed and interpolated into track segments[31]. Processing in-

cluded removing track segments with less than ten observations; calculating the above 

ground level altitude was calculated; identifying airspace class; and estimating dynamic 

rates (e.g. vertical rate) were calculated. Once processed, track segments were ready for 

model training. For details on how this dataset was curated and processed, please see [32] 

where this dataset is referred to as the aerodrome dataset. 

The aerodromes dataset differed from the Mondays dataset, that was curated from 

the OpenSky Network to train the recent uncorrelated encounter models [32]. The Mon-

days dataset was curated from OpenSky Networks from 104 Mondays spanning from 

2018-02-05 to 2020-11-16; not all Mondays in this span were included. The software used 

to query the OpenSky Network for the aerodromes dataset has been released as open 

source software [29]. This dataset was not spatially limited to regions around airports but 

had a more restrictive temporal scope of just Mondays. The COVID-19 pandemic was 

also in scope for this dataset. The Mondays dataset was continued expanded upon after 

model development, as of August 2021 the Mondays dataset now consists of Mondays 

through 2021-08-02.  
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2.1.2. Terminal Area Radars 

Observations of crewed aircraft were sourced from raw secondary radar reports 

from terminal radars (ASR-9) that participated in the TCAS RA Monitoring System 

(TRAMS) from January through September 2015. Radars included the ASR-9 located at 

MIT LL and radars associated with the following airports: KATL, KDEN, KDFW, KFLL, 

KHPN, KJFK, KLAS, KLAX, KOAK, KORD, KPDX, KPHL, KSDF, KSEA, KSTL. The 

specific radar identifiers were respectively: ATL, DEN, DFW, FLL, HPN, JFK, LAS, LAX, 

LAXN, MOD, OAK, ORDA, PDX, PHL, PHX, SDF, SEA, STL. These radars support the 

TCAS Operational Performance Assessment (TOPA) program that was established over a 

decade ago[33]. While TOPA is ongoing program, the data made available to support 

model development varied in quantity and temporal scope. For example, KDFW had 

data from January through August while KOAK only from June through August.  

 These radar reports provide latitude, longitude and barometric altitude for tran-

sponder-equipped aircraft within the radar’s surveillance volume. All of these radars 

were located within a Mode C veil, where aircraft, with few exemptions, are required to 

be transponder-equipped. While these radars surveil standard aviation transponders, not 

all surveillance information was made available to MIT LL. Specifically, the Mode S ad-

dress was not included in this dataset, preventing classification of aircraft type using 

aircraft registries. This proximity to a large airport was a source of biases for this training 

data, which we further discuss in Section 2.2. 

2.1.3. Altitude and Airspace Class Characterization  

To identify potential biases in the training data, we characterized the different da-

tasets, leveraging software and a methodology previously described in [34]. This char-

acterization was also important in assessing if the different training datasets were similar 

or different and if there was a sufficient difference between datasets to warrant training a 

model with each dataset. For each dataset, the altitude distributions given airspace class 

was calculated using all latitude, longitude, and barometric altitude reports using the 

workflow described in [31]. Unlike [34], we did not consider the number of seats onboard 

the aircraft, as we lacked the metadata in the terminal area radar dataset required for that 

characterization. Figure 1 illustrates the distribution for the OpenSky Network aero-

dromes dataset, Figure 2 for the terminal area radar dataset, and for comparison, Figure 3 

is the distribution of the “Mondays” dataset used for the recent uncorrelated encounter 

models. Note that the limit of the y-axis is greater in Figure 1 than Figures 2-3, due to the 

terminal area radar dataset being significantly larger. Table 1 reports that each dataset 

had billions of interpolated observations of aircraft at altitudes below 5,000 feet AGL, 

based on barometric altitude reports, and prior to any spatial filtering performed as part 

of model training. To calculate Table 1 and Figures 1-3, the computations were paralleled 

across 1007 xeon-e5 processes on the LLSC TX-Green. Computations required an hour or 

less for all datasets, if computed serially without parallelization, an estimated 16.1 (aer-

odromes), 31.7 (Mondays), 980.7 (terminal area radars) hours would had been required.  

Table 1. Data points below 5,000 feet AGL for each dataset, organized by airspace class.  

Airspace Mondays Aerodromes Terminal Area Radars 

Class B 251,671,725 505,322,452 1,026,076,842 

Class C 79,874,269 108,969,262 126,863,443 

Class D 57,887,219 81,304,346 214,349,345 

Other  667,255,320 696,368,992 2,282,086,215 

Total 1,056,688,533 1,391,965,052 3,649,375,845 

 

First, note that in Figures 1-3 the Class C and D distributions taper off at 2500 and 

4000 feet AGL, the nominal ceilings for the respective airspace classes. Regardless of 

airspace class, the majority of observations were above 500 feet AGL. The peak in all 

figures between 500 and 1000 feet was hypothesized to aircraft trying to maintain an al-
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titude below the nominal Class E floor of 700 feet AGL or the Class G ceiling of 1,200 feet 

AGL. The decrease in observations at 3000 feet AGL and upward can be partly attributed 

to behavior induced by 14 CFR § 91.159 that regulates the hemispheric flight rules and 

when VFR must navigate using MSL altitude. This was especially evident in the terminal 

area radars dataset. We also hypothesized the peak between 1500-2000 feet AGL could be 

attributed to general aviation cross-country operations, but no analysis was conducted to 

make a definitive conclusion. 

Next, by comparing the figures, we observed that the terminal area radar dataset 

(Figure 1) had the most observations, below 1000 feet, in Class B and other airspaces, 

followed by the aerodromes dataset (Figure 2) and lastly by the “Mondays” dataset 

(Figure 3). As the terminal area radars were largely co-located at Class B airports, this 

was expected. The aerodromes dataset had the most observations for the Class C and D 

airspaces. At higher altitudes, there was less of a difference between the terminal area 

radar and aerodrome datasets for Class B but the terminal area radars consistently had 

significantly more observations for the other airspace classes. 

 

Figure 1. Altitude and airspace distributions below 5,000 feet AGL for the terminal area radars 

dataset. 

 

Figure 2. Altitude and airspace distributions below 5,000 feet AGL for the OpenSky Network aer-

odromes dataset. 
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Figure 3. Altitude and airspace distributions below 5,000 feet AGL for the Mondays dataset used to 

train the OpenSky Network-based uncorrelated encounter models. 

 Since the model encompassed the airspace within 8 nautical miles of the airport, 

identified encounters can cross multiple airspaces, as noted in Section 1.2. Generally be-

low 1200 feet AGL, Class C and D airspaces extend 2.5-5 nautical miles from a controlled 

runway. Given our encounter range criteria of 4 nautical miles, an encounter could occur 

when one aircraft was in Class D airspace and another in other airspace. An aircraft could 

also transition between airspaces over the course of the 30 second encounter duration. 

Thus, the significantly more observations of aircraft in other airspace at low altitudes was 

advantageous for the terminal radar dataset. The terminal area radar dataset had the 

most observations for a given location, if lower altitude surveillance was available, but 

this dataset was also the most restricted spatially and temporally. 

Furthermore, when comparing the two OpenSky Network-based datasets, the per-

cent difference between datasets for Class E and G (other) airspace was only 4.27%, yet it 

was 30% or greater for the other airspace classes. These percent differences demonstrate 

the advantage of curating a dataset, based on areas of interest, by querying the OpenSky 

Network. While the “Mondays” dataset has theoretically the best spatial coverage, as all 

data observed in the United States is in scope for that dataset, the OpenSky Network does 

not have universal low altitude coverage across the United States. The OpenSky Network 

has significant coverage gaps in rural or low population areas. However, these regions 

also typically have a low density of crewed aircraft traffic and these coverages gaps are 

not a significant impediment for model training. Accordingly, the wider temporal scope 

of the aerodromes dataset and surveillance of more types of transponders with the ter-

minal area radar dataset results in these datasets having more observations than the 

“Mondays” dataset.  The “Mondays” dataset also included 2018, when fewer aircraft 

were equipped with ADS-B and fewer sensors were participating in the OpenSky Net-

work, and 2020 when aviation activity sharply decreased due to the COVID-19 pandem-

ic[30].       

2.2. Initial Spatial Filtering  

 All track segments at least 30 seconds in duration (assuming one second updates), 

within a 10 NM radius of an airport of interest, and up to 4,000 ft altitude relative to the 

airport surface were identified as within the vicinity of an airport. The FAA airport open 

dataset1 was used to define the latitude and longitude coordinates of the airports. Addi-

tionally, observations with transponders squawking specific special use transponder 

 
1 https://ais-faa.opendata.arcgis.com/datasets/e747ab91a11045e8b3f8a3efd093d3b5_0 
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codes, such as those reserved for law enforcement aircraft, were also filtered out. Refer to 

Appendix B for a complete list of these codes. Tracks that did meet all these conditions 

were filtered out and not considered in the subsequent processing. Parallelized across 

1008 xeon-e5 processes on the LLSC TX-Green with a block task distribution, 782 seconds 

was required to identify 19,293,916 OpenSky ADS-B tracks and 10,045 seconds for 

36,701,193 terminal radar Mode C tracks.  

 The initial spatial filtering was primarily executed to reduce the computational 

complexity and requirements for other processing steps. The quantity of data reported in 

Table 1 is not a good indicator of where encounters were identified for model training. 

2.2.1. Data per National Plan of Integrated Airport Systems  

 Table 2 reports the data identified as spatial filtering for select airports. For each 

airport, we also noted if the airport was designated as a primary airport in the 2015-2019 

FAA National Plan of Integrated Airports Systems (NPIAS)[35]. Primary airports are 

grouped into categories of large (L), medium (M), small (S), and nonhub (N). Large hubs 

are those airports that each account for at least 1% total U.S. passenger enplanements; 

while nonhub primaries enplane less than 0.05% of all commercial passenger enplane-

ments but have more than 10,000 annual enplanements. Medium and small hubs are 

grouped between large and nonhub primaries.  

Table 2. Total track points after initial spatial filtering for select airports.  

FAA ID Class Hub OpenSky Network Terminal Area Radar 

BOS B L 10,881,938 13,270,494 

ABE C N 1,816,670 2,285,593 

BUR C M 16,789,410 29,748,003 

FLL C L 10,342,130 50,856,891 

SMF C M 6,876,029 0 

XNA C S 1,466,794 0 

ACK D N 21,934 0 

ADS D - 20,954,315 68,151,579 

BED D N 2,740,664 6,220,588 

EYW D S 0 0 

MVY D N 820,654 0 

RNT D - 21,892,547 46,653,226 

TTD D - 5,360,106 14,106,809 

7N7 E/G - 7,968,295 18,523,179 

17N E/G - 2,252,995 13,006,900 

19N E/G - 5,818,462 18,784,328 

DDH E/G - 0 0 

 

 As hubs increased in enplanements, we generally identified more potential tracks; 

although there was not a strong correlation. The quantity of data was dependent more on 

the surveillance source, which likely has some correlation with NPIAS categorization. For 

example, Addision Airport (ADS), a nonprimary national airport, had one of the largest 

datasets. The size of the ADS dataset however was due to ADS located in the vicinity of 

Dallas Love Field (DAL) and Dallas Fort Worth International (DFW) which are medium 

and large hubs, respectively. Additionally, more data was available for BED and ABE, 

nonhub primaries, than XNA or EYW, small hubs. These four airports all had less data 

identified than Oldsman Township Airport (7N7), a non-towered single runway airport 

approximately 10 nautical miles from Philadelphia International. However, the majority 

of the tracks identified near 7N7 failed to satisfy the runway or encounter criteria de-

scribed in subsequent sections.  

