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Abstract: An interesting physical phenomenon was recently observed when a fresh-water basin is
covered by a thin ice film that has properties similar to that of a rubber membrane. Surface waves
can be generated under the action of wind on the air-water interface that contains an ice film. The
modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown
by the wind with a uniform vertical profile is studied here in terms of the air-flow velocity versus a
wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of
the nonlinear Schrodinger (NLS) equation with the help of the Lighthill criterion. The NLS equation
is derived using the multiple scale method in the presence of airflow. It is demonstrated that the
potentially unstable hydro-elastic waves with negative energy appear for relatively small wind
speeds, whereas the Kelvin—-Helmholtz instability arises when the wind speed becomes fairly strong.

Estimates of parameters of modulated waves for the typical conditions are given.

Keywords: Wind wave, Ice cover, Vortex sheet, Negative energy wave, Modulation instability

1. Introduction

For certain weather conditions, an interesting phenomenon can be observed when a water
basin is covered by a thin ice film having elastic properties similar to that of polymer in
which the thickness of the ice film varies from 1 to 5 mm - see, for example, the movie

https:/ /news.mail.ru/society /40290629 /. Due to the unusual behaviour of such an ice
cover which resembles a rubber membrane, it is referred to as “rubber ice”. Under the
influence of external forces, a wave motion can arise on the water surface covered by an ice
film. Wave perturbations, in this case, are very similar to flexural-gravity waves (FGWs)
in the oceans covered by floating ice-sheets [1-4] except some specifics caused by much
less ice-film elasticity in comparison with the ice-plate rigidity and are referred to as hydro-
elastic waves (HEWs). The softer properties of ice rubber in comparison with oceanic ice

results in the possibility to excite HEWs on a water surface even by the relatively moderate
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wind similar to the generation of gravity-capillary waves. Wind-generated waves can be a
subject of modulation instability in the result of which high-amplitude solitary waves can
arise. This makes topical the study of conditions of modulation instability. In the case of
surface waves without an ice cover the comprehensive study of modulation instability of
gravity-capillary waves was undertaken by several authors [5-7]. In the recent paper [8],
this study was extended to include the influence of wind in the simplest model of uniform
airflow with the tangential discontinuity at the air-water interface. Weakly non-linear
modulated waves in the ice-covered ocean were studied by Guyenne & Pardu [9] within
the framework of the nonlinear Schrodinger (NLS) equation. In the paper by Il'ichev [10],
modulated solitary waves of an arbitrary amplitude in the form of “bright” solitons were
obtained by taking into account the effects of the ice compression and ice-plate inertia. In
the recent publication [11], Il'ichev considered strongly nonlinear envelop solitary wave
for the particular carrier wavelength that corresponds to the minimum of the phase speed
within the framework of the primitive Euler equation. Then, a similar solution in the
form of NLS soliton was derived within the weakly nonlinear theory in the long-wave
approximation and it was shown that both solutions are close to each other for moderate
depths of water basins. The general analysis of modulation instability of oceanic waves
with ice compression and ice-plate inertia in the water of finite depth was carried out

recently in [12].

The influence of the wind on oceanic waves covered by a thick ice plate is, apparently,
negligible but it is not the case when surface waves are considered in basins covered by
a thin film of rubber ice. Such situations can be of particular importance for fresh-water
basins such as lakes, rivers, artificial reservoirs, etc. Therefore, it is worth studying the

modulation instability of HEWSs in water basins covered by a film of rubber ice.

A wind profile over a flexible surface is usually non-uniform which makes it difficult to
study waves in shear flows. However, it is feasible to construct a simpler wind model

with a uniform vertical profile to evaluate the basic effects generated by airflow over
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Figure 1. Schematic of the air flow above the ice covered deep water
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the water surface as shown in Fig. 1. In hydrodynamics, a shear flow with tangential
discontinuity of velocity plays an important role as the reference model which allows one
to investigate the basic physical phenomena of wave-current interaction and acquire an
insight into such a complex field (see, for example, [13,14]). This model is fascinating
because of its simplicity as well as its far-reaching effects on the understanding of wave
energy propagation. In particular, it can provide simple explanations about negative
energy waves [15], wave-induced currents [16] and over reflection [17,18]. Besides, when
the wavelength of interfacial disturbances is considerably larger than the characteristic
width of the shear flow profile, the tangential discontinuity of the velocity model can
be sufficient for the description of physical phenomena within certain limits of spatial
and temporal settings. The aforementioned model is well studied based on the linear
approximation as in [14], whilst the modulation instability of weakly nonlinear wavetrains
in the absence of ice film was studied recently by [8]. It is of interest to find the criteria for
the occurrence of modulation instability on a water surface in the presence of a thin film
of rubber ice. In such cases, one can expect the generation of quasi-stationary nonlinear
wavetrains along with envelope solitons which can have large amplitudes. An ensemble of
these solitons with random parameters can play a prominent role in the development of

severe wave turbulence, at least at low wind speeds [19].

