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Abstract: Blockchain technology has been recognized as a promising solution to enhance the security
and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the
Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle,
Blockchain assures the security of the system by establishing a digital ledger. However, the com-
putation intensive PoW favors members possessing more computing power. In the IoT paradigm,
fairness in the highly heterogeneous network edge environments must consider devices with various
constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an
emerging concept that mirrors the lifespan and operational characteristics of physical objects, we
propose a novel Miner-Twins (MinT) architecture to enable a fair PoW consensus mechanism for
blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of
the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers
maintain digital twins that periodically update miners’ running status. By timely monitoring miner’s
footage that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA) based detection
achieves to identify individual misbehaved miners that violate fair mining. Moreover, we also
design a novel Proof-of-Behavior (PoB) consensus algorithm to detect byzantine miners that collude
to compromise a fair mining network. A preliminary study is conducted on a proof-of-concept
prototype implementation, and experimental evaluation shows the feasibility and effectiveness of
proposed MinT scheme under a distributed byzantine network environment.

Keywords: Digital Twin, Blockchain, Proof-of-Work, Microservices, Singular Spectrum Analysis
(SSA), Byzantine Fault Tolerance.

1. Introduction

Advancement in Internet of Things (IoT), edge computing, Big Data (BD), and artificial
intelligence (AI)/machine learning (ML) technologies makes the concept of Smart Cities
realistic. However, widely adopting IoT-based applications and services in smart cities also
brings new security and privacy concerns. Thanks to multiple attractive features including
decentralization, auditability and traceability, blockchain has been widely recognized as
a great potential to revolutionize the fundamentals of information and communication
technology (ICT) [1]. Applying blockchain to smart cities is promising to bring efficiency,
scalability and security properties to IoT-based applications, such as smart surveillance [2],
privacy preservation [3], decentralized data marketplaces [4], time banking of community
[5], identity authentication [6] and access control [7,8].

Digital Twins (DT) is being developed to optimize manufacturing and aviation pro-
cesses [9]. By monitoring, simulating and mirroring the status of a physical object (PO),
DT can build an intelligent and evolving system model based on the logic object (LO).
Leveraging data fusion and AI/ML algorithms, DT can be used to predict the behavior of
the PO given some specific situations or environments. Like DT, the Dynamic Data Driven
Applications Systems (DDDAS) concept developed in the late 1990s seeks to use modeling
to support predictive expectations based on the coordination with models and data [10].
Thus, DDDAS can determine optimized solutions or even failure preventive actions on
POs to enable an intelligent and resilient system.
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Research has been conducted to apply blockchain to enable many attractive features
in DTs, including transparency, decentralization, data immutability and Peer-to-Peer (P2P)
communication [11]. However, directly integrating existing blockchain technologies into
the highly heterogeneous IoT environments presents critical challenges in terms of scalabil-
ity, performance, security, and fairness [12]. Some permissioned blockchains use a Practical
Byzantine Fault Tolerance (PBFT) [13] protocol, which demonstrates high throughput, and
low latency but only allows a very limited network scalability in terms of the number of
validators. Most of permissionless blockchain networks utilize a hashing-intensive proof-
of-work (PoW) consensus protocol to achieve security and scalability guarantees. Due to
the various computation capability of miners, mining centralization in PoW blockchain not
only leads to inequity of rewarding among participants, but it also brings security issues,
like majority (51%) attack [14].

Inspired by the essential features of DTs, mirroring and monitoring, this paper pro-
poses a novel edge-fog-cloud Miner-Twins (MinT) architecture to enable a fair PoW con-
sensus mechanism for blockchains in IoT environments. In the MinT architecture, the
fog/cloud sever establishes and maintains digital twins for the miners of the blockchain,
which are deployed as microservices in edge devices that participate in the blockchain
network. Container technology is adopted to encapsulate PoW algorithm as microservices,
and each containerized miner is dedicated to mining tasks using pre-configured compu-
tation power. Because each miner has the same constrained computation resources, it
becomes affordable to optimize resource limited IoT devices.

