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Abstract  

Most quantum gravity theories endow space-time with a discreet nature by space 
quantization on the order of Planck length (ℓ௣

 ). This discreetness could be 
demonstrated by confirmation of Lorentz invariance violations (LIV) manifested at 
length scales proportional to ℓ௣

 . In this paper, space-time line elements compatible with 
the uncertainty principle are calculated for a homogeneous, isotropic expanding 
Universe represented by the Friedmann-Lemaitre-Robertson-Walker solution to 
General Relativity (FLRW or FRW metric). To achieve this, the covariant geometric 
uncertainty principle (GeUP) is applied as a constraint over geodesics in FRW 
geometries. A generic expression for the quadratic proper space-time line element is 
derived, proportional to Planck length-squared and dependent on two contributions. 
The first is associated to the energy-time uncertainty, and the second depends on the 
Hubble function. The results are in agreement with space-time quantization on the 
expected length orders, according to quantum gravity theories and experimental 
constraints on LIV. 

 

Keywords: Lorentz invariance violation, FRW metric, general relativity, quantum 
mechanics, uncertainty principle, quantum gravity 

 

1. Introduction  

General relativity (GR) is a background-independent geometric theory for gravitation in 
which the space-time metric is the dynamical variable [1,2]. The solutions to Einstein´s 
field equations correspond to space-time metrics defined by pseudo-Riemannian metric 
tensors (𝑔ఓఔ). In GR, particle trajectories follow geodesics in the geometries defined by 
such metric tensors. As the momentum/position phase space is continuous in classical 
GR [2], both momentum and position can be simultaneously known with absolute 
certainty within the geodesic trajectories. As a consequence, particle geodesics can be 
defined with absolute precision. This clashes with quantum mechanics, in which the 
momentum/position phase space is quantized. As a consequence, the measurement of 
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position introduces uncertainty in momentum and viceversa. Likewise, an uncertainty 
relationship also exists between energy fluctuations and time intervals. These two 
uncertainty relationships constitute the classical Heinsenberg´s uncertainty principle 
inequalities of quantum mechanics [3,4]:  

                                                     |∆𝑝∆𝑥| ≥
ℏ

2
  ,     |∆𝐸∆𝑡| ≥

ℏ

2
.                                              (1) 

where ∆𝑝 and ∆𝑥 represent the change in the magnitude of momentum and position, 
respectively; ∆𝐸 and ∆𝑡 represent the change in magnitude of energy and time, 
respectively; ℏ is the reduced Planck constant. 

These inequalities inherently reflect the quantization of the momentum-position phase 
space in units of ℏ. From these inequalities it is deduced that the subjacent space-time 
geometry must also be fundamentally discrete. Attempts to quantize the space-time 
geometry by several methods have led to quantum gravity theories such as Loop 
Quantum Gravity, or LQG [5,6]. From the process of space quantization, current 
quantum gravity theories rely on a minimum space-time length for their formulation, 
which is proportional to Planck length (ℓ௣). For example, the quanta of area and volume 
operators in LQG are proportional to ℓ௣

ଶ   and ℓ௣
ଷ , respectively [7-9]. Likewise, other 

quantum gravity theories such as string theory also introduce ℓ௣ as a fundamental 
length element for particles [10-12]. Most quantum gravity theories predict phenomena 
such as in vacuo dispersion of photons and neutrinos, and deviations of photon 
polarization over astronomical distances caused by Lorentz invariance violations (LIV) 
[13-18]. These phenomena are predicted to arise if indeed the space-time is discreet. 
LIV confirmation could constitute a major step forward to proving quantum space-time 
discreetness. 

