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Abstract: Convolutional Neural Networks (CNNs) have gained prominence in the research litera-

ture on image classification over the last decade. One shortcoming of CNNs, however, is their lack 

of generalizability and tendency to overfit when presented with small training sets. Augmentation 

directly confronts this problem by generating new data points providing additional information. In 

this paper, we investigate the performance of more than ten different sets of data augmentation 

methods, with two novel approaches proposed here: one based on the Discrete Wavelet Transform 

and the other on the Constant-Q Gabor transform. Pretrained ResNet50 networks are finetuned on 

each augmentation method. Combinations of these networks are evaluated and compared across 

three benchmark data sets of images representing diverse problems and collected by instruments 

that capture information at different scales: a virus data set, a bark data set, and a LIGO glitches 

data set. Experiments demonstrate the superiority of this approach. The best ensemble proposed in 

this work achieves state-of-the-art performance across all three data sets. This result shows that var-

ying data augmentation is a feasible way for building an ensemble of classifiers for image classifi-

cation (code available at https://github.com/LorisNanni).  
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1. Introduction 

Convolutional Neural Networks (CNNs) have revolutionized image classification. 

The power of these networks lies in their ability to preserve the spatial properties of im-

ages due to their highly parameterized and sparsely connected kernels. With these net-

works, the spatial resolution of an image is systematically downsampled while the depth 

of the feature maps is simultaneously expanded. The result is a network that learns rela-

tively low-dimensional yet powerful representations of images that, in general, greatly 

surpass the effectiveness of handcrafted features. The success of CNNs has led to its pre-

dominance in contemporary literature. Nearly every task domain benefiting from com-

puter vision publishes new research reporting previously unattainable classification re-

sults using CNN as a significant component in novel systems.  

With this power comes a significant disadvantage, however. The problem is that 

CNNs are prone to overfit on small data sets because of their massive numbers of param-

eters. Overfitting occurs when the network perfectly models the training set but cannot 

generalize its learning to predict the class of unseen data accurately. The overfitting prob-

lem has generated a need and an expectation for large data sets and is one of the pressures 

escalating data size growth. As noted in [1], data size is currently associated with research 

quality: small sample sizes are often dismissed as lacking sufficient relevancy. Unfortu-

nately, not all domains can keep up with the new data size requirements and expectations. 

The availability of large data sets, for example, is problematic in medical image analysis 
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and bioinformatics. Collecting images in these areas is well-known to be costly and labor-

intensive.  

Some workarounds for handling the problem of CNN overfitting include 1) transfer 

learning, where the network is pretrained on a massive data set (such as ImageNet [2] 

with its 14+ million images classified into over 1000 classes) and then finetuned for a spe-

cific problem, and 2) data augmentation, where new samples are generated that are rep-

resentative of the different classes. Some other methods that reduce overfitting include 

dropout [3], batch normalization [3], and zero-shot/one-shot learning [4] [5]. 

According to Shorten, et. al. [6], image augmentation, the focus of this study, strikes 

at the heart of the problem of overfitting and aids generalizability by extracting more in-

formation from the generation of more data points, a process that fosters continuous learn-

ing. Consequently, augmentation has become a vital technology in many fields [6-8].  

In [6], the authors divide image data augmentation into two major categories: basic 

image manipulations (such as flipping and transposing) and deep learning approaches 

(based, for example, on GANs). The aim of this study is to compare combinations of the 

best image manipulation methods for generating new samples that the literature has 

shown works well with deep learners. In section 2, we review some of these methods. In 

addition, two novel data augmentation algorithms are proposed: one based on the Dis-

crete Wavelet Transform (DWT) and the other on the Constant-Q Gabor (CQT) transform 

[9]. As described in section 3, a separate pretrained ResNet50 network is finetuned on the 

original training set and the new images generated by each of the augmentation algo-

rithms. Ensembles are built from combinations of these networks and evaluated across 

three benchmarks: a virus data set (VIR) [10], a tree bark image data set (BARK) [11], and 

a LIGO glitches data set (GRAV) [12]. As reported in section 4, the best ensemble proposed 

in this work achieves state-of-the-art performance across all three. 

