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Abstract: An interesting physical phenomenon was recently observed when a fresh-water basin is

covered by a thin ice film that has properties similar to that of a rubber membrane. Surface waves

can be generated under the action of wind on the air-water interface that contains an ice film. The

modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown

by the wind with a uniform vertical profile is studied here in terms of the air-flow velocity versus a

wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of

the nonlinear Schrödinger (NLS) equation with the help of the Lighthill criterion. The NLS equation

is derived using the multiple scale method in the presence of airflow. It is demonstrated that the

potentially unstable hydro-elastic waves with negative energy appear for relatively small wind

speeds, whereas the Kelvin–Helmholtz instability arises when the wind speed becomes fairly strong.

Estimates of parameters of modulated waves for the typical conditions are given.
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1. Introduction

For certain weather conditions, an interesting phenomenon can be observed when a water

basin is covered by a thin ice film having elastic properties similar to that of polymer in

which the thickness of the ice film varies from 1 to 5 mm – see, for example, the movie

https://news.mail.ru/society/40290629/. Due to the unusual behaviour of such an ice

cover which resembles a rubber membrane, it is referred to as “rubber ice”. Under the

influence of external forces, a wave motion can arise on the water surface covered by an ice

film. Wave perturbations, in this case, are very similar to flexural-gravity waves (FGWs)

in the oceans covered by floating ice-sheets [1–4] except some specifics caused by much

less ice-film elasticity in comparison with the ice-plate rigidity and are referred to as hydro-

elastic waves (HEWs). The softer properties of ice rubber in comparison with oceanic ice

results in the possibility to excite HEWs on a water surface even by the relatively moderate
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wind similar to the generation of gravity-capillary waves. Wind-generated waves can be a

subject of modulation instability in the result of which high-amplitude solitary waves can

arise. This makes topical the study of conditions of modulation instability. In the case of

surface waves without an ice cover the comprehensive study of modulation instability of

gravity-capillary waves was undertaken by several authors [5–7]. In the recent paper [8],

this study was extended to include the influence of wind in the simplest model of uniform

airflow with the tangential discontinuity at the air-water interface. Weakly non-linear

modulated waves in the ice-covered ocean were studied by Guyenne & Părău [9] within

the framework of the nonlinear Schrödinger (NLS) equation. In the paper by Il’ichev [10],

modulated solitary waves of an arbitrary amplitude in the form of “bright” solitons were

obtained by taking into account the effects of the ice compression and ice-plate inertia. In

the recent publication [11], Il’ichev considered strongly nonlinear envelop solitary wave

for the particular carrier wavelength that corresponds to the minimum of the phase speed

within the framework of the primitive Euler equation. Then, a similar solution in the

form of NLS soliton was derived within the weakly nonlinear theory in the long-wave

approximation and it was shown that both solutions are close to each other for moderate

depths of water basins. The general analysis of modulation instability of oceanic waves

with ice compression and ice-plate inertia in the water of finite depth was carried out

recently in [12].

The influence of the wind on oceanic waves covered by a thick ice plate is, apparently,

negligible but it is not the case when surface waves are considered in basins covered by

a thin film of rubber ice. Such situations can be of particular importance for fresh-water

basins such as lakes, rivers, artificial reservoirs, etc. Therefore, it is worth studying the

modulation instability of HEWs in water basins covered by a film of rubber ice.

A wind profile over a flexible surface is usually non-uniform which makes it difficult to

study waves in shear flows. However, it is feasible to construct a simpler wind model

with a uniform vertical profile to evaluate the basic effects generated by airflow over
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Figure 1. Schematic of the air flow above the ice covered deep water
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the water surface as shown in Fig. 1. In hydrodynamics, a shear flow with tangential

discontinuity of velocity plays an important role as the reference model which allows one

to investigate the basic physical phenomena of wave-current interaction and acquire an

insight into such a complex field (see, for example, [13,14]). This model is fascinating

because of its simplicity as well as its far-reaching effects on the understanding of wave

energy propagation. In particular, it can provide simple explanations about negative

energy waves [15], wave-induced currents [16] and over reflection [17,18]. Besides, when

the wavelength of interfacial disturbances is considerably larger than the characteristic

width of the shear flow profile, the tangential discontinuity of the velocity model can

be sufficient for the description of physical phenomena within certain limits of spatial

and temporal settings. The aforementioned model is well studied based on the linear

approximation as in [14], whilst the modulation instability of weakly nonlinear wavetrains

in the absence of ice film was studied recently by [8]. It is of interest to find the criteria for

the occurrence of modulation instability on a water surface in the presence of a thin film

of rubber ice. In such cases, one can expect the generation of quasi-stationary nonlinear

wavetrains along with envelope solitons which can have large amplitudes. An ensemble of

these solitons with random parameters can play a prominent role in the development of

severe wave turbulence, at least at low wind speeds [19].