The process of spatial quantization or the establishment of a fundamental length 
associated to particles alter the classical uncertainty principle, leading to formulations 
such as the Generalized Uncertainty Principle, or GUP [19-21]: 

                                                  |∆𝑝∆𝑥| ≥
ℏ

2
 +  

ℏ𝑐ଶ

𝑚ଶ𝐴ଶ𝛿𝑠ଶ
∆𝑝ଶ.                                                (2) 

This expression includes a correction dependent on the particle mass, m, the proper 
acceleration, A, the speed of light, c, and the quadratic form of the space-time length 
element 𝛿𝑠ଶ. 

As the space-time metric in GR is shaped by energy-momentum densities through the 
energy-momentum tensor, vacuum energy and momentum fluctuations from the 
uncertainty principle should perturb the space-time [19,22]. Indeed, very early on it was 
assumed that in the context of a quantum description of gravity, quantum fluctuations 
caused by Heisenberg´s principle play a major role [23]. In semi-classical descriptions of 
quantum gravity, a putative metric tensor operator, 𝑔ොఓఔ, is decomposed in the classical 
pseudo-Riemannian metric tensor, 𝑔ఓఔ ,  and a fluctuating tensor operator of quantum 
origin, 𝛿𝑔ොఓఔ, which introduces a differential perturbation [24]:  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2021                   doi:10.20944/preprints202110.0452.v2

https://doi.org/10.20944/preprints202110.0452.v2


                                                           𝑔ොఓఔ = 𝑔ఓఔ + 𝛿𝑔ොఓఔ .                                                           (3) 

The indices, denoted by Greek letters take on the values 0, 1, 2 and 3, defining the 
temporal and spatial components in standard relativistic tensor notation. The 
expectation value of the perturbation is then identified with a quantum-associated 
classical tensor 𝑇ఓఔ : 

  
                                                             〈𝛿𝑔ොఓఔ〉 ≡ 𝑇ఓఔ  .                                                                  (4) 

A more direct relationship between the uncertainty principle and alterations to the 
metric can be formulated with quantum mechanics commutators, used in string theories 
and quantum topology [19]. A momentum-position commutator is thus associated to 
the Minkowski metric tensor, that is then generalized to curved space-time through a 
pseudo-Riemannian metric tensor: 

                                  [𝑃ఓ , 𝑋ఔ] = −𝑖ℏఓఔ  ,      [𝑃ఓ, 𝑋ఔ] = −𝑖ℏ𝑔ఓఔ.                                       (5) 

where 𝑃ఓ , 𝑋ఔ stand for the components of momentum and position 4-vector operators. 
ఓఔ, 𝑔ఓఔ represent the contravariant Minkowski and pseudo-Riemannian metric 
tensors, respectively.  

Independently of the specific model for quantum gravity, uncertainty fluctuations 
introduce a perturbation in the metric that is unrelated to classical gravitation, but can 
be otherwise related to a minimal length for the space-time line element [19,22,25-27]. 
However, the use of a fixed length for the line element clashes with classical relativity.  
Indeed, the LQG minimal length could be considered a “free parameter” [28], complying 
with Lorentz co-variance [21]. This has led to corrections to the canonical GUP 
momentum-position commutator for Minkowski space as shown in [21]: 

                                   [𝑃ఓ , 𝑋ఔ] = −𝑖ℏ𝜂ఓఔ − 𝑖ℏA𝜂ఓఔ   − 𝑖ℏ B(𝑃ఓ, 𝑃ఔ)  .                               (6) 

with A and B being functions of momentum.  

The classical uncertainty principle can also be reformulated as a relativistic covariant 
form in terms of the proper space-time line element (𝜏ଶ) and Planck length, ℓ௣

  [29]. This 
reformulation allows its application as a mathematical constraint over GR geodesics 
without an explicit quantization of space-time. The differential quadratic proper space-
time line element is then defined as a function of Planck length through a geodesic-
derived scalar, Ggeo: 

                                                 ห𝐺୥ୣ୭ 𝑑𝜏ଶห ≥ (1 + 𝛾) ℓ௣
ଶ  .                                                          (7) 

where 𝑑𝜏  is the proper space-time line element, and the gamma factor  and Geodesic 
scalar are defined: 

