

## Article

# THE RISKY-OPPORTUNITY ANALYSIS METHOD (ROAM) TO SUPPORT RISK-BASED DECISIONS IN A CASE-STUDY OF CRITICAL INFRASTRUCTURE DIGITIZATION

Ali Aghazadeh Ardebili <sup>1,†,‡,\*</sup>, Elio Padoano <sup>2,‡,\*</sup>, Antonella Longo and Antonio Ficarella

<sup>1</sup> SyDa Lab, CRISR Center, Department of Engineering for Innovation, University of Salento, LECCE (LE), 73100, Italy.

<sup>2</sup> Department of Engineering and Architecture, University of Trieste Trieste (TS), 34100, Italy.

\* Correspondence: ali.a.ardebili@unisalento.it; padoano@units.it

† Affiliation Change: The affiliation of this author when current research started (2019) was the University of Trieste, on December 2020 his affiliation is changed to the University of Salento

‡ Ali Aghazadeh Ardebili and Elio Padoano have participated in (a) conception and design, analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and all authors participated in (c) proof reading and refining the final version.

**1 Abstract:** Socio-ecologic, socio-economic, and socio-technical transitions are opportunities that require fundamental changes in the system. These will encounter matters associated with security, service adoption by end-users, infrastructure and availability. The purpose of this study is to examine and overcome the risks to take advantage of opportunities through the novel Risky-Opportunity Analysis Method (ROAM). A novel quantitative method is designed to determine when, after making some changes, the risks become acceptable so that the opportunity does not deviate from the objectives. The approach provided a quantitative evaluation of the possible changes in parallel with digitization, towards providing a green Service Supply Chain (SSC). The result of ROAM shows that the most cost-effective change to increase the resilience of the system is a solution (SMS) which is different from that identified by a TOPSIS multi-criteria method. Real-word decisions in change management should tackle the complexity of systems and uncertainty of events during and after transition through a careful analysis of the alternatives. A case-study was carried out to evaluate the alternatives of an ancillary service in the Payment Service Providers (PSP). The comparison of the ROAM results with the traditional TOPSIS of the case-study unveils the priority of the ROAM in practice when the alternatives are Risky-Opportunities. The existing risk assessment tools do not take advantage of risky opportunities. To this aim, the current article introduces the term Risky-Opportunity, and two indexes Stress and Strain of the alternatives that are designed to be employed in the new quantitative ROAM approach.

**17 Keywords:** Resilience; Risky-Opportunity Analysis Method (ROAM); Socio-Ecological Transition; Socio-  
18 Technical Transition; Cyber-Physic-Social Systems; Change Management; Risk Management; Critical  
19 Infrastructure Resilience; Critical Entities Digitization; Risky-Opportunity (RO); Payment Service Providers  
20 (PSP); Stress, Strain

## 21 1. Introduction

22 Innovation and change are the foundations of sustainable development and contribute to creating a resilient future. To this aim, it is crucial to consider a risk-based approach to carry 23 out transformation in real-world complex systems [Holton \(2020\)](#); [Waddock et al. \(2015\)](#). The 24 scope of this study is Critical Infrastructures (CI) and their role in the transformation of complex 25 systems. Digitization of CI is a hot trend that bonds society with technology [Holton \(2020\)](#); 26 [Pidgeon \(2020\)](#); [Stasik and Jemielniak \(2021\)](#) and leads to the transformation of complex systems 27 into Cyber-Physic-Social Systems (CPSS). However, as CIs provide a vital service to society, their 28 transformation needs responsible involvement [Glerup and Horst \(2014\)](#): the changes should not 29 interfere with service continuity of CIs, but new ways of delivering services should be accepted 30 by society [Gravesteijn and Wilderom \(2018\)](#). Payment Service Providers (PSP) are CPSS that 31

32 can be considered both as a critical entity of society and pioneers of digitization. However, such  
33 transformation is a risky process, and the complexity of CPSS escalates the uncertainty and risks  
34 respectively [Pidgeon \(2014\)](#); [Schweizer \(2019\)](#).

35 Digitization is a sustainable solutions for the future that aims to exploit opportunities behind  
36 automation of system, but it needs some changes in the main service or its ancillary services;  
37 these changes are associated with risks concurrently [Johannes and Sijm \(2021\)](#). There is a gap  
38 in transformation studies of critical and complex service systems. Extensive research has been  
39 focused on risks in the production sector, while far fewer studies have investigated the transition  
40 to risk-free services [Asenova et al. \(2011\)](#). Socio-ecological, socio-economic, and socio-technical  
41 transformation [Bechtold et al. \(2017\)](#); [Hietala and Geysmans \(2020\)](#); [Jean-Jules and Vicente \(2020\)](#) is essential to produce a systematic change towards the concept of sustainable service. This  
42 was the main motive of carrying out the case study on a critical entity.

43 E-Payment has been considered a traditional complimentary service in financial systems  
44 which is provided by PSP companies. This service creates hazardous waste in the service supply  
45 chain of PSP companies through payment receipts. Thermal papers, which are widely used in the  
46 e-Payment service as receipts, are indeed toxic [Ehrlich et al. \(2014\)](#) because they contain non  
47 negligible quantities of reactant acid (usually bisphenol A - BPA) [Braun et al. \(2009\)](#); [Ullah et al. \(2018\)](#);  
48 [Vandenberg et al. \(2007\)](#); [Zhou et al. \(2019\)](#). Thermal paper is not only a cause of health  
49 issues, but it must also be recycled separately from other papers. Therefore, a change in the way  
50 this service is provided is necessary for PSP companies to move towards green service.

51 The main objective of this research project is to design a novel quantitative method to  
52 determine when, after making some changes, the risks become acceptable, so that the opportunity  
53 does not deviate from the objectives. With this aim, the ROAM approach is proposed, and the  
54 objective of the case study is to carry out a multi-dimensional analysis employing ROAM in order  
55 to find the most effective way for a transition towards sustainable service in PSP companies.

56 Indeed, different solutions to eliminate, reduce, or manage the waste in the life cycle of  
57 thermal papers are possible. Nevertheless, different methods provide different ecological and  
58 economic benefits, but they are also associated with some risks and resource requirements to  
59 enable the change in the company's activity and processes. Resource allocation is crucial when the  
60 available resource are limited [Chen and Dong \(2018\)](#). The Risky-Opportunity Analysis Method  
61 (ROAM), based on an Analytic Network Process model, compares the resource consumption  
62 and assesses risks for substituting the existing receipting system with an eco-friendly one. The  
63 outcome of this method is the most feasible way of introducing a change in the PSP for its  
64 transition towards sustainability [Dos Santos Paulino \(2009\)](#).

### 66 *1.1. Resilient and sustainability of PSP service supply chain*

67 The electronic payment service is a developed digitalized sector of e-commerce that enact on-  
68 line payment methods [Andersen et al. \(2004\)](#); [Eduardsen \(2018\)](#); [Goel and Venkat Narayana Rao  
\(2019\)](#). Notwithstanding, the security and reliability risks are evident in e-commerce [Rehman et al. \(2012\)](#);  
69 [Salama et al. \(2011\)](#); yet, this service provider aims to facilitate e-payment through  
70 providing digital transactions methods instead of cash payment [Rajesh et al. \(2017\)](#). Due to the  
71 nature of this service, the payment service provider (PSP) employs outsourced suppliers for a part  
72 of the required ancillary service such as telecommunication service providers, internet service  
73 provider [Choi et al. \(2006\)](#); [Ma \(2013\)](#).

74 PSP perform other activities like providing POS-terminals for intermediary role players such  
75 as shop owners, and documenting the transactions by printing a receipt at the payment point. In a  
76 nutshell, the payment service providers along with third parties, end users and intermediary role  
77 players inaugurate a network of cyber-physic-social system within the e-payment supply chain.

78 The final users of this service are the whole nation in the country, therefore this sector  
79 is vital for society and needs a social engagement too [El Bassiouny et al. \(2018\)](#); [Gravesteijn  
\(2018\)](#) and [Wilderom \(2018\)](#). This means that the PSP is a critical entity and the study of resilient and  
80 sustainable functioning of this 'system of systems' is crucial. In this article we adopt a process  
81 perspective [Azapagic \(2003 2010\)](#). Since PSP is a service-based business [Pallaro et al. \(2017\)](#),  
82 the aim is to devise a more sustainable process by specifically focusing on an ancillary service of

85 the system, which is providing payment receipts. This service can be investigated as an instance  
86 of supply chain.

87 The investigation of resilience of a service supply chain has started on 2002, and have  
88 been focused on redundancy and reserving a part of the available resources of the enterprise to  
89 be utilized after a disruption [Sheffi and Rice Jr. \(2005\)](#). Indeed, most of the studies about the  
90 resilience of the supply chain have explored disruption risks [Blos et al. \(2010\)](#); [Ji and Zhu \(2008\)](#),  
91 logistics [Karimi \(2009\)](#); [Wang and Ip \(2009\)](#) and security [Engelhard and Böhm \(2013\)](#); [Weber \(2010\)](#)  
92 until 2014, when [Winston \(2014\)](#) raised the issue of resilience and climate change. After  
93 that, the resilience of service providers and the environmental pillar of sustainable development  
94 have been common research topics [Paterson et al. \(2014\)](#).