The objective of this manuscript is to investigate the existence of modulation instability on

the air-water interface in the presence of rubber ice and provide a comprehensive analysis

of the conditions when the tangential discontinuity of velocity increases up to the onset

of the Kelvin–Helmholtz-type instability. The subsequent sections of the manuscript are

organised as follows: In §2, the physical problem is formulated and the dispersion relation

for surface waves in water covered by rubber ice under the influence of wind speed is

analysed. The NLS equation for the HEWs in the infinitely deep basin is derived in §3. In

§4, the criteria for modulation instability of HEWs are determined. Finally, the results are

summarized in the conclusion.

2. The problem formulation

We consider a uniform airflow over infinitely deep water covered by an infinitely extended

thin ice plate in a horizontal plane. The air and water are both considered to be incompress-

ible and inviscid with the flow being irrotational. The mathematical model is considered

in a two-dimensional Cartesian coordinate frame with the x-axis being directed along the

air-water interface covered by thin elastic ice film and the z-axis being directed vertically

upward as shown in Fig. 1. Moreover, it is assumed that ρ1 as the density of the air, ρ2 as

the density of water, ρi as the density of ice film with d being the thickness and U being the

air/wind speed.
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Due to the assumptions that both the air and water are inviscid and their motion as

irrotational, the velocity potentials Φj in each layer is introduced so that uj = ∇Φj, where

j = 1, 2 with index 1 is associated with the quantities in air, and index 2 is associated

with the quantities in water. The governing equations in each layer satisfies the Laplace

equation as given by

∇2Φj = 0 for j = 1, 2. (1)

Further, it is assumed that the wave perturbation in the vertical direction far away from

the interface is negaligible, which yields

|∇Φ1| → 0 as z→ ∞, (2)

|∇Φ2| → 0 as z→ −∞. (3)

The kinematic boundary conditions at the interface yield

(
∂

∂t
+ U

∂

∂x

)
η +

∂η

∂x
∂Φ1

∂x
=

∂Φ1

∂z
on z = η, (4)

and
∂η

∂t
+

∂η

∂x
∂Φ2

∂x
=

∂Φ2

∂z
on z = η, (5)

with η(x, t) being the ice plate deflection from the horizontal mean position. Moreover, the

dynamic boundary condition on the interface z = η is given by

ρ1

(
∂

∂t
+ U

∂

∂x

)
Φ1 − ρ2

∂Φ2

∂t
+ (ρ1 − ρ2)gη

+
1
2
{ρ1|∇Φ1|2 − ρ2|∇Φ2|2} − D

∂4η

∂x4 − ρid
∂2η

∂t2 = 0, (6)

where D = Ed3/12(1− ν2) is the ice-plate rigidity with E being the Young modulus and ν

being the Poisson ratio. These quantities are not well determined for the rubber ice. Thus,

we can speculate that they are close to the known parameters for the Indian rubber of

thickness d = 1 mm, E = 107 Pa, ν = 0.47, and ρi = 917 kg/m3. These parametric values

are used in the subsequent analysis unless otherwise mentioned.

Considering small-amplitude structural response and linearised theory of water waves,

the response of the ice sheet is assumed to be of the form

η(x, t) = Aei(kx−ωt) + c.c., (7)

where c.c. indicates the complex conjugate quantity. The velocity potentials Φ1 and Φ2

satisfying the boundary conditions given in Eqs. (4) and (5) along with the far-field
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boundary conditions for z→ ±∞ are related with the ice-sheet deflection η by the relations

as given by

Φ1(x, z, t) = −η + Uηx

k
e−kz, Φ2(x, z, t) =

η

k
ekz. (8)

Substituting Eq. (8) into the dynamic boundary condition as in Eq.(6), the dispersion

relation is obtained as

G1(ω, k) ≡ ρ1

k
(ω− kU)2 +

(ρ2

k
+ ρid

)
ω2 + (ρ1 − ρ2)g− Dk4 = 0. (9)

In particular, for ρ1 = 0 in Eq. (9), yields the dispersion relation associated with the flexural

gravity waves as given by

ω2 =
Dk5 + ρ2 gk
ρ2 + ρi d k

,

which is generated due to the interaction of surface gravity waves with a thin floating

ice-sheet as in [2–4]. The explicit form of the derivations of wave frequencies ω1,2 in terms

of the wavenumber k are obtained by solving Eq. (9) with regard to ω (cf. [14]) and is given

by

ω1,2 =
akU ±

√
(1 + a + r d k/ρ2)[(1− a)gk + Dk5/ρ2]− (1 + r d k/ρ2)ak2U2

1 + a + r d k/ρ2
, (10)

where a = ρ1/ρ2 is the stratification ratio, r = ρi/ρ2 and + and − sign correspond to ω1

and ω2 respectively. The dispersion curves are exhibited in Fig. 2 for different values of

wind velocity U. For simplicity, the wavenumber k is assumed to be positive, whilst the

frequency ω might be positive or negative. It may be noted that the wave frequency ω is

a positive quantity from a physical standpoint, however, the wavenumber k ∈ (−∞, ∞)

might have either sign.