In brief, the main contributions of this study are the following:  

• An evaluation across three benchmarks of some of the best augmentation 

methods based on image manipulations; 

• The introduction of two new augmentation methods utilizing the DWT and 

CQT transforms (DWT achieves a top performance of 98.41% accuracy on the 

GRAV data set); 

• An experimentally derived ensemble that achieves state-of-the-art perfor-

mance on the VIR (90.00%), BARK (91.27%), and GRAV (98.33%) bench-

marks. This result shows that varying data augmentation is a feasible way 

for building an ensemble of classifiers for image classification. 

• The availability of the MATLAB source code for the experiments reported in 

this work at https://github.com/LorisNanni. 

2. Related Works 

In [6], basic image manipulations are broken down into the categories of kernel fil-

ters, color space transforms, geometric transformations, random erasing/cutting, and mix-

ing images. These image manipulations are relatively easy to implement, but caution must 

be taken to preserve labels when using these transformations (flipping, for example, 

would change class six images in a written number data set to nine and vice versa). In-

deed, one of the most popular geometric transforms for data augmentation is flipping, 

especially horizontal flipping [6]. Other geometric transforms include translating and ro-

tating an image to create new samples [13-15]. For augmentation purposes, rotation is best 

performed on the right or left axis in the range [1˚, 359˚] [6]. Translating by shifting up, 

down, left, and right focuses on different areas in the image and effectively averts posi-

tional bias in a set of images; translation, however, often adds noise [16]. Similar in effect 

to translation is random cropping, which randomly samples a section of the original sam-

ple. Cropping has the additional advantage of reducing the size of the generated images 

if desired. Noise injection creates new images by inserting random values into them, an 

augmentation technique that has been explored extensively in [17]. For a comparison of 

geometric augmentations on AlexNet tested on ImageNet and CIFAR10 [18], see [14]; the 
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authors in this comparison study show that rotations perform better than the other geo-

metrical transforms discussed above. 

Through color space transformations, biases in images based on illumination can be 

obviated [6]. For example, the pixels in the color channels of an RGB image can be put into 

a histogram and manipulated by applying filters to change the color space characteristics, 

a process that generates new samples. Color spaces can also be converted into one another 

for augmentation purposes, but care should be taken when transforming an RGB image 

into a grayscale version since this transformation has been shown to reduce performance 

by as much as 3%, according to [19]. Color distributions can also be jittered, and bright-

ness, contrast, and saturation can be adjusted to make new images [13, 14]. One disad-

vantage of using color space transformation is the risk of losing information. For a com-

parison between geometric and color space augmentations, see [20]. 

Kernel filters blur and sharpen images by sliding an 𝑛 ×  𝑛 window across the im-

age with a Gaussian blur or some other type of filter. A novel kernel filter called 

PatchShuffle that randomly swaps the matrix values in the window has also been applied 

with success [21]. 

Mixing images is another basic manipulation method that either averages pixel val-

ues between images [22] or transforms images and mixes them together in chains [23], 

masks, or in some other way. In [22], random images were cropped and randomly flipped 

horizontally. The pixel RGB channel values were then averaged to produce a new image. 

In [24], nonlinear methods were introduced to combine new samples. Finally, in [25], 

GANs were used to mix images.  

Similar to random cropping, random erasing [26] and cutting [27] helps with gener-

alizability by occluding images; objects rarely appear in full form in the world. In [26], the 

authors proposed randomly erasing patches of arbitrary size in an image. This augmen-

tation technique was evaluated on several ResNet architectures trained on CIFAR10, 

CIFAR100, and Fashion-MNIST, and results showed consistent performance improve-

ments. For a survey of the literature on image mixing and data erasing, see [7]. 

Finally, it should be noted that some data augmentation techniques are performed 

considering the entire training set. PCA jittering, for instance, multiplies the principal 

components of an image by a small number [13, 14, 20, 28, 29]. In [20], for instance, the 

first PCA component was multiplied by a random number from a uniform distribution. 

In [28], new samples were generated by projecting an original image onto a PCA or DCT 

subspace, adding noise to the components, and then reconstructing the altered images 

back into the original space.  

3. Materials and Methods 

3.1 Proposed Approach 

Consulting Figure 1, our proposed approach can be described in the following way. 

A given image in a training set is augmented using 𝑛 augmentation methods, where 𝑛 ∈

(0, 1, … 11). The eleven augmentation methods are outlined in section 3.2., and several 

combinations of these methods are experimentally investigated as described in section 4. 

