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Supplementary Information 10 

Figure S1 shows three typical examples of class 1 heating cycles (HC-1s), 11 

which have been presented in the main text. Without loss of generality, they are all in 12 

basic form A (HC-1A). Here we derive their coefficients of performance (COPs, the 13 

ratio of the cycle’s output to input) for medium-temperature heating or low-14 

temperature cooling when the cycle’s net work output Wnet = 0. The former two cycles 15 

are regarded as internally reversible [1]. 16 

 17 

1. The HC-1A with isothermal heat transfer processes (Figure S1a) 18 

According to the law of conservation of energy, we have 19 

 net in, H in, L out 0W Q Q Q= + − =  (S1) 20 

where Qin, H is the amount of heat absorbed from the high-temperature heat source by 21 

the cycle, Qin, L is the amount of heat absorbed from the low-temperature heat source 22 
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by the cycle, and Qout is the amount of heat rejected to the medium-temperature heat 1 

sink by the cycle.  2 

The cycle’s net entropy change should be zero. Thus, 3 
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Combining Eq. (S1) and Eq. (S2), we can express the COPs as 5 
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where COPH and COPC are the cycle’s COPs for medium-temperature heating and 8 

low-temperature cooling respectively. 9 
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2. The HC-1A with isobaric heat transfer processes, employing an ideal gas as its 11 

working medium (Figure S1b) 12 

Notice that state point 7 follows the rules of both heat rejection and 13 

pressurization. Dividing the medium-temperature heat Qout into two parts, and 14 

regarding the ideal gas’s isobaric specific heat cp as constant [1], we obtain 15 

 ( )(1) (2)
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 (S6) 17 

where H is the working medium’s enthalpy at each state point, m is the working 18 
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medium’s mass, and T is the working medium’s thermodynamic temperature at each 1 

state point. 2 

According to the behavior of the ideal gas [1] and Eq. (S6), we have 3 
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where k is the ideal gas’s specific heat ratio. 6 

Combining Eq. (S5), Eq. (S7) and Eq. (S8), we can express the COPs as 7 
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or 10 
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 13 

3. The HC-1A with isobaric heat transfer processes, employing a phase-change 14 

working medium (Figure S1c) 15 
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where h is the working medium’s enthalpy per unit of mass at each state point. These 3 

two formulae cannot be further simplified because the behavior of the phase-change 4 

working medium is much more complex than that of the ideal gas.  5 

When Wnet ≠ 0, we can also obtain the cycles’ COPs in a similar way. 6 

However, since heat and power differ in grade, the meanings of such formulae are not 7 

clear.  8 
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Figures 1 

 2 

Figure S1. Three typical examples of HC-1s. (a) An HC-1A with isothermal heat 3 

transfer processes. TH, TM and TL are the working medium’s thermodynamic 4 

temperatures during high-temperature heat absorption, medium-temperature heat 5 

rejection, and low-temperature heat absorption, respectively. (b) An HC-1A with 6 

isobaric heat transfer processes, employing an ideal gas as its working medium. State 7 

point 7 is the state passed through by both process 1-2 and process 4-5. (c) An HC-1A 8 

with isobaric heat transfer processes, employing a phase-change working medium. 9 

The depressurization (throttling) process 5-6 is internally irreversible and thus 10 
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c
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expressed as a dotted line. In (b) and (c), pH, pM and pL are the working medium’s 1 

pressures during high-temperature heat absorption, medium-temperature heat 2 

rejection, and low-temperature heat absorption, respectively.  3 
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