The MinT architecture enables a fair-mining-as-a-service (FMaaS) framework that
timely monitors the computing resources usage at miners and regularly applies anomaly
detection to deter misbehaved nodes from unfairly overwhelming honest peers by using
extra computing power. Our MinT adopts a lightweight SSA Singular Spectrum Analysis
(SSA) based detection to identify individual misbehaved miners that violate fair mining
policies. While a Proof-of-Behavior consensus algorithm is designed to detect multiple
Byzantine miners that collude to compromise a fair mining network.

The remainder of this paper is organized as follows: Section 2 reviews background
on blockchain and PoW consensus, then briefly discusses the state-of-the-art research on
DT. Section 3 introduces the rationale and architecture of MinT. The miner twin enabled
fair-mining mechanism including SSA and PoB based detection algorithms is explained in
Section 4.1. Section 5 presents prototype implementation with numerical results. Section 6
concludes the paper with the future work.

2. Related Work

This section introduces blockchain and PoW consensus background knowledge. Fol-
lowing that, we describe digital twin technology and how DT can be used to guarantee the
fair mining scheme in blockchain.

2.1. Blockchain and Nakamoto Consensus Protocol

As a form of distributed ledger technology (DLT), Blockchain was initially implemented
as an enabling technology of Bitcoin [15], which aims to provide a cryptocurrency to record
and verify commercial transactions among trustless entities in a decentralized manner. With
the decentralized P2P network architecture and cryptographic mechanisms, participants in
a blockchain system maintain the immutability and auditability of data and transactions
recorded on the distributed ledger, instead of relying on a centralized third party trust
authority.

As one of the most fundamental problems in a distributed/decentralized computing
environment, consensus in a blockchain network can be defined as a fault-tolerant state-
machine replication problem, which aims to maintain the globally distributed ledger state
across the P2P network. Bitcoin adopts the Nakamoto consensus based on a Proof-of-
Work (PoW) scheme to achieve pseudonymity, scalability and probabilistic finality in an
asynchronous and open-access network environment. The goal of Nakamoto consensus
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is to ensure all participants agree on a common network transaction log as a serialized
blockchain [12].

PoW is essentially an incentive-based consensus algorithm, which requires all par-
ticipants to compete for rewards through a cryptographic block discovery racing game.
To be a winner in PoW block generation, every node has to solve a computing-intensive
hash puzzle problem. In brief, a valid PoW solution requires exhaustively querying a
cryptographic hash function for a partial preimage generated from a candidate block [16].
Finally, the hash code of a candidate block must satisfy a pre-defined difficulty condition
parameter h, like having a fixed length of bits as zeros. The PoW puzzle problem can be
formally defined as:

hash_block = H(block_data|nonce) 6 D(h), (1)

where for some fixed length of bits L and difficulty condition D(h) = 2L−h. H(·) is a
pre-defined collision-resistant cryptographic hash function that outputs a hash string
L ∈ {0, 1}λ, and λ is the length of a hash string.

The PoW process defined by Eq. (1) is essentially a verifiable process of a weighted
random coin-tossing [12]. Thus, the probability of generating a valid block is in proportion
to miners’ computation resources. Higher computation power leads to higher hash string
rate in PoW, which means more rewards and benefits. Such a mining centralization may
discourage participants who have limited computation resources, like IoT devices; but it
also lead to majority (51%) attack if an adversary has controlled more than 50% computation
resource of of the whole network.

To reduce energy consumption in PoW consensus, Peercoin [17] proposed Proof-
of-Stake (PoS), which requires a miner to use its coin stake to solve the puzzle solution.
Unlike PoW protocols that relies on a brute-force hash calculation, PoS miners use a
process of “virtual mining” manner that only consumes limited computational resources.
However, PoS still has a mining centralization issue, because an attacker can amplify
its power by simply accumulating the credit stake. As the first practical BFT consensus,
Practical BFT (PBFT) [13] guarantees both liveness and safety in synchronous network
environments given the assumption that at most of b n−1

3 c out of total of n participants in
consensus protocol are Byzantine faults. As PBFT requires that all nodes communicate
synchronously to achieve consensus purposes, it has poor scalability due to high latency
and communication overhead as more nodes join the consensus network.