The original images, along with the new images generated by each augmentation method, 

are finetuned on separate pretrained ResNet50 [30] networks, with various combinations 

fused by sum rule. We have used it since it needs quite low computation time to train.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   



 

 
Figure 1. Proposed approach. Transfer learning with multiple ResNet50s pretrained on 

ImageNet using different sets of data augmentation methods, with networks fused by 

sum rule.  

 

 

ResNet50 is a residual learning network that has 48 Convolutional layers along 

with 1 MaxPool and 1 Average Pool layer for a total of 50 (see Figure 2). This network 

can train many layers because of the addition of skip connections. In this work, each 

ResNet50 was pretrained on ImageNet and finetuned with a batch size of 30 and a learn-

ing rate of 0.001. 

 

 

 
 

Figure 2. Schematic of ResNet50. 

 

 

3.2 Data Augmentation Methods 

We increased the number of images in our data sets using eleven data augmentation 

protocols (App1-11), as detailed below. 

App1. The original image is first randomly reflected in the left-right and the top-bot-

tom directions. Subsequently, it is linearly scaled along both axes by two different factors 

randomly extracted from the uniform distribution in [1, 2].  
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App2. This method combines App1 with a) image rotation, b) translation, and c) 

shear. The rotation angle is randomly extracted from [-10, 10] degrees. The translation 

shifts along both axes with the value randomly sampled from the interval [0, 5] pixels. 

The vertical and horizontal shear angles are randomly sampled from the interval [0, 30] 

degrees.  

App3. This augmentation method is the same as App2 but without shear. 

App4. This method uses PCA and is the method described in [28]. The PCA space is 

built on the training data only. Three perturbation methods are applied to alter the PCA 

coefficients representing the original image vector; these perturbations generate a new 

feature vector and consequently a new image after the perturbed vector is reconstructed. 

The first perturbation method consists of randomly (with a probability 0.5) setting to zero 

each element of the feature vector. In the second perturbation method, noise is added us-

ing the following MATLAB code, where PrImg is the PCA projected image: 
noise=std(PrImg)/2; 
K= img; 
K=K+(rand(size(K))-0.5).*noise; 

For the third perturbation method, five images are randomly extracted from the same 

class as the original image. All six images are PCA-transformed, and some of the compo-

nents of the original image are exchanged with some of the corresponding components 

taken from the five other feature vectors. Each element of the five images replaces the 

original element with a probability 0.05. 

Since we have three channels for each color image, these perturbations are applied 

to each channel independently. In this way, App4 produces three augmented images from 

each original image.  

App5. This augmentation method uses the same perturbation method as those de-

scribed in App4, but the DCT is applied instead of PCA. The DC coefficient is never 

changed. Example images produced by using DCT are provided in Figure 3. 

App6. This method uses contrast augmentation, sharpness augmentation, and color 

shifting. The contrast augmentation linearly scales the original image between two values, 

𝑎 and 𝑏, with 𝑎 <  𝑏, provided as inputs. These two values represent the lowest and the 

largest intensity values in the augmented image. Every pixel in the original image with 

intensity less than 𝑎 (or greater than 𝑏) is mapped to 0 (or 255). The sharpness augmen-

tation first blurs the original image by a Gaussian filter with variance equal to one, and 

then it subtracts the blurred image from the original one. The color shifting method simply 

takes three integer numbers (shifts) from three RGB filters. Each shift is added to one of 

the three channels in the original image.  

App7. This method produces seven augmented images from an original image. The 

first four augmented images are made by altering the pixel colors in the original image 

using the MATLAB function jitterColorHSV with randomly selected values for hue (in the 

range [0.05, 0.15]), saturation (in the range [-0.4, -0.1]), brightness (in the range [-0.3, -0.1]), 

and contrast (in the range [1.2, 1.4]). The fifth augmented image is simply a gaussian-

filtered version of the original one generated with the MATLAB function imgaussfilt. The 

Gaussian filter has standard deviation randomly ranging in the range [1, 6]. The sixth 

augmented image is produced by the MATLAB function imsharpen with the radius of the 

Gaussian lowpass filter equal to one and the strength of the sharpening equal to two. A 

further augmented image is produced by the color shifting described in App6. 

App8. This method produces two augmented images starting from the original im-

age and a second image (the target image) randomly extracted from the same class of the 

original one. The two augmented images are generated using two methods based on the 

nonlinear mapping of the original image on the target: RGB Histogram Specification and 

Stain Normalization using Reinhard Method [31]. 