k
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U = 16.0978

Figure 2. Graphics of the dispersion relations ω1(k) (upper branches) and ω2(k) (lower branches) for
the ice parameters presented above – see after Eq. (6); the values of U are shown in m/s.
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As a special case for U = 0, Eq. (10) describes two symmetric branches of the disper-

sion curve with respect to the k-axis, which correspond to the flexural-gravity waves

propagating in opposite directions with phase speeds of Vph = ω1,2/k (see Fig. 2).

On the other hand, the dispersion curves become non-symmetric for U 6= 0 due to the

wave drift induced by flow. Further, the lower branch of the dispersion curves changes it

sign and become positive in the interval k′1 < k < k′2 for U > Uc1(= 16.09) m/s. This is

illustrated in Fig. 3 for U = 16.095 m/s, which represents the magnified portion of Fig. 2.

Besides, the values of k′1 and k′2 can be obtained from Eq. (10) which are real roots of the

fourth-degree polynomial in k as given by

D
ρ2

k4 − aU2k + (1− a)g = 0. (11)

Equation (11) can be rewritten in the non-dimensional form

p(κ) ≡ κ4 −V2κ + 1 = 0, (12)

with κ = k{D/[(1− a)gρ2]}1/4 and V2 = (U2aρ2/D)[(1− a)gρ2/D]−3/4. Figure 4 reveals

that the function p(κ) has no real root for V < 1.7547, whilst it has two distinct positive

real roots for V > 1.7547.

The critical wind speed Uc1 is obtained from Eq. (10), where both phase and group velocities

vanish and are given by

Uc1 =

[
4
3

1− a
a

g
(

4D
aρ2

)1/3
]3/8

. (13)

It is pertinent to mention that fragment of the dispersion curves for which the frequency

changes its sign corresponds to the negative energy waves (NEWs) [14]. Figure 5 illustrates

k
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Figure 3. The magnified fragment of Fig. 2 for the same set of parameters.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2021                   doi:10.20944/preprints202111.0042.v1

https://doi.org/10.20944/preprints202111.0042.v1


7 of 23

κ
-1.5 -1 -0.5 0 0.5 1 1.5

p(κ)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

V = 0.7
V = 1.7547
V = 2

Figure 4. (Color online) The shape of the polynomial p(κ) for three different values of V. Line 1,
V = 0.7, – no real roots; line 2, V = 1.7547, – there is one double root (designated by red dot); line 3,
V = 2.0, – there are two real roots (designated by blue dots).

the same dispersion curves as in Fig. 2 for ω ≥ 0 with k being of either sign. In this repre-

sentation, the negative frequency ω is associated with the negative energy wave. However,

the waves with the ’negative frequency’ and negative wavenumber k are qualitatively

similar and propagate in the same direction as for waves with positive frequency and

positive wavenumber k.

k
-60 -40 -20 0 20 40 60

Re(ω)

0
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10

U = 0
U = 16.09
U = 16.095
U = 16.0978

Figure 5. Non-symmetric branches of dispersion curves corresponding to waves propagating in the
opposite direction. Note that the pink and blue lines have negative portions, which correspond to
NEWs.

Figure 3 reveals that with an increase in the values of wind speed U beyond Uc1, the

upper and lower branches of the dispersion curves continue to coverge to each other

and ultimately reconnect at U = UKH where UKH = Uc1
√

1 + a. It may be noted that

the density ratio in the case of air-water interface is chosen as a = 0.0012 to ensure

UKH ≈ 1.0006Uc1. Besides, the Kelvin–Helmholtz-type (KH) instability occurs when the
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wind speed U exceeds UKH . Moreover, the instability occurs in the interval k1 ≤ k ≤ k2,

where k1 and k2 can be derived from the following fifth-degree polynomial equation

r d D
ρ2

k5 + (1 + a)
D
ρ2

k4 − a r d U2k2 +
[
(1− a)r d g− aU2

]
k + (1− a2) g = 0. (14)

This type of reconnection is significant for the interaction of waves with opposite en-

ergy signs which leads to the occurrence of K–H instability [14,15]. This phenomenon

is attributed to the exchange of wave energy between the positive and negative energy

waves associated with the upper and lower branches of the dispersion relation respectively.

Consequently, the amplitudes of both the waves synchronously grow in time.