95 Even if many studies have had the core services as investigation targets, some have been  
96 focused on ancillary services. For instance, in 2017 a case study of a cement factory focused on  
97 ancillary services of the cement producer and studied the service resilience with environmental  
98 aspects and considered green supply chain as a factor of resilience in competitive international  
99 markets [Jamali et al. \(2017\)](#). In all of the above mentioned studies, emission and climate change  
100 were key points of resilience and sustainability of the service supply chain. The present paper  
101 investigates the opportunity to make a service supply chain (i.e. PSP) more resilient [Arva et al. \(2020\)](#)  
102 by changing the way in which one ancillary service (printing the receipt using thermal  
103 paper, a toxic solid waste – [Akilarasan et al. \(2018\)](#)) is presently performed. This transition must  
104 consider the risks of substituting the old ancillary service with a resilient one, the possibility to  
105 improve the risk-taking capability of the supply chain, and the resources required to make the  
106 transition. In the next subsection the research on risk assessment and resource consumption in  
107 risky transitions will be summarized.

### 108 1.2. *Risk and Resource Consumption Evolution in the Literature*

109 In the introduction, risky-opportunities were defined and a new method was suggested as  
110 a solution that offers a different view on opportunity management and resource allocation. A  
111 survey of the literature has been conducted and the results prove the importance of carrying out  
112 an investigation on risky opportunities and resource allocation, as studies on these are currently  
113 lacking.

114 [Herrick \(1969\)](#) stressed the need for a screening definition of an opportunity; he used the  
115 Monte Carlo method and the balancing of risk on different projects. Some studies emphasize  
116 the need to use the positive effects of uncertainty, and there are case studies which focused on  
117 opportunity management besides the risks [Peker et al. \(2016\)](#); [Saaty \(2015\)](#); [Wiratanaya et al. \(2015\)](#). In particular, [Hillson \(2003\)](#); [Ivascu and Cioca \(2014\)](#); [Olsson \(2007\)](#) investigated the  
118 kinds of opportunities associated with different levels of threats that could provide an advantage  
119 to companies or projects.

120 ‘Risk-taking’ is not a new concept. Research on risk-taking started in 1944 in a study on  
121 proportional income taxation [Domar and Musgrave \(1944\)](#), then in 1965 on individual risk-taking  
122 [Lefcourt \(1965\)](#), and in 1970 group risk-taking was studied by other researchers [Teger et al. \(1970\)](#). At the personal level, one who believes he is competent in making decisions tends to see  
123 more opportunities in future uncertainty than threats [Krueger Jr and Dickson \(1994\)](#). However, at  
124 the management level, it is necessary to consider both sides; so an effective project manager needs  
125 to effectively manage risks while taking into account both threats and opportunities [Steed \(2000\)](#),  
126 and, in general, the management of uncertainty for projects should include risk management and  
127 opportunity management [Ward and Chapman \(2008\)](#).

128 At the project level, the objectives should be protected from any deviation caused by  
129 the negative effects of a future risk. This mitigation will be the result of specific measures  
130 implemented in advance. Therefore, some resources should be assigned to put the measures in  
131 place. In light of the existing literature, resource allocation is of paramount importance for risk  
132 acceptance. From a decision making viewpoint resource allocation is a very important step of a  
133 structured decision-making process.

134 The first research on resource allocation decisions in risky environments was conducted at  
135 Victoria Hospital in 1975 and published in 1979 [Kirudja \(1978\)](#). Nowadays, resource allocation

138 analysis is more popular and it is discussed in studies on uncertainty and risk management, such  
139 as in risk-based surveillance [Alban et al. \(2020\)](#), resilience-based studies [Lenjani et al. \(2020\)](#),  
140 safety [Vamvakas et al. \(2019\)](#), healthcare [Grant et al. \(2019\)](#) and others. The two most-cited  
141 articles which consider resource consumption in risky environments are in the cloud-computing  
142 subject area [Buyya et al. \(2008 2009\)](#). All these papers confirm the significance of resource  
143 consumption planning in risk management.

144 From a risk management methodological point of view, one of the most important methods  
145 supporting the analysis of opportunities and threats, is the *Benefits, Opportunities, Costs and*  
146 *Risks* (BOCR) approach [Saaty \(2001\)](#). Projects are evaluated from all aspects: risks, opportunities,  
147 costs and benefits, by means of the *Analytic Network Process* (ANP) to select the best project  
148 or portfolio [Mohammadi et al. \(2015\)](#); [Tchangani \(2015\)](#); [Wijnmalen \(2007\)](#). This approach is  
149 criticized by some scholars. For instance, the ratio  $\frac{B}{CR}$  is criticized because some researchers  
150 believe that 'the product of costs and risks is not meaningful' [Millet and Wedley \(2002\)](#) or  
151 'opportunity and risk priorities could be regarded as probabilities' [Wijnmalen \(2007\)](#). However, in  
152 practice, pairwise comparisons are done with respect to importance, preference or likelihood, so  
153 the priority vectors derived from them are for Importance, Preference, or Likelihood. The concept  
154 of 'likelihood' is very similar to that of 'probability'. Wijnmalen's point was that opportunity and  
155 risk refer both to the future, and we are on much shakier ground when making judgments and  
156 deriving priorities there.

157 Resource allocation can be performed effectively if it is supported by a quantitative evalua-  
158 tion. Several *Multi-Criteria Decision-Making* (MCDM) tools have been employed to this end  
159 [Li et al. \(2016\)](#); [Saaty \(2008\)](#); [Saaty and Peniwati \(2013\)](#); [Tulasi and Rao \(2015\)](#). The method  
160 proposed here is also a MCDM method that can be used to evaluate the risk-taking capability of a  
161 company, with the aim of accepting a certain level of risk to seize an opportunity and at the same  
162 time specify the quantity of resources needed to seize the RO at the project level. In the following  
163 sections, the methodology will be illustrated.

## 164 **2. Materials and Methods**

### 165 *2.1. Materials*

166 [Aghazadeh Ardebili \(2020\)](#); [Aghazadeh Ardebili et al. \(2019 2020\)](#) investigated the service  
167 supply chain of a PSP company. In those papers, the *Technique for Order of Preference by*  
168 *Similarity to Ideal Solution* (TOPSIS) was used to prioritize the alternative solutions; in the  
169 current study the same alternatives will be assessed through the ROAM approach; the final results  
170 will be compared with the results obtained from the traditional analysis of the alternatives that  
171 does not consider the ROs and risk acceptance. The data for the comparison matrix were collected  
172 through semi-structured interviews with four group of technical staffs including hardware and  
173 software developers, which have experience of working in PSP sector, along with R&D experts  
174 and Data analysts.

### 175 *2.2. Supporting software tools*

176 The decision support tool *Super Decisions V3.2* is used for the Analytic Network Process  
177 analysis. Figures [3](#) and [4](#), and Table [3](#) were produced by means of this software. The tool can be  
178 used to implement *Analytic Hierarchy Process* (AHP) and ANP models for combining judgment  
179 and data to effectively rank options and predict outcomes.

### 180 *2.3. Terminology and Definitions*

181 This section aims to clarify the key terminology.

#### 182 Risky-Opportunity (RO)

183 First of all, it should be reaffirmed that some of the terms used here, such as 'project', 'risk  
184 management' and 'risk management plan', are accepted definitions in the literature. However,  
185 'risky-opportunity' (RO), which is used in this paper, does not mean an uncertain event with pure  
186 threats or an uncertain event with pure opportunities. ROs are future uncertain events that can  
187 have both positive and negative effects on the project objectives at the same time.

188 Main and Secondary Goals

189 In project management the word 'outcome' signifies the results of a work-package. The final  
190 outcomes are the deliverables of the project. Objectives and requirements are necessary to assess  
191 the quality of an outcome. For example, the outcome of the digitalization project is a service  
192 that passed all the service quality requirements and it is ready for functioning. The term 'goal'  
193 in this study is used in two ways. There are two kinds of goals for a new risk management plan.  
194 The main goal is achieving the best outcomes for the project. All of the activities are planned  
195 and undertaken for this reason. In general, a risk management plan is followed to control future  
196 uncertain events so there will not be any deviation from the main goals. The secondary goals  
197 include achieving the objectives of the decision maker even if it means going ahead with an RO  
198 and accepting the risks it may bring to the main project. This group of objectives should parallel  
199 the main project objectives. In short, it includes the objectives of a new decision, which was not  
200 originally a part of the main project plan but which must be made for seizing some opportunities.

201 Risk Response

202 Risk response is the strategy whereby decision-makers plan how to deal with each risk they  
203 can foresee. The four kinds of response to risk are: avoid, mitigate, transfer, and accept.

204 Pure Threats

205 The term 'pure threats' of an RO stands for the disadvantages of the RO, which could cause  
206 possible deviations from the objectives associated with each alternative way of accepting the RO.

207 Pure Opportunities

208 'Pure opportunities' of an RO are the benefits that might be gained by accepting the risk of  
209 the RO, e.g. hiring a new contractor, the main goal in this method is taking advantage of RO by  
210 achieving these opportunities.

211 Alternative

212 The alternatives are the different actions that can be taken in order to accept the risk. For  
213 each alternative, the weights of an RO are calculated by means of the ANP.