2.2. Digital Twins

The concept of DT was proposed in 2002 and archived in a NASA white paper in 2014
[18]. Essentially, a DT is a digital representation of the components and dynamics of a
physical system [19]. Based on the functionalities, DTs can be roughly categorized into three
kinds: monitoring DTs, simulational DTs, and operational DTs [20]. As suggested by the
names, monitoring twins allow system operators monitor the status of a physical system;
simulation twins can predict the future status of the physical system in different scenarios
by using various simulation tools and ML algorithms; operational twins is a complex sensing
and control system that enabled human operators to interact with a cyber-physical system
and perform different actions in addition to monitoring, analysis and prediction [21], which
is similar to human-machine teaming [22].

Earlier studies of DT mainly focused on the area of manufacturing covering different
key factors for smart manufacturing including simulation, optimization and the use of AI.
For instance, an event-driven simulation for manufacturing and assembly tasks based on
Digital Twin and human–robot collaboration is presented [23]. A DT based framework is
proposed to achieve high precision and multidisciplinary coupling during the assembly
process, which mainly focused on High precision products (HPPs) workshops [24]. HPP
also establishes a predict and optimization model as well as a case study to verify the
effectiveness and feasibility. A case study presents an ice cream machine as an application
example of DT in food industry [25], which focused on the visualization and interaction
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based on virtual reality (VR) and augmented reality (AR) technologies. Secure data trans-
mission is also highlighted in the framework by employing a secure gate between machine
and cloud.

Recently efforts are reported on variant aspects of smart cities including Smart Driving,
Smart Grid and Smart Healthcare. For instance, the optimization issue in the electric
propulsion drive systems (EPDS) of self-driving electric vehicles are discussed [26]. In the
proposed DT-based framework, the connection between logical twin in the control software
with the propulsion motor drive system enables EPDS performance estimation. However,
there are no experimental results are presented after giving the concepts of the platform.
A behaviors based algorithm is proposed to help the drivers to avoid potential risk [27].
Combining the ML techniques and DT relies on the connectivity of the system and faces
challenges in optimization and accuracy [28]. A case study has been reported that tackles
the management of wind farm using DT and cloud technologies combined with big data
analysis to build remote control station [29].

Recently, some healthcare applications redefined DT by including living objects [30].
A DT-based healthcare framework is proposed for monitoring and predicting the health
condition of an individual using wearable devices [31]. A DT-based remote surgery
prototype is introduced consisting of VR, 4G and AI to create a digital twin of a patient
and to realize real-time surgery over mobile network [32]. Due to the fast development
of telecommunication technologies, 5G and beyond networks will be very complicated as
they are expected to support more emerging applications with more diverse requirements
[33]. The community is considering DT as an efficient, cost-effective approach to accelerate
the design, test, and implementation of 5G/6G networks [34].

Due to the foreseeable importance and popularity of DT in IoT, 5G/6G, and edge
computing area, blockchain is adopted to enhance the security, trust, and reliability of DTs
[35], [11]. Work reported in this paper, however, is the first in this area that leverages the
DT to tackle the unfair mining problem in the PoW consensus protocol. Using digital twins,
MinT monitors the computing resource utility of the miners and quickly detects abusers
using Singular Spectrum Analysis (SSA) [36], one of the fastest change point detection
algorithms [37]. Our MinT also uses a Proof-of-Behavior (PoB) consensus algorithm to
guarantee byzantine tolerant anomaly detection.

3. MinT: Rationale and Architecture

Aiming at a secure-by-design fair PoW mining network in heterogeneous IoT environ-
ments, our MinT scheme leverages DT technology to continuously monitor the usage of
containerized miners and discourages misbehaving nodes from unfairly overwhelming
the peers by using extra computing power. Figure 1 illustrates the high-level system archi-
tecture of MinT, which adopts a hierarchical cloud-fog-edge computing paradigm. Such
a hierarchical framework not only provides system scalability for large-scale fair mining
tasks based on geographically distributed IoT devices; but it also supports flexible man-
agement and coordinated central and decentralized local decisions given heterogeneous
networks and application domains. Moreover, MinT relies on a permissioned network
which provides basic security guarantees, like the public key infrastructure (PKI) and
digital signature, data integrity [2], identity authentication [6] and access control [38], etc..
The rationale behind the MinT is described as follows:
1. Containerized PoW Miner: The edge layer in MinT consists of various types of IoT
devices, like smart cameras in a surveillance system or smart meters connected to a power
grid. To follow an ideal “one cup-one vote” Nakamoto consensus protocol, devices are
only allowed to launch PoW containers as miners to participate the blockchain network,
and all containers are assigned the same computation resource for PoW mining algorithm.
Each miner has the same probability of generating blocks and being rewarded accordingly
due to the uniform computation distribution of the network. Thus, these containerized
PoW miners construct a fair mining blockchain network disregarding devices’ capability.
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Figure 1. Illustration of MinT System Architecture.