2.2.2. Joint Distributions of Relative Distance and Altitude  
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 In addition to Tables 1 and 2, we calculated the joint distributions of the relative 

distance and altitude between the airport and all the nearby data. The joint distributions 

are visualized as contours. While the initial filtering includes altitudes up to 4000 feet 

relative to the airport, the contours are illustrated with relative altitude up to 2500 feet for 

readability and to promote discussion about the lower altitudes, which are of greater in-

terest. By reviewing the joint distributions for specific airports, we can assess the poten-

tial local geospatial biases of the different datasets and visualize the surveillance cover-

age of each dataset. 

 For example, Figure 4 illustrates the relative distance distributions for Renton Mu-

nicipal (RNT), a single runway Class D airport about 4 nautical miles northeast of Seat-

tle-Tacoma International (SEA). These support colloquial statements such as “5% of the 

identified traffic based on the OpenSky Network near RNT was within 2 nautical miles 

and 1000 feet or less of the airport,” or “50% of the identified traffic based on the terminal 

area radar dataset was at least 6 nautical miles and 500 feet above RNT.”  

 

 

Figure 4. Fraction of aircraft positions relative to RNT. 

 RNT exemplifies the effect of nearby airports on identified tracks. Because the 

OpenSky Network is a distributed network of sensors, there was potentially less of an 

observation bias towards one specific location. This bias was exemplified by the gradual 

gradient around 4 nautical miles from the OpenSky Network-based tracks and the steep 

gradient from the terminal area radars dataset. The terminal radar located at SEA was 

expectantly observing very low altitude traffic operating to and from SEA. Section 2.3 

will discuss how the nearby airport traffic will be filtered out prior to model training.  

 However not all low altitude traffic can be attributed to nearby airports. Of the more 

than 21 million points from the OpenSky Network dataset near RNT, 921,958 or about 

4%, were associated with rotorcraft. Similarly, about 4% and 6% of OpenSky Net-

work-based data were rotorcraft for FLL and ADS, yet 12% and 15% were rotorcraft for 

BED and SMF. The tendency for rotorcraft to operate at lower altitudes has also been 

observed with the uncorrelated encounter models [12]. 
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Figure 5. Fraction of aircraft positions based on the OpenSky Network relative to RNT, organized 

by aircraft type. 

 Relative location to the terminal radars was a source of bias, and sensor location was 

also a bias with the OpenSky Network. ACK and MVY are the Class D airports respec-

tively for Nantucket and Martha’s Vineyards, islands off the southern coast of Massa-

chusetts. They are more than 50 nautical miles from the nearest terminal area radar and 

about 26 nautical miles apart from each other. Due to the distance away from the terminal 

radars, it was expected that neither airport would have any processed tracks from that 

dataset. As offshore islands, they are a good example of some the advantages and dis-

advantages of crowdsourced data. Foremost, particularly with MVY, the OpenSky Net-

work provided hundreds of flight hours for ADS-B equipped aircraft for a location where 

the other dataset had no coverage. However, these crowdsourced sensors often have 

limited range, which is exemplified by comparing the distance contours for ACK and 

MVY. These contours suggested that a sensor was located on Martha’s Vineyard, as MVY 

had relatively good low altitude coverage but that all observations over Nantucket were 

also from this MVY-based sensor. There was substantially less data near ACK and a bias 

towards higher altitudes.  

 

 

Figure 6. Fraction of aircraft positions relative to MVY. No data was available in the terminal area 

radars dataset. 
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Figure 7. Fraction of aircraft positions relative to ACK. 

 Similar to MVY and ACK, the importance of sensor location is also illustrated by the 

distributions for Lehigh Valley International (ABE), a Class C airport in Pennsylvania 

about 40 nautical miles north of Philadelphia, PA and 60 nautical miles west of Newark, 

NJ. Table 2 reports that the terminal radar dataset had at least 450,000 observations, 

within 10 nautical miles and 4000 feet of ABE, more than the OpenSky Network-based 

tracks. However, the following figure illustrates that nearly all the terminal radar-based 

tracks are at least 1,5000 feet above ABE, while the OpenSky Network had significantly 

better low altitude coverage of the region. This would ultimately result in no encounters 

identified for model training with the terminal radar dataset while encounters were 

identified using the OpenSky Network-based dataset. Similar trends were exhibited with 

Hollywood Burbank (BUR), a Class C airport serving northern greater Las Angeles.  

 

Figure 8. Fraction of aircraft positions relative to ABE. 
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Figure 9. Fraction of aircraft positions relative to BUR. 

 All of the discussed biases can be observed when comparing Laurence G. Hanscom 

Field (BED) to Boston Logan International (BOS). BOS is located about one nautical mile 

from the densely populated downtown of Boston while BED is located in the less popu-

lated suburbs about 13 nautical miles away from BOS. This region is unique in that the 

terminal area radar, MOD, is located at BED, a Class D airport, and not BOS, the nearest 

Class B airport. The proceeding discussion suggests that BOS should benefit from a 

greater nearby population density for the OpenSky Network-based data and that BED 

should have a greater percentage of tracks below 500 feet for the terminal radar data due 

to the location of the radar. This hypothesis was supported by percent differences be-

tween BOS and BED, with BOS having 119.5% more observations for the Open Sky 

Network-based data and 72.3% more using terminal radar dataset. The percent difference 

indicates that a greater percentage of data was gained from switching the target airport of 

BED in the suburbs to BOS in the city. Additionally, note that for distances greater than 

2.5 nautical miles with the terminal area radars, the 5% contour relative to BED is below 

500 feet in Figure 10 but above 500 feet in Figure 11 relative to BOS. This indicates a 

greater percentage of low altitude traffic below 500 feet observed by the terminal area 

radars were observed closer to the radar’s location at BED than away from the radar at 

BOS. 

  

Figure 10. Fraction of aircraft positions relative to BED. 
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Figure 11. Fraction of aircraft positions relative to BOS. 

 Figures 4-11 all indicate that aircraft are rarely observed within 2 nautical miles and 

no more than 500 feet above airports. While the contours are dependent upon the sur-

veillance performance of the OpenSky Network or terminal area radars (with perfor-

mance likely better at higher altitudes), the general shape and conclusions drawn from 

the different airports are similar. The surveillance performance differs for each of the 

airports but drawing similar conclusions for each airport lends confidence to the analysis. 

Figures 1-3 also indicated that aircraft operate largely above 500 feet AGL. Assuming the 

contours are representative, the associated aircraft behavior aligns with many FAA reg-

ulations, such as 14 CFR § 91.119 - Minimum safe altitudes or 14 CFR § 91.129 - Opera-

tions in Class D airspace. Namely, crewed aircraft rarely should operate low and close to 

airports and that the majority of the time aircraft are not operating in the terminal envi-

ronment. The contours could be used to estimate a quantitative bound on how often air-

craft operate near airports, with an upper bound potentially of 5%. 

 Given our objective to identify encounters where aircraft are operating low and 

close to an airport, this analysis helps characterizes a challenge of meeting this objective. 

For model training, we’re inherently seeking to identify rare events, encounter geome-

tries that could led to a collision within a few minutes, given another rare event, a loss of 

separation between aircraft[36]. Accordingly, the subsequent processing steps must 

maximize the utility of these rare events while having a high confidence that such events 

transpired.  

2.3. Track Intent and Runway Identification 

 After the initial filtering, we identified the intent for the tracks and which runway a 

track was interacting with when taking off or landing. Tracks are considered inde-

pendently. For this processing step, there were six different intents identified. A transit-

ing intent was indicative of a track not interacting with any runways and assumed to be 

transiting through the airspace. General aviation cross country flights or en route aircraft 

are example behaviors we sought to identify as transiting. There were two landing in-

tents, straight and other, where straight corresponds to a straight-in landing and other is 

any other type of landing, such as 45 degrees, downwind, or crosswind. Similarly, there 

were two takeoff intents, one for straight-out and another for all other types. Finally, 

there was an unknown intent if a track was not assigned any of the other intents.  

2.3.1. Clustering using Airport Boundaries 

 First, we identified if a track was operating near the airport of interest or near any 

airports within 10 nautical miles of the airport of interest. For each airport, an airport 

bounding polygon was created based on assumed airport design and traffic pattern. 

Assumptions based on airport design and runway approach and departure standards 
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were based on the FAA Advisory Circular (AC) 150/5300-13A, Airport Design, which 

could differ than the approach surfaces defined in 14 CFR § 77. For generating the airport 

boundary, an approach and departure corridor was generated for each runway. These 

corridors were trapezoids (isosceles trapezium)2, extending 2.5 nautical miles out from 

the runway, and 800 and 3800 feet along the narrowest and widest parallel sides. Also, 

the traffic pattern was estimated by a circle centered on the airport with a radius of 1.2 

nautical miles. The FAA airplane flying handbook[37] states that aircraft are well clear 

approximately two miles away from the pattern, so the  radius needed to be smaller 

than that. Traffic patterns are also typically defined based on the end of a runway, not the 

center of an airport as assumed here, but the estimated approach surfaces mitigated 

consequences from the simple estimation of the traffic pattern. To generate the airport 

boundary, a boundary was created around all the estimated approach surfaces and traffic 

pattern. Boundaries were not enforced to be convex. 

 Figure 12 illustrates the boundaries, trapezoids, traffic circles, and runways for ABE 

and XLL; and Figure 13 illustrates these for EWR, JRB, and LDJ. ABE and XLL each have 

two crossing runways in a nominal configuration. The trapezoids do not overlap and 

extend out in different headings. The widest parallel side of the trapezoids form part of 

the airport boundaries. The runway and trapezoid orientations result in the traffic pat-

tern not influencing the shape of the airport boundary. Conversely, the traffic circles 

were important for the LDJ and JRB airport boundaries in Figure 13. JRB is the Down-

town Manhattan heliport without a fixed runway. Without runway information, no 

trapezoids were calculated and the airport boundary was just the traffic circle. LDJ has a 

single runway, so an airport boundary for LDJ based only on the trapezoids would be 

narrow and just as wide as the trapezoid which would insufficiently cover the traffic 

pattern. However, for larger airports, like EWR, the traffic circle may barely extend past 

the runways and provide limited utility.  