214 Stress

215 We use the term 'Stress' in a novel way in this study. The major difference between this  
216 term and the usual similar terms, like risk, threat and hazard, is that Stress quantitatively includes  
217 likely threats, costs, opportunities and benefits of an event, which is going to be implemented  
218 in the new method based on risk acceptance. Thus, Stress as a novel index to show the relative  
219 importance of opportunities and benefits of an alternative to the threats and costs of it to be able to  
220 accept an RO. Mathematically, Stress is the ratio of the sum of the weights of all threats and costs  
221 to the sum of the weights of the opportunities and benefits of an alternative. These weights are  
222 calculated by ANP in the step 5 of the process (Figure 1). The Stress value changes if any changes  
223 affect the weights of the threats, costs, opportunities or benefits: their weights indeed depend on  
224 the elements of each cluster during the project life-cycle. This makes the index dynamic as it is a  
225 parameter dependent on variables, it is different from the traditional static concept of risk. The  
226 Stress value will also change if the amount of resources required for the alternatives varies due to  
227 changes in the variables.

228 Resources

229 Any project will have an initial specific amount of resources to get work done successfully  
230 including people, capital, knowledge, and/or material goods. In this method, resources are the  
231 part of the resources for the whole project that can be employed to make the changes; that is, they  
232 can be allocated to the new alternatives in order to take advantage of the ROs. They may include  
233 human resources, budget shifts, assets, material resources including consumables, and time.

234 Basic consumption

235 Each alternative way to seize ROs implies performing new actions that consume specific  
236 amount of resources. Basic consumption stands for the cheapest alternative; in other words, basic  
237 consumption is the sum of all of the resources needed to take the new actions which constitute  
238 the alternative with the lowest cost.

239 Strain

240 Strain is the ratio of the amount of resource consumption to basic consumption (see Equation  
241 8).

242 *2.4. Outline of the Steps*

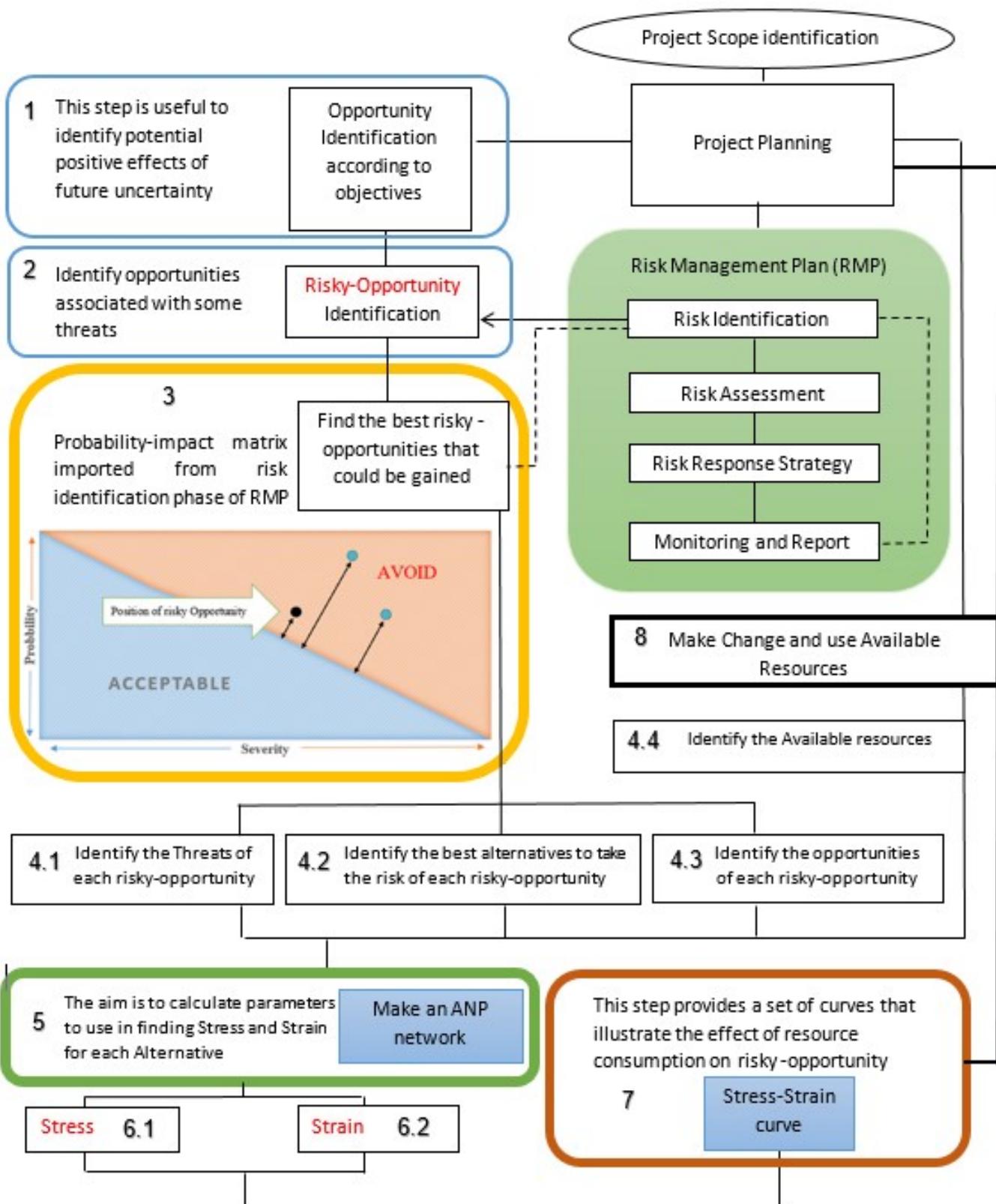
243 Risk management is a process that typically includes 4 main steps that are updated as a  
244 cycle during the project life-cycle [Conroy and Soltan \(1998\)](#). However, many practitioners prefer  
245 to customize the general 4-Step Risk Management Plan with further detailed steps [Burnaby and](#)  
246 [Hass \(2009\)](#); [Mazareanu \(2011\)](#); [Ward and Chapman \(2008\)](#).

247 Figure 1 is an illustration of the cutting edge logical flow of the new method within the  
248 general 4 step model of risk management. This flowchart divides the action plan of complex  
249 processes into manageable steps. The project starts with identifying the scope and project planning:  
250 the classic risk management model is shown inside the green box. RO analysis method begins  
251 after the first step of the risk management plan – risk identification. Defining risky-opportunities  
252 takes the opportunities into consideration according to the project scope and objectives. As  
253 previously discussed, uncertain events associated with threats may include some opportunities  
254 and some positive effects. Then, different alternative ways to address the threats and seize the  
255 opportunities of ROs can be devised. Other RM methods do not consider changes, and uncertain  
256 opportunity remains unavailable.

257 In the following the outline of the steps of the evaluation procedure proposed in this paper is  
258 presented.

259 1. Implementation of the RO analysis method (ROAM) at the project level starts after defining  
260 the work breakdown structure (WBS) of the project. The first step is the definition of  
261 the main project objectives and scope, followed by clarifying the project sub-objectives,  
262 requirements, and required resources. In the case-study here discussed, the main project is  
263 digitalization of the PSP service supply chain and the sub-project is the transformation of  
264 the transaction report production into an eco-friendly method.

265 2. Next step is to identify alternative solutions to the traditional thermal paper receipt.


266 3. It is crucial to choose the feasible and most effective alternatives to continue the analysis.  
267 The following criteria will be employed to select the most advantageous alternatives:

- 268 • Economic criterion,
- 269 • Importance of achievement,
- 270 • Feasibility,
- 271 • Congruence.

272 4. In this step the threats associated with the selected alternatives, which are defined as ROs,  
273 are identified. The output of this step is a probability-impact scheme for the threats and  
274 impacts of each RO.

275 5. This step includes five sub-actions to calculate the required parameters through the ANP;  
276 the results are then employed in the next step in order to calculate Stress and Strain of the  
277 Alternatives.

- 278 (a) Identify the decision criteria for ANP.
- 279 (b) Clustering.
- 280 (c) Identify relations between clusters, and between the elements of the clusters.
- 281 (d) Construct the network.
- 282 (e) Pairwise comparison and solve the ANP [Saaty \(2004 2005\)](#). In this paper Super  
283 Decision 3.2 was employed to calculate the overall priorities for the threat. The



**Figure 1.** General process of the digitalization risk acceptance evaluation employing ROAM

Table 1: Random Consistency Index

| Order | 1 | 2 | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-------|---|---|------|------|------|------|------|------|------|------|
| R.I.  | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |

$$\begin{array}{c}
 \begin{array}{ccccc}
 C_1 & & C_k & & C_n \\
 \begin{array}{c} C_1 \\ \vdots \\ e_{11} \\ e_{12} \\ \vdots \\ e_{1m1} \\ C_k \\ \vdots \\ e_{1m1} \\ \text{Unweighted} \\ \text{supermatrix} \\ = \\ e_{k1} \\ e_{k2} \\ \vdots \\ e_{kmk} \\ \vdots \\ e_{n1} \\ C_n \\ e_{n2} \\ \vdots \\ e_{nnn} \end{array} & \begin{array}{c} e_{11} e_{12} \dots e_{1m1} \dots e_{k1} e_{k2} \dots e_{kmk} \dots e_{n1} e_{n2} \dots e_{nnn} \\ \vdots \\ e_{11} \\ \vdots \\ W_{11} & \dots & W_{1k} & \dots & W_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ W_{k1} & \dots & W_{kk} & \dots & W_{kn} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ W_{n1} & \dots & W_{nk} & \dots & W_{nn} \end{array} \end{array} & \end{array}$$

**Figure 2.** Unweighted Supermatrix. C is the cluster when  $k = (1 - n)$  and  $W_{ij}$  is the priority vector extracted from pairwise matrix

procedure of ANP can be summarized as follows Barzilai (1997); Piantanakulchai (2005); Saaty and Vargas (2006):

• Construct a pairwise matrix through quantifying the preference of the decision makers using 9 scale ranking Barzilai (1997). If n objects should be compared, the number of comparisons is  $\frac{n(n-1)}{2}$

• If i represent the row number and j represents the column number of the matrix, the lower diagonal should be equal to ( $a_{ij} > 0$ ):

$$a_{ji} = \frac{1}{a_{ij}} \quad (1)$$

Check the consistency ratio of the matrix using the following equations:

$$\lambda_{max} = \Sigma(EigenVector) \cdot \Sigma(Col of reciprocal matrix) \quad (2)$$

$$CI = \frac{\lambda_{max} - n}{n - 1} \quad (3)$$

Extract RI (Random Consistency Index) from Table 1 and calculate CR.

$$CR = \frac{CI}{RI} \quad (4)$$

• Measure the consistency from Equation 4 Koczkodaj (1993); Saaty and Vargas (2006).