The objective of this manuscript is to investigate the existence of modulation instability on
the air-water interface in the presence of rubber ice and provide a comprehensive analysis
of the conditions when the tangential discontinuity of velocity increases up to the onset
of the Kelvin—-Helmholtz-type instability. The subsequent sections of the manuscript are
organised as follows: In §2, the physical problem is formulated and the dispersion relation
for surface waves in water covered by rubber ice under the influence of wind speed is
analysed. The NLS equation for the HEWs in the infinitely deep basin is derived in §3. In
§4, the criteria for modulation instability of HEWs are determined. Finally, the results are

summarized in the conclusion.

2. The problem formulation

We consider a uniform airflow over infinitely deep water covered by an infinitely extended
thin ice plate in a horizontal plane. The air and water are both considered to be incompress-
ible and inviscid with the flow being irrotational. The mathematical model is considered
in a two-dimensional Cartesian coordinate frame with the x-axis being directed along the
air-water interface covered by thin elastic ice film and the z-axis being directed vertically
upward as shown in Fig. 1. Moreover, it is assumed that p; as the density of the air, p; as
the density of water, p; as the density of ice film with d being the thickness and U being the

air/wind speed.
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Due to the assumptions that both the air and water are inviscid and their motion as
irrotational, the velocity potentials ®; in each layer is introduced so that u; = V®;, where
j = 1, 2 with index 1 is associated with the quantities in air, and index 2 is associated
with the quantities in water. The governing equations in each layer satisfies the Laplace

equation as given by
V2P, =0 for j=1,2. 1)

Further, it is assumed that the wave perturbation in the vertical direction far away from

the interface is negaligible, which yields

[V®1| -0 as z— oo, )

[V®y| -0 as z — —oo. ©)]

The kinematic boundary conditions at the interface yield

(aﬁ“ax) xox oz oM AT @)
and
87;7_’_8777&_8(1)2 on z=#y, (5)

ot  ox d9x 0z

with 7 (x, t) being the ice plate deflection from the horizontal mean position. Moreover, the

dynamic boundary condition on the interface z = 7 is given by

0 ] 0D,
P1 (at + Uax>¢1 — P25+ (P —p2)gn

1 2 2 8477
+ 5o V@[T = 2| V| }_D@—Pid

8277

W = 0/ (6)

where D = Ed®/12(1 — v?) is the ice-plate rigidity with E being the Young modulus and v
being the Poisson ratio. These quantities are not well determined for the rubber ice. Thus,
we can speculate that they are close to the known parameters for the Indian rubber of
thickness d = 1 mm, E = 10" Pa, v = 0.47, and pi =917 kg/ m?>. These parametric values

are used in the subsequent analysis unless otherwise mentioned.

Considering small-amplitude structural response and linearised theory of water waves,

the response of the ice sheet is assumed to be of the form
n(x,t) = Aet=et) o, (7)

where c.c. indicates the complex conjugate quantity. The velocity potentials ®; and ®,

satisfying the boundary conditions given in Egs. (4) and (5) along with the far-field
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boundary conditions for z — oo are related with the ice-sheet deflection # by the relations
as given by

¢l(xlzlt) — _Lllrlx eikz

p , Dy(x,z,t) = ek, (8)

>

Substituting Eq. (8) into the dynamic boundary condition as in Eq.(6), the dispersion

relation is obtained as

=)

Gi(w, k) = B — k)? + (B2 + pid ) ? + (o1 — p2)g — DK* = 0. )

3

~|

In particular, for p; = 0in Eq. (9), yields the dispersion relation associated with the flexural

gravity waves as given by
02 + pi dk’

which is generated due to the interaction of surface gravity waves with a thin floating
ice-sheet as in [2—4]. The explicit form of the derivations of wave frequencies wj 5 in terms

of the wavenumber k are obtained by solving Eq. (9) with regard to w (cf. [14]) and is given
by

akU £+ \/(1+a+rdk/p2)[(1—a)gk + Dk>/pp] — (1 + rdk/py)ak?U?
14+a+rdk/p; ’

wip = (10)

where a = p1/p> is the stratification ratio, r = p;/p2 and + and — sign correspond to w;
and w, respectively. The dispersion curves are exhibited in Fig. 2 for different values of
wind velocity U. For simplicity, the wavenumber k is assumed to be positive, whilst the
frequency w might be positive or negative. It may be noted that the wave frequency w is
a positive quantity from a physical standpoint, however, the wavenumber k € (—o0, )

might have either sign.