2. Microservice-oriented Service: MinT utilizes an intermediate fog layer to provide
middle-ware services for devices at edge and cloud level. To address heterogeneity of
IoT systems, a lightweight Microservice-oriented architecture (MoA) is adopted as a fun-
damental service infrastructure to support functionality, such as data aggregation and
microservice management, and security mechanisms, like encryption/decryption, iden-
tity verification and access control, etc.. Each microservice unit exposes a set of RESTful
web-service APIs for interaction. The fine-granularity and loose-coupling features of the
MoA framework allows for fast development and easy deployment among heterogeneous
platforms using non-standard development.
3. DT enabled Fair Mining Intelligence: As dishonest containerized miners could use
extra computing power than they have been permitted, MinT relies on DT technology and
intelligent services on a fog/cloud server to maintain a fair mining network at the edge
layer. By aggregating data flows from distributed miners, mirroring miners (logic objects)
that are associated with their physical counterparts are created. These miner twins monitor
the usage of containerized miners running on devices. By analyzing the real-time status of
miner twins and historical statistics, abusers can be detected and preventive actions can be
triggered to deter identified misbehaving miners; such that the MinT ensures a fair mining
blockchain network.

4. Miner Twin Enabled Fair-Mining Mechanism

This section provides a comprehensive overview of MinT based fair mining mecha-
nism such that readers can understand key components and workflow. Then, we describe
miner twin process including key parameters selection. Following that, we offer details on
lightweight SSA based anomaly detection and byzantine tolerant PoB consensus algorithm.

4.1. MinT Workflow for Fair Mining

Figure 2 illustrates the workflow of the fair-mining mechanism in MinT system. The
upstream data flow starts from the containerized miners and aggregates the fog servers
installed with different modules. The fog server firstly normalize the data from all physical
miners which reports to it under its jurisdiction. The fog server can either construct logical
miners that mirror these new physical miners or update status of existing logical miners.
The fog server further encrypts its local logical twining miners and forward them to the
cloud.

On receiving the encrypted data from multiple fog servers, the cloud server aggregates
the information into a logical miners pool to represent a system level twinning PoW
network. Using the live feed from the logical twin and the historical data, MinT uses an
intelligent model for fair mining strategy. Given a fair mining algorithm, the upstream
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Figure 2. Miner Twins based Fair-Mining Flowchart.

data flow starts from the predication. The predicted status will be compared to the actual
footage, using anomaly detection algorithm MinT identifies dishonest miners who violate
the fair PoW consensus and sends orders to the Microservice Control Module on a fog
layer accordingly, which will take further actions on the “outlaws”.

4.2. Miner Twin Process

To mirror the physical miner, several parameters are extracted for the logical miner,
including central CPU usage (C), global GPU usage(G), memory usage(M), and I/O
bandwidth (B). Since PoW depends on computation intensive algorithms, the CPU usage
and GPU usage are chosen as the Key Parameters according to the selection of calculation
module, while memory, I/O bandwidth and other metrics are considered as Contributing
Parameters. To avoid falling behind other miners, the physical miner will normally use all
the allocated CPU/GPU resources.

Because the system resource allocated to each miner is restricted but identical, the
data can be normalized in form of percentage, for example c = C

Cset
× 100% where Cset

is the preset CPU limit and c is the normalized value. Given an assumption that a con-
tainerized miner can only use its CPU to do the PoW algorithm, then for a miner k,
the parameter vector of its Physical Object (physical miner) with timestamp i would be
POki = (cki, gki, mki, bki), and the Key Parameter is cki. And the vector for the Logical Object
(logic miner) can be represented as LOki = (cki, gki, mki, bki) and the Key Parameter is cki.