• Construct the Unweighted Supermatrix Figure 2 of the network and then multiply the weights.

- Raising the Weighted Supermatrix to the limiting power the global priority vectors are obtained.

$$\lim_{k \rightarrow \infty} w^k \quad (5)$$

In case of cyclicity effect, the Equation 6 is used

$$\lim_{k \rightarrow \infty} \left( \frac{1}{n} \right) \sum_{i=1}^n W_i^k \quad (6)$$

294 6. This step includes two sub-actions.

295 (a) Stress is calculated as follows:

$$\text{Stress}_{\text{alternative}} = \frac{\sum \text{TW} \cdot \text{CW}}{\sum \text{OW} \cdot \text{AW}} \quad (7)$$

296 where:

297 OW, the benefit subnetwork will calculate the weight of all of the pure opportunities  
298 for each alternative. To calculate the denominator of the stress of each alternative  
299 ( $A_i$ ), the pure opportunities associated with that alternative will sum up and multiply  
300 to the alternative weight.

301 AW, the opportunity subnetwork will calculate the weight of alternative- $i$  ( $A_i$ ) related  
302 to  $RO_j$  according to the objectives.

303 TW, the risk subnetwork will calculate the weight of all of the pure threats for each  
304 alternative. To calculate the numerator of stress for each alternative ( $A_i$ ), the pure  
305 threats associated with that alternative will sum up and multiply to the cost weight.  
306 CW, the cost subnetwork will calculate the weight of alternative- $i$  ( $A_i$ ) related to  
307  $RO_j$  according to resource consumption.

308 (b) Strain is calculated as follows:

$$\text{Strain}_{\text{alternative}} = \frac{\sum \text{ARR}}{\text{BC}} \quad (8)$$

309 where:

310 ARR, Available Required Resources to perform the activities of an alternative

311 BC, Basic Consumption, i.e. the resources needed by the cheapest alternative

312 7. In the last assessment step, Stress and Strain of each alternative are used to find the position  
313 of the  $A_i$  in the Stress-Strain coordination system. Each alternative has a specific point in  
314 the space.

315 8. After the assessment, a sub-project will be introduced in the form of an operation plan in  
316 order to meet the selected alternative work-package.

### 316 3. Outline of the Steps of the ROAM in the case-study

317 In this section, ROs analysis of the PSP company employing ROAM will be explained  
318 systematically. The procedure of calculations is explained in the previous section.

#### 319 3.1. Goal of the project

320 The main goal of this project is to analyze the ROs related to the socio-economic and  
321 socio-ecologic transition of a PSP company towards a green supply chain. A recent study on the  
322 PSP supply chain [Aghazadeh Ardebili et al. \(2020\)](#) showed that the elimination of thermal paper  
323 from the supply chain ancillary service could bring about environmental, social and economic  
324 opportunities. Specifically, the following opportunities can be mentioned: eliminating the produc-  
325 tion of toxic waste during the service supply chain, reducing the traffic caused by maintenance  
326 shuttles of the POS devices, reducing the burden of maintenance activities through digitization of  
327 the system [Plesner et al. \(2018\)](#); [Plesner and Raviola \(2016\)](#), and finally eliminating the delivery  
328 of the thermal paper to the end-users of PSP service to avoid its dangerous consequences on  
329 social health.

330 *3.2. Identification of the alternatives*

331 In the previous studies [Aghazadeh Ardebili et al. \(2019 2020\)](#), two kinds of alternatives were  
332 identified in this supply chain. Using e-Receipt to eliminate thermal paper receipt production, and  
333 using a combination of e-Receipt and paper to reduce thermal paper production. Both alternatives  
334 are associated with some threats, therefore they can be considered as key ROs in this analysis.

335 *3.3. Feasible alternatives*

336 The above cited studies showed that three of the ROs are not feasible because of the cost, or  
337 high impact and probability of threat occurrence. Table 2 displays the probability and impact of  
338 the threats for each alternative. Alternatives 5,8,9 were already removed from the analysis; for  
339 the next steps of the analysis six alternatives will be considered:

340 RO1 includes the e-Receipt methods

341 A1. SMS

342 A2. Email

343 A3. Application notification

344 RO2 includes the combination of e-Receipt and paper in case of transaction failure

345 A1. SMS or Print

346 A2. Email or Print

347 A3. Application notification or Print.

348 *3.4. Probability-Impact*

349 The assessment of Probability-Impact of the issues related to the alternatives is necessary to  
350 support pairwise comparison. In Table 2 all of the issues, including the Threats (T), Opportunities  
351 (Op), Benefits (Be), Costs (Co) of the ROs, and their alternatives are listed. Regarding the  
352 identified costs, HRM, assets of the company (servers), and budget in cash are the resources  
353 that this company needs to implement these alternatives. As can be seen in Table 2, there is no  
354 opportunity or benefit that is not likely or has a negligible impact on improving the service if the  
355 sustainability pillars are considered. In addition, there is no threat or cost that is highly likely and  
356 has an extreme impact on making problem in the service. Therefore, we will not eliminate any  
357 alternative.

358 *3.5. Parameters Calculation*

359 This step includes different sub-steps to construct the network and solve them by the ANP.

360 *3.5.1. Decision criteria*

361 The decision criteria in the current analysis are chosen according to all three sustainability  
362 pillars, because the main goal of accepting RO aims at transforming the supply chain ecologically,  
363 economically, and socially towards a green supply chain. However, the key to this transition is the  
364 digitalization process [Jedynak et al. \(2021\); Liu et al. \(2021\)](#); therefore, the technological aspect  
365 is also included among the criteria in this analysis.

366 *3.5.2. Clustering*

367 The elements for each cluster are listed in separated table similar to the example of the  
368 threats in Table 2 (the tables for opportunity, cost, and benefit are available in the Appendix – see  
369 [A](#)). The criteria column in the table illustrate how each element is related to decision criteria.

370 *3.5.3. Relations*

371 The relation between the T, Co, Be, Op, and the alternatives are shown in Figure 3. The  
372 colored box emphasizes a relation between the issue in the Column and the ROiAj in the row. For  
373 instance, T1 is a threat that has impact on RO2A2, and RO2A3. This relation will be used in  
374 constructing the network and pairwise analysis of the ANP. Moreover, Alternative no. 5, 8, and 9  
375 were already eliminated in the Step 3 of the current procedure.

Table 2: "Pure Threat" cluster elements

| No. | Threat Description               |                                       | Criteria |       |      |      |
|-----|----------------------------------|---------------------------------------|----------|-------|------|------|
|     | issue                            | Threat                                | Soc.     | Econ. | Env. | Tec. |
| T1  | Security                         | Information Accuracy                  | *        |       |      | *    |
| T2  |                                  | Cybersecurity                         | *        |       |      | *    |
| T3  | Service adoption                 | Purchaser                             | *        |       |      |      |
| T4  |                                  | Vendor                                | *        |       |      |      |
| T5  | Availability                     | Purchaser                             |          |       | *    |      |
| T6  |                                  | Vendor                                |          | *     | *    |      |
| T7  | Environment                      | Unnecessary shuttles                  | *        |       | *    |      |
| T8  |                                  | Thermal paper usage                   | *        | *     | *    | *    |
| T9  | Service providing issues         | Data transfer speed                   |          |       | *    |      |
| T10 |                                  | Troubleshooting speed                 |          |       | *    |      |
| T11 | Infrastructure                   | Internal Networks (national internet) | *        | *     |      | *    |
| T12 |                                  | Internet connection                   |          | *     |      | *    |
| T13 | Telecommunication network issues | Telecommunication network issues      |          |       | *    |      |
| T14 |                                  | Network data issues                   |          |       | *    |      |
| T15 | Mobil internet issues            | *                                     |          |       | *    |      |

### 376 3.5.4. Network construction

377 In Figure 3, the general Risk network, which refers to pure threats cluster, and the constructed  
 378 network for ranking the threats regarding the socio-economic transition problem in SuperDecision  
 379 V3.2 are shown.