10
—U=0
—U =155
51 —U =16.09 N
—U =16.095
Re(w) —U =16.0978

-5

0 10 20 30 L 40 50 60

-10

Figure 2. Graphics of the dispersion relations wq (k) (upper branches) and wy (k) (lower branches) for
the ice parameters presented above — see after Eq. (6); the values of U are shown in m/s.
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As a special case for U = 0, Eq. (10) describes two symmetric branches of the disper-
sion curve with respect to the k-axis, which correspond to the flexural-gravity waves

propagating in opposite directions with phase speeds of V,, = wy2/k (see Fig. 2).

On the other hand, the dispersion curves become non-symmetric for U # 0 due to the
wave drift induced by flow. Further, the lower branch of the dispersion curves changes it
sign and become positive in the interval k] < k < k), for U > U (= 16.09) m/s. This is

illustrated in Fig. 3 for U = 16.095 m/s, which represents the magnified portion of Fig. 2.

Besides, the values of k} and k, can be obtained from Eq. (10) which are real roots of the

fourth-degree polynomial in k as given by

fk4—au2k+ (1—a)g=0. (11)
2

Equation (11) can be rewritten in the non-dimensional form
p(r) =x* =V +1=0, (12)

with x = k{D/[(1 — a)gp2]}"/* and V2 = (U2ap,/D)[(1 — a)gp2/D] >'*. Figure 4 reveals
that the function p(x) has no real root for V < 1.7547, whilst it has two distinct positive
real roots for V > 1.7547.

The critical wind speed U, is obtained from Eq. (10), where both phase and group velocities

vanish and are given by

3/8

41—a [(4D\'V?
pr— —_ 1
Uat l3 ; g(am) (13)

It is pertinent to mention that fragment of the dispersion curves for which the frequency

changes its sign corresponds to the negative energy waves (NEWSs) [14]. Figure 5 illustrates

1.5F =
—U =16.09
—U =16.095
1 —U =16.0978 .

40 40.5 41 41.5 42 42.5 L 43 43.5 44 44.5 45

Figure 3. The magnified fragment of Fig. 2 for the same set of parameters.
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Figure 4. (Color online) The shape of the polynomial p(x) for three different values of V. Line 1,
V = 0.7, —no real roots; line 2, V = 1.7547, — there is one double root (designated by red dot); line 3,
V = 2.0, - there are two real roots (designated by blue dots).

the same dispersion curves as in Fig. 2 for w > 0 with k being of either sign. In this repre-
sentation, the negative frequency w is associated with the negative energy wave. However,
the waves with the 'negative frequency’ and negative wavenumber k are qualitatively
similar and propagate in the same direction as for waves with positive frequency and

positive wavenumber k.

10
8 - —
6 - —
Re(w)
4r —U=0 7
—U =16.09
N —U =16.095 |
—U =16.0978
O --------------------------------------------------------------------
1 1 i 1 1
60 40 220 0 20 40 60

k

Figure 5. Non-symmetric branches of dispersion curves corresponding to waves propagating in the
opposite direction. Note that the pink and blue lines have negative portions, which correspond to
NEWS.

Figure 3 reveals that with an increase in the values of wind speed U beyond U,, the
upper and lower branches of the dispersion curves continue to coverge to each other
and ultimately reconnect at U = Uky where Ugy = Uy V1+a It may be noted that
the density ratio in the case of air-water interface is chosen as a = 0.0012 to ensure

Ugy =~ 1.0006U,. Besides, the Kelvin-Helmholtz-type (KH) instability occurs when the
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wind speed U exceeds Ugy. Moreover, the instability occurs in the interval k1 < k < kp,

where ki and k; can be derived from the following fifth-degree polynomial equation

dD D

rp K+ (1+ a)p—k4 —ardU%k> + [(1 —a)rdg — auz}k—i— (1—a?)g=0. (14)
2 2

This type of reconnection is significant for the interaction of waves with opposite en-

ergy signs which leads to the occurrence of K-H instability [14,15]. This phenomenon

is attributed to the exchange of wave energy between the positive and negative energy

waves associated with the upper and lower branches of the dispersion relation respectively.