App9. This method generates six augmented images using two different methods of 

elastic deformation: one in-house method and an RGB adaptation of ElasticTransform from 

the computer vision tool Albumentations (available at https://albumentations.ai/ (ac-

cessed 10/15/21). Both methods augment the original image by applying a displacement 

field to its pixels. The in-house method consists in defining, for each pixel in the original 
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image, the displacement field 𝛥𝑥(𝑥, 𝑦) =  𝛼𝑟𝑎𝑛𝑑(−1, +1) and 𝛥𝑦(𝑥, 𝑦) = 𝛼𝑟𝑎𝑛𝑑(−1, +1), 

where α is a scaling factor that depends on the size of the original image (here 7000, 1000, 

and 13000) and 𝑟𝑎𝑛𝑑(−1, +1) represents a random value extracted from the standard 

uniform distribution in [−1, 1]. In the case of non-integer α values, bilinear interpolation 

is applied. Because of the randomness of the displacement of each pixel, this method in-

troduces distortions in the augmented image. The second method uses as well the dis-

placement field 𝛥𝑥(𝑥, 𝑦) =  𝑟𝑎𝑛𝑑(−1, +1)  and 𝛥𝑦(𝑥, 𝑦) =  𝑟𝑎𝑛𝑑(−1, +1)  defined for 

each of the pixels in the original image. The horizontal 𝛥𝑥 and the vertical 𝛥𝑦 displace-

ment fields are then filtered by means of one of the following three low pass filters: 1) 

circular averaging filter, 2) rotationally symmetric Gaussian lowpass filter, and 3) rota-

tionally symmetric Laplacian of Gaussian filter. Finally, each of the two filtered displace-

ment matrices is multiplied by the standard 𝛼 = 3000 and applied to the original image, 

as in the previous method (𝛼 was not optimized as if worked well with the required size 

of images 224×224 for RenNet50) 

App10 (NEW). To our knowledge, this augmentation approach is proposed here for 

the first time. It is based on DWT [32] with the Daubechies wavelet db1 with one vanishing 

moment. DWT produces four 114 × 114 matrices from the original image, containing the 

approximation coefficients (cA) and the horizontal, vertical, and diagonal coefficients (cH, 

cV and cD, respectively). Three perturbation methods are applied to the coefficient matri-

ces. In the first method, a random number of matrix elements is set to zero for each matrix 

(each element with a probability of 50% is set to zero). The second method computes an 

additive constant as the standard deviation of the original image and a random number 

in the range [-0.5, 0.5]. This constant is then added to all the elements in the coefficient 

matrices. The third method selects five additional images from the same class as the orig-

inal image and applies DWT. This process produces four coefficient matrices for each ad-

ditional image. Next, each element of the original cA, cH, cV, and cD matrix is replaced 

(with probability 0.05) with elements from the additional image coefficient matrices. Fi-

nally, the inverse DWT is applied, generating three augmented images from the original 

one. Example images produced by applying this novel augmentation approach are pro-

vided in Figure 4. 

App11 (NEW). To our knowledge, this augmentation method is proposed here for 

the first time. It is based (CQT) [9] that returns a 116 × 12 × 227 tridimensional CQT ar-

ray. Like App10, three different perturbations are applied to the CQT array. The first one 

sets to zero a random number of elements in the CQT vector as in App10. The second 

perturbation computes an additive constant as the sum of the original image standard 

deviation and a random number in the range [-0.5, 0.5]. This constant is then added to 

each of the 227 bidimensional 166 × 12 matrices that constitute the CQT vector. Finally, 

the third perturbation computes the CQT of five additional images from the same class as 

the original image and replaces (with probability 0.05) each value in the CQT vector of the 

original image with CQT vector elements from the other CQT-transformed additional im-

ages. Finally, the inverse CQT transform is applied, thereby producing three augmented 

images from the original one. Example images produced by applying this novel augmen-

tation method are provided in Figure 5. 
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Figure 3. An example image of App5 - DCT. The left image is the original image. 

 

Figure 4. An example image of App10 - DWT. The left image is the original image. 

 

 

Figure 5. An example image of App11 - DQT. The left image is the original image 

 

 

In Table 1, we report the number of artificial images added to the original training 

set using the eleven approaches described above.  