### 380 3.5.5. Pairwise comparison

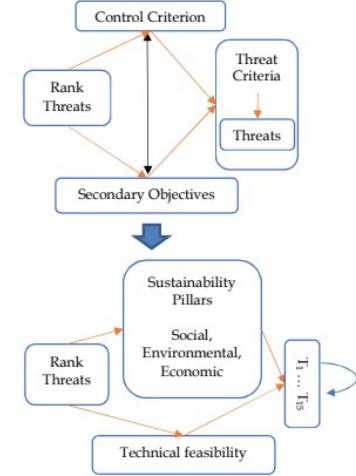
381 The pairwise comparisons were made through data collected in semi-structured interviews,  
 382 and the geometric mean of all values were used for building the pairwise matrix. The tables in  
 383 Figure 3 show the unweighted supermatrix and the limit supermatrix of the risk network to define  
 384 the priorities of the pure threats. The final normalized priorities of all parameters are shown in  
 385 Figure 4.

### 386 3.6. Stress and Strain calculation

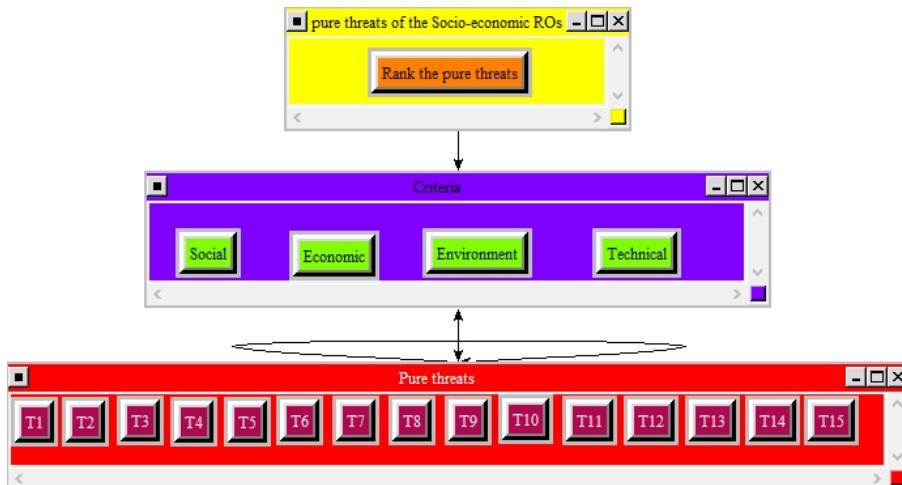
387 Stress and Strain were calculated for each alternative employing the parameters produced in  
 388 the previous step, and they are reported in the next two subsections.

#### 389 3.6.1. Stress

390 Stress is calculated through Equation 7 in Section 2 and the information extracted from  
 391 the relation table (see Figure 3 – a). The results are listed in Table 4. In the following the  
 392 implementation of the Equation 7 is shown for Stress RO1A1. From the table of Figure 3 (a),  
 393 the threats which are related to alternative RO1A1 are T11, T13, and T14. The results of ANP  
 394 in Figure 4 show that the weights of these threats are all equal to 0.060691. In the same way  
 395 and using the results of the ANP analysis in Figure 4, the related resources are Co1=0.276495,  
 396 Co2= 0.432281, and Co3=0.291225; Opportunities are Op6= 0.028055 and Op8=0.045125, and  
 397 benefits are Be1=0.052110, Be2=0.506275, Be3= 0.72325, Be4=0.369290. All of the other Stress  
 398 values in Table 4 are calculated in the same way.


$$\text{Stress RO}_1\text{A}_1 = \frac{(0.060691*3)*(0.276495+0.432281+0.291225)}{(0.028055+0.045125)*(0.052110+0.506275+0.72325+0.369290)}$$

$$\text{Stress RO}_1\text{A}_1 = 2.488018$$


399 While Stress is a dimensionless value, Strain is measured in currency in this study. The  
 400 amount of Strain for different alternatives could be very different. Therefore, to express all the  
 401 values of numeric columns in a common scale, we normalize them. These values will be re-scaled  
 402 to make all the elements lie between 0 and 1 (Table 4). Linear normalization is used to normalize  
 403 the final Stress and Strain values employing  $n_{ij} = r_{ij} / \sum r_{ij}$  Vafaei et al. (2016).

| Element type and no. | Alternatives |       |       |       |       |
|----------------------|--------------|-------|-------|-------|-------|
|                      | Ro1A1        | Ro1A2 | Ro1A3 | Ro2A1 | Ro2A2 |
| T1                   |              |       |       |       |       |
| T2                   |              |       |       |       |       |
| T3                   |              |       |       |       |       |
| T4                   |              |       |       |       |       |
| T5                   |              |       |       |       |       |
| T6                   |              |       |       |       |       |
| T7                   |              |       |       |       |       |
| T8                   |              |       |       |       |       |
| T9                   |              |       |       |       |       |
| T10                  |              |       |       |       |       |
| T11                  |              |       |       |       |       |
| T12                  |              |       |       |       |       |
| T13                  |              |       |       |       |       |
| T14                  |              |       |       |       |       |
| T15                  |              |       |       |       |       |
| OP1                  |              |       |       |       |       |
| OP2                  |              |       |       |       |       |
| OP3                  |              |       |       |       |       |
| OP4                  |              |       |       |       |       |
| OP5                  |              |       |       |       |       |
| OP6                  |              |       |       |       |       |
| OP7                  |              |       |       |       |       |
| OP8                  |              |       |       |       |       |
| OP9                  |              |       |       |       |       |
| BE1                  |              |       |       |       |       |
| BE2                  |              |       |       |       |       |
| BE3                  |              |       |       |       |       |
| BE4                  |              |       |       |       |       |
| CO1                  |              |       |       |       |       |
| CO2                  |              |       |       |       |       |
| CO3                  |              |       |       |       |       |

(a) The relation between T, Co, Be, Op and alternatives.



(b) Risk Network map.



(c) The Risk network (Elaborated by Super decision Version 3.2).

**Figure 3.** Risk Network of the current study

Table 3: Threats unweighted supermatrix (exported from SuperDecision V3.2)

| Criteria    | Weighted Super Matrix |             |          |              |          |    |     |     |    |    |    |    |          |     |     | Rank the pure threats | Limited Super Matrix results |              |          |                       |          |   |   |
|-------------|-----------------------|-------------|----------|--------------|----------|----|-----|-----|----|----|----|----|----------|-----|-----|-----------------------|------------------------------|--------------|----------|-----------------------|----------|---|---|
|             | Criteria              |             |          | Pure threats |          |    |     |     |    |    |    |    |          |     |     |                       |                              | Pure threats |          |                       |          |   |   |
|             | Economic              | Environment | Social   | Technical    | T1       | T2 | T3  | T4  | T5 | T6 | T7 | T8 | T9       | T10 | T11 | T12                   | T13                          | T14          | T15      | Rank the pure threats |          |   |   |
| Economic    | 0                     | 0           | 0        | 0            | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0.064249 | Economic 0            | 0        | 0 |   |
| Environment | 0                     | 0           | 0        | 0            | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0.106233 | Environment 0         | 0        | 0 |   |
| Social      | 0                     | 0           | 0        | 0            | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0.106233 | Social 0              | 0        | 0 |   |
| Technical   | 0                     | 0           | 0        | 0            | 0        | 0  | 1   | 0   | 1  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0.723285 | Technical 0           | 0        | 0 |   |
| T1          | 0                     | 0           | 0.034655 | 0.137056     | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T1                    | 0.082603 | 0 | 0 |
| T2          | 0                     | 0           | 0.321675 | 0.285017     | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T2                    | 0.171778 | 0 | 0 |
| T3          | 0                     | 0           | 0.231306 | 0            | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0.888889 | 0   | 0   | 0                     | 0                            | 0            | 0        | T3                    | 0.05523  | 0 | 0 |
| T4          | 0                     | 0           | 0.035167 | 0            | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0.111111 | 0   | 0   | 0                     | 0                            | 0            | 0        | T4                    | 0.006904 | 0 | 0 |
| T5          | 0                     | 0           | 0        | 0.183268     | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T5                    | 0.110454 | 0 | 0 |
| T6          | 0.465664              | 0           | 0        | 0.055552     | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T6                    | 0.038668 | 0 | 0 |
| T7          | 0                     | 0           | 0.125    | 0.055552     | 0        | 0  | 0   | 0.1 | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T7                    | 0.003724 | 0 | 0 |
| T8          | 0.053636              | 0.875       | 0.280392 | 0.180251     | 0        | 0  | 0.9 | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T8                    | 0.142155 | 0 | 0 |
| T9          | 0                     | 0           | 0        | 0.050962     | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T9                    | 0.030715 | 0 | 0 |
| T10         | 0                     | 0           | 0        | 0            | 0.029769 | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T10                   | 0.017941 | 0 | 0 |
| T11         | 0.356465              | 0           | 0.024449 | 0.013687     | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T11                   | 0.008249 | 0 | 0 |
| T12         | 0.124234              | 0           | 0        | 0.010742     | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T12                   | 0.006647 | 0 | 0 |
| T13         | 0                     | 0           | 0        | 0            | 0.01548  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T13                   | 0.00933  | 0 | 0 |
| T14         | 0                     | 0           | 0        | 0            | 0.01548  | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T14                   | 0.00933  | 0 | 0 |
| T15         | 0                     | 0           | 0.016805 | 0.01413      | 0        | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0        | 0   | 0   | 0                     | 0                            | 0            | 0        | T15                   | 0.008516 | 0 | 0 |