Consequently, the amplitudes of both the waves synchronously grow in time.

Besides, in the interval Uy < U < Ugpy, no K-H instability occurs, whilst there exist
non-growing but potentially unstable NEWs (see Fig. 3). Further, it may be noted that the
wave amplitudes will grow for wavenumber k lying in the range k| < k < k), provided
their associated energy decreases. Moreover, from Eq. (13) it is clear that the velocities U
and Uk are closed to each other for smaller values of density ratio a, which happens in
the case of air-water interface for a = 0.0012. It is pertinent to mention that Benjamin [20]
was the first who discovered that for a ~ 1, U, ~ Ugy/ V2, which is typical for internal

layers in the oceans or the atmosphere.

Although the parameters for rubber ice are not well defined, it is of interest to demonstrate
the influence of this parameter on the dispersion properties of NEWs. In the context of the
present study, the value of Young modulus is chosen as E = 107 Pa, which is close to India
rubber. Figure 6 illustrates the dispersion curves of NEWs for three different values of
Young modulus with airflow velocity U = 16.09 m/s. Figure 6 reveals that the dispersion
curve has no optima for E = 10° Pa, whereas the lower branch of the dispersion curve
attains zero minima for E = 107 Pa and KH instability occurs for E = 108 Pa. Thus, it is
concluded that the critical wind speed varies with the change in the values of Young's

modulus E which is also clear from Eq. (13).

NEWs are neutrally stable in the absence of energy dissipation. However, they can grow in
time only if there is a mechanism for taking out their energy. Potentially, there are different
mechanisms responsible for the growth of NEWs. In particular, similar to the dissipative
instability in plasma [21], viscous dissipation in the immovable lower layer leads to the
growth of NEWs [22]. The dissipation of wave energy leading to the growth of NEWs and
shear flow instability can be related to the radiation of internal waves from the pycnocline
in the density stratified ocean [23]. For amplification of NEWs, viscosity must lead to
“positive losses”. For example, the NEWs in the model considered is damped if the upper
moving layer is viscous rather than the lower layer. On the other hand, as the viscosity in
the moving upper layer leads to “negative damping", the positive energy waves can grow

on the upper branch of the dispersion curve. Undoubtedly, when the upper layer is at rest
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Figure 6. Influence of ice elasticity on the dispersion curves for the particular airflow velocity
U =16.09m/s.

in the reference system, the energy associated with the growth as well as dissipative modes
change signs simultaneously [14]. In such a reference system, NEWs exist on the upper
branch of the dispersion curve, which can grow under the influence of positive dissipation.
Besides, the shear flow instability associated with this mode remains unchanged to the

choice of the reference system.

It is interesting to note that by using simple transformation w — w + kU in Eq. (9), the
dispersion relation associated with the stationary upper layer and oppositely moving lower
layer can be obtained as

Go(w, k) = %wz + %(1 +rdk)(w +kU)? + (o1 — p2)g — Dk* = 0. (15)

Proceeding in a similar manner as in the case of Eq. (13), it can be easily concluded that
NEWs arise for a very small velocity of the moving lower layer with current speed U > U,

where

3/8

Ua = (16)

él—a @ 1/3
3 a4 8 02

It is noteworthy to mention that the critical velocities U1 and U, as in Egs. (13) and (16)

are very close to each other in the case of 2 ~ 1 (e.g., for internal waves on the ocean
pycnocline). However, it is significant for 4 < 1 where U, is much greater than U, with
U =~ 0.545 m/s and U, ~ 16.09 m/s as considered in the present study. A fragment of
the dispersion curve associated with Eq. (15) in the frame co-moving with the upper layer
(i.e., static upper layer and moving lower layer) is exhibited in Fig. 7 for different values of
U including U, = 0.545 m/s. In general, Fig. 7 reveals that the NEWs can exist on both
branches of the dispersion curves for waves that are slowed down relative to the flow with

phase velocities being lower than the velocities of the associated fluid layer.
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Figure 7. Dispersion relation (15) in the frame co-moving with the upper layer (air) for a few values

of U.