4.3. Fast Anomaly Detection for Fair Mining

Fast and accurate identifying of the misbehaved miners is the essential step to ensure
fair mining, where MinT adopts the Singular Spectrum Analysis (SSA) algorithm to achieve
this goal. SSA is recognized as one of the quickest sequential change-point detection
approaches for processing time series problems [39]. By decomposing and reconstructing
the interested time series, SSA extracts certain components of the origin series like periodic
pattern, noises, trends, etc. SSA is widely used in solving problems like smoothing,
extraction of seasonality components, as well as study the structure in some minor time
series and change-point detection [36].

Unlike traditional methods, SSA is non-parametric and does not require prior knowl-
edge of the parametric model of the considered time series data. Although SSA uses some
statistical concepts, it does not need any statistical assumptions about the target series.
Moreover, SSA algorithm can be used for processing time series with relatively small size,
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which make this method more suitable for edge-fog scenarios [40]. The SSA algorithm can
be described as follows:
1. Embedding: The target of SSA is a one-dimensional time series X = [x1, ..., xN ], where
N is the series length. By choosing proper window length L, one can transfer the times
series into multi-dimensional series of vectors ~Xi. Combine these vectors results in the
trajectory matrix X = [ ~X1, ~X2, ..., ~XK], where K = N− L+ 1. The multi-dimensional vectors
~Xi = (xi, ..., xL+i−1)

′, i = 1, ..., K, are also called lagged vectors.
2. Singular Value Decomposition: After singular value decomposing the trajectory matrix
X, the eigenvalues are denoted by λ1, ..., λL in decreasing order of magnitude and the
corresponding eigenvectors U1, ..., UL where the matrix U = [U1, U2..., UL], ‖Ui‖ = 1 is or-
thogonal. Then, the eigentriples are (

√
λi, Ui, Vi), by denoting Vi = X′Ui/

√
λi. Supposing

the rank of X is d, then the trajectory matrix as X = X1 + ... + Xd.
3. Grouping and Reconstructing: The next step is to group the matrices Xi into certain
groups and calculate the sum within these groups. So we denote a subset indices I =
i1, i2, ..., il where l < L. So the corresponding matrix is XI = Xi1 + ... + Xil .
4. Diagonal Averaging: Using diagonal averaging, we can transfer XI into time series XI .

XI(i) =


1
i ∑i

j=1 xj,i−j+1 for 1 ≤ i < L
1
L ∑L

j=1 xj,i−j+1 for L ≤ i ≤ K
1

N−i+1 ∑N−K+1
j=i−K+1 xj,i−j+1 for K ≤ i ≤ N

By selecting certain subset indices I = i1, i2, ..., il , one can reconstruct the time series.
By observing the distance between the l-dimensional matrix and the test time series matrix,
we can detect the anomaly by identifying a significant increase of the distance. The SSA
based Change-Point detection utilized in the paper can be described in following stages:
Stage 1: Construct Base Matrix First construct the base matrix (or target matrix) according
to the four steps of the SSA algorithm. Given the target time series X = [xn+1, ..., xn+N ],
embed it into the trajectory matrix X = [ ~X1, ~X2, ..., ~XK], where K = N − L + 1. And the
columns of the trajectory matrix are the vectors:

~Xi = (xn+i, ..., xn+L+i−1)
′, i = 1, ..., K

Then conduct the SVD and get L eigenvectors which can be grouped into certain subset
I = i1, i2, ..., il , l < L.
Stage 2: Construct Test Matrix Similarly, construct the test matrix of size L×Q:

Xtest = [ ~Xp+1, ~Xp+2, ..., ~Xp + Q],

where q = p + Q. And the columns of the matrix are the vectors:

~Xj = (xn+j, ..., xn+L+j−1)
′, j = p + 1, ..., p + Q

Stage 3: Compute the Detection Statistics In this stage, we first compute Dn,I,p,q, the sum
of the squared Euclidean distances between the l-dimensional subspace from the base
matrix and the vectors ~Xj(j = p + 1, ..., p + Q)from the test matrix.