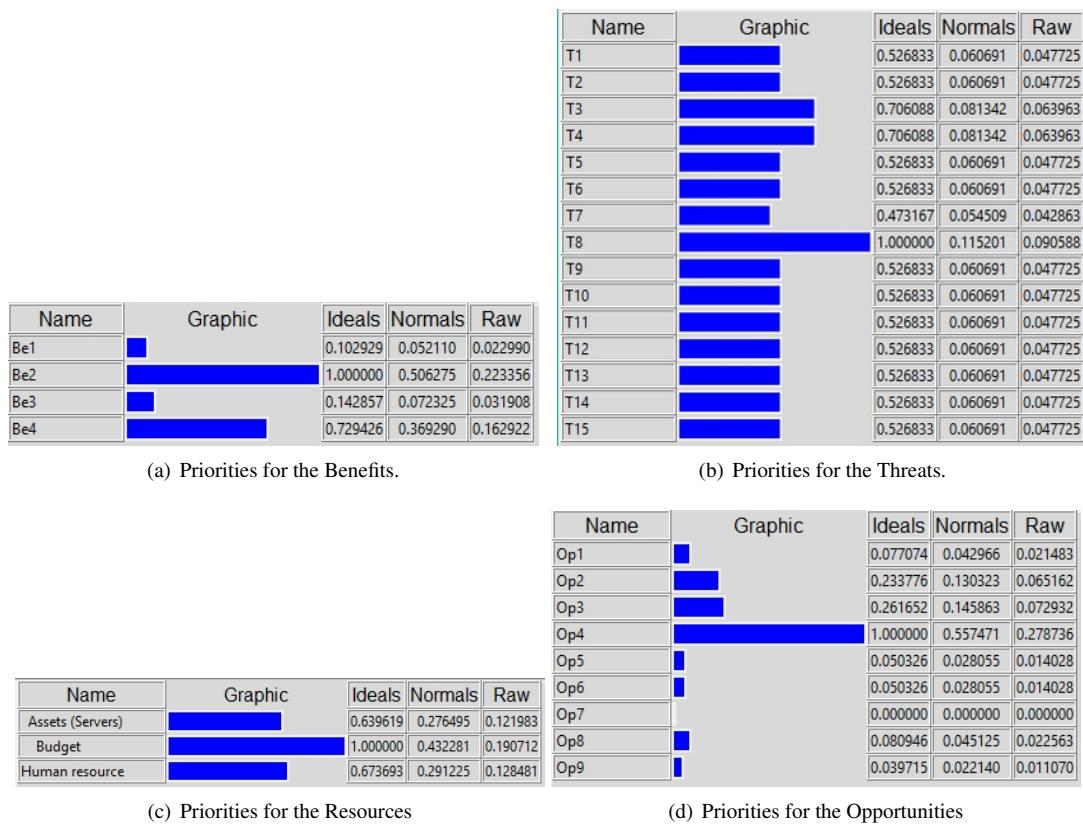
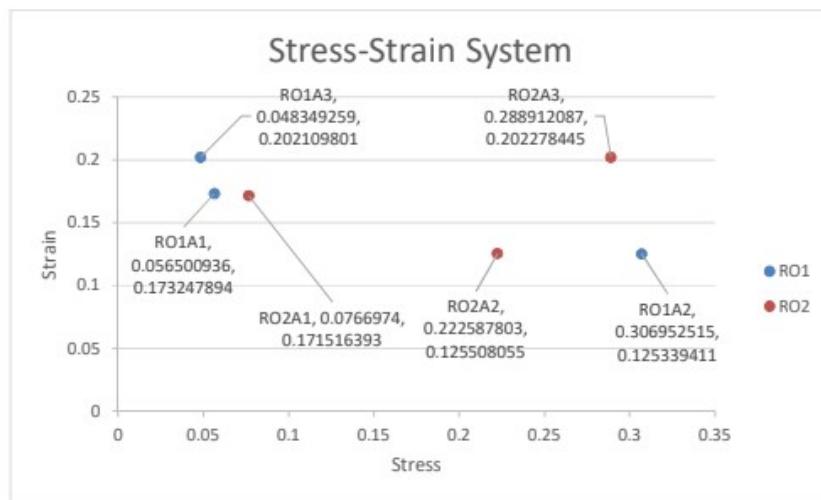

**Figure 4.** Overall priorities produced by SuperDecision Version 3.2)

Table 4: Stress table

| Alternative       | RO1A1    | RO1A2    | RO1A3    | RO2A1    | RO2A2    | RO2A3    |
|-------------------|----------|----------|----------|----------|----------|----------|
| Stress            | 2.488018 | 13.51665 | 2.129059 | 3.377369 | 9.801651 | 12.72224 |
| Normalized Stress | 0.0565   | 0.3070   | 0.0483   | 0.0767   | 0.2226   | 0.2889   |

#### 4.6.2. Strain

The Strain calculation table is shown in Table 5. The costs are in Iranian Rial, the salary is the average salary for an expert with 10 years of experience in the Persian year of 1398. The price of the thermal paper is referred to 7 January 2020; however, this price is subject to high fluctuation due to the fact that it is not produced internally but imported. National Internet cost is negligible in Iran because the National Internet is very cheap in order to encourage companies and users to use National Internet instead of a global system of interconnected computer networks (Internet). The costs in the following table include the cost of establishing a new service and the first month of implementing the service. To calculate the Strain of each alternative Equation 8 from Section 2 is employed.


## 4. Results and Discussion

In Figure 5, considering that the vertical axis in the coordinate plane is Strain, the significant high Stress and Strain of the RO2A3 shows that the benefits and opportunities of this alternative do not outweigh its threats and costs; it is very expensive alternative in comparison with the other alternatives. The other alternatives have better performances, so this alternative can be removed from further analysis. Blue and red points show that the transitions from RO2A2 and RO1A2

Table 5: Strain calculation table

|                     |                   | COST CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COST      | STRAIN | NORM.  |
|---------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|
| ROI <sub>A1</sub> * | ROI <sub>A1</sub> | $[80 \text{ (cost of SMS in Iran in "Iranian Rial") } * 4 \text{ (length of the text message regarding the characters that are in the SMS is equal to 4 SMS in Persian) } * 2 \text{ (for each transaction two SMS is required including customer and vendor) } * 31973 \text{ (Average tax in a specific macro zone regarding the results of Chapter 4) } ] + [ 2 \text{ (switch developer, POS developer) } * DS^1 * 160 \text{ h (establish new service) } + DS * 20 \text{ h (outsourcing coordination and maintenance) } ]$ | 88462720  | 1.382  | 0.1732 |
|                     | ROI <sub>A2</sub> | $2 \text{ (switch developer, POS developer) } * DS * 160 \text{ h (implementation) }$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64000000  | 1.000  | 0.1253 |
|                     | ROI <sub>A3</sub> | $2 \text{ (switch developer, POS developer) } * DS * 160 \text{ h (establish new service) } + DS * 196 \text{ h (application support service, CRM and cyber security measures) }$                                                                                                                                                                                                                                                                                                                                                | 103200000 | 1.613  | 0.2021 |
| ROI <sub>A2</sub>   | ROI <sub>A1</sub> | $[(80*4*2*30457 \text{ (successful tax in macro zone) }) + \text{Paper receipt price (26000 (price of each role of the thermal paper) IR / (20 m (length of the role of the thermal paper) /4.5cm(minimum of size))=58.5 IR) } * 1472 \text{ (unsuccessful tax in macro zone) }] + [ 2 \text{ (switch developer, POS developer) } * DS \text{ (Developer Salary per hour (DS)= average 40000000 IR / 196 h = 200000) } * 160 \text{ h (establish new service) } + DS * 20 \text{ h (maintenance per month) } ]$                  | 87578592  | 1.368  | 0.1715 |
|                     | ROI <sub>A2</sub> | $\text{Paper receipt price } * 1472 \text{ (unsuccessful tax in macro zone) } + 2 \text{ (switch developer, POS developer) } * DS * 160 \text{ h (establish new service) } + DS * 20 \text{ h (maintenance per month) }$                                                                                                                                                                                                                                                                                                         | 64086112  | 1.001  | 0.1255 |
|                     | ROI <sub>A3</sub> | $\text{Paper receipt price } * 1472 \text{ (unsuccessful tax in macro zone) } + DS * 20 \text{ h (maintenance per month) } * DS * 160 \text{ h (establish new service) } + 2 * DS * 196 \text{ h (application support service, CRM and cyber security measures) }$                                                                                                                                                                                                                                                               | 103286112 | 1.614  | 0.2023 |

$$\begin{aligned}
 \text{Developer Salary per hour (DS)} &= \text{average } 40000000 \text{ IR / 196 h} = 200000 \\
 \text{Cost}_{ROI A1} &= (80*4*2*31973) + (2*160*200000) + (20*200000) = 88462720 \\
 \text{Strain}_{ROI A1} &= \text{Cost}_{ROI A1} / \text{Cost}_{ROI A2} = 1.38223 \\
 \text{Normalized Strain}_{ROI A1} &= \text{Strain}_{ROI A1} / \sum_{i=1}^2 \sum_{j=1}^3 \text{Strain}_{ROI A j}
 \end{aligned}$$



**Figure 5.** Strain Stress illustration

420 towards the other alternatives increase the Strain but decrease the Stress. RO2A2 and RO1A3  
 421 are cheaper alternatives but they have a high stress. Therefore, RO2A1, RO1A1 and RO1A3  
 422 are better to accept; because in comparison with the stress of RO2A2 and RO1A3, imposing  
 423 some changes and considering the cost of the changes will cause increase of strain, but the stress  
 424 decreases sharply and it provides safe condition to accept the ROs.