                                                   𝛾 =
𝑑𝑡

𝑑𝜏
≡

𝐸

𝑚
    ,                                                                               
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                            𝐺୥ୣ୭ ≡ 2𝐺𝑚 ቚ𝑈଴ ఈఉ
  ଴

 
𝑈ఈ𝑈ఉ

 ቚ + 2𝐺𝑚 ฬ𝑈௝ ఈఉ

 ௝

 
𝑈ఈ𝑈ఉ

 ฬ .                          (8) 

where E corresponds to the total energy of the particle; m corresponds to its mass-
energy in units of c set to 1;  ఈఉ

  ఓ  corresponds to Christoffel symbols calculated from the 
pseudo-Riemannian metric tensor; G is the universal gravitational constant; 𝑈ఈ, 𝑈ఈ are 
covariant and contravariant components of proper velocity. The indices, denoted by 
Greek letters take on the values 0, 1, 2 and 3, defining the temporal and spatial 
components in standard relativistic tensor notation. The indices denoted by j take on 
the values 1, 2 and 3, defining the spatial components in standard relativistic notation. 

This formulation sets a length limit for the quadratic proper space-time line element 
which is proportional to ℓ௣

ଶ , and defined by the metric tensor. This covariant form of the 
classical uncertainty principle can be applied to any GR solution. For example, a well-
defined minimum space-time line element in a Schwarzschild black hole singularity at 
radial position R=0 was calculated in [29]: 

                                                        |𝑑𝜏ଶ| ≥
2𝑀

𝑚
ℓ௣

ଶ  .                                                                    (9) 

Where M is the mass of the black hole generating the gravitational field, and m is the 
mass of the particle.  

The exact solution to Einstein´s field equations for a homogeneous, isometric Universe 
that expands following Hubble´s law corresponds to the FRW (or FLRW) metric [30,31]. 
This solution represents a first approximation to the standard model of Cosmology. In 
units of c set to 1 with a (- + + +) Lorentzian metric signature, its line element is 
represented: 

                     𝑑𝜏ଶ = −𝑑𝑡ଶ + 𝑎ଶ
𝑑𝑅ଶ

1 − 𝐾𝑅ଶ
+ 𝑎ଶ𝑅ଶ𝑑𝜃ଶ + 𝑎ଶ𝑅ଶ𝑠𝑖𝑛ଶ𝜃𝑑𝜑ଶ  .                    (10) 

Where t corresponds to the temporal coordinate and R,  and 𝜑 to dimensionless co-
moving polar coordinates. The time-dependent universal scale factor, a, provides 
dimensions of length to the co-moving coordinates, and determines the physical size of 
the Universe; The curvature constant, K, takes on values of 1, 0 or -1, depending on the 
model of the expanding Universe; closed-spherical, flat or open-hyperbolic, respectively. 
Although the Universe presents a very small positive curvature, for practical purposes it 
can be discarded. Indeed current measurements of cosmological parameters are in 
agreement with a spatially-flat cosmology [32]. Hence, K set to zero could be justified to 
describe the current state of the Universe.  

In principle, it could be considered that the lengths for the space-time line element in 
the FRW metric depend on two factors: first, energy-time quantum fluctuations, and 
second, the expansion rate of the Universe as defined by Hubble’s function, H, 
calculated from the scale factor: 

                                                         𝐻 =
𝑎̇

𝑎
      ;      𝑎̇ ≡

𝑑𝑎

𝑑𝑡
                                                      (11) 
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In this paper, GeUP was applied to the FRW solution to define length restrictions on the 
space-time line element in the context of a covariant formulation which conserves 
Lorentz invariance. The results from the calculations are then discussed in the context 
of the predicted length elements in quantum gravity theories, and the experimental 
restrictions upon Lorentz invariance violations calculated from experimental 
observations. 