Besides, in the interval Uc1 < U < UKH , no K–H instability occurs, whilst there exist

non-growing but potentially unstable NEWs (see Fig. 3). Further, it may be noted that the

wave amplitudes will grow for wavenumber k lying in the range k′1 < k < k′2 provided

their associated energy decreases. Moreover, from Eq. (13) it is clear that the velocities Uc1

and UKH are closed to each other for smaller values of density ratio a, which happens in

the case of air-water interface for a = 0.0012. It is pertinent to mention that Benjamin [20]

was the first who discovered that for a ' 1, Uc1 ' UKH/
√

2, which is typical for internal

layers in the oceans or the atmosphere.

Although the parameters for rubber ice are not well defined, it is of interest to demonstrate

the influence of this parameter on the dispersion properties of NEWs. In the context of the

present study, the value of Young modulus is chosen as E = 107 Pa, which is close to India

rubber. Figure 6 illustrates the dispersion curves of NEWs for three different values of

Young modulus with airflow velocity U = 16.09 m/s. Figure 6 reveals that the dispersion

curve has no optima for E = 106 Pa, whereas the lower branch of the dispersion curve

attains zero minima for E = 107 Pa and KH instability occurs for E = 108 Pa. Thus, it is

concluded that the critical wind speed varies with the change in the values of Young’s

modulus E which is also clear from Eq. (13).

NEWs are neutrally stable in the absence of energy dissipation. However, they can grow in

time only if there is a mechanism for taking out their energy. Potentially, there are different

mechanisms responsible for the growth of NEWs. In particular, similar to the dissipative

instability in plasma [21], viscous dissipation in the immovable lower layer leads to the

growth of NEWs [22]. The dissipation of wave energy leading to the growth of NEWs and

shear flow instability can be related to the radiation of internal waves from the pycnocline

in the density stratified ocean [23]. For amplification of NEWs, viscosity must lead to

“positive losses”. For example, the NEWs in the model considered is damped if the upper

moving layer is viscous rather than the lower layer. On the other hand, as the viscosity in

the moving upper layer leads to “negative damping", the positive energy waves can grow

on the upper branch of the dispersion curve. Undoubtedly, when the upper layer is at rest
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Figure 6. Influence of ice elasticity on the dispersion curves for the particular airflow velocity
U = 16.09 m/s.

in the reference system, the energy associated with the growth as well as dissipative modes

change signs simultaneously [14]. In such a reference system, NEWs exist on the upper

branch of the dispersion curve, which can grow under the influence of positive dissipation.

Besides, the shear flow instability associated with this mode remains unchanged to the

choice of the reference system.

It is interesting to note that by using simple transformation ω → ω + kU in Eq. (9), the

dispersion relation associated with the stationary upper layer and oppositely moving lower

layer can be obtained as

G2(ω, k) ≡ ρ1

k
ω2 +

ρ2

k
(1 + r d k)(ω + kU)2 + (ρ1 − ρ2)g− Dk4 = 0. (15)

Proceeding in a similar manner as in the case of Eq. (13), it can be easily concluded that

NEWs arise for a very small velocity of the moving lower layer with current speed U > Uc2

where

Uc2 =

[
4
3

1− a
a

g
(

4D
ρ2

)1/3
]3/8

. (16)

It is noteworthy to mention that the critical velocities Uc1 and Uc2 as in Eqs. (13) and (16)

are very close to each other in the case of a ' 1 (e.g., for internal waves on the ocean

pycnocline). However, it is significant for a� 1 where Uc1 is much greater than Uc2 with

Uc2 ≈ 0.545 m/s and Uc1 ≈ 16.09 m/s as considered in the present study. A fragment of

the dispersion curve associated with Eq. (15) in the frame co-moving with the upper layer

(i.e., static upper layer and moving lower layer) is exhibited in Fig. 7 for different values of

U including Uc2 = 0.545 m/s. In general, Fig. 7 reveals that the NEWs can exist on both

branches of the dispersion curves for waves that are slowed down relative to the flow with

phase velocities being lower than the velocities of the associated fluid layer.
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Figure 7. Dispersion relation (15) in the frame co-moving with the upper layer (air) for a few values
of U.

3. Modulation instability of hydro-elastic waves at the interface on the tangential
discontinuity of a shear flow

In the present section, our emphasis is to derive the general structure of the nonlinear

equation in terms of the interfacial perturbation at the air-water interface which is covered

by rubber ice followed by a derivation of the nonlinear Schrödinger equation. In addition,

the criteria for the modulation instability will be determined and analysed.