3. Modulation instability of hydro-elastic waves at the interface on the tangential
discontinuity of a shear flow

In the present section, our emphasis is to derive the general structure of the nonlinear
equation in terms of the interfacial perturbation at the air-water interface which is covered
by rubber ice followed by a derivation of the nonlinear Schrodinger equation. In addition,

the criteria for the modulation instability will be determined and analysed.

3.1. General solution of velocity potentials

In this section, the perturbation of the air-water interface is assumed to be small in the form
of Eq. (7), whereas the amplitude A is considered to be a slowly varying function of space
x and time ¢. Proceeding in a similar manner as in Eq. (8), we look for the solutions of the
velocity potentials, including the nonlinear dependencies of the functions ®;(z) for j = 1,2
on the perturbation of the interface 7, following the approach adopted in [8,24]. Using the
kinematic boundary conditions as in Egs. (4), (5) and (6) along with the vertical boundary

condition for |z| — oo as in Egs. (2) and (3), the velocity potentials are derived in the form

U ek P
Di(x,z,t) = K +ii7x)e = i (n: + U}yx)(l iny —ns —i—...), (17)
—kz
_ e kz _ e s 2
Dy(x,z,t) = 71((1_1%)6 . qt(1+117x 17x+...>. (18)

Substituting the solutions for ®; and ®, as in Egs. (17) and (18) into the dynamic boundary
condition as given in Eq. (6), the following nonlinear equation in terms of # (up to third

order) is obtained as

Gi(w, k) = a(w, k)n* + B(w, k)7, (19)
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where
a(w, k) = po(1+rdk)w? — p1(w — kU)?, (20)
Bw, k) = —k [pl(w —kU)? 4 pp(1 + rdk)wz} . (21)

and Gi(w, k) is given in Eq. (9). By neglecting the higher order terms of 7 in Eq. (19), the
dispersion relation is obtained as G (w, k) = 0. Using the dispersion relation as in Eq. (10),
the coefficients of the nonlinear terms « and f in Egs. (20) and (21) for the lower (j = 1)

and upper (j = 2) branches of the dispersion curves are obtained as

(\@Jraku)z(l +rdk) —a(\@—ku(l —i—rdk))z

(k) = p2 Aratrdi)y , (22)
(\@—aku)z(urdk)—a(\@+ku(1+rdk)>2

w(k) = (1+a+rdk)? ’ @)

P(0) = (1+a+rdk)[(1-a)gk+DE/py| —akPUP(1+rdk), (24)

pi(k) = pa(k) = —K*[Dk* + (1 —a)gpa]. (25)

The nonlinear terms in Eq. (19) provides the second harmonic as well as the mean flow

generation by the quasi-sinusoidal primary-harmonic wave.

3.2. Derivation of the NLS equation for the HEWs

Unlike the velocity potentials are expanded in terms of the perturbational amplitude
which has been assumed to be a slowly varying function of space and time, method of
multiple scales are being used here to obtain the nonlinear Schrodinger (NLS) equation
by introducing ‘fast’ and ‘slow’ variables along with a non-dimensional small parameter &
with ¢ < 1 such that

th=¢€", x,=¢"x, n=0,1,2. (26)

Here, ty, xo represent fast variables, and t1,x1,tp, and x; are slow ones. Consequently,
the differential operators d/dt and 0/dx are expressed via derivative expansions in the

following forms

d d Jd 0
i:ki—ksi—i—szi—i—.--, (28)

dx 890 8x1 axz
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where 0y = kxo — wty with w and k being related with the dispersion relation (10). Using
the expansion as in Egs. (27) and (28), the linear part of Eq. (19) is represented through the

operator of the form

N 9 9 NERE
L|:(—1w,1k)+€<at1,ax1) +e€ (atz,axz> +:|,

which can be expanded in terms of € and its powers about the point (—iw, ik) as
L="ILo+eli+L+....

Thus, under the assumption of the linear approximation from Eq. (19) it can be easily
derived that
Dy: (ﬁo—i—el:l +s2£2+...);7:0. (29)

Further, the perturbation of the air-water interface 77 can be expanded in the form of

following series as
3

n(x,t) = Y_ €"na(B0, x1,x2; 1, t2) + O(e?). (30)
n=1

Substituting Eqgs. (29) and (30) in Eq. (19), the linear and successive higher orders of partial

differential equations can be obtained by equating the components of equal powers of &:

O(E) : L0771 =0;
O(ez) : Loy = —Lym + 0417%;

O(%) : Lonpz = —Lyna — Lompy + 2ap1172 + B3

Under the assumption of lowest-order approximation, a quasi-monochromatic perturbation

solution is considered in the case of slowly varying amplitude and is given by (cf. Eq. (7))
m = A(xy, 25t 1)el® + c.c.