 

2. Space-time line element for a particle at rest in the FRW metric.  

Unless otherwise stated, the equations will be expressed in units of c set to 1. Standard 
relativistic tensor notation will used, with temporal and polar spatial coordinates 
designated as: (𝑋଴, 𝑡); (𝑋ଵ, 𝑅); (𝑋ଶ,  ) ; (𝑋ଷ, 𝜑) . The most general FRW solution is 
given by equation (10). A particle at rest implies the following statements on proper 
velocities: 

                                       𝑈ଵ = 𝑈ଶ = 𝑈ଷ = 0         ,    𝑈
଴𝑈଴ = −1 .                                       (12) 

To apply GeUP from inequality (7), the geodesic scalar is first calculated: 

                                      𝐺୥ୣ୭ = 2𝐺𝑚 ቚ𝑈଴ ଴଴
  ଴

 
𝑈଴𝑈଴

 ቚ .                                                          (13) 

The only Christoffel connector that participates in the calculation is   ଴଴
  ଴

 
 , which is zero 

in the FRW metric. Hence, the geodesic scalar is also 0, leading to a contradiction in 
inequality (7) unless Plank length is considered zero in the non-quantum limit: 

                                                           0 ≥ (1 + 𝛾)ℓ௣
ଶ  .                                                               (14) 

Therefore, the classical FRW metric is incompatible with the uncertainty principle unless 
a t-dependent differential perturbation function, 𝜀, is introduced in the 𝑔଴଴ component 
of the metric, following a similar approach by semi-classical quantum gravity and 
developed for Minkowski space in [29]: 

                                                             𝑔଴଴ = −1 − 𝜀(𝑡) .                                                         (15) 

The introduction of this differential perturbation in the FRW metric leads to a 
compatible solution with the uncertainty principle without modifying the overall 
solution: 

             𝑑𝜏ଶ = −(1 + 𝜀) 𝑑𝑡ଶ + 𝑎ଶ
𝑑𝑅ଶ

1 − 𝐾𝑅ଶ
+ 𝑎ଶ𝑅ଶ𝑑𝜃ଶ + 𝑎ଶ𝑅ଶ𝑠𝑖𝑛ଶ𝜃𝑑𝜑ଶ .               (16) 

The term (1 + 𝛾)  in inequality (7) takes a value of 2 for a particle at rest. After the 
calculation of the geodesic scalar and Christoffel connector as described in [29], one 
obtains inequality (7) as: 

                                              |𝑑𝑡ଶ| ≥
2ℓ௣  

ଶ

|𝐺  𝑃଴
  𝜀̇|

    ,        𝜀̇ ≡
𝑑𝜀

𝑑𝑡
 .                                            (17) 

This expression can be re-written according to the classical energy-time uncertainty: 
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                                         |𝑃଴𝑑𝜀 𝑑𝑡  | ≥ ℏ         ,      𝑃଴𝑑𝜀  ≡ 𝑑𝐸  .                                         (18) 

where 𝑃଴𝑑𝜀  corresponds to energy variations of the particle in the geodesic in units of 
c set to 1. Therefore,  𝑃଴ 𝜀 ̇ corresponds to time-dependent energy fluctuations of the 
particle in the geodesic: 

                                                     𝑃଴ 𝜀 ̇ =
𝑃଴ 𝑑𝜀

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
≡  𝐸̇ .                                                  (19) 

where dots over variables represent derivatives of the indicated variables with the time 
coordinate. And after recovering c in inequality (17), one ends in units of time with:   

                                                 |𝑑𝑡ଶ| ≥
2𝑐ଷℓ௣  

ଶ

𝐺ห𝐸̇ ห
~

1

ห𝐸̇ ห
𝑂(10ିଷସ) .                                          (20) 

2. Generic solution for the FRW space-time line element for a moving particle in the R 
coordinate 

The FRW symmetry allows simplification of calculations by considering geodesics 
moving in the R coordinate without displacements in the angular coordinates. In this 
condition only the components of proper velocities for t and R coordinates will 
contribute to the calculation of the Geodesic scalar:  