Furthermore, airport boundaries can overlap, such as EWR and LDJ. Since the 

model assumes intruder aircraft are not taking off or landing from nearby airports, the 

proximity and overlap of airport boundaries was important. This relative positioning 

would influence how the intent of a track was classified. After the initial spatial filtering, 

if a track flew through the airport boundary for any nearby airport, at any altitude, it 

could not be classified as taking off or landing from the airport of interest. Although this 

criterion was stringent, it was intended to minimize the risk of including undesired 

tracks landing and taking off from other airports when training the model.   

 
2 Trapezoid shape based on dimensions B, C, D from Figure 3-2 and Table 3-2 from AC 150/5300-13A. 
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Figure 12. Airport boundaries for ABE and XLL. Runways are colored in black and the approach 

trapezoids and traffic circles are colored in white. 

 

Figure 13. Airport boundaries for EWR, JRB, and LDJ. Runways are colored in black and the ap-

proach trapezoids and traffic circles are colored in white. 
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2.3.2. Clustering using Runway Corridors 

 Next, if a track was within the airport boundary for only the airport of interest, we 

determined if the track was also within the runway two-dimensional approach and de-

parture corridor. These corridors were similar to the trapezoids used to generate the 

airport boundary but also extended 8 nautical miles from each runway3. A track must be 

in a runway’s corridor for at least 30 seconds. Each runway corridor was assessed inde-

pendently and a track could be assigned multiple runways. Figures 14 illustrate these 

corridors for ABE. Observe how the XLL airport boundary intersects with one of the ABE 

runway corridors. Given the requirement that a track can only intersect the airport 

boundary for the airport of interest, ABE in Figure 14, the majority of the tracks in the 

overlapping could not considered as taking off or landing from ABE.  

 

Figure 14. Runway corridors for ABE with airports boundaries for ABE and XLL. 

2.3.3. Vertical Rate, Altitude, and Relative Heading 

 If a track segment satisfied the spatial and temporal requirements based on the 

runway corridor, it was furthered assessed based on vertical rate, altitude, and the rela-

tive distance from the runway. If these additional criteria were met, the track was classi-

fied as either taking off or landing. The vertical rate of the track when it was in the cor-

ridor was assessed to help determine if a track was taking off or landing. The vertical rate 

had magnitude and duration components. When in a corridor, the magnitude of the ver-

tical rate had to be at least 300 feet per minute for a specific duration. This threshold du-

ration could either be the time to vertically transit from the minimum and maximum 

track altitudes or 30% of the entire duration the track is in a corridor. These criteria also 

were iterated upon between version 3.0 and 2.0 of the models. It was initially 50% and 

500 feet per minute but the initial criteria excluded tracks with many points in the corri-

dors or with slower vertical rates near a runway. If the vertical rate was negative and the 

track decreased altitude, it was classified as landing; and vice versa for takeoffs.  

 To be classified as taking off or landing, when in a corridor the track must fly within 

2.5 nautical miles and 750 feet from the end of the runway of interest. This lateral and 

vertical criterion corresponds to the aviation heuristic 1 in 60 rule and an assumed 3 de-

gree glide slope. This criterion was notably iterated on during model development. For 

version 2.0 of the model, the criterion was not based on an assumed 3 degree glide slope 

and was instead, 1 nautical mile and 475 feet. Version 1.0 of the model also did not con-

 
3 Shape based on dimensions B, C, D, E from Figure 3-2 and Table 3-2 from AC 150/5300-13A. 
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sider a nominal glide slide. It employed an altitude ceiling of 1500 feet relative to the 

runway and a single point must be within 4000 feet laterally of the runway. 

 Finally, to determine if the takeoff was straight-out or the landing was straight-in, 

we calculated the magnitude heading relative to the runway for all track points in the 

corridor. If the 95th percentile of all relative headings was 30 degrees or less, the track was 

classified with an intent of either straight landing or take off. Otherwise it was classified 

as a non-straight landing or takeoff. For straight takeoff and landings, any points imme-

diately before or after the track enters or exits the corridor that satisfied a 40 degree rela-

tive heading threshold were also assigned a straight landing or take off intent. For sub-

sequent processing steps, only the straight maneuvers would be considered for the 

ownship.  

 For the other intents, a change in altitude criteria was used to classify points outside 

of a corridor. For takeoffs, after exiting the corridor, points until the maximum altitude 

was achieved were as labeled as with the takeoff intent. Conversely points descending 

from the maximum altitude prior to entering the corridor were labeled with a landing 

intent. For example, Figure 15 illustrates the filtered straight-in and other landing tracks 

for an ABE runway.  

 

Figure 15. Landing at ABE using the OpenSky Network-based aerodromes dataset. 

Version 1.0 and 2.0 calculated relative heading differently. Instead of calculating the 

relative heading for all points in a corridor, previous versions only considered the rela-

tive heading at two locations: the first and last points within the corridor. The corridors 

were also not based on approach surfaces but rectangular bounding boxes extended from 

each runway.  

2.3.4. Transiting Aircraft 

If the minimum altitude for all points within a corridor was greater than 1500 feet 

relative to the runway and the maximum altitude was less than 5000 feet, then the track 

would be labeled with an intent of transit. If a track intersected any airport boundary but 

none of the corridors, the same altitude criteria would applied to determine if the track 

was transiting over the airport. For example, any tracks that intersected solely the XLL 

boundary would need a minimum altitude of 1500 feet to be classified as transiting. This 

criterion was successful in filtering out low altitude traffic operating from nearby air-

ports, while not filtering en route traffic flying above the airport. Figure 16 illustrate 

transiting aircraft for ABE and Figure 17 illustrates the notional condition if the altitude 

criteria were changed from 1500 to 0 feet relative to ABE. Note the lack of low altitude 

tracks colored blue within the centered ABE boundary in Figure 16 but the presence of 

low altitude tracks in Figure 17. This difference illustrates tracks established in the traffic 

pattern around ABE that satisfied the airport boundary but failed to satisfied the runway 

corridors criteria. Also evident was the low altitude traffic operating near XLL that was 

southwest from ABE and filtered out in Figure 16. 
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Figure 16. Transiting tracks for ABE overlaid with runway corridors for ABE and airport bounda-

ries for ABE and XLL. The minimum transiting altitude was 1500 feet relative to ABE. This altitude 

limit was used for model training. Tracks sourced from the OpenSky Network-based aerodromes 

dataset. 

 

Figure 17. Transiting tracks for ABE overlaid with runway corridors for ABE and airport bounda-

ries for ABE and XLL. The minimum transiting altitude was 0 feet relative to ABE. This altitude 

criteria and figure is illustrative and not used for model training. Tracks sourced from the OpenSky 

Network-based aerodromes dataset. 
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2.4. Encounter Identification 

The previous step only identified the intent (e.g. landing, taking off, transiting) of 

independent tracks, the next step was to identify pairs of tracks that encountered each 

other. First, we identified pairs of tracks where one aircraft must have an intent of a 

straight-in landing or straight-out takeoff. Next, for the pairs of tracks, we determined if 

there was at least one second overlap in UTC time. After assessing intent and time, there 

could had been tens to hundreds of thousands of potential encounters, at least one sec-

ond in duration, that needed to be further assessed. Subsequently, we calculated which 

pairs had at least thirty seconds of overlap and for these also calculated the horizontal 

and vertical separation between the pairs of aircraft when they overlapped in time. If the 

tracks at any point were separated 4 nautical miles or less laterally and 2000 feet or less 

vertically, the pair was designated as an encounter. Both separation criteria had to be 

satisfied such that an encounter must be at least 30 seconds in duration when both air-

craft tracks exist. Satisfying all these criteria was challenging and an overwhelmingly 

majority of pairs that had any overlap in time were rejected due to the spatial criteria.  

2.4.1. Example Training Encounters 

Figures 18-20 illustrate three example encounters identified for ABE using the 

OpenSky Network-based aerodromes dataset. Figure 18 illustrates an encounter where 

both aircraft are landing at the same runway. While versions 1.0 and 2.0 did not include 

airports with multiple runways, this encounter is representative of the data used to train 

the preliminary models. Particularly, this encounter highlights the RTCA SC-228 im-

posed constraints on the aircraft. While both aircraft are landing, the final approach and 

landing for the intruder can be highly variable across encounters, whereas ownship must 

always have a minor relative heading difference from the runway. Figure 19 also high-

lights this but for an example where the intruder is taking off from a different runway. 

Lastly, Figure 20 demonstrates that ownship may exhibit some minor turning behavior 

due to the relative heading threshold of 30 degrees or less. Also exhibited is that aircraft, 

particularly intruders, can be oriented many nautical miles away from the runway. Spe-

cifically, in Figure 20, the nearest the intruder was to the runway was about 5.2 nautical 

miles with a portion of the track not in Class C airspace. 

 

Figure 18. Example identified encounters at ABE. Both aircraft were landing at the same runway. 

The encounter had a duration of 222 seconds.  
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Figure 19. Example identified encounter at ABE. Ownship was landing and the intruder was taking 

off from a crossing runway. The encounter had a duration of 94 seconds.  

 

Figure 20. Example identified encounter at ABE. Ownship was landing and the intruder was 

transiting through the airspace. The encounter had a duration of 139 seconds.  

2.4.2. Encounter Quantities 

Table 3 summarizes how the data was filtered from the initial spatial filtering to the 

final set of identified encounters for three representative airports. 

Table 3. Processing summary when using the OpenSky Network aerodromes dataset.  

Count ABE ADS LBJ 

Points after initial spatial filtering 1,816,670 20,954,315 14,538,290 

Takeoffs or landings (any) 877 2,913 3 

Transiting intruders 4,522 38,917 71,881 

Potential encounters based on intent and time 28,174 753,067 23,889 

Final identified encounters for training 22 402 0 

 

While we had significantly less data for ABE than LBJ, ABE had more potential en-

counters that satisfied the intent criteria for potential encounters and had more encoun-

ters identified. This was attributed to the differences of the airspace and design of air-

ports near ABE or LBJ. In particular, the immediate proximity of LBJ to the larger EWR 

(Figure 13) resulted in the majority of the tracks filtered out for consideration as ownship. 

Furthermore, the majority of traffic was likely operating from or to EWR, so the large 

quantity of data was more reflective of EWR than the smaller LBJ. Similarly, as discussed 
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in Section 2.2, we observed significantly more traffic near ADS due the greater popula-

tion density of the Dallas Fort Worth metroplex and increased traffic around the Class B 

airports of DFW and DAL. While ABE had less than a tenth of the data as ADS, more 

potential ownship tracks were identified per observation points for ABE than ADS. 

2.4.3. Encounter Duration 

For all airspace classes when using the aerodromes dataset, the median duration of 

identified encounters for model training was at least 87 seconds and 10% or fewer en-

counters had a duration of 39 seconds or less. The median was at least 100 seconds when 

using the terminal area radars dataset. These two statistics indicate that the requirement 

for an encounter to be at least 30 seconds was not overly burdensome and not a signifi-

cant factor when rejecting an encounter for model training. If the duration requirement 

increased to 60 seconds when using the aerodromes dataset, about a third of the current 

Class D and other encounters would be rejected, while only 15% of Class C encounters 

would be rejected. Comparably, about a quarter of the current Class D and Other en-

counters and a smaller percentage of Class C encounters would be rejected when using 

the terminal area radars dataset. 