3.1. General solution of velocity potentials

In this section, the perturbation of the air-water interface is assumed to be small in the form

of Eq. (7), whereas the amplitude A is considered to be a slowly varying function of space

x and time t. Proceeding in a similar manner as in Eq. (8), we look for the solutions of the

velocity potentials, including the nonlinear dependencies of the functions Φj(z) for j = 1, 2

on the perturbation of the interface η, following the approach adopted in [8,24]. Using the

kinematic boundary conditions as in Eqs. (4), (5) and (6) along with the vertical boundary

condition for |z| → ∞ as in Eqs. (2) and (3), the velocity potentials are derived in the form

Φ1(x, z, t) = − ηt + Uηx

k(1 + iηx)
e−kz = − e−kz

k
(ηt + Uηx)

(
1− iηx − η2

x + . . .
)

, (17)

Φ2(x, z, t) =
ηt

k(1− iηx)
ekz =

e−kz

k
ηt

(
1 + iηx − η2

x + . . .
)

. (18)

Substituting the solutions for Φ1 and Φ2 as in Eqs. (17) and (18) into the dynamic boundary

condition as given in Eq. (6), the following nonlinear equation in terms of η (up to third

order) is obtained as

G1(ω, k)η = α(ω, k)η2 + β(ω, k)η3, (19)
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where

α(ω, k) = ρ2(1 + r d k)ω2 − ρ1(ω− kU)2, (20)

β(ω, k) = −k
[
ρ1(ω− kU)2 + ρ2(1 + r d k)ω2

]
. (21)

and G1(ω, k) is given in Eq. (9). By neglecting the higher order terms of η in Eq. (19), the

dispersion relation is obtained as G1(ω, k) = 0. Using the dispersion relation as in Eq. (10),

the coefficients of the nonlinear terms α and β in Eqs. (20) and (21) for the lower (j = 1)

and upper (j = 2) branches of the dispersion curves are obtained as

α1(k) = ρ2

(√
D + akU

)2
(1 + r d k)− a

(√
D − kU(1 + r d k)

)2

(1 + a + r d k)2 , (22)

α2(k) = ρ2

(√
D − akU

)2
(1 + r d k)− a

(√
D + kU(1 + r d k)

)2

(1 + a + r d k)2 , (23)

D(k) = (1 + a + r d k)
[
(1− a)gk + Dk5/ρ2

]
− ak2U2(1 + r d k), (24)

β1(k) = β2(k) = −k2[Dk4 + (1− a)gρ2]. (25)

The nonlinear terms in Eq. (19) provides the second harmonic as well as the mean flow

generation by the quasi-sinusoidal primary-harmonic wave.

3.2. Derivation of the NLS equation for the HEWs

Unlike the velocity potentials are expanded in terms of the perturbational amplitude

which has been assumed to be a slowly varying function of space and time, method of

multiple scales are being used here to obtain the nonlinear Schrödinger (NLS) equation

by introducing ‘fast’ and ‘slow’ variables along with a non-dimensional small parameter ε

with ε� 1 such that

tn = εnt, xn = εnx, n = 0, 1, 2. (26)

Here, t0, x0 represent fast variables, and t1, x1, t2, and x2 are slow ones. Consequently,

the differential operators ∂/∂t and ∂/∂x are expressed via derivative expansions in the

following forms

∂

∂t
= −ω

∂

∂θ0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ . . . , (27)

∂

∂x
= k

∂

∂θ0
+ ε

∂

∂x1
+ ε2 ∂

∂x2
+ . . . , (28)
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where θ0 = kx0 −ωt0 with ω and k being related with the dispersion relation (10). Using

the expansion as in Eqs. (27) and (28), the linear part of Eq. (19) is represented through the

operator of the form

L̂
[
(−iω, ik) + ε

(
∂

∂t1
,

∂

∂x1

)
+ ε2

(
∂

∂t2
,

∂

∂x2

)
+ . . .

]
,

which can be expanded in terms of ε and its powers about the point (−iω, ik) as

L̂ = L̂0 + εL̂1 + ε2 L̂2 + . . . .

Thus, under the assumption of the linear approximation from Eq. (19) it can be easily

derived that

L̂η =
(

L̂0 + εL̂1 + ε2 L̂2 + . . .
)

η = 0. (29)

Further, the perturbation of the air-water interface η can be expanded in the form of

following series as

η(x, t) =
3

∑
n=1

εnηn(θ0, x1, x2; t1, t2) + O(ε4). (30)

Substituting Eqs. (29) and (30) in Eq. (19), the linear and successive higher orders of partial

differential equations can be obtained by equating the components of equal powers of ε:

O(ε) : L0η1 = 0;

O(ε2) : L0η2 = −L1η1 + αη2
1 ;

O(ε3) : L0η3 = −L1η2 − L2η1 + 2αη1η2 + βη3
1 .

Under the assumption of lowest-order approximation, a quasi-monochromatic perturbation

solution is considered in the case of slowly varying amplitude and is given by (cf. Eq. (7))

η1 = A(x1, x2; t1, t2)eiθ0 + c.c.