                                 𝐺୥ୣ୭ ≡ 2𝐺 ቚ𝑈଴ ఈఉ
  ଴

 
𝑈ఈ𝑈ఉ

 ቚ + 2𝐺 ቚ𝑈ଵ ఈఉ
  ଵ

 
𝑈ఈ𝑈ఉ

 ቚ .                         (21) 

Expanding this expression one gets: 

𝐺୥ୣ୭ ≡ 2𝐺 ቚ𝑈଴ ଴଴
  ଴

 
𝑈଴𝑈଴

 + 2𝑈଴ ଴ଵ
  ଴

 
𝑈଴𝑈ଵ

 + 𝑈଴ ଵଵ
  ଴

 
𝑈ଵ𝑈ଵ

 ቚ

+ 2𝐺 ቚ𝑈ଵ ଴଴
  ଵ

 
𝑈଴𝑈଴

 + 2𝑈ଵ ଵ଴
  ଵ

 
𝑈ଵ𝑈଴

 + 𝑈ଵ ଵଵ
  ଵ

 
𝑈ଵ𝑈ଵ

 ቚ .                     (22) 

The contributing Christoffel connectors are:  

 ଴଴
  ଴ =

𝜀̇

2(1 + 𝜀)
     ;     ଴ଵ

  ଴ =  ଴଴
  ଵ = 0      ;          ଵଵ

  ଵ =
𝐾𝑅

(1 − 𝐾𝑅ଶ)

 

 

  ଵଵ
  ଴ =

𝑎𝑎̇

(1 + 𝜀)(1 − 𝐾𝑅ଶ)
+

𝑎ଶ𝐾𝑅𝑅̇

(1 + 𝜀)(1 − 𝐾𝑅ଶ)ଶ
      ;      ଵ଴

  ଵ = 𝐻 +
𝐾𝑅𝑅̇

1 − 𝐾𝑅ଶ
.      (23) 

 

where dots over the R coordinate, the scale factor and the metric perturbation indicate 
differentiation by time coordinate. Calculating the geodesic scalar with the non-zero 
terms one gets: 

                  𝐺୥ୣ୭ ≡ 2𝐺𝑚 ቚ𝑈଴ ଴଴
  ଴

 
𝑈଴𝑈଴

 + 𝑈଴ ଵଵ
  ଴

 
𝑈ଵ𝑈ଵ

 ቚ

+ 2𝐺𝑚 ቚ2𝑈ଵ ଵ଴
  ଵ

 
𝑈ଵ𝑈଴

 + 𝑈ଵ ଵଵ
  ଵ

 
𝑈ଵ𝑈ଵ

 ቚ  .                                              (24) 

And introducing the explicit terms for the Christoffel connectors one gets: 
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𝐺୥ୣ୭ ≡ 2𝐺𝑚 ቤ 𝑈଴

𝜀̇

2(1 + 𝜀)
𝑈଴𝑈଴  

  

 

+ 𝑈଴𝑈ଵ𝑈ଵ ቆ
𝑎𝑎̇

(1 + 𝜀)(1 − 𝐾𝑅ଶ)
+

𝑎ଶ𝐾𝑅𝑅̇

(1 + 𝜀)(1 − 𝐾𝑅ଶ)ଶቇቤ

+ 2𝐺𝑚 ቤ2𝑈ଵ𝑈ଵ𝑈଴ ቆ𝐻 +
𝐾𝑅𝑅̇

1 − 𝐾𝑅ଶቇ
 

+ 𝑈ଵ𝑈ଵ𝑈ଵ ൬
𝐾𝑅

(1 − 𝐾𝑅ଶ)
൰ቤ  .                                                                          (25) 

 

The expression can be simplified as a function of contravariant 𝑈଴ and the use of some 
equalities: 