 

Figure 21. Distribution for duration of encounters identified using the OpenSky Network-based 

aerodromes dataset. For all airspace classes, the median duration was at least 87 seconds. 

 

Figure 22. Distribution for duration of encounters identified using the terminal area radars dataset. 

For all airspace classes, the median duration was at least 100 seconds.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   doi:10.20944/preprints202111.0051.v1

https://doi.org/10.20944/preprints202111.0051.v1


 

 

While the duration of training encounters had a minimal dependence on airspace 

class or dataset, the quantity of encounters identified for each airport of interest was bi-

ased towards a small percentage of airports. Table 4 reports the distribution of how many 

encounters were identified for an airport. For example, Table 4 reports that no encounters 

were identified for 29 Class C airports and that at least 100 encounters were identified at 

24 Class C airports when using the OpenSky Network-based aerodromes dataset.  

94% of the Class E or G (Other) airports when using the OpenSky Network-based 

aerodromes dataset and 89% of other airports with the terminal area radar dataset had no 

encounters identified. For the terminal area radars dataset, 48% of encounters in Other 

airspace were identified from 1% of the airports (n = 4) with any data after the initial 

spatial filtering. However, the surveillance coverage at low altitudes near an airport’s 

surface was highly variable and why the initial spatial filtering (Section 2.2) was designed 

to reduce the computational burden for track classification and encounter identification 

rather than designed to identify encounters upfront. 

Table 4. Airport count with quantity of training encounters.  

Airspace Class Dataset 0 (0,10) [10, 100) [100, ∞) Total 

C Aerodromes 29 9 12 24 74 

C Terminal Radars 5 0 2 9 16 

D Aerodromes 139 40 45 44 268 

D Terminal Radars 43 6 25 44 118 

Other Aerodromes 829 37 13 0 879 

Other Terminal Radars 371 24 19 4 418 

2.5. Model Training and Structure 

With encounters identified, the statistical models could now be trained. The terminal 

model consisted of an encounter geometry model and a trajectory propagation model. 

The first component, the encounter geometry model, describes the geometrical condi-

tions of two encounter aircraft at their point of closest approach. The second component, 

the trajectory generation model, then describes the flight path for each aircraft leading to 

and continuing from their point of closest approach. Like the RADES-based correlated 

model, this was a generic model with no dependency on geography or locations.  

While the trained model was used subsequently in simulations where ownship was 

assumed to be an UAS, the model itself was trained assuming that all encounters identi-

fied in Section 2.4 consisted of traditional crewed aircraft. Section 2.6 describes how the 

trained model was sampled to enforce this UAS assumption. 

2.5.1. Relative Local Coordinate System 

Encounters are described in a coordinate system where all altitudes are relative to 

the mean runway elevation. Angular units are represented on a standard polar grid in-

creasing in counterclockwise orientation. When training the model, the aircraft trajecto-

ries are rotated using a two-dimensional rotation matrix such that the runway the own-

ship is using lays directly on the y-axis, with the runway mean position located at (0,0). 

The runway is assumed to be a single point, rather than a vector or polygon. When 

training the model, positions and distances are relative to the mean runway position for 

the airport of interest. Since we trained a generalized model, this is a potential source of 

bias and error, as the mean runway position will vary for different airports.  

Also, the runway is oriented above ownship on the y-axis: that is, ownship has a 

relative angular position (bearing) with a range of [180, 360] degrees. When projected 

onto a Cartesian coordinate system, the y-axis is oriented from 270 to 90 degrees, and 

x-axis from 180 to 0 degrees.  

Figure 23 illustrates the bearing distribution for the ownship forward trajectory 

model, with similar distributions within the ownship backwards trajectory model. As 

bearing is a relative position, the distribution given a landing or takeoff intent are similar. 
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Figure 23. Bearing (angular position) distribution of the ownship forward trajectory model. Bin 

widths are 10 degrees. 

Bearing is the angular position, whereas heading is the correspondingly angular 

vector, that is the direction of flight. Figure 24 illustrates the heading distribution for the 

ownship forward trajectory model. Unlike the bearing distribution in Figure 23, the 

heading distribution is dependent upon whether ownship is taking off or landing. When 

landing, the average heading is 90 degrees, as the ownship is flying along the negative 

y-axis towards the mean runway position at (0,0); whereas when taking off, the ownship 

is flying away from the runway such that the mean heading is 270 degrees. The heading 

and bearing also reflect that ownship takeoffs and landing were constrained to be 

straight-out or straight-in; the distribution for the intruder models are different with the 

distribution over a wider range of values. 

 

Figure 24. Heading (angular vector) distribution of the ownship forward trajectory model. Bin 

widths are 10 degrees. 

The differences with the intruder distributions is best illustrated by Figure 25 with 

the bearing and heading distributions of the intruder forward trajectory model given that 

the intruder is transiting through the airspace. Compared to the more constrained own-

ship distributions, the intruder distribution has a wider distribution over bearing and a 

significantly more encompassing distribution over the full 360 degree range of headings. 

The intruder bearing distribution is reflective of the encounter separation criteria. Since 

ownship predominantly has a bearing in the range of [260, 280] degrees and encounters 

occur when aircraft are close to each other, it is not surprising that the intruder has a 

similar mean bearing. However, since transiting intruders are not flying to or from the 
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mean runway position at (0,0), they operate more liberally throughout the airspace, as 

represented by the more diverse heading distribution. Note that Figure 25 is not de-

pendent upon ownship intent and we do not observe an equal quantity of ownship 

landings and takeoffs.  

 

Figure 25. Bearing and heading distributions for the intruder forward trajectory model given an 

intruder intent of transiting through the airspace. Bin widths are 10 degrees. 

2.5.2. Encounter Geometry Model 

The encounter geometry model describes the position, speed, and direction of two 

aircraft at their horizontal closest approach. Some variables were smoothed using a lo-

cally weight temporal smoother with a Gaussian kernel. It uses the following variables: 

• Airspace class: Airspace class of the airport. 

• Ownship intent: The intent of the ownship, per Section 2.3, of either a straight 

landing or take off. 

• Intruder intent: The intent of the intruder, per Section 2.3, of either landing, taking 

off, or transiting. Unlike the ownship, the intruder’s intent is not assumed to be 

straight.  

• Intruder type: The type of aircraft of the intruder: can either be fixed-wing or ro-

torcraft. Note that while the OpenSky Network-based uncorrelated models are in-

dividually organized by aircraft type[12], aircraft type is an explicit model variable 

here. 

• Intruder runway: The runway the intruder was leveraging relative to the ownship. 

Designated as “same” if both aircraft were operating from the same runway; paral-

lel” if the intruder was operating from a runway that did not intersect the ownship’s 

runway; as “crossing” if the intruder was operating from an runway that intersected 

the ownship’s runway; and “none” if the intruder intent was transiting. 

• Ownship distance from runway: The horizontal distance between the ownship po-

sition at CPA and the runway mean position; 

• Ownship bearing from runway: The polar angle of the ownship’s position at CPA ; 

• Ownship altitude: The altitude of the ownship relative to the runway elevation at 

CPA; 

• Ownship speed: The smoothed speed of the ownship at CPA as estimated by a finite 

difference of the trajectory position data; 

• Ownship heading: The direction of flight of the ownship at CPA ; 

• Intruder distance from runway: The horizontal distance between the intruder posi-

tion at CPA and the runway mean position 

• Intruder bearing from runway: The polar angle of the intruder’s position at CPA; 

• Intruder altitude: The altitude of the intruder relative to the runway elevation at 

CPA; 
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• Intruder speed: The smoothed speed of the intruder at CPA as estimated by a finite 

difference of the trajectory position data; 

• Intruder heading: The direction of flight of the intruder at CPA. 

Some of these variables were more constrained in versions 1.0 and 2.0. The initial model 

constrained ownship intent to just landing, intruder intent could not be transiting, and 

the intruder runway was always the same as the ownship. Version 2.0 introduced taking 

off ownships and transiting intruders, but the same runway assumption was still en-

forced. Version 3.0 expanded intruder runway to the four options while also improving 

the assumptions about transiting intruders when other airports were nearby (Section 

2.3.4). 

These variables were associated via a graphical model that indicates dependency 

relationships. In this graph, the variables are nodes and the dependencies are directed 

edges. Thus, in Figure 26 below, the intruder’s track is dependent on its distance and its 

bearing from the runway. Those variables in turn are dependent on several other varia-

bles. There are numerous ways the variables could be connected, but at this stage the 

graph has been structured based on engineering judgement. Future work could optimize 

the graph structure to best characterize the data with the fewest connections. The de-

pendencies in this model are conditional probabilities, so the graph can be referred to as a 

Bayesian network. 

 

 

Figure 26. Bayesian network for the encounter geometry model. 

Some variables, as identified in Table 5 below, are inherently discrete. Other varia-

bles, identified in the Table 6 below, are inherently continuous. For representation in this 

model, the continuous values in the observed data must be discretized during training 

per the cutpoints identified in the table. Sampling the model yields discrete values for 

these variables, with a continuous value subsequently sampled from the bin with a uni-

form distribution.  

Table 5. Encounter geometry model discrete variables.  

Variable Node Label Values 

Airspace Class class [1 – B, 2 – C, 3 – D, 4 – Other] 

Ownship Intent Ownship_intent [1 – Land, 2 – Takeoff] 

Intruder Intent int_intent [1 – Land, 2 – Takeoff, 3 – Transit] 

Intruder Type int_type [1 – Fixed-Wing, 2 – Rotorcraft]  

Intruder Runway int_runway [1 – Same, 2 – Parallel, 3 – Cross-
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ing, 4 – None (Transit)] 

Table 6. Encounter geometry model continuous variables.  