Proceeding in a similar manner η2 is obtained as

L0η2 = −i
(

∂G1

∂ω

∂A
∂t1
− ∂G1

∂k
∂A
∂x1

)
eiθ0 + αA2e2iθ0 + c.c.

The coefficient of eiθ0 represents a secular term in this equation. This secular term eliminated

by using the solvability criteria

∂G1

∂ω

∂A
∂t1
− ∂G1

∂k
∂A
∂x1

= 0.
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Using the definition of group velocity cg =
dω

dk
= −∂G1

∂k
/

∂G1

∂ω
, the solvability criteria is

rewritten as

∂A
∂t1

+ cg
∂A
∂x1

= 0. (31)

Using this condition, a uniformly valid expansion of η2 can be written in the form

η2 =
αA2

G1(2ω, 2k)
e2iθ0 + c.c.

Using the expression of G1(ω, k) as in Eq. (9), the function G1(2ω, 2k) corresponding to

both the upper and lower branches of dispersion curves is obtained as

G1(2ω(k), 2k) = ρ2

{
2a
k

(
kU −

√
D + akU

1 + a + r d k

)2

− 16D
ρ2

k4 − (1− a)g +
2
k
(1 + 2r d k)(

√
D + a k U)2

(1 + a + r d k)2

}
.

Proceeding in a similar manner, from the third-order approximation of the parameter ε i.e.,

O(ε3), the solvability criteria for L0η3 is derived as

i
(

∂G1

∂ω

∂A
∂t2
− ∂G1

∂k
∂A
∂x2

)
=

1
2

∂2G1

∂ω2
∂2 A
∂t2

1
− ∂2G1

∂ω∂k
∂2 A

∂x1∂t1

+
1
2

∂2G1

∂k2
∂2 A
∂x2

1
+

(
2α2

G1(2ω, 2k)
+ β

)
|A|2 A. (32)

Further, the solvability criterion in Eq. (31) can be rewritten as

∂2 A
∂t2

1
= c2

g
∂2 A
∂x2

1
. (33)

Setting xn = εnx and tn = εnt, and using Eq. (33) in Eq. (32), the NLS is obtained as

i
(

∂A
∂t

+ cg
∂A
∂x

)
+ P

∂2 A
∂x2 + ε2Q|A|2 A = 0, (34)

where the dispersion coefficient P and nonlinear coefficient Q are given by [7,25]

P =
1
2

dcg

dk
, Q = −

(
2α2

G1(2ω, 2k)
+ β

)(
∂G1

∂ω

)−1
.

Next, substituting the new variable b = εA, the final form of the NLS equation is obtained

as

i
(

∂b
∂t

+ cg
∂b
∂x

)
+ P

∂2b
∂x2 + Q|b|2b = 0. (35)
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4. Modulation instability of HEWs

In this section, the expressions for the dispersion coefficient P and nonlinear coefficients

Q, as defined in Eq. (35), will be derived in two different cases for the lower and upper

branches of the dispersion curves associated with Eq. (10), for determining the criteria of

modulation instability.

4.1. NLS equation and modulation instability in the lower branch of the dispersion curve

In the present subsection, the frequency ω2 corresponding to the lower branch of the

dispersion curve is used to derive the expressions of the dispersion coefficient Pl and the

nonlinear coefficient Ql in the NLS Eq. (35), and are given by

Pl =
A2

8B3/2(1 + a + R)
− r2d2(

√
B− a k U)

(1 + a + R)3 −
r d
(

a U +
A

2
√

B

)
(1 + a + R)2

+
2aU2(1 + R) + 2r d C− 20(1 + a + R)Dk3/ρ2 + 4a r d k U2

4
√

B(1 + a + R)
, (36)

Ql = −
k2

2
√

k(Dk4 + gρ2 − agρ2)B1 − C1ρ2
2

×


F1k +

2ρ2

[
a
(

kU + ρ2
A1

B1

)2
− ρ2R1

A2
1

B2
1

]2

(1− a)gk + 16k5 D
ρ2
− 2a

(
kU + ρ2

A1

B1

)2
− 2ρ2

2(1 + 2d k r)
A2

1
B2

1


, (37)

where A = (1 + a + R)C− rdF + 2aU2(1 + F)k + ardk2U2, B = (1 + a + R)F− ak2U2(1 +

R), C = g(a− 1)− 5Dk4/ρ2 F = Dk5/ρ2 + (1− a)gk, R = rdk, A1 =
√

kB1F1/ρ2
2 − C1 −

akU, B1 = (1 + a)ρ2 + ρdk, C1 = ak2U2R1/ρ2, F1 = Dk4 + (1− a)ρ2g, R1 = ρ2 + ρdk.