Proceeding in a similar manner 7, is obtained as

_ . [9G10A  9Gy 0A N 2 2i6,
Lotz = 1<8w an ok 8x1>e AR e

The coefficient of e'® represents a secular term in this equation. This secular term eliminated

by using the solvability criteria

9G04 9G04 _
Jw 8t1 ok axl_ ’
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Using the definition of group velocity c; = Z—C’j = aa(l;cl / %G1 , the solvability criteria is
rewritten as
0A 0A
= — =0. 1
o +cgax1 0 (31)

Using this condition, a uniformly valid expansion of 77, can be written in the form

aA?

_ 2i6,
12 G (2w, 20) e +c.c.

Using the expression of G (w, k) as in Eq. (9), the function G; (2w, 2k) corresponding to

both the upper and lower branches of dispersion curves is obtained as

20 VD + akU
G1(2w(k),2k) —pz{k<ku 1+a—|—rdk>

2(1+2rdk) (V2 +akU)?
a)g+ = :
02 k (1+a+rdk)?

Proceeding in a similar manner, from the third-order approximation of the parameter ¢ 1i.e.,

O(e€?), the solvability criteria for Loy is derived as

2 ow? at% dwak axlatl

192G 9%A 22 2
MR <G1(2w,2k) “3) |A[PA. 32)

.(0G10A 090G 0A\ 1 ?G1 0’°A  9°G, 9*A
dw oty ok dxp

Further, the solvability criterion in Eq. (31) can be rewritten as

?A ,0%A
=22 33
o2~ 82 (33)
Setting x, = €"x and t, = £"t, and using Eq. (33) in Eq. (32), the NLS is obtained as
[ 0A dA P’A 24

where the dispersion coefficient P and nonlinear coefficient Q are given by [7,25]

1dc 202 3G\
=-_34 Q=—=————~+8 a1
2 dk G1(2w, 2k) ow

Next, substituting the new variable b = ¢4, the final form of the NLS equation is obtained

as

b b 9%b
(8t+ e >+P+Q|b|2b_0 (35)
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4. Modulation instability of HEWs

In this section, the expressions for the dispersion coefficient P and nonlinear coefficients
Q, as defined in Eq. (35), will be derived in two different cases for the lower and upper
branches of the dispersion curves associated with Eq. (10), for determining the criteria of

modulation instability.

4.1. NLS equation and modulation instability in the lower branch of the dispersion curve
In the present subsection, the frequency w; corresponding to the lower branch of the
dispersion curve is used to derive the expressions of the dispersion coefficient P; and the

nonlinear coefficient Q; in the NLS Eq. (35), and are given by

rd al,l—l—i
b _ A? A2 (VB—akU) 2B
' 8B32(1+a+R) (1+a+R)> (1+a+R)2

N 2aU?(1+ R) +2rdC —20(1+a+ R)Dk>/pp + 4ard k U?
4vVB(1+a+R)
k2

2\/ k(Dk* + gp2 — agp2) By — C1p3

, (36)

Qi

2
2
Al

A1\ ?
207 |a kUerzB—1 —szlﬁ
1

X P1k+

, (37)

D A\ 2 A?
_ 57 _ -1 — 792 1

(1—a)gk+ 16k o 2a(kU+p2B1> 203(1+2dkr) 5

where A = (1+a+ R)C — rdF 4+ 2aU?(1 + F)k + ardk®U?, B = (1 +a + R)F — ak?U?(1 +

R),C =g(a—1) —5Dk*/p, F = Dk°/pp + (1 — a)gk, R = rdk, Ay = \/kB1Fy/p3 —Cy1 —
akU, By = (1 +a)py + pdk, C; = ak?U?Ry/p2, F; = Dk* + (1 — a)pag, Ry = pa + pdk.

In particular, fora = U = D = p; = 0, the dispersion relation (10), corresponding group

velocity, dispersion and nonlinear coefficients P; and Q; reduce to

1 1 1
wzz—\/gk, Cg:_Z\/%/ Plzg %, Ql:i gk5, (38)

where the coefficients P; and Q; are analogous to the coefficients of the NLS equation for

surface gravity waves in deep water [26-28].