Dn,I,p,q =
q

∑
j=p+1

((~Xj)
T ~Xj − (~Xj)

TUUT ~Xj)

Then we give the normalized sum of squared distances Sn = 1
µn,I

D̃n,I,p,q. µn,I =

D̃m,I,0,K is the estimator and we make the hypothesis that no change of time series structure
occurs at the time intervals where m is the largest value of m ≤ n.

We also compute the Cumulative Sum as the final score for the anomaly detection.

W1 = S1, Wn+1 = max{0, Wn + Sn+1 − Sn − κ/
√

LQ}, n ≥ 1
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where κ is a constant and in this paper we set κ = 1/(3
√

LQ) [41].
Stage 4: Set threshold and make decisions To detect the change of the time series, we
could check the value of Dn,I,p,q, Sn and Wn. Basically the large value of the three detection
statistics indicates the change or the anomaly and the algorithm announces the structural
change if we observe Wn > h for some n where h is the threshold given by

h =
2tα

LQ

√
1
3

Q(3LQ−Q2 + 1)

and tα is the 1− α-quantile of the standard normal distribution [42].

4.4. Proof-of-Behavior Consensus Algorithm for Fair Mining Enforcement

Above mentioned SSA based detection can identify a single misbehaved miner based
on its own footnote, however, it cannot handle byzantine scenarios that multiple com-
promised miners by an adversary collude to violate fair mining policies. By observing a
miner’s running operations, the calculated cumulative sum (CUSUM)-type W can indicate
a miner’s behavior. Inspired by deepfake detection in video surveillance systems [43,44],
our MinT relies on a novel Proof-of-Behavior consensus algorithm that leverages CUSUM-
type W calculated in SSA algorithm to detect multiple dishonest miners in distributed
byzantine tolerant scenarios.

We consider a mining network N including ni miners, where i ∈ {1, k} and k = |N |.
All dishonest miners are denoted by mi ∈ M and their fraction is f = |M|/|N |. The
CUSUM-type Wi of miner ni denotes a behavior vector Wi = {w1, w2, ..., wd}, where d is
the SSA detection time window. Finally, each twin can maintain a global view of collected
behavior vectors, which is a matrix G = {W1, W2, ..., Wk}. The PoB firstly generates a
behavior score s(i) for each miner ni, which is a sum of relative Euclidean distances
between other miners’ behavior vector. Then, a Wi ∈ G with minimal behavior score will
be selected as a benchmark W∗.

The PoB consensus algorithm aims to chooses a vector W which is deviates least
from the distribution of G. However, an adversary can compromise multiple miners that
generate large vectors to force "honest" miners to choose a byzantine behavior vector as
the ground truth one. Thus, our PoB algorithm adopts a Krum aggregation rule [45] to
guarantee byzantine tolerance. We assume that honest miners within network N store G
including n ≥ 2 f + 3 vectors in which at most f vectors are generated by byzantine nodes
inM. For Wj belongs to the n− f − 2 closest vectors to Wi, where i 6= j, we denote i→ j.
So we could define the consensus score:

s(i) = ∑
i→j
||Wi −Wj||2

Then each nodes can compute behavior scores s(1), ..., s(k) that are associated with
miners n1, ..., nk separately. By calculating the minimum behavior score

s∗ = min
i∈{1,...,k}

(s(i)),

all honest miners choose a behavior vector Wi that satisfies s(i) = s∗ as the ground truth
W∗. Given assumption that an adversary controls no more than f miners, all honest miners
can reach an agreement on the unique W∗.

5. Experimental Study

In this section, a proof-of-concept prototype implementation and experimental config-
uration are described. Following that we evaluate effectiveness of proposed MinT solution
based on numerical results. Finally, we discuss performance and security properties
provided by MinT.
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5.1. Experimental Setup

A proof-of-concept test platform is created, in which 16 Raspberry Pis (RPi) are
adopted as the edge devices. Each RPi is empowered with quad-core Cortex-A72 CPU
@1.5GHz and an installed RAM with 4GB memory running Raspbian OS based on Debian.
The single-board computer (SBC) is capable of carrying containerized PoW module to
participate the blockchain network. A desktop functions as a fog server, which has Intel
Core i7-7700K CPU and a RAM of 16 GB memory. All the RPis are connected to a fog server
via local area network (LAN).