           𝑈ଵ = 𝑈ଵ𝑔ଵଵ + 𝑈଴𝑔଴ଵ = 𝑈ଵ

1 − 𝐾𝑅ଶ

𝑎ଶ
   , 

               𝑈଴ = 𝑈଴𝑔଴଴ = −(1 + 𝜀) 𝑈଴   ,                    

                                                  𝑈଴𝑈଴ + 𝑈ଵ𝑈ଵ = −1 .                                                              (26) 

 

which leaves the geodesic scalar: 

𝐺୥ୣ୭ ≡ 2𝐺 𝑚 ቤ(−1 − 𝑈ଵ𝑈ଵ)
𝜀̇

2(1 + 𝜀)
𝑈଴  

  

 

− 𝑈ଵ𝑈ଵ𝑈଴ ቆ𝐻 +
𝐾𝑅𝑅̇

1 − 𝐾𝑅ଶቇቤ

+ 2𝐺𝑚 ቤ2𝑈ଵ𝑈ଵ𝑈଴ ቆ𝐻 +
𝐾𝑅𝑅̇

1 − 𝐾𝑅ଶቇ
 

+ 𝑈ଵ𝑈ଵ𝑈ଵ ൬
𝐾𝑅

1 − 𝐾𝑅ଶ
൰ቤ.                                                                                (27) 

and it is equivalent to: 

𝐺୥ୣ୭ ≡  ቤ
2𝐺 𝑚(1 + 𝑈ଵ𝑈ଵ) 𝜀̇

2(1 + 𝜀)
𝑈଴  

  

 

+ 6𝐺𝑚𝑈ଵ𝑈ଵ𝑈଴ ቆ𝐻 +
𝐾𝑅𝑅̇

1 − 𝐾𝑅ଶቇ

+ 2𝐺𝑚𝑈ଵ𝑈ଵ𝑈ଵ ൬
𝐾𝑅

1 − 𝐾𝑅ଶ
൰ቤ .                                                                      (28) 

To simplify the expression, a curvature-associated factor, F, is defined:  

                                                          𝐹 ≡
𝐾𝑅

1 − 𝐾𝑅ଶ
  .                                                                 (29) 

and the Geodesic scalar takes the final form of: 

    𝐺୥ୣ୭ =  ቤ
𝐺𝑚 (1 + 𝑈ଵ𝑈ଵ) 𝜀̇

1 + 𝜀
𝑈଴ + 6𝐺𝑚𝑈ଵ𝑈ଵ𝑈଴൫𝐻 + 𝐹𝑅̇൯ + 2𝐺𝑚𝑈ଵ𝑈ଵ𝑈ଵ 𝐹ቤ .      (30) 

Incorporating this term into inequality (7): 
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         |𝑑𝜏ଶ| ≥
(1 + 𝛾)ℓ௣  

ଶ

𝐺 ฬ
(1 + 𝑈ଵ𝑈ଵ) 𝜀̇

1 + 𝜀
𝑃଴  

  

 
+ 6𝑈ଵ𝑈ଵ𝑃଴൫𝐻 + 𝐹𝑅̇൯ + 2𝑈ଵ𝑈ଵ𝑃ଵ 𝐹ฬ

  .             (31) 

A flat space-time is an accurate model for current cosmological models, which 
corresponds to F set to zero. Additionally, the epsilon correction can be ignored in 1 +

𝜀: 

                                            |𝑑𝜏ଶ| ≥
(1 + 𝛾)ℓ௣  

ଶ

𝐺𝑃଴|6𝑈ଵ𝑈ଵ𝐻 − 𝑈଴𝑈௢ 𝜀 ̇ |
  .                                         (32) 

The quadratic length for the FRW space-time line element thus depends on two factors. 
The first one, a function derived from the energy-time uncertainty (𝐸௨௡), and the second 
one dependent on the expansion rate of the universe (𝐻௘௫): 