Variable (Units) Node Label Cutpoints 

Ownship Altitude (feet) own_alt [200, 500, 1000, …, 3000, 5000] 

Ownship Bearing (degrees) own_bearing 
[0, 15, 30, …, 165, 175, 185, 195, 

210, 225, …, 360] 

Ownship Distance (nautical miles) own_distance [0, 0.5, 1, 2, 3, 4, 5, 8] 

Ownship Speed (feet per second) own_speed [75, 150, 225, 300, 375, 450] 

Ownship Track (degrees) own_trk_angle [-180, -175, -165, …, 175, 180] 

Intruder Altitude (feet) int_alt [200, 500, 1000, …, 3000, 5000] 

Intruder Bearing (degrees)  int_bearing 
[0, 15, 30, …, 165, 175, 185, 195, 

210, 225, …, 360] 

Intruder Distance (nautical miles) int_distance [0, 0.5, 1, 2, 3, 4, 5, 8] 

Intruder Speed (feet per second) int_speed [75, 150, 225, 300, 375, 450] 

Intruder Track (degrees) int_trk_angle  [-180, -175, -165, …, 175, 180] 

 

2.5.3. Trajectory Propagation Model 

The trajectory generation models describe how the position of the two encountering air-

craft evolves before and after their closest point of approach (CPA). It is important to note 

that the ownship and intruder models are trained separately. While the encounter gen-

eration model considered the relatively geometry between aircraft, the trajectory propa-

gation models assumed track independence. The training data for this model were the 

independent sets of ownship and intruder tracks from identified encounters. Figure 24 

highlights this by visualizing all the ownship and intruder tracks for ABE used as train-

ing data for the trajectory propagation models; while Section 2.4.1 depicted specific en-

counters included in the set of tracks visualized by Figure 27. Once again, note the lim-

ited behavior and diversity of ownship tracks due to the RTCA SC-228 imposed con-

straints of limiting ownship to straight takeoff and landings. 

 

Figure 27. Example ownship and intruder tracks near ABE used for model training. 
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The ownship and intruder trajectory propagation models have a similar model 

structure with a difference in the temporal variables. The forward propagation models 

transition from time (t) to (t+1) after CPA has occurred, while the backwards propagation 

model is for time (t) to (t-1) prior to CPA. Specifically, they use the following variables: 

• Intent: The aircraft’s intent, same as defined for the encounter geometry model. 

• Distance from runway: The horizontal distance between the aircraft position and the 

runway mean position over time; 

• Bearing angle from runway: The polar angle of the aircraft’s position; 

• Heading angle: The direction of flight of the aircraft; 

• Altitude: The altitude of the aircraft relative to the runway elevation over time. 

• Speed: The smoothed speed of the aircraft over time as estimated by a finite differ-

ence of the trajectory position. 

As with the encounter geometry model, the relationships between variables are 

represented as a graph. Here, time dependencies are introduced into the graph as well. 

As illustrated in Figure 28 below, the aircraft’s track at the next time step is dependent on 

its current track, its bearing from the runway, and its distance from the runway. These 

dependencies are relied on to emulate, e.g., an intruder flying a traffic pattern: as the 

aircraft flies downwind, the likelihood increases that it will make a turn onto the base leg. 

The strength of that likelihood is learned from the observed trajectory data. Since the 

dependencies in the model are conditional probabilities, the graph forms a Bayesian 

network. In this case, since it incorporates time dependencies, it is referred to as a Dy-

namic Bayesian network. Note that the bearing and distance variables change over time 

when sampling the model, but those changes must be computed after sampling for the 

heading and speed at each time step. This model structure was based on the Dynamic 

Bayesian network of the uncorrelated encounter models, which did not model distance or 

bearing with respect to some spatial point.  

 

Figure 28. Dynamic Bayesian network for the trajectory forwards propagation model. 

All of the variables in the trajectory generation model, defined in Table 7, are in-

herently continuous. Note that some cutpoints are different from those for the same 

variable in the encounter geometry model (e.g., altitude is more finely discretized here). 

For a given training dataset, different forward and backwards propagation models are 

trained for each intent of landing, taking off, and transiting. Forwards propagation 

models are trained on time-ordered trajectory data while backwards propagation models 

use reverse-time-ordered trajectory data for training. Future work may consolidate some 

or all of these separate models.  

Table 7. Trajectory generation model continuous variables.  

Variable (Units) Node Label Cutpoints 

Intent intent [1 – Land, 2 – Takeoff, 3 – Transit] 

Distance (nautical miles) distance [0, 0.5, 1, 2, 3, 4, 5, 8] 

Bearing (degrees) bearing [0, 5, 15, 25, …, 355, 360] 

Altitude (feet) 
altitude 

[200, 300, …, 2000, 2500, 3000, 

5000] 

Speed (feet per second) speed [75, 100, 150, 200, …, 350, 450] 

Track (degrees) trk_angle [-180, -175, -165, …, 175, 180] 
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2.6. Model Sampling and Encounter Generation 

Once the model has been trained with the observed trajectory data, it can be sam-

pled to generate new encounters (“synthetic encounters”) representative of observed 

behavior. Encounter generation is completed in three steps: sampling the geometry 

model, sampling the trajectory models, and rejecting or accepting the encounter based on 

criteria derived from assumptions when training the model. 

2.6.1. Sampling the Encounter Geometry Model 

First the encounter geometry is sampled to identify the geometry at CPA. The en-

counter geometry model is sampled with a uniform prior (i.e., absent any additional in-

formation, that all combinations of variables are equally likely). Since this model is not a 

Dynamic Bayesian network with a transition model, sampling is a one step process. The 

model samples describe the aircraft positions at CPA given distance and bearing relative 

to a runway’s mean position. We translate this into a local Cartesian coordinate system 

where the runway mean position is at (0,0). Figures 29 and 30 illustrate 500 samples from 

the geometry model where ownship is taking off and the intruder is landing or transiting.  

 

 

Figure 29. Sampled positions at CPA when ownship is taking off and intruder is landing. 

 

Figure 30. Sampled positions at CPA when ownship is taking off and intruder is transiting. 

These figures illustrate two important elements of the model. First, the coordinate 

system is oriented such that ownship’s runway is parallel to the y-axis, with positive 

down the runway from the threshold. This results in ownship predominately operating 

to the “south” of the runway and the cone shape of ownship’s position is indicative of the 

30 degree heading requirements for a straight landing or taking-off. Second, the intruder 
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position is dependent on its intent. Note in Figure 29 that a cluster of intruder positions 

are near (0,0) but this cluster is not evident in Figure 30. Also note that when transiting, 

the intruder at CPA is more dispersed. This was expected as transiting aircraft should not 

be operating predominantly along an approach or departure route. This is an outcome of 

the intent classification described in Section 2.3 and visually demonstrates how encoun-

ter geometry is dependent on aircraft intent. 

2.6.2. Sampling the Trajectory Models to Propagate Tracks 

Next, the ownship and intruder trajectories are successively sampled using the as-

sociated forwards and backwards trajectory generation models. Trajectories are propa-

gated up to 120 one second timesteps before and after CPA, with initial positions pro-

vided by the geometry model sample. Propagation is halted if a trajectory is more than 

eight nautical miles from the runway mean position. Propagating the trajectories is 

achieved by successively sampling a trajectory model’s variables from the top of the 

graph to the bottom, applying the learned conditional probabilities in conjunction with 

Bayes Rule. The trajectory models are sampled using a non-transitioning prior: absent 

observed information, dynamic variables remain constant. It is important to use these 

priors because the large space of discrete-valued variable combinations make it likely 

that there are gaps in the conditional probability tables. Sampling only gives discrete 

values for each of the model variables. Continuous values for the continuous variables 

must subsequently be sampled. In all cases, the model assumes this sampling will be 

from a uniform distribution within the relevant bin per the earlier tables.  

Unlike previous encounter models, with which all transition events throughout an 

encounter can be sampled at once, the trajectory models can only be applied one time 

step at a time, with the new aircraft position being computed after each step. The new 

aircraft position is used to calculate the distance and bearing the track is away from the 

runway, with distance and bearing being model variables. This is required because dis-

tance from or bearing to the runway are not temporal variables in the Dynamic Bayesian 

network, as previously illustrated in Figure 14. The consequences of not dynamically 

modeling distance and bearing are illustrated by example encounters in Section 3.3 and 

further discussed in Section 4. 

Also, unlike other MIT LL developed models, tracks do not need to fully overlap in 

time. It is possible for an encounter to start or end with only one aircraft in the vicinity of 

the runway. For example, an encounter could start at t = -120 seconds (prior to CPA) with 

the intruder initially positioned within 8 nautical miles of the runway. An ownship could 

be initialized at t = - 30 seconds near the runway at a low altitude to simulate the ownship 

beginning to take-off. In this example, CPA would occur at t = 0. At t = 30 seconds, the 

intruder could be more 8 nautical miles from the runway and no more track updates 

would be generated for it. From t = 31 and onward, only ownship would be simulated. 

2.6.3. Rejection Sampling 

 Given an encounter of two aircraft tracks, we assess if its valid or should be rejected. 

If an encounter fails any of the described criteria, it is rejected and the encounter genera-

tion process is restarted with a new sample from the encounter geometry model. Criteria 

are organized into three categories: those based on training assumptions, assumptions 

unique to ownship, and dynamic constraints. The criteria based on training assumptions 

are designed such that the sampled synthetic encounters are subject to similar constraints 

and assumptions used to identify encounters for training, as described in Sections 2.2-2.4. 

These assumptions include: 

• Encounter CPA must occur within 5 seconds of the sampled CPA from the ge-

ometry model; 

• Tracks must overlap at least 30 seconds in time; 

• If taking-off or landing, a track must have at least one track update within 2.5 

nautical miles of the runway mean position;  

• For track updates within 2.5 nautical miles of the runway mean position, at least 

one point must have an altitude of 750 feet or less; 
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• A track must have sufficient quantity of updates with a vertical rate magnitude 

of 300 feet per minute or greater. If landing, the rate must be negative and if 

taking off, the rate must be positive. 

• A track ends if it is within 0.25 nautical miles of the runway. 

Similar to when classifying track intent, ownship must satisfy a relative heading criteri-

on, so it is representative of a straight landing or take-off. Given the coordinate system 

where the runway is parallel to the y-axis, a heading of 90 degrees would have the air-

craft move positively (“north”) along the y-axis and a heading of 270 degrees would have 

the aircraft move negatively along the y-axis. Thus, if an aircraft is initialized on the 

negative y-axis, a heading of 90 degrees would be towards of the runway and a heading 

of 270 degrees would be moving away from the runway. The Cartesian coordinate sys-

tem is visualized with the example encounters in Figures 31-34. Accordingly, the own-

ship heading criteria is dependent upon intent: 

• If landing, at least 95% of heading updates need to have a heading of 90 ± 30 

degrees; and 

• If taking off, at least 95% of heading updates need to have a heading of 270 ± 30 

degrees. 

The last set of criteria are enabled such that the ownship or intruder satisfied a set of 

dynamic limits on speed, acceleration, vertical rate, turn rate, and pitch angle. To support 

RTCA SC-228, we defined four sets of dynamic limits, summarized by Table 7. “Generic” 

limits are general limits applicable for a wide range of crewed aircraft. “RTCA228-A1” 

corresponds to the RTCA SC-228 assumptions for a HALE (High Altitude, Long Endur-

ance) UAS, “RTCA228-A2” for an assumed MALE (Medium Altitude, Long Endurance) 

UAS and “RTCA228-A3” for an assumed LEPR (Low End Performance Representative). 

When rejection sampling for certain aircraft characteristics, that we are assume that the 

encounters for UAS will be the same as similarly operated crewed aircraft (e.g., same 

speeds, vertical rates, encounter geometry). 