It is interesting to that the dispersion and nonlinear coefficients of NLS equation corre-
sponding to the deep water flexural gravity wave covered by an ice plate can be easily
derived from Egs. (36) and (37) by putting a = 0 and U = 0, which was studied recently by
[12].

In Figs. 8 and 9, the dependencies of P;(k) and Q; (k) are demonstrated in the lower branch

of the dispersion curve for different values of wind speed with U = 0, U = U, = 16.09
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m/s, and U = Ugy ~ 16.10 m/s. Figure 8 reveals that the dispersion coefficient P, (k)
has only one root for all values of U where its sign changes from positive to negative.
On the other hand, Fig. 9 depicts that the nonlinear coefficient Q; (k) has a singularity
atk = ks = 29.1 1/m for all values of U, where Q;(k) changes its sign from positive to
negative. It is worth mentioning that both the functions P, (k) and Q; (k) attain their minima
around the point k ~ 42 1/m where K-H instability occurs for U = Ukpy. The minima
become deeper and deeper when U approaches Ugy, and in the limit, U — Ugg, the

singularities appear in both the functions P;(k) and Q; (k).

As per Lighthill criterion, a uniform wavetrain becomes unstable with respect to self-
modulation in the case of the function W;(k) = P;(k)Q;(k) is positive [29,30]. Figure 10
demonstrates the zones of modulation stability (S) and instability (US) in the (k, U) plane.
Furthermore, a dramatic change in this stability diagram is observed for the wind speed
U higher than the critical value U;; = 8.19 m/s, which is because of the fact that the
nonlinear coefficient Q; (k) has several roots. This results in the multiple changes of sign in
the product of the dispersive coefficient P;(k) and nonlinear coefficient Q; (k). Moreover,
Fig. 10 corresponds to the modulation instability of deepwater flexural gravity waves for

U = 0 and a = 0, which was studied recently by [12].

0.1 Ll Ll T T T
—U=0
—U =16.09

—U =16.0978

=
[

-0.2 : :
0 10 20 30 40 50 60

Figure 8. (Color online) Variation of dispersion coefficient P, (k) versus wavenumber k for different
values of wind speed in the case of the lower branch of the dispersion curve
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Figure 9. (Color online) Variation of the nonlinear coefficient Q; versus wavenumber k for different
values of wind speed U in the case of lower branch of dispersion curve.

It is worth mentioning that the maximum growth rate of modulation instability occurs
for wavenumber of modulation Ky.y = by/Q;/P; in the NLS equation (35), where by is
referred as the sinusoidal wave amplitude (see, e.g., [25]). Further, it is important to note
that Ly = |Q;(k) |b% is the maximal value of growth rate. Again, for a given value of U,

this expression can be further optimized with respect to the carrier wavenumber k [31].

During the occurrence of modulation instability, envelope solitary waves (solitons), breathers,
freak waves can emerge from certain initial perturbations; in addition to the occurrence of
fascinating phenomena related to their interactions whose details can be found in [7,26,32].
Besides, in the case of modulational stability, dark solitons can be developed on the back-
ground of a quasi-sinusoidal wave [7]. Figure 11 demonstrates the examples of (a) bright

and (b) dark solitary envelope waves.

The NLS equation (35) becomes inapplicable when its coefficients P(k) or Q(k) vanish.
This occurs at the boundaries between the stable and unstable domains, which is exhibited
in Fig. 10. Thus, the generalised NLS equation should be derived by taking into account
the higher-order terms as in [33,34]. However, this is not considered in the present study

and will be studied separately.
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Figure 10. Zones of modulation stability (S) and instability (US) in the (k, U) plane. The dashed line
on the top depicts the critical velocity Ugy = 16.10 1/m at which the Kelvin-Helmholtz instability
arises. The bifurcation point in the diagram is denoted by Q; for U = Ujy.

ol L
A 11111

Figure 11. (Color online) Examples of (a) bright and (b) dark envelope solitons.