 𝐸௨௡ ≡ 𝑈଴𝑈௢ 𝜀̇  
  

 
, 𝐻௘௫ ≡ 6𝑈ଵ𝑈ଵ𝐻    

                                             |𝑑𝜏ଶ| ≥ (1 + 𝛾)
ℓ௣  

ଶ

𝐺𝑃଴|𝐻௘௫ − 𝐸௨௡|
 .                                           (33) 

 

3. Specific solutions for the FRW space-time line element for a moving particle in the 
R coordinate 

One can consider several scenarios depending on which of the functions is dominant in 
the denominator of inequality (33). If 𝐸௨௡ is several orders of magnitude larger than 𝐻௘௫, 
then the expression simplifies as: 

                                                    |𝑑𝜏ଶ| ≥
(1 + 𝛾)ℓ௣  

ଶ

𝐺𝑃଴ห−𝑈଴𝑈௢ 𝜀̇   
  

 ห
  .                                                (34) 

Considering the following equalities for a particle at non-relativistic velocities in units of 
c set to 1: 

                                        (1 + 𝛾) = 2    ,    𝑃଴𝜀̇ ≡ 𝐸̇     ;   𝑈଴𝑈௢ ≡
𝐸ଶ

𝑚ଶ
   .                            (35) 

And after incorporating these equalities into inequality (34), it takes the form: 

                                                            |𝑑𝜏ଶ| ≥
2𝑚ଶℓ௣  

ଶ

𝐺ห𝐸ଶ 𝐸̇   
  

 ห
 .                                                      (36) 

In units of c set to 1, the mass term, m, is of the same order of energy than the total 
energy of particles moving with non-relativistic velocities. This will lead to further 
simplifications, and after re-introducing c one gets: 

                                                           |𝑑𝜏ଶ| ≥
2𝑐ହℓ௣  

ଶ

𝐺ห𝐸̇ห
 .                                                            (37) 
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The minimum allowed length for the space-time line element in the FRW metric is 
inverse to the rate of change of energy fluctuations of the particle in the geodesic. The 
quadratic space-time line element is then : 

                                                           |𝑑𝜏ଶ|~
1

ห𝐸̇ห
𝑂(10ିଵ଼).                                                  (38) 

This expression is the same as inequality (20) but in units of length. 

Quantum energy fluctuations can be neglected, for example, in large objects moving at 
non-relativistic velocities, then the following equalities are fulfilled: 

                                                      |𝜀̇ |~0          ;  (1 + 𝛾) = 2 .                                              (39) 

This condition makes the 𝐻௘௫ term dominant in inequality (33):  

                                                      |𝑑𝜏ଶ| ≥
ℓ௣  

ଶ

3𝐺𝑃଴|𝑈ଵ𝑈ଵ𝐻 |
  .                                                  (40) 

To simplify this expression, the mass, m, can be incorporated into one of the radial 
proper velocities to convert it to proper momentum: 

                                                       |𝑑𝜏ଶ| ≥
𝑚 ℓ௣  

ଶ

3𝐺𝑃଴|𝑃ଵ𝑈ଵ𝐻 |
  .                                                  (41) 

In units of c set to 1, the mass-energy term, m, is of the same order than 𝑃଴ leading to 
their simplification: 

                                                      |𝑑𝜏ଶ| ≥
 ℓ௣  

ଶ

3𝐺|𝑃ଵ𝑈ଵ𝐻 |
  .                                                        (42) 

And recovering c into the equation: 

                                       |𝑑𝜏ଶ| ≥
𝑐ହℓ௣  

ଶ

3𝐺|𝑃ଵ𝑈ଵ𝐻 |
~

1

𝐻 𝐸௞
𝑂(10ିଵ଼) .                                      (43) 

𝑃ଵ𝑈ଵ is a term proportional to proper kinetic energy. The minimum quadratic length for 
the space-time line element, which is of the order of 10ିଵ଼, is modified by the kinetic 
energy of the particle and the expansion rate of the Universe.  