425 Since RO2A1 has higher Stress, we focus on the transition from this alternative towards  
 426 RO1A1 and RO1A3. The Strain of RO1A3 is higher than RO2A1. It points to the fact that  
 427 with a small amount of higher resource consumption, the Stress of the target alternative will  
 428 decrease. Nevertheless, the strain of RO2A1 is almost equal to the Strain of RO1A1 and this  
 429 proves that the cost for establishing the ancillary service of e-Receipt by 'SMS' is almost equal  
 430 to 'SMS and paper receipt'. The weight of the threats and costs of providing e-Receipt by SMS  
 431 in case of successful transaction and paper receipt in case of transaction failure is higher than  
 432 its opportunities and benefits. This Strain and Stress values confirm that providing e-Receipt by  
 433 SMS in all scenarios is the best alternative. RO1A1 has less Strain than RO1A3; however, the  
 434 Stress is not significantly higher; this supports the choice of RO1A1 as the best alternative. In this  
 435 particular case, RO1A2 (the cheapest) and RO2A2 have the lowest resource consumption rate;  
 436 and RO1A3 has the lowest Stress. However, RO1A1 might be selected regarding the transitions  
 437 that discussed.

## 438 5. Conclusions

439 Practical sustainable development is a multidisciplinary innovative/collaborative approach  
 440 that ensures a reliable future for next generations. Digitalization is an eminent example of  
 441 innovative trends that is taking place in CPSS. Nevertheless, with all opportunities behind socio-  
 442 ecological, socio-economic, and socio-technical transition, the transition is not free of risk. The  
 443 complexity of the CPSS and the significance of continuity of functioning of an infrastructure,  
 444 boost the risks of sustainable transformation of a PSP. Therefore, this transition is a RO: the  
 445 pure threats it will pose should be considered alongside the unique opportunities. The ROAM  
 446 method showed a high capacity in dealing with risk-based decisions that should be made in order  
 447 to establish hazard free service.

448 The results of the case study support the conclusion that RO1A1 (SMS) is the best alter-  
 449 native to accept because the Stress decreases significantly with small resource consumption,  
 450 meaning that the risk-taking capability of the company for establishing the ancillary service of  
 451 providing e-Receipt is higher than that provided by the other alternatives. In a previous work,  
 452 [Aghazadeh Ardebili et al. \(2020\)](#) employed an MCDM TOPSIS model to assess the same alter-  
 453 natives regardless of the uncertainty and possibility of taking the risks. That model showed  
 454 that RO1A3 (Application Notification) was the preferable option. This significant contradiction  
 455 reveals the importance of taking the positive and negative effects in account when the alternatives

456 of analysis are risky-opportunities. In fact, when we consider the risk-taking capability of a  
457 company confronting a Risky-Opportunity, the result of the evaluation in conditions of certainty  
458 could differ from that obtained when uncertainty is taken into consideration.

459 **Author Contributions:** Ali Aghazadeh Ardebili and Elio Padoano have participated in (a) conception and  
460 design, analysis and interpretation of the data; (b) drafting the article or revising it critically for important  
461 intellectual content; and all authors participated in (c) proof reading and refining the final version.

462 **Funding:** The authors received no funding for the research, authorship, and/or publication of this article.

463 **Acknowledgments:** Doctor Rozann W. Saaty's suggestions were fundamental in defining the path of my  
464 research. For this, I am extremely grateful.

465 Also I would like to acknowledge Dr. Mohammad Reza Mazandarani, Najmeh Rahmani, Ph.D. candidates  
466 Babak Firooz, and Luca Toneatti for proofreading the manuscript of the current document.

467 **Conflicts of Interest:** The Authors have no conflicts of interest to disclose.

468 The authors have no affiliation with any organization with a direct or indirect financial interest in the subject  
469 matter discussed in the manuscript.

#### 470 **Appendix A Future issues**

##### 471 **(Risks, Opportunities, Benefits, Costs are categorized and listed)**

472 In the Tables whose links are reported below, the probability is a percentage between 0 and  
473 100, in which 0 means the issue will not happen, and 100 means the issue will certainly happen.  
474 The impact is an integer between 0 and 10, in which 0 means the issue has no impact on the  
475 project and its goals, and 10 means the issue has an extremely strong impact on the project and its  
476 goals.

477 Information Security is an issue related with security. It has a low probability of occurrence  
478 and a very strong impact when one of the alternatives of RO1 is implemented.

479

480 **Future Issues** Table 1

481 <https://drive.google.com/file/d/1QQV1uFY433Tu-CmtE0jf6rbZOfLbU1BK/view?usp=sharing>

482 **Future Issues** Table 2

483 <https://drive.google.com/file/d/19qjEarFUT8jFZGsd6QId0KGCFu8-Qs08/view?usp=sharing>

#### 484 **Appendix B [C, O, B] clusters**

485 **Clusters** Table 1, 2, 3

486 <https://drive.google.com/file/d/1fH8ZBvaqdkUWoCqj1Q-28oYOMnXGFeiU/view?usp=sharing>

487

488 Aghazadeh Ardebili, A. 2020, 6. *A method to support risk management and resource allocation in projects*  
489 *based on risk acceptance strategy*. PhD dissertation, University of Trieste. Department of Engineering  
490 and Architecture - Dia.

491 Aghazadeh Ardebili, A., E. Padoano, and R. Najmeh. 2019. Providing green services—the case study of  
492 thermal paper waste and unnecessary transportations in the payment service. In F.-J. V. Elio Padoano  
493 (Ed.), *9 International Conference, PEM 2019*, pp. 103–114.

494 Aghazadeh Ardebili, A., E. Padoano, and N. Rahmani. 2020. Waste reduction for green service supply  
495 chain – the case study of a payment service provider in Iran. *Sustainability* 12(5), 1833.

496 Akilarasan, M., S. Kogularasu, S. Chen, T. Chen, and B. Lou. 2018. A novel approach to iron oxide separation  
497 from e-waste and bisphenol A detection in thermal paper receipts using recovered nanocomposites.  
498 *RSC Advances* 8(70), 39870–39878.

499 Alban, L., B. Häslar, G. van Schaik, and S. Ruegg. 2020. Risk-based surveillance for meat-borne parasites.  
500 *Experimental Parasitology* 208, 107808.

501 Andersen, K. V., R. Beck, R. T. Wigand, N. Bjørn-Andersen, and E. Brousseau. 2004. European e-commerce  
502 policies in the pioneering days, the gold rush and the post-hype era. *Information Polity* 9(3-4), 217–232.

503 Arva, M., N. Bizon, and O. Novac. 2020. Electronic receipts using near-field communication protocol as a  
504 solution for thermal paper receipts. In *Proceedings of the 12th International Conference on Electronics,*  
505 *Computers and Artificial Intelligence, ECAI 2020*.

506 Asenova, D., W. Stein, and A. Marshall. 2011, 8. An innovative approach to risk and quality assessment in the regulation of care services in scotland. *Journal of Risk Research* 14(7), 859–879. doi: 10.1080/13669877.2011.571780.

509 Azapagic, A. 2003, 9. Systems approach to corporate sustainability. *Process Safety and Environmental Protection* 81(5), 303–316. doi:10.1205/095758203770224342.

511 Azapagic, A. 2010. Chapter 7. life cycle assessment as a tool for sustainable management of ecosystem services. In *Issues in Environmental Science and Technology*, pp. 140–168. Royal Society of Chemistry. doi:10.1039/9781849731058-00140.

514 Barzilai, J. 1997. Deriving weights from pairwise comparison matrices. *Journal of the Operational Research Society* 48(12), 1226–1232.

516 Bechtold, U., D. Fuchs, and N. Gudowsky. 2017, May. Imagining socio-technical futures – challenges and opportunities for technology assessment. *Journal of Responsible Innovation* 4(2), 85–99. doi: 10.1080/23299460.2017.1364617.

519 Blos, M. F., H. M. Wee, and J. Yang. 2010. Analysing the external supply chain risk driver competitiveness: a risk mitigation framework and business continuity plan. *Journal of Business Continuity & Emergency Planning* 4(4), 368–374.

522 Braun, J. M., K. Yolton, K. N. Dietrich, R. Hornung, X. Ye, A. M. Calafat, and B. P. Lanphear. 2009. Prenatal bisphenol a exposure and early childhood behavior. *Environmental Health Perspectives* 117(12), 1945–1952.

525 Burnaby, P. and S. Hass. 2009. Ten steps to enterprise-wide risk management. *Corporate Governance* 9(5), 539–550.

527 Buyya, R., C. Shin Yeo, and S. Venugopal. 2008. Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities. In *10th IEEE international conference on high performance computing and communications*, pp. 5–13. IEEE.

530 Buyya, R., C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. 2009. Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. *Future Generation Computer Systems* 25(6), 599–616.

533 Chen, W. and M. Dong. 2018. Optimal resource allocation across related channels. *Operations Research Letters* 46(4), 397–401. doi:10.1016/j.orl.2018.04.004.