As the GPU is not available on the RPi, we select CPU-based PoW algorithm for
container construction. For fast deployment, Docker [46] is adopted as the microservice
container that is affordable to RPis and transmit the data from the physical miner to a
fog server through RESTfull APIs. Each of the miner containers is configured with and
restricted to one CPU core, 500MB memory and 10 percent of system I/O bandwidth. The
collected data is stored in forms of vector as described in Section 4.2.

As the PoW algorithm is executed on CPU, samples of the key parameter C are
collected and the historical data vector chi is used to obtain the statistic profile, where
h = 1, ..., 16 and i = 0, 1, .... For SSA based change-point detection, we define N = 24
according to the size of the data sets, L = 12 to the half size of N, p = 12, and q = 24. We
deliberately set p ≥ K so that the base and test matrices would not coincide. After visual
inspection of the components of the decomposition of the whole time series, we choose
certain l to represent ignoring the noise components.

5.2. Experimental Results

All 16 miners are default running at 100% of the assigned system resources under
the jurisdiction of the fog server. Four different test scenarios are considered in our
experimental study. To verify SSA based detection on single misbehaved miner, we firstly
conduct test cases that only one dishonest miner uses double assigned computation power
on mining given different parameters combination. Then we consider a more stealthy single
miner violation, which incremental increases the computing power from 20% up to 50%. To
validate effectiveness of PoB based detection, we simulate a byzantine network, in which
two miners act as byzantine nodes while other 14 miners are honest members. Finally, we
evaluate false positive rates at the network level with different threshold settings.
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Figure 3. SSA detection on single miner violation with different parameters combination.

5.2.1. SSA detection on static single miner violation

In this scenario, one dishonest miner uses twice as much CPU power as the assigned
amount at t = 200s. Figure 3(a) presents the network level observation at the fog server.
The blue line is the average CPU usage for all 16 miners in this blockchain network, and
the red line is the wn value calculated using SSA algorithm as the score. And the green line
is the threshold h = 0.607 which is computed with tα = 1.2815. As shown by Fig. 3(a), the
fluctuation in the average CPU utility incurs a low peak in the distance score. However,
applying the SSA algorithm on each miner twin individually avoids the false negative.
Figure 3(b) shows that a significant peak is observed at t = 200s.

We also studied the impacts of different selections of the SSA parameters varying l
and q− p combination. Figure 3(c) shows the consequence of increasing the value of l from

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 November 2021                   doi:10.20944/preprints202111.0006.v1

https://doi.org/10.20944/preprints202111.0006.v1


10 of 14

4 to 8, but with the same metrix size. The larger l leads to a more noise part with the signal;
therefore, it would be more difficult to find a change in the signal time series. And if the l
is too small which would cause underfitting, we may miss some part of the signal. Due to
the limited space, the figure is not included here.

Meanwhile, the matrix size q− p also has significant impact on the detection distance
score. Figure 3(d) shows that by increasing the value of q− p to 24 while l = 4, the distance
(red) line is smoother than in (b).

5.2.2. SSA detection on adaptive single miner violation

The second scenario considers more stealthy behavior of a violator, which increases
the computing power slowly, from 20% to 50% taking multiple steps at time point t = 125s,
t = 175s, t = 225s, t = 275s. Figure 4(a) shows detection results that a miner increases 20%
CPU usage at each time point. Figures 4(b)-(d) show similar results of cases when the CPU
usage increases by 30%, 40%, and 50% respectively. Obviously, the SSA based anomaly
detection is able to detect the changes in the structure of the time series data and identify
the corresponding violation on mining power. However, the critical issue is how to select a
threshold to ensure a high detection accuracy and minimize the false positive/negative
rate.
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(b)
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(c)
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Figure 4. SSA detection on single miner violation with additive CPU usage.