Of the dynamic limits, the acceleration limit was specifically based on the model 

structure and how trajectories are propagated. Since the trajectory models are sampled 

incrementally with intra-bin uniform sampling, it is possible to sample speed such that it 

transitions from 100 (bin 1) to 199 (bin 2) feet per second in one timestep. Since this would 

not be realistic, the maximum acceleration is based on the widest speed bin of 50 feet per 

second. This sampling criteria often results in tracks not changing speed during an en-

counter; this is illustrated in Section 3.2 and discussed as part of future work in Section 4.  

Table 7. Dynamic limits when sampling encounters.  

Variable (Units) Generic RTCA228-A1 RTCA228-A2 RTCA228-A3 

Minimum speed  

(feet per second) 
50 169 68 68 

Maximum speed  

(feet per second) 
506 491 338 186 

Acceleration 

(feet per second2) 
50 50 50 50 

Maximum vertical rate 

(feet per second) 
100.00 41.67 25.00 8.34 

Maximum turn rate 

(degrees per second) 
12 1.5 3 7 

Maximum pitch  

(degrees) 
∞ 15 15 15 

3. Results 
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This section discusses the output of the model training with some statistics about the 

trained models, example encounters, and an overview of a dataset leveraged by RTCA 

SC-228 during FAA validation of the standard. 

3.1. Encounter Statistics 

Table 8 reports the number of encounters used to train the current encounter geom-

etry model given airspace class and data source; Table 9 reports the distribution for the 

deprecated version 2 of the model. This distribution is synonymous with the encounters 

identified from the processing described in Section 2.5.  

First, the quantity of Class C encounters significantly increased from version 2.0 to 

3.0. Because version 2.0 assumed both aircraft were operating from the same runway, 

there were only 5 single-runway Class C airports considered to be in scope. We had rel-

atively poor surveillance coverage for these airports and subsequently identified scant 

encounters. Expanding the model scope in version 3.0 to include different runway con-

figurations and more airports resulted in a significant increase of identified encounters.  

Second, expanding model scope in version 3.0 also resulted in a nearly 2000% in-

crease of Class D encounters when using the OpenSky Network-based aerodromes da-

taset. This indicates that the majority of identified encounters were at airports with mul-

tiple runways. However, this does not imply that encounters are more or less frequent at 

single runway airports, because the ability to identify encounters was dependent on the 

surveillance coverage of the airport. It could be possible that both datasets had relatively 

poor surveillance coverage of single runway airports. Assessing surveillance coverage 

given airport design could be future work. 

Third, the reduction of identified encounters in other airspace when using the ter-

minal radar dataset was attributed to improvements in filtering traffic near other airports 

(Section 2.3.4). When classifying tracks for version 2.0, we did not consider the runway 

orientation and approach / departure corridors of nearby airports. As a result, tracks that 

were landing or taking off from nearby airports were misclassified as transiting intrud-

ers. As discussed in Section 2.3, the more advanced airport boundaries were generated 

for version 3.0 which reduced the misclassification of transiting tracks. This subsequently 

reduced the total quantity of identified encounters but the confidence that each encounter 

was within scope significantly improved. 

Table 8. Model encounter based on data set and airspace class – Version 3.0.  

Airspace Class Terminal Radar Aerodromes 

B 2,396,048 1,038,390 

C 103,566 81,253 

D 85,514 45,066 

Other (E/G) 1,209 432 

Table 9. Model encounter based on data set and airspace class – Version 2.0 (deprecated).  

Airspace Class Terminal Radar Aerodromes 

B 0 0 

C 10 5 

D 65,859 2,150 

Other (E/G) 6,784 169 

 

Additionally, while the OpenSky Network-based training dataset had a greater 

spatial and temporal scope, it was limited to only identifying encounters between aircraft 

that both had ADS-B equipped. We hypothesize this bias is the key factor in the reduced 

encounter count compared to the terminal area radar dataset. The consequence of this 

bias was amplified because an ADS-B FAA mandate was not in effect until 2020, whereas 

the majority of the OpenSky Network data was from 2019 and before this mandate. To-
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day, ADS-B has also been mandated in most busy ATC controlled airspaces in the United 

States and there are various local, regional, and international roll-outs of ADS-B. As more 

aircraft equip ADS-B, we expect more encounters to be identified. Under investigation is 

how the training data, from any source, is dependent on ADS-B mandates, but this in-

vestigation is out of scope for this analysis. 

Furthermore, when training version 2.0, we assessed that the transponder code fil-

tering (Appendix B) did not have a significant impact on identifying encounters with the 

OpenSky Network based encounters. Without any Mode C filtering, 2,428 Class D en-

counters were identified, while with filtering 2,150 Class D encounters were identified. 

We did not repeat this analysis when training version 3.0. 

3.2. Example Encounters 

Figures 31–34 illustrate example encounters sampled from the model trained from 

terminal area radar tracks. Sampled encounters assume a generic aircraft type, and not 

necessarily reflective of the UAS dynamics from Table 7. Examples are intended to high-

light the advantages and disadvantages of the model and rejection sampling approach to 

create encounters. In all the examples, the runway is oriented parallel to the y-axis. 

Tracks are illustrated as peri- or intra-. Track updates when only one aircraft is simulated 

at the timestep are noted as peri- while track updates when both aircraft are simulated are 

intra-. 

3.2.1. Sampled Encounters 

Figure 31 illustrates a sampled encounter where both aircraft are landing. While 

ownship must land straight, the intruder happens to also land straight but is not required 

to do so. The encounter starts at 120 seconds prior to CPA with only the ownship track 

simulated until 91 seconds prior to CPA when the intruder track is initialized about 8 

nautical miles away from the runway. The ownship track ends shortly after CPA because 

it had a low enough altitude and close enough to the runway such that the tracks end. 

The intruder aircraft continues to be simulated until it also “lands” at 82 seconds after 

CPA. Since the models, as described in Section 2.5, have a minimum altitude of 200 feet, 

the lowest a track can be simulated to is also 200 feet. We also do not simulate tracks on 

the runway surface. 
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Figure 31 Sampled encounter where both aircraft are landing. 

 Figure 32 illustrates an encounter where ownship is taking off and the intruder is 

landing. Compared to Figure 31, Figure 32 demonstrates that a landing intruder does not 

have to be initialized along the negative y-axis, although it is common as in Figure 31. 

The intruder landing also has more heading changes and is not representative of a 

straight landing. Conversely, the ownship only has some minor heading changes.     
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Figure 32. Sampled encounter where ownship is taking off and the intruder is landing. 

Both of these examples also illustrate how model structure influences the simulated 

kinematics. Both vertical rate and speed are estimated from track updates with vertical 

rate derived from the difference between altitude reports and speed based on distance 

and bearing from the runway. Altitude is a temporal variable with (t) and (t+1) variables 

in the trajectory model but distance and bearing from the runway are not. Consequently, 

vertical rate is better modeled and more realistic. We rarely observe speed changes in 

sampled tracks. While this is undesired, we discuss in Section 4 why this is acceptable to 

support the RTCA SC-228 DAA validation but will be something explored further in the 

future. 

3.2.2. Sampled Encounter with Transiting Intruders 

Figure 33 illustrates an ownship taking off, like Figure 32, but has an intruder trans-

iting through the airspace. Ownship exhibits similar features as in the previous examples 

with minimal heading changes, a reasonable vertical rate, and a constant speed. Since the 

coordinate system is centered on the assumed runway mean position, rather than an end 

of a runway, a track can be initialized anywhere near the origin, not necessarily on the 

y-axis. More importantly, this example illustrates how a transiting intruder behaves dif-
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ferently than one taking off or landing. The intruder has a relatively constant altitude, 

more heading changes, and flies relatively farther away from the runway. 

 

Figure 33. Sampled encounter where ownship is taking off and the intruder is transiting.  

3.2.3. Sampled Encounter Idiosyncrasies 

Like Figure 33, the last example encounter in Figure 34 illustrates an ownship taking 

off and an intruder transiting the airspace. The intruder maintains a relatively higher al-

titude and more lateral movement. Compared to the all the previous examples, transiting 

intruders have a wider range of potential behavior, as illustrated by the greater than 360 

degree turn. Similar to the previous examples, ownship has minimal heading changes 

but exhibits an interesting altitude and vertical rate behavior. The ownship has an initial 

position within 2.5 nautical miles of the runway but at an altitude greater than 750 feet. 

The rejection sampling criteria, described in Section 2.6.3, is that at least one track update 

within 2.5 nautical miles of the runway must have an altitude of 750 feet or less and given 

that ownship is taking off, a sufficient number of track updates need to have a vertical 

rate of at least 300 feet per minute. Since the ownship immediately descends to an alti-

tude below 750 feet, it satisfied the altitude criteria when near the runway. As the track 

climbs after CPA, it then also satisfied the vertical rate criteria.   
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Figure 34. Sampled encounter where ownship is taking off and the intruder is transiting.  

This example illustrates an advantage of using encounter models to support Monte 

Carlo simulations for safety evaluations. In practice, not all take-offs have a smooth ver-

tical ascent and not all landings have smooth descents. This encounter also is not physi-

cally impossible and further validation is future work. While encounters like Figure 30 

should be rare, it is reasonable to include them in safety assessments because they stress 

DAA systems in novel ways. Along with implications of a constant speed, the use of 

models and their idiosyncrasies are further discussed in Section 4.  

3.3. Sampled Encounters to Support RTCA SC-228 

Six million encounters were generated in total using both models trained on the 

terminal radar tracks and OpenSky Network. Three million encounters were sampled 

from each model, with one million encounters generated using the aircraft dynamic 

constraints for “RTCA228-A1,” “RTCA228-A2,” and “RTCA228-A3.” For each of these 

million encounters, there was a uniform distribution over airspace class, ownship intent, 

and intruder intent.  
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The encounters were simulated with the DEGAS simulation environment[38]. En-

counters can be input to DEGAS as events or trajectories. Events specify the times at 

which a change in dynamics (e.g., turn rate, vertical rate, or acceleration) occurs, whereas 

trajectories specify the position (east, north, and altitude) of the aircraft at every time 

step. Events are simulated using a basic 6 degrees-of-freedom dynamics model, whereas 

trajectories, such as the encounters generated by sampling the terminal model, are fol-

lowed directly (bypassing the dynamics model). 

These encounters were used to assess key safety metrics in simulation for UAS ter-

minal operations assuming a low latency networked terrestrial Command and 

Non-Payload Communications (CNPC) link that is aligned with the RTCA C2 MOPS and 

the use of a ground or airborne systems. The simulation assumed that the UAS was flying 

under IFR and receiving ATC separation services. Additionally, the simulation was de-

signed to support a sensitivity analysis with the following objectives: 

• Assessing the sensitivity of DAA system performance (safety and operational 

suitability) to C2 performance levels, and evaluation of the impact of relaxing C2 

performance requirements;  

• Identifying areas that should be targeted for future safety enhancements priori-

tized by maximum benefit; and  

• Determining areas where small modeling variations may have a large impact on 

the safety metrics. 