4.2. NLS equation and modulation instability in the upper branch of the dispersion curve

In the present section, the upper branch of the dispersion curve w; as given in Eq. (10) is
considered for the derivation of the dispersion and nonlinear coefficients P, and Q, and to

determine the condition of modulation instability. As in the case of the lower branch of the
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dispersion curve, the dispersive coefficient P, and the nonlinear coefficient Q, in the NLS

Eq. (35) are obtained as

P -1 A2 _rzdz(\/g+akll)+ rd Sl A
"7 (1+a+R)|4B3/2 (1+a+R)2 1+a+R 2VB
20U?(1+R) +2rdC —20(1+a+ R)Dk®/py + 4ardk U?
2B
k2
Qu =
2\/k(Dk4 +gp2—agp2)Br — C103
2
P2 P2
202 a(Uk—szl) —P2R112]
1 Bl
X F1k+ ’ (40)

D P> P2
(1 —a)(s’k+16k5p—2 —2a<kU—szi) —2p%(1+2dkr)B—l%

where A, B, C, R, B, C1, F; and R; are same as in Egs. (36) and (37) with

Py = \/kB1Fy/ p% — Cy + akU. The coefficients P, and Q, are exhibited in Figs. 12 and 13.
A comparison of Figs. 8-9 with that of Figs. 12-13 reveals that the trend of the dispersion
and nonlinear coefficients for the upper branch of the dispersion curves are opposite to

that of P; and Q);.

Equations (39) and (40) attribute that the modulational instability occurs for positive values
of the function W, (k) = P, (k) Q. (k) associated with the upper branch of the dispersion
curve. Figure 14 demonstrates the zones in (k,U) plane where the function W, (k) is
positive and that leads to the occurrence of modulation instability. Further, the graphic
begins to alter dramatically for U exceeds a critical limit U,, = 9.4719 m/s, which is
because of the fact that Q, has multiple roots where it changes sign in the case of wind

speed U > Uyy,.

It is evident from Figs. 10 and 14 that the domains of modulation stability and instability
are bizarrely interspersed on the diagram when U exceeds the critical value U, in each
branch of the dispersion curve. The importance of highlighting such domains is in the
understanding of the existence of bright and dark envelopes of solitary waves. The former
can arise in the process of the development of modulation instability, whereas the latter
can appear in the modulational stable regions on the parameter plane. Moreover, in the
case of modulation instability, rogue waves with extremely high amplitudes can emerge
from rather regular initial perturbations [32]. The most important conclusion which can
be derived from this study is the existence of modulational unstable waves of negative
energy for wind speed in the range Uy < U < Uy. Such waves can grow in time if
a dissipative mechanism extracting energy from these waves is taken into account, for
example, a turbulent viscosity of air which can be fairly significant. However, this issue is

beyond the scope of the present study.
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Figure 12. (Color online) Variation of the dispersion coefficient P, versus wavenumber k for different
values of wind speed in the case of upper branch of dispersion curve.

5. Conclusion

In the present manuscript, the criteria for modulation instability of hydro-elastic waves on
the air-water interface are investigated under the influence of wind. The model considered
is assumed to be the simplest model of wind with the uniform profile and tangential
velocity discontinuity. However, this is a widely used canonical model of the flow in
hydrodynamics, physical oceanography, geophysical fluid dynamics, plasma physics, and
other fields. Despite the simplicity, the model provides an insight into the complicated
range of phenomena occurring in the wave-current interactions. To the best of the authors’
knowledge, the modulation instability of hydro-elastic waves under the influence of wind
was not studied thus far. Thus, the present study has filled the said gap on modulation
instability in the literature. The study exhibits the wavenumber range based on the current
speed in which the stability and instability occur in the lower and upper branches of
the dispersion curves. From the general model investigated here, limiting cases of pure
gravity waves or flexural-gravity waves without airflow are reproduced. As a summary,

an estimate of parameters of a modulated wave are presented with wavenumber k = 10

1/ m (A = 27/k = 0.63 m), amplitude 9 = 0.0l m and U = 1 m/s. Subsequently, the
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Figure 13. (Color online) Variation of the nonlinear coefficient Q,, versus wavenumber k for different
values of wind speed in the case of upper branch of dispersion curve.

most rapidly increasing modulation wavenumber Kyox = 170v/Qu /Py ~ 2.01 1/m and
wavelength A = 271/ Ky;ax =~ 3.12 m are obtained. The maximal value of the growth rate is
found to be Ly.x = |Q(k)|73 ~ 0.05 1/s along with the characteristic time of wave growth
T = 1/ Ly = 20.4 s. These parameters look reasonable for the rubber ice and, they are
practically insensible to the variation of the wind speed in the interval U, < U < Uy,. The
study can be generalized to deal with complex flow patterns including turbulent viscosity

of air as well as the role of lateral compressive force on the floating ice sheet.
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