In particular, for a = U = D = ρi = 0, the dispersion relation (10), corresponding group

velocity, dispersion and nonlinear coefficients Pl and Ql reduce to

ω2 = −
√

gk, cg = −1
2

√
g
k

, Pl =
1
8

√
g
k3 , Ql =

1
2

√
gk5, (38)

where the coefficients Pl and Ql are analogous to the coefficients of the NLS equation for

surface gravity waves in deep water [26–28].

It is interesting to that the dispersion and nonlinear coefficients of NLS equation corre-

sponding to the deep water flexural gravity wave covered by an ice plate can be easily

derived from Eqs. (36) and (37) by putting a = 0 and U = 0, which was studied recently by

[12].

In Figs. 8 and 9, the dependencies of Pl(k) and Ql(k) are demonstrated in the lower branch

of the dispersion curve for different values of wind speed with U = 0, U = Uc1 = 16.09
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m/s, and U = UKH ≈ 16.10 m/s. Figure 8 reveals that the dispersion coefficient Pl(k)

has only one root for all values of U where its sign changes from positive to negative.

On the other hand, Fig. 9 depicts that the nonlinear coefficient Ql(k) has a singularity

at k = ks ≈ 29.1 1/m for all values of U, where Ql(k) changes its sign from positive to

negative. It is worth mentioning that both the functions Pl(k) and Ql(k) attain their minima

around the point k ≈ 42 1/m where K–H instability occurs for U = UKH . The minima

become deeper and deeper when U approaches UKH , and in the limit, U → UKH , the

singularities appear in both the functions Pl(k) and Ql(k).

As per Lighthill criterion, a uniform wavetrain becomes unstable with respect to self-

modulation in the case of the function Wl(k) ≡ Pl(k)Ql(k) is positive [29,30]. Figure 10

demonstrates the zones of modulation stability (S) and instability (US) in the (k, U) plane.

Furthermore, a dramatic change in this stability diagram is observed for the wind speed

U higher than the critical value Um = 8.19 m/s, which is because of the fact that the

nonlinear coefficient Ql(k) has several roots. This results in the multiple changes of sign in

the product of the dispersive coefficient Pl(k) and nonlinear coefficient Ql(k). Moreover,

Fig. 10 corresponds to the modulation instability of deepwater flexural gravity waves for

U = 0 and a = 0, which was studied recently by [12].

k
0 10 20 30 40 50 60

Pl

-0.2

-0.1

0

0.1
U = 0

U = 16.09

U = 16.0978

Figure 8. (Color online) Variation of dispersion coefficient Pl(k) versus wavenumber k for different
values of wind speed in the case of the lower branch of the dispersion curve
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Ql

×10
5

-10
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-4

-2

0

U = 0

U = 16.09

U = 16.0978

Figure 9. (Color online) Variation of the nonlinear coefficient Ql versus wavenumber k for different
values of wind speed U in the case of lower branch of dispersion curve.

It is worth mentioning that the maximum growth rate of modulation instability occurs

for wavenumber of modulation Kmax = b0
√

Ql/Pl in the NLS equation (35), where b0 is

referred as the sinusoidal wave amplitude (see, e.g., [25]). Further, it is important to note

that Imax = |Ql(k)|b2
0 is the maximal value of growth rate. Again, for a given value of U,

this expression can be further optimized with respect to the carrier wavenumber k [31].

During the occurrence of modulation instability, envelope solitary waves (solitons), breathers,

freak waves can emerge from certain initial perturbations; in addition to the occurrence of

fascinating phenomena related to their interactions whose details can be found in [7,26,32].

Besides, in the case of modulational stability, dark solitons can be developed on the back-

ground of a quasi-sinusoidal wave [7]. Figure 11 demonstrates the examples of (a) bright

and (b) dark solitary envelope waves.

The NLS equation (35) becomes inapplicable when its coefficients P(k) or Q(k) vanish.

This occurs at the boundaries between the stable and unstable domains, which is exhibited

in Fig. 10. Thus, the generalised NLS equation should be derived by taking into account

the higher-order terms as in [33,34]. However, this is not considered in the present study

and will be studied separately.
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S US
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US S

Um = 8.19 B1

Figure 10. Zones of modulation stability (S) and instability (US) in the (k, U) plane. The dashed line
on the top depicts the critical velocity UKH = 16.10 1/m at which the Kelvin–Helmholtz instability
arises. The bifurcation point in the diagram is denoted by Q1 for U = Um.

x

a) b)

Figure 11. (Color online) Examples of (a) bright and (b) dark envelope solitons.