In response, we characterized the encounter sets based on aircraft kinematic states at 

CPA and the horizontal miss distance (HMD) and vertical miss distance (VMD) at CPA. 

Distributions were compared between the different models to characterize if the different 

training datasets led to different sampled encounters. Ultimately, training data sources 

have different biases and assumptions, so generating encounter sets using both modeled 

improved the robustness of the final simulation results for RTCA SC-228. Our discussion 

focuses on encounters with “RTCA228-A1” dynamic limits to narrow the discussion but 

we identified similar trends with the other encounter sets. 

3.3.1. Kinematic Distributions at CPA 

Figures 35 and 36 provide the distributions for distance from the runway, altitude, 

speed, and vertical rate for ownship and intruder at CPA. Ownship is using the 

“RTCA228-A1” dynamic limits while intruder is using the “generic” dynamic limits. 

Figure 35 was generated using the model trained using the terminal area radar tracks 

while Figure 36 used the OpenSky Network-based model. Histogram bins are based on 

the bins used by the encounter geometry model and may not be uniform.  

Foremost, the altitude and vertical rate magnitude distributions were similar be-

tween the models. In general, the intruder was at lower altitude than the ownship at 

CPA, with both aircraft at 1500 feet or less. Extreme vertical rates were rarely observed at 

CPA, with most vertical rates of 10 feet per second (600 feet per minute) or less. 

The distance at which CPA occurred from the runway slightly differed between the 

sampled encounter sets. While both encounter sets had about 75% of encounters within 4 

nautical miles of the runway, the terminal area radar-based encounters had more en-

counters within one nautical mile of the runway, while the OpenSky Network-based 

encounters had a few more encounters at two to four nautical miles from the runway 

mean position. In support of the SRMD to assess DAA performance, these differences 

aren’t particularly impactful because the DAA system is more influenced by the kine-

matics of which altitude and vertical rate had unimportant differences but there was a 

notable difference in the speed distributions.  

For the terminal radar-based encounters, about 60% of encounters had ownship 

flying between 225 to 300 feet per second at CPA, while only 46% of OpenSky Net-

work-based encounters had ownship at that speed at CPA. Also, only about 12% of in-

truders had a speed of 75 to 150 feet per second at CPA with the terminal radar-based 

encounters, compared to nearly 28% of the other encounter set. In general, the terminal 

radar-based encounters had a relatively faster “RTCA228-A1” UAS and relatively faster 
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“generic” intruder. Speeds greater than 300 feet per second (178 knots) at CPA were in-

frequently observed in about 7% of encounters in both sets. 

Upon review of the encounters, we have a couple hypothesis to explain the differ-

ences in the speed distributions. Principally, aircraft type of fixed-wing or rotorcraft can 

be identified when training with the OpenSky Network-based model but not when using 

the terminal area radars. For the uncorrelated encounter models, we have observed 

models trained solely using observations of rotorcraft will have a speed distribution 

slower than models trained using solely fixed-wing aircraft[12]. An uncorrelated ro-

torcraft-based model also has a relatively slower speed distribution than a model trained 

using heterogenous mix of aircraft types. We hypothesized a similar trend is occurring 

with the terminal model, where the OpenSky Network-based model can leverage the 

aircraft type information and generate tracks that are more representative of relatively 

slower moving aircraft. An inspection of the model distributions given an aircraft type of 

rotorcraft support this hypothesis but additional validation is required. Additionally, 

due to ADS-B transponder equipage mandates, it is possible that more rotorcraft or gen-

eral aviation fixed-wing single engine were equipped with transponders in 2018 than in 

2015 when the terminal area radar dataset was curated. The models also inherently were 

trained based on different compositions of aircraft types, with the speed distributions 

reflecting these different compositions. This does not make either model incorrect but 

rather reflects a bias in the training data. We also enforced the desired uniform distribu-

tion over airspace, class, ownship intent, and intruder intent when rejection sampling.      

 

 

Figure 35. Distributions for kinematic variables at CPA for one million encounters with a 

“RTCA228-A1” ownship and “generic” intruder when using the terminal area radar trained model.  
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Figure 36. Distributions for kinematic variables at CPA for one million encounters with a 

“RTCA228-A1” ownship and “generic” intruder when using the OpenSky Network trained model.  

3.3.2. Horizontal and Vertical Miss Distance Distributions 

While independent aircraft speeds are important in characterizing an encounter, the 

closing speed between aircraft significantly influences the risk of a collision given an 

encounter and subsequently the HMD and VMD at CPA. The separation between aircraft 

is also based on other kinematic variables as well, such as relative heading between air-

craft, aircraft turn rate, altitude, and vertical rate. Accordingly, Figures 37 and 38 plot the 

HMD and VMD distributions for the terminal area radar and OpenSky Network-based 

encounter sets with “RTCA228-A1” ownship and “generic” intruder. The distributions 

are illustrated as two dimensional CDF contour plots. Table 10 summarizes the CDF 

percentile given select HMD and VMD values. A positive VMD is indicative of the in-

truder above ownship and a negative VMD is when the ownship was above the intruder. 

For example, Figure 37 indicates that 25% of encounters sampled from the terminal area 

radar trained model, had an HMD of 7,000 feet or less and a VMD of 500 feet or less at 

CPA. Whereas 40% of encounters sampled from the OpenSky Network-based model 

satisfied these HMD and VMD thresholds.  

These figures indicate that regardless of the model, majority of encounters had a 

CPA where the intruder was above the ownship. This can be attributed to transiting in-

truders which tend to have higher relative altitudes and the glide slope constraints on the 

ownship. The distributions also show that majority of encounters had a HMD and VMD 

greater than 2,200 and 450 feet respectively at CPA. This combination of HMD and VMD 

are notable as it a separation metric used by RTCA SC-228[39]–[41] and similar to sepa-

ration criteria used by a different UAS DAA standard published by ASTM F38[16]. As the 

OpenSky Network-based model had 25% of encounters with a HMD and VMD of this or 

less, that encounter set was slightly more stressing to the DAA system and had encoun-

ters to estimate safety metrics based on that separation. As HMD and VMD at CPA in-

creases, the distributions between the two encounter sets become more similar.  
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Figure 37. Distributions for HMD and VMD at CPA for one million encounters with a 

“RTCA228-A1” ownship and “generic” intruder when using the terminal area radar trained model.  

 

Figure 38. Distributions for HMD and VMD at CPA for one million encounters with a 

“RTCA228-A1” ownship and “generic” intruder when using OpenSky Network trained model.  
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Table 10. Select HMD and VMD fractiles for one million encounters with a “RTCA228-A1” own-

ship and “generic” intruder with models trained using different data. 

HMD (feet) VMD (feet) 
Terminal Area  

Radars  

OpenSky Network 

Aerodromes 

2,200 450 0.17 0.25 

2,500 0 0.10 0.15 

2,500 250 0.16 0.25 

7,000 500 0.25 0.40 

16,400 0 0.25 0.34 

23,600 0 0.50 0.51 

4. Discussion on Future Work 

Model development was still ongoing as of September 2021. We demonstrated the 

viability of a clustering approach to identify encounters based on assumptions of airport 

design, approach and departure routes, and aviation heuristics. When parallelizing 

across multiple processors on the LLSC, the approach identified a sufficient set of en-

counters for model training. While a trained model can generate reasonable encounters, 

the model structure introduces undesired dynamics and should be improved. Addition-

ally, track classification for training and the model structure can be improved to better 

distinguish and model different track intents. Specifically, the current intruder intent of 

“transiting” can be too vague and likely insufficiently captures behavior tailored to ter-

minal VFR or helicopter routes.  

Regarding the use of the model for safety analyses, aircraft tracks were often ini-

tialized multiple nautical miles away from the runway and with faster airspeeds than 

associated with landings of rotorcraft, fixed-wing single-engine or smaller fixed-wing 

multi-engine aircraft. However, as discussed in Section 3.3.1, the modeled speeds at CPA 

were reasonable. There was no indication that aircraft were modeled with speeds slower 

than anticipated nor with unreasonably fast speeds at low altitudes. Collision risk in-

creases with aircraft speed because closing speed also increases, which reduces the time 

required to loss of separation between aircraft. This was previously assessed for uncor-

related encounters with smaller UAS[42]. Given there exists some relationship between 

closing speed and risk, we assumed that the sampled encounters likely did not underes-

timate risk because the sampled encounters were presumed to not be slower than reality. 

Collision risk is not solely dependent on closing speed and there are other variables, 

many of which are encoded in the model itself. So, while modeled aircraft are not slow-

ing down as they fly closer to the runway, additional validation is required to assess if 

the encounters slightly overestimated the risk due to the higher than expected speeds. 

Assuming fixed-wing aircraft have a minimum stall speed of 75-100 feet per second, we 

hypothesize that tracks could experience a speed change up to 85 feet per second over the 

course of an encounter in an improved model. 

Using a classical Bayesian network to model where CPA occurred was shown to be 

practical and scalable, whereas many of the issues can be attributed to propagating tracks 

over the duration of the encounter. As such, model development will focus on improving 

how aircraft move through the airspace with respect the runway, rather than identifying 

where CPA or if an encounter was observed. Potential near-term future work includes 

aggregating the trajectory models into a one or two trajectory model with additional 

parent variables to denote if an aircraft is the ownship or intruder; or specifying addi-

tional, more specific intents such as “landing – straight,” or “landing – any.” Future work 

could also explore training a model using a hidden semi-Markov model, like Mahoubi 

and Kochenderfer[21], or with longer timesteps, such that, for example, track updates are 

sampled every ten instead of every one second. However, neither of these proposed de-

velopments would address issue of sampled speeds generally remaining constant. 

   It was insightful that vertical rate estimated from a temporal variable, altitude, 

was a better model than speed, which was not estimate from a temporal variable. While 
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we could prototype modifying the trajectory model such that distance and bearing from 

the runway are temporal variables, the current Dynamic Bayesian network structure is 

reliant upon discretized variables, which could produce similar intra-bin sampling is-

sues.  

One potential approach is to use aggregate or relative variables, instead of absolute 

variables in the model structure. Speed and vertical rate are currently absolute variables 

that models the absolute kinematics of the aircraft. An example aggregate variable would 

be the sum of aircraft speeds or the sum of vertical rates; while a potential relative varia-

ble would be the relative speed difference between the ownship and intruder. Using ab-

solute, aggregate, and relative variables in combination could be memory efficient and 

better model the combinatorial state space of different aircraft kinematics. The use of 

aggregate states yielded promising results when previously exploring aircraft avoidance 

Markov Decision Processes (MDP)s[43]. 

Another approach similar to Mahboubi and Kochenderfer[21] could be prototyped 

where tracks can be classified by the probability of an aircraft transitioning from one 

navigation goal to the next. While Mahboubi and Kochenderfer used Turning Points as a 

navigation goal, goals could also be formulated origin and destination (O-D) pairs. O-D 

pairs have been used to model potential air taxi traffic between locations, with O-D pairs 

enabling models to assess various operational constraints between different structured 

routes[44]. Mahboubi and Kochenderfer modeled aircraft navigation between stochastic 

O-D pairs, the parameters and nodes of the models were hand engineered based on a 

nominal traffic pattern, while demonstrating they could be learned from observations. 