 

 

 

 

 

 

Table 1. Number of artificial images created by each data augmentation method. 
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Data Augmentation Method Number of generated images 

App1 3 

App2 6 

App3 4 

App4 3 

App5 3 

App6 3 

App7 7 

App8 2 

App9 6 

App10 3 

App11 3 

 

 

3.3. Data sets 

Three benchmark data sets were selected for testing the different augmentation ap-

proaches. These data sets were chosen for the following reasons: 1) the data sets represent 

very different image classification problems, 2) images collected with instruments that 

capture information significantly different scales, and 3) they are publicly available and 

easy to access. The performance indicator for all three data sets is accuracy.  

In the descriptions of each data set that follows, the names in boldface are the abbre-

viations used in the experimental section. These abbreviations are intended to be descrip-

tive and reduce clutter in the tables reporting results. 

VIR [10] is a popular virus benchmark containing 1,500 Transmission Electron Mi-

croscopy (TEM) images (size: 41×41) of viruses. This data set is available at 

http://www.cb.uu.se/_Gustaf/virustexture/ (accessed 10/15/21). The images in VIR are di-

vided into fifteen classes representing different species of viruses. This virus collection 

contains two separate data sets: 1) the object scale data set (VIR) where the size of every 

virus in an image is 20 pixels and 2) the fixed scale data set where each pixel corresponds 

to 1nm. Only the object scale data set is publicly available; the other is proprietary and 

thus not a benchmark.  

BARK [11] is a relatively new data set that has reached benchmark status because it 

contains more than 23,000 high-resolution images of bark taken from twenty-three Cana-

dian tree species, making it is the largest public data set of bark images. Bark-101 is avail-

able at http://eidolon.univ-lyon2.fr/~remi1/Bark-101/ (accessed 10/15/21). Each sample 

was collected in a region close to Quebec City and annotated by an expert. Care was taken 

to collect samples from trees located in different areas of the region under different illu-

mination conditions and at various scales. 

GRAV [12] is another recent data set collected by the Gravity Spy project that is con-

tinuously evolving. The version used in this study is GravitySpyVersion1.0. located at 

https://www.zooniverse.org/projects/zooniverse/gravity-spy (accessed 10/15/21). The im-

ages in GRAV are related to the detection of gravitational waves via ground-based laser-

interferometric detectors that are sensitive to changes smaller than the diameter of an 

atomic nucleus. Although these detectors are state of the art, they are still susceptible to 

noise, called glitches, that impede the search for gravitational waves. The goal of the Grav-

ity Spy project is to detect and classify a comprehensive set of these glitches into morpho-

logical families (with such descriptive names as Power Line, Paired Doves, Scratchy, and 

Whistle) by combining the judgments of scientists and machine learning algorithms. 

GRAV contains 8,583 time-frequency images of LIGO glitches with metadata organized 

into twenty-two classes. GRAV has training, validation, and testing sets to facilitate com-

parisons between machine learning algorithms. Four different views at different dura-

tions can be extracted from each glitch.  

4. Experimental Results 
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In the experiments reported in Table 2, we compare the results of ResNet50 coupled 

with different data augmentation approaches. We also report the performance of the fol-

lowing ensembles: 

1. EnsDA_all: this is the fusion by sum rule among all the ResNet50 trained using all 

eleven data augmentation approaches; a separate ResNet50 is trained for each of the 

data augmentation approaches. The virus data set has gray level images; for this rea-

son, the three data augmentation methods based on color (App6-8) perform poorly 

on VIR, so these methods are not used for VIR.  

2. EnsDA_5: this is a fusion where only five ResNet50 networks are trained, a separate 

one on the first five data augmentation approaches (App1-5).  

3. EnsBase: this is a baseline approach intended to validate the performance of 

EnsDA_all; EnsBase is an ensemble (combined by sum rule) of eleven ResNet50 net-

works each trained only on App3, selected because it obtains the highest average 

performance among all the data augmentation approaches. 

4. EnsBase_5: this is another baseline approach intended to validate the performance of 

EnsDA_5; it is an ensemble of five ResNet50 with each coupled with App3. 