 

4. Discussion 

In this paper, a covariant form of the uncertainty principle [29] is applied as a constraint 
over FRW geometries to obtain expressions for the quadratic space-time line elements 
in a homogeneous, isometric Universe which expands according to Hubble´s law. The 
imposition of GeUP introduces a quantization condition of the momentum-position 
phase space on the classical GR geodesic. This mathematical process implicitly implies a 
quantization of the subjacent space-time, leading to expressions for the quadratic 
space-time line element which are proportional to Planck length squared. This is in 
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agreement with most quantum gravity theories. It has to be remarked that this 
mathematical constraint does not truly constitute a quantum gravity theory per se. It 
relies on specific solutions to classical GR equations, without coupling an external mass 
field, unlike semi-classical formulations of quantum gravity [22]. Explicit quantization of 
space-time is not introduced as well. However, the results from this mathematical 
constraint over classical GR solutions may approximate to the theoretical limits of 
lengths for the space-time line element in specific GR solutions compatible with 
quantum gravity phenomena. 

The experimental determination of the length scales of space-time quantization is 
critical to set up proper mathematical constraints for quantum gravity, and discard 
incompatible scenarios [13]. For example, it would help on deciding the correct lattice 
quantization of space-time in LQG, and its properties regarding the time problem and 
the need for privileged reference frames [5,25,33,34]. Most current quantum gravity 
theories such as LQG and string theory [6,10] predict that LIV occurs by the discrete 
nature of space-time. Hence, the experimental testing of LIV could not only demonstrate 
space-time quantization, but also the scales of lengths and energies in which quantum 
gravity acts [18].  

Putative upper limits to the constraints to LIV have been experimentally estimated by 
several means [14-17]. LIV is predicted by quantum gravity theories to affect energy and 
helicity-dependent photon propagation velocities, which could be measured when 
accumulated over astronomical distances. Thus, by measuring deviations of photons 
from gamma ray bursts (GRB 041219A) an upper limit of 1.1 10-14 on the vacuum 
birefringence effect was estimated [16]. This constraint on Lorentz invariant violation 
would translate into “spatial volume units” of the order of 10-42 or less. Some recent 
studies are providing convincing LIV violations experimentally at different energy orders, 
while other studies stablish very stringent constraints for LIV, or even fail to detect it 
[13,15,16,35,36]. 

The constraints to the space-time line elements calculated in this paper are strictly 
obtained using a relativistic covariant formulation of the uncertainty principle in 
momentum and position 4-vectors. To obtain such constraints, GeUP [29] was applied 
to the FRW metric as an approximation to current cosmological models [31]. More 
specifically, a flat geometry condition was applied to the solution as it agrees with 
current observations [32]. As expected, the length for the space-time line element 
depends on terms derived from the energy-time uncertainty, and from the Hubble 
function. This last term is only predominant if energy quantum fluctuations can be 
ignored, for example in large astronomical objects.   

The calculated lengths in this paper are compatible with those from other quantum 
gravity theories, and with current constraints estimated for LIV. For example, the quanta 
of area and volume in LQG are proportional to ℓ௣  

ଶ  and ℓ௣  
ଷ  [7,8,12], and ℓ௣  

  constitutes 
a natural unit in string theories and doubly special relativity [10,11,37,38]. These 
fundamental volume blocks would be in agreement with the experimental constraints 
found for LIV. If confirmed, the discreet nature of space-time would have been proven. 
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Such small quanta of space-time arise also in this paper. It has to be remarked that all 
expressions for the quadratic line elements obtained in this paper are proportional to 
ℓ௣  

ଶ , indicating that lengths of the order of ℓ௣  
 constitute the “building blocks” of the 

space-time. Nevertheless, the scales in which space-time quantisation could be 
experimentally tested could be much wider. As shown in this paper, the calculated 
quanta of volume would be on the range of 10-27 m3 but further modified according to 
corrections depending on quantum energy fluctuations and Hubble´s function.  
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