 We hypothesize that instead of a network based on specific phases of a terminal 

operation, such as states associated with a 45 degree entry into a downwind, turn onto 

base, and a turn into final before landing. Using the existing or modified model structure, 

Dynamic Bayesian Network(s) could be trained for each state. For example, consider a 

terminal environment with a single runway and VFR route. The VFR route could be 

composed of multiple waypoints but the proposed model would represent the entire 

VFR route as a single state. Similar to the cluster approach described in Section 2.3, we 

could identify tracks with a VFR route state. Subsequently, states associated with landing 

or taking-off from the ends of the runway would have their own states. Given this state 

classification, we could train models tailored to the states. Then similar to the encounter 

identification approach from Section 2.4, we could identify encounters given navigational 

state and relative position. This should enable the model to better distinguish between an 

intruder flying along a VFR route with specific operating rules and assumptions and an 

intruder transiting through the airspace at relatively higher altitudes. Each state could 

have a Dynamic Bayesian network to model how aircraft operate within a state (i.e., fly-

ing along the VFR route) with a separate Bayesian network to model the transition be-

tween states. This hierarchical model would then enable modeling of both aircraft kine-

matics and the relative interactions between navigational states. Notwithstanding, future 

work will focus on improving modeled speed and various intents.   

Other avenues for future work include rotorcraft track identification with tech-

niques that do not leverage the aircraft registry, such as using an autoencoder[45] or 

kinematic features[46]; considerations for nonconventional aircraft, such as gliders or 

balloons; or incorporate traffic flow management concepts[47] into our model. 

5. Conclusions 

We overview the development of a statistical model of how crewed aircraft behave 

when operating in terminal airspace and a rejection sampling approach to create en-

counters representative of those with uncrewed aircraft. Using the trained models, we 

can develop and evaluate systems that mitigate airborne collision risk. Specifically, the 

models directly support activities of the RTCA SC-228 standards development commit-

tee. 

6. Patents 
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Appendix A 

This appendix lists the FAA airports that were in scope for the version 2.0 of the 

terminal encounter model. The quantity of observations near these airports varied, due to 

surveillance coverage and characteristics of the sources of aircraft tracks. Some locations 

had little to no observations. Specifically, FAA Class C airports that were in scope in-

cluded: 

• KAVL 

• KBGR 

• KGSP 

• KMYR 

• KRSW 

FAA Class D airports that were in scope included: 

• KADS 
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• KARA 

• KASE 

• KASH 

• KBCT 

• KBLI 

• KBVI 

• KCGF 

• KCHO 

• KCKB 

• KCRE 

• KCRQ 

• KCWF 

• KEMT 

• KEYW 

• KFLG 

• KFUL 

• KFYV 

• KGCN 

• KGKY 

• KGTR 

• KGUS 

• KGVT 

• KGYR 

• KHHR 

• KHSA 

• KHTS 

• KIFP 

• KJAC 

• KLAW 

• KLBE 

• KLWB 

• KLZU 

• KMDT 

• KMER 

• KMFR 

• KMGW 

• KMRB 

• KMTN 

• KNQA 

• KOJC 

• KOXC 

• KOXR 

• KPSM 

• KRME 

• KRNT 

• KROG 

• KRYY 

• KSAW 

• KSBD 

• KWHP 

• KPAO 

• KGEU 

• KSDL 

• KSGR 

• KSKF 
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• KSMO 

• KSQL 

• KSUN 

• KTBN 

• KTIW 

• KTTD 

• KTUP 

• KVOK 

• KWJF 

• KWRB 

• KXMR 

• KHQZ 

• KTKI 

 There were 873 FAA Class E and G airports considered in scope for this analysis. 

Please contact the authors for a complete list of these airports.  

Appendix B 

When identifying encounters as part of model training, all observations of aircraft 

transmitting any of the special transponder codes in the following table were rejected. 

Table 6. Special use transponder codes not used for model training.  

Code Purpose 

1206 
VFR law enforcement, first responder by L.A., may not be in 

contact with ATC 

1255 Firefighting aircraft 

1273-1275 Calibration and performance monitoring equipment 

1276 
Air defense identification zone penetration (when unable to 

contact ATC or aeronautical facility) 

4401-4433, 4466-4477 Special aircraft - sensitive unclassified 

4434-4437 Weather reconnaissance 

4447-4452 Special flight support codes 

5000-5057, 5063-5077, 

5400, 6100, 6400, 

7501-7577 

DOD reserved codes only to be assigned by NORAD 

5100-5300 More DOD aircraft 

7400 Reserved for uncrewed aircraft with a lost link 

7500 Hijack 

7600 Radio failure 

7601-7607, 7701-7707 
Allocated by the FAA for special use by law enforcement 

agencies 

7700 Emergency 

7777 
DOD interceptor aircraft on active air defense missions 

-operating without ATC clearance 

Appendix C 

This appendix overviews the initial approach of version 1.0 to identify if a runway 

was for taking off or landing. This approach was found to be sensitive to false positive 

identifications (e.g., wrong runway identified or assessed as landing but actually trans-

iting). The criteria were tuned to minimize such false positives at the expense of exclud-

ing some otherwise relevant trajectories (i.e., false negatives). In response, the approach 

described in Section 2 was developed to reduce misidentifications, enhance the robust-
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ness and improve scalability. For reference, we overview the original deprecated ap-

proach in this appendix. 

Each trajectory was separately assessed for landing and for takeoff, so it can be 

tagged as one or the other, both, or neither. The procedure for both takeoff runway and 

landing runway identification entails transforming the latitude/longitude trajectory into 

a Cartesian coordinate frame centered on each candidate runway.  

For takeoffs, the assessment is limited to the first 30 seconds of trajectory data. That 

trajectory segment is assessed against the following criteria to determine if the runway 

remains a candidate: 

• Trajectory segment include altitude below 1500 feet (relative to runway elevation); 

• The segment is generally increasing in altitude; 

• The ground track is aligned within 45° of the runway; and 

• The segment includes positive points on the along-runway axis that are within 4000 

feet of the runway laterally. 

If no runways satisfy these criteria, the trajectory is not a takeoff. (Conceivably some 

takeoff trajectories will be missed if they begin at the defined edge of the terminal area, 

land, and immediately take off again.) If a single runway satisfies the criteria, the trajec-

tory is marked as a takeoff from that runway. If multiple runways satisfy the criteria, the 

trajectory is marked as a takeoff from the runway with threshold closest in ground range 

to the initial point on the trajectory. 

For landings, a similar procedure is followed. The assessment uses the final 30 sec-

onds trajectory data, which must satisfy the following criteria for a runway to remain a 

candidate: 

• Includes altitudes below 1500 feet (relative to runway elevation); 

• Ground track is aligned within 35° of runway; and 

• Includes negative points on the along-runway ways that are within 4000 feet of the 

runway laterally. 

As for takeoffs, if multiple runways satisfy the criteria, the runway with threshold 

closest in ground range to the final point of the trajectory segment is identified as the 

landing runway. Note that this procedure likewise will miss the scenario outlined above 

where the landing and takeoff occur in the middle of the trajectory. Both assessments 

neglect any events in the middle of the trajectory and do not assess, for example, inter-

mediate landings and takeoffs in trajectories with multiple go-arounds. 

Any landing trajectories are also assessed for using a straight-in approach, which 

would make the trajectory applicable as a surrogate UAS trajectory. Straight-in ap-

proaches require that the aircraft make no turns after passing the Final Approach Fix, 

which is different for every airfield but typically four to five miles from the runway. This 

criterion is simplified to whether the trajectory (not just the 60-second segment) passes 

within one nautical mile laterally when it is at four nautical miles along the negative 

along-runway axis. 

Finally, encounters are identified amongst the landing and taking off trajectories. To 

be identified as such, one track must be a straight-in landing (the surrogate uncrewed 

aircraft) and the second track must be a landing (either straight-in or otherwise) and/or 

takeoff. 

Appendix D 

For the encounter set generated to support RTCA SC-228, trajectory data is provided 

in two forms: a single binary file containing position points for all encounters 

(along-runway position (ft), cross-runway position (ft), and altitude (ft)), and full state 

data (position/velocity/attitude) in individual text files for each aircraft and each en-

counter. The following variables are included in the full state data: 

• Time (in seconds) 

• Speed (in feet per second) 

• Track Angle (in radians) 
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• Bank Angle (in radians) 

• Pitch Angle (in radians) 

• Acceleration (in feel per second squared) 

• Along-Runway Position (in feet) 

• Cross-Runway Position (in feet) 

• Altitude (relative to runway elevation, in feet) 

• Along-Runway Velocity (in feet per second) 

• Cross-Runway Velocity (in feet per second) 

• Vertical Speed (in feet per second) 

• Heading Rate (in radians per second) 

• Latitude (in degrees) 

• Longitude (in degrees) 

The latitude and longitude values assume a runway at a fixed geodetic location 

oriented due north. An additional metadata file indicates the sampled encounter condi-

tions as well as CPA information for each encounter. Metadata is formatted to align with 

the DAIDALUS algorithm [7]. The following variables are included in the metadata: 

• Encounter ID 

• Airspace class (1 – Class D, 2 – Class E, 3 – Class G) 

• Ownship intent (-1 – landing, 1– takeoff)  

• Intruder intent (-1 – landing, 0 – transit, 1– takeoff)  

• Intruder type (1 – fixed wing) 

• Intruder runway (1 – same)  

• Ownship distance from runway at CPA (in nautical miles) 

• Ownship bearing relative to runway at CPA (in degrees) 

• Ownship altitude at CPA (in feet relative to airport elevation) 

• Ownship speed at CPA (in feet per second) 

• Ownship track relative to runway at CPA (in degrees)  

• Ownship vertical rate at CPA (in feet per minute) 

• Intruder distance from runway at CPA (in nautical miles) 

• Intruder bearing relative to runway at CPA (in degrees) 

• Intruder altitude at CPA (in feet relative to airport elevation) 

• Intruder speed at CPA (in feet per second)  

• Intruder track relative to runway at CPA (in degrees) 

• Intruder vertical rate at CPA (in feet per minute) 

• Ownship initial altitude (in feet relative to airport elevation) 

• Ownship initial speed (in feet per second) 

• Ownship initial vertical rate (in feet per minute) 

• Intruder initial altitude (in feet relative to airport elevation) 

• Intruder initial speed (in feet per second) 

• Intruder initial vertical rate (in feet per minute) 

• Time of CPA (in seconds) 

• Horizontal miss distance (in feet) 

• Vertical miss distance (in feet) 

• Whether a Near Mid-Air Collision (500 ft horizontally, 100 ft vertically) occurred (1 

= yes, 0 = no) 
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