 

The first row of Table 2 (NoDA), reports performance obtained by a ResNet50 with-

out data augmentation. The last row of Table 2 (State of the art) reports the best perfor-

mance reported in the literature on each of the three data sets using the same testing pro-

tocol used in this paper on the three data sets: the best for VIR is [33], for BARK [34], and 

for GRAV [12]). In [33], the best performance on VIR, features were extracted from the 

deeper layers of three pretrained CNNs (Densenet201, ResNet50, and GoogleNet), trans-

formed into a deep co-occurrence representation [35], and trained on separate SVMs that 

were finally fused by sum rule. Since the deeper layers of a CNN produce high-dimen-

sional features, dimensionality reduction was performed using DCT [36]. In [34], the best 

performance on the Bark data set, a method based on 2D spiral Markovian texture features 

(2DSCAR) via multivariate Gaussian distribution was trained on a 1-NN with Jeffery’s 

divergence as the distance measure. In [34], the best performance on GRAV, several en-

sembles were built from extracted views using a set of basic classifiers that included an 

SVM and two merge-view models proposed in [37]. The best performing ensemble in that 

study was fused by weighted sum rule. 

Examining Table 2, the following conclusions can be drawn: 

• Data augmentation approaches strongly boost performance as evident by comparing 

the ensembles using augmentation to the low performance of NoDA (well known in 

the literature); 

• There is no a clear winner among the data augmentation approaches; in each data 

set, the best method is different.  

• The best performance is obtained by EnsDA_all; this ensemble obtains the best per-

formance, even compared with the state of the art, on all the three data sets. This 

result shows that varying data augmentation is a feasible way for building an ensem-

ble of classifiers for image classification. 

• [20] and [29], two previous methods for data augmentation based on PCA, clearly 

works poorly respect our PCA based approach.  

 

 

 

 

 

 

Table 2. Performance (accuracy) of the different configurations for data augmenta-

tion.  

DataAUG VIR BARK GRAV 

NoDA 85.53 87.48 97.66 

App1 87.00 89.60 97.83 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   



 

App2 86.87 90.17 98.08 

App3 87.80 89.45 97.99 

App4 86.33 87.91 97.74 

App5 86.00 87.61 97.83 

App6 ** 88.63 98.08 

App7 ** 89.28 97.99 

App8 ** 87.29 97.74 

App9 85.67 88.86 98.24 

App10 84.20 86.39 98.41 

App11 85.47 89.20 97.91 

[29] 82.93 *** *** 

[20] 83.07 *** *** 

EnsDA_all  90.00 91.27 98.33 

EnsDA_5  89.60 91.01 98.08 

EnsBase 89.73 90.67 98.16 

EnsBase_5 89.60 90.66 97.99 

State of the art 89.60  90.40 98.21 

*** The virus data set has gray level images; for this reason, the three data augmen-

tation methods based on color perform poorly on VIR, so these methods are not reported 

for it. *** since the low performance on VIR they are not tested in BARK and GRAV.  

 

 

Finally, in Tables 3 and 4, we compare EnsDA_all with the best reported in the liter-

ature for VIR and BARK. As can be observed, our proposed method obtains state-of-the-

art performance.  

 

Table 3. Performance (accuracy) compared with the best in the literature on the VIR 

data set. Note: the method notated with * combines descriptors based on both object scale 

and fixed scale images (as noted in section 3.3, the fixed scale data set is not publicly avail-

able); yet, even with this advantage, our proposed system outperforms [10]. 

 

EnsDA_

all 
[33] [38]  [39] [40]  [41] [10] [40] [42] 

90.00 89.60 89.47 89.00 88.00 87.27 87.00* 86.20 85.70 

 

Table 4. Comparison with the literature, BARK data set. 

EnsDA_all [43] [44] [34] [11] 

91.27 48.90 85.00 90.40 85.00 

 

 

In [12] the best reported performance by the ensemble proposed in that paper was 

98.21%, lower than our 98.33%. 

 

5. Discussion 

The goal of this study was to compare combinations of the best image manipulation 

methods for generating new image data points. Original images and sets of many sets of 

augmented images were trained, each on a separate ResNet50 network. In addition, two 

new augmentation methods were proposed: one based on the DWT and the other on the 

CQT transform. These networks were compared, combined, and evaluated across three 

benchmarks representing diverse image recognition tasks. The best ensemble proposed in 

this work achieved state-of-the-art performance across all three benchmarks, with the new 
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data augmentation method based on DWT alone achieving top performance on one of the 

data sets. 

This study demonstrates the power of combining data augmentation for increasing 

CNN performance. The method developed in this paper should perform well on many 

image classification problems. However, we recognize that the results reported here use 

only a few image manipulation methods for data augmentation and were tested on only 

three data sets. Based on the results reported in this study, our plans for the future include 

testing more data augmentation approaches, including those based on deep learners, such 

as GANS, across many more data sets. 
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