4.2. NLS equation and modulation instability in the upper branch of the dispersion curve

In the present section, the upper branch of the dispersion curve ω1 as given in Eq. (10) is

considered for the derivation of the dispersion and nonlinear coefficients Pu and Qu and to

determine the condition of modulation instability. As in the case of the lower branch of the
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dispersion curve, the dispersive coefficient Pu and the nonlinear coefficient Qu in the NLS

Eq. (35) are obtained as

Pu =
−1

(1 + a + R)

[
A2

4B3/2 −
r2d2(

√
B + a k U)

(1 + a + R)2 +
r d

1 + a + R

(
a U − A

2
√

B

)
+

2a U2(1 + R) + 2r d C− 20(1 + a + R)Dk3/ρ2 + 4a r d k U2

2
√

B

]
, (39)

Qu =
k2

2
√

k(Dk4 + g ρ2 − a g ρ2)B1 − C1ρ2
2

×


F1k +

2ρ2

[
a
(

Uk− ρ2
P1

B1

)2
− ρ2R1

P2
1

B2
1

]2

(1− a)g k + 16k5 D
ρ2
− 2a

(
k U − ρ2

P1

B1

)2
− 2ρ2

2(1 + 2d k r)
P2

1
B2

1


, (40)

where A, B, C, R, B1, C1, F1 and R1 are same as in Eqs. (36) and (37) with

P1 =
√

kB1F1/ρ2
2 − C1 + akU. The coefficients Pu and Qu are exhibited in Figs. 12 and 13.

A comparison of Figs. 8-9 with that of Figs. 12-13 reveals that the trend of the dispersion

and nonlinear coefficients for the upper branch of the dispersion curves are opposite to

that of Pl and Ql .

Equations (39) and (40) attribute that the modulational instability occurs for positive values

of the function Wu(k) ≡ Pu(k)Qu(k) associated with the upper branch of the dispersion

curve. Figure 14 demonstrates the zones in (k, U) plane where the function Wu(k) is

positive and that leads to the occurrence of modulation instability. Further, the graphic

begins to alter dramatically for U exceeds a critical limit Um = 9.4719 m/s, which is

because of the fact that Qu has multiple roots where it changes sign in the case of wind

speed U > Um.

It is evident from Figs. 10 and 14 that the domains of modulation stability and instability

are bizarrely interspersed on the diagram when U exceeds the critical value Um in each

branch of the dispersion curve. The importance of highlighting such domains is in the

understanding of the existence of bright and dark envelopes of solitary waves. The former

can arise in the process of the development of modulation instability, whereas the latter

can appear in the modulational stable regions on the parameter plane. Moreover, in the

case of modulation instability, rogue waves with extremely high amplitudes can emerge

from rather regular initial perturbations [32]. The most important conclusion which can

be derived from this study is the existence of modulational unstable waves of negative

energy for wind speed in the range Uc2 < U < Um. Such waves can grow in time if

a dissipative mechanism extracting energy from these waves is taken into account, for

example, a turbulent viscosity of air which can be fairly significant. However, this issue is

beyond the scope of the present study.
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U = 0

U = 16.09

U = 16.10

Figure 12. (Color online) Variation of the dispersion coefficient Pu versus wavenumber k for different
values of wind speed in the case of upper branch of dispersion curve.

5. Conclusion

In the present manuscript, the criteria for modulation instability of hydro-elastic waves on

the air-water interface are investigated under the influence of wind. The model considered

is assumed to be the simplest model of wind with the uniform profile and tangential

velocity discontinuity. However, this is a widely used canonical model of the flow in

hydrodynamics, physical oceanography, geophysical fluid dynamics, plasma physics, and

other fields. Despite the simplicity, the model provides an insight into the complicated

range of phenomena occurring in the wave-current interactions. To the best of the authors’

knowledge, the modulation instability of hydro-elastic waves under the influence of wind

was not studied thus far. Thus, the present study has filled the said gap on modulation

instability in the literature. The study exhibits the wavenumber range based on the current

speed in which the stability and instability occur in the lower and upper branches of

the dispersion curves. From the general model investigated here, limiting cases of pure

gravity waves or flexural-gravity waves without airflow are reproduced. As a summary,

an estimate of parameters of a modulated wave are presented with wavenumber k = 10

1/ m (λ = 2π/k ≈ 0.63 m), amplitude η0 = 0.01 m and U = 1 m/s. Subsequently, the
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Figure 13. (Color online) Variation of the nonlinear coefficient Qu versus wavenumber k for different
values of wind speed in the case of upper branch of dispersion curve.

most rapidly increasing modulation wavenumber Kmax = η0
√

Qu/Pu ≈ 2.01 1/m and

wavelength Λ = 2π/Kmax ≈ 3.12 m are obtained. The maximal value of the growth rate is

found to be Imax = |Q(k)|η2
0 ≈ 0.05 1/s along with the characteristic time of wave growth

τ = 1/Imax ≈ 20.4 s. These parameters look reasonable for the rubber ice and, they are

practically insensible to the variation of the wind speed in the interval Uc2 < U < Um. The

study can be generalized to deal with complex flow patterns including turbulent viscosity

of air as well as the role of lateral compressive force on the floating ice sheet.
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