5.2.3. PoB based Fair Mining Detection Effectiveness

We take an observation of 20 minutes on the 16 miners running at 100% of the assigned
system resource. And two of the miners act as the byzantine (dishonest) workers which
would gain extra 10% at the 9th and 10th minute. As shown in Figure 5(a), the W vectors
form dishonest workers varies from honest ones when the byzantine workers gain more
computing power. And during the two minutes where violation occurs, the resulting
consensus scores associated with the byzantine nodes are much larger, as shown in Figure
5(b).

(a)
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Figure 5. Behavior score distribution with sequential time spots.

5.2.4. Fair mining violation detection performance analysis

The fourth scenario is designed that mainly tests the false positive rate from the
network level observation at the fog server with different threshold settings. Figure 6
shows the false alarm rates when two of the sixteen miners gain extra system resource from
10% to 80%. The false alarm rate is calculated by comparing the averaged the W value with
the threshold h. When we decrease h from 0.6 to 0.03, the false alarm rate increases rapidly
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at the beginning and then slowly approaches to one. With the increasing percentage of the
computing power the dishonest miner gains, the false alarm rate grows.

Figure 6. False alarm rate with different threshold h.

5.3. Discussions

The experimental results presented in this section is merely a preliminary study on
top of a proof-of-concept platform. It validates the feasibility to identify dishonest miners
based on digital twins integrating the SSA and novel POB consensus algorithms. The
experimental system covers the edge and fog layers of the proposed MinT architecture
that envisions large scale IoT networks including edge devices under various type of fog
servers connected to a cloud data center. Furthermore, our PoB consensus algorithm adopts
Krum rule in behavior score calculation, which only chooses n − f − 2 closet behavior
vectors and precludes those f − 1 malicious vectors that are far away from the center of
distribution. Given assumption that an adversary cannot control more than f nodes of
a mining network N that satisfies n ≥ 2 f + 3, all honest participants can still output the
same benchmark behavior vector W∗.

There are a lot of open questions that have not been addressed, meanwhile, some of
them are on the list of our on-going efforts.

• More comprehensive study on SSA is to be conducted to answer questions such as,
how to select an optimal/sub-optimal threshold? How to minimize the detection
delay as scaling up miners?

• The mechanisms that ensure security and authenticity of the data transmitted from
PO to LO are among the tasks of top priority. Although PoB consensus is promising to
guarantee byzantine fault tolerance in mining violation detection, the threat model
based on attack scenarios in SSA detection needs more investigation, like communi-
cation security between miner and twin and container’s robustness given failed or
compromised conditions.

• A comprehensive understanding of computation cost and network latency in the
twinning process is mandatory. We have to tackle performance and scalability issues
to bring MinT into practice.

6. Conclusions and Future work

In this paper, we propose MinT, an edge-fog-cloud architecture to enable a fair PoW
consensus mechanism leveraging miner twins. Experimentally the paper validated the
feasibility of the concept of using DT to monitor the miners’ behaviors and deter selfish
nodes who violate the fair-mining rule. The reported preliminary results are based on
quick change point detection and a PoB consensus algorithm to catch violators, however,
more intelligent solutions are need to solve large scale, hierarchical IoT networks in the
real world using MinT model. Our future work includes the following.

Besides a comprehensive investigation on anomaly detection using SSA method,
AI/ML based algorithms will be investigated for efficient, accurate detection of dishonest
miners in the blockchain network. Secondly, on top of our edge-fog-cloud based smart
surveillance system [47], we will construct a large scale MinT system with a complete
edge-fog-cloud architecture, implementing miner twins at both fog and cloud layers and
collecting more data for ML model training and testing purposes. In addition, since the
miners and their digital twins are implemented as microservices in MinT, security and
privacy of the miner twins are among the top concerns; specifically data security and
microservice-to-microservice authentication and authorization will be investigated as the
core of a solid MinT architecture.
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DDDAS Dynamic Data Driven Applications Systems
DLT Distributed Ledger Technology
DT Digital Twins
FMaaS Fair Mining as a Service
EPDS Electric Propulsion Drive Systems
ICT Information and Communication Technology
IoT Internet of Things
LAN Local Area Network
LO Logical Object
MinT Miner Twins
ML Machine Learning
MoA Microservice-oriented architecture
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PBFT Practical Byzantine Fault Tolerance
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PoB Proof-of-Behavior
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