535 Choi, J. K., J. S. Park, J. H. Lee, and K. S. Ryu. 2006. Key factors for e-commerce business success. In *Proceedings of the 8th International Conference Advanced Communication Technology, ICACT 2006*, Volume 3, pp. 1664–1672.

538 Conroy, G. and H. Soltan. 1998. ConSERV, a project specific risk management concept. *International Journal of Project Management* 16(6), 353–366. doi:10.1016/S0263-7863(98)00012-X.

540 Domar, E. D. and R. A. Musgrave. 1944. Proportional income taxation and risk-taking. *The Quarterly Journal of Economics* 58(3), 388–422. doi:10.2307/1882847.

542 Dos Santos Paulino, V. 2009, May. Organizational change in risky environments: space activities. *Journal of Organizational Change Management* 22(3), 257–274. doi:10.1108/09534810910951050.

544 Eduardsen, J. 2018. *Internationalisation through digitalisation: The impact of e-commerce usage on internationalisation in small-and medium-sized firms*, Volume 13 of *Progress in International Business Research*. Emerald.

547 Ehrlich, S., A. M. Calafat, O. Humblet, T. Smith, and R. Hauser. 2014. Handling of thermal receipts as a source of exposure to bisphenol a. *Jama* 311(8), 859–860.

549 El Bassiouny, N., M. Darrag, and N Zahran. 2018, June. Corporate social responsibility (CSR) communication patterns in an emerging market. *Journal of Organizational Change Management* 31(4), 795–809. doi:10.1108/jocm-03-2017-0087.

552 Engelhard, K. and Ch. Böhm. 2013. Security of supply chains from a service provider's perspective. In *Supply Chain Safety Management*, pp. 167–178. Springer Berlin Heidelberg. doi:10.1007/978-3-642-32021-7\_10.

555 Glerup, C. and M. Horst. 2014, January. Mapping 'social responsibility' in science. *Journal of Responsible Innovation* 1(1), 31–50. doi:10.1080/23299460.2014.882077.

557 Goel, H. and T. Venkat Narayana Rao. 2019. Data visualization in e-commerce an indispensable implementation in real world business scenario. *International Journal of Scientific and Technology Research* 8(10), 2447–2450.

560 Grant, K., J. White, J. Martin, and T. Haines. 2019. The costs of risk and fear: a qualitative study of risk conceptualisations in allied health resource allocation decision-making. *Health, Risk & Society* 21(7), 373–389. Publisher: Taylor & Francis, doi:10.1080/13698575.2019.1667962.

563 Gravesteijn, M. and C. P. M. Wilderom. 2018. Participative change toward digitalized, customer-oriented  
564 continuous improvements within a municipality. *Journal of Organizational Change Management* 31(3),  
565 728–748. doi:10.1108/jocm-05-2016-0100.

566 Hetrick, J. C. 1969. A formal model for long range planning 2 assessment of opportunity and risk. *Long  
567 Range Planning* 1(4), 54–65.

568 Hietala, M. and R. Geysmans. 2020. Social sciences and radioactive waste management: accept-  
569 ance, acceptability, and a persisting socio-technical divide. *Journal of Risk Research*, 1–16. doi:  
570 10.1080/13669877.2020.1864010.

571 Hillson, D. 2003. *Effective Opportunity Management for Projects: Exploiting Positive Risk*. CRC Press.

572 Holton, J. A. 2020. Social movements thinking for managing change in large-scale systems. *Journal of  
573 Organizational Change Management* 33(5), 697–714. doi:10.1108/jocm-05-2019-0152.

574 Ivascu, L. and L.-I. Cioca. 2014. Opportunity risk: integrated approach to risk management for creating  
575 enterprise opportunities. *Advances in Education Research* 49(1), 77–80.

576 Jamali, G., E. K. Asl, S. H. Zolfani, and J. Šaparauskas. 2017. Analysing larg supply chain management  
577 competitive strategies in iranian cement industries. *E a M: Ekonomie a Management* 20(3), 70–83.

578 Jean-Jules, J. and R. Vicente. 2020. Rethinking the implementation of enterprise risk manage-  
579 ment (ERM) as a socio-technical challenge. *Journal of Risk Research* 24(2), 247–266. doi:  
580 10.1080/13669877.2020.1750462.

581 Jedynak, M., W. Czakon, A. Kuźniarska, and K. Mania. 2021. Digital transformation of organizations: what  
582 do we know and where to go next? *Journal of Organizational Change Management* 34(3), 629–652. doi:  
583 10.1108/jocm-10-2020-0336.

584 Ji, G. and C. Zhu. 2008. Study on supply chain disruption risk management strategies and model. In  
585 *2008 International Conference on Service Systems and Service Management*, pp. 1–6. doi:10.1109/IC-  
586 SSSM.2008.4598472.

587 Johannes, G. van der, A. and Dick T. H. M. Sijm. 2021, March. Risk governance in the transition towards  
588 sustainability, the case of bio-based plastic food packaging materials. *Journal of Risk Research*, 1–13.  
589 doi:10.1080/13669877.2021.1894473.

590 Karimi, I. A. 2009. Chemical logistics - going beyond intra-plant excellence. *Computer Aided Chemical  
591 Engineering* 27-C(C), 29–34.

592 Kirudja, C. M. 1978. *Planning and resource allocation with goal programming in a structured management  
593 decision environment: the case of an Ontario general hospital*. Ph. D. thesis, Western University.

594 Koczkodaj, W. W. 1993. A new definition of consistency of pairwise comparisons. *Mathematical and  
595 Computer Modelling* 18(7), 79–84.

596 Krueger Jr, N. and P. R. Dickson. 1994. How believing in ourselves increases risk taking: Perceived  
597 self-efficacy and opportunity recognition. *Decision Sciences* 25(3), 385–400.

598 Lefcourt, H. M. 1965. Risk taking in negro and white adults. *Journal of Personality and Social Psychol-  
599 ogy* 2(5), 765–770. Place: US Publisher: American Psychological Association, doi:10.1037/h0022716.

600 Lenjani, A., I. Bilionis, S. J. Dyke, C. M. Yeum, and R. Monteiro. 2020. A resilience-based method for  
601 prioritizing post-event building inspections. *Natural Hazards* 100(2), 877–896. doi:10.1007/s11069-019-  
602 03849-0.

603 Li, Y., T. Wang, X. Song, and G. Li. 2016. Optimal resource allocation for anti-terrorism in protecting  
604 overpass bridge based on ahp risk assessment model. *KSCE Journal of Civil Engineering* 20(1), 309–322.

605 Liu, J., Yang, W., and W. Liu. 2021. Adaptive capacity configurations for the digital transformation: a  
606 fuzzy-set analysis of chinese manufacturing firms. *Journal of Organizational Change Management ahead-  
607 of-print*(ahead-of-print). doi:10.1108/jocm-02-2020-0043.

608 Ma, D. J. 2013. E-commerce model research based on cloud service. *Advanced Materials Research* 605-607,  
609 2534–2537. doi:10.4028/www.scientific.net/AMR.605-607.2534.

610 Mazareanu, V. P. 2011. Understanding risk management in small 7 steps. *Revista tinerilor economisti* 16,  
611 75–80. Publisher: Editura Universitaria Craiova.

612 Millet, I. and W. C. Wedley. 2002. Modelling risk and uncertainty with the analytic hierarchy process.  
613 *Journal of Multi-Criteria Decision Analysis* 11(2), 97–107. doi:https://doi.org/10.1002/mcda.319.

614 Mohammadi, M. F., A. Najafi, and F. Ahmadlo. 2015. Using the analytical network process (ANP) based  
615 on BOCR model to select the most suitable region for forestation with almond species. *Nusantara  
616 Bioscience* 7(2). doi:10.13057/nusbiosci/n070210.

617 Olsson, R. 2007. In search of opportunity management: Is the risk management process enough? *Inter-  
618 national Journal of Project Management* 25(8), 745–752. doi:10.1016/j.ijproman.2007.03.005.

619 Pallaro, E., N. Subramanian, M. D. Abdulrahman, C. Liu, and K. H. Tan. 2017, 7. Review of sustainable  
620 service-based business models in the chinese truck sector. *Sustainable Production and Consumption* 11,  
621 31–45. doi:10.1016/j.spc.2016.07.003.

622 Paterson, J., P. Berr, K. Ebi, and L. Varangu. 2014. Health care facilities resilient to climate change impacts.  
623 *International Journal of Environmental Research and Public Health* 12, 13097–13116.

624 Peker, I., B. Baki, M. Tanyas, and I. Murat Ar. 2016. Logistics center site selection by ANP/BOCR  
625 analysis: A case study of turkey. *Journal of Intelligent & Fuzzy Systems* 30(4), 2383–2396. doi:  
626 10.3233/IFS-152007.

627 Piantanakulchai, M. 2005. Analytic network process model for highway corridor planning. In *Proceedings  
628 of the ISAHP*, pp. 8–10.

629 Pidgeon, N. 2014. Complexity, uncertainty and future risks. *Journal of Risk Research* 17(10), 1269–1271.  
630 doi:10.1080/13669877.2014.940599.

631 Pidgeon, N. 2020. Engaging publics about environmental and technology risks: frames, values and  
632 deliberation. *Journal of Risk Research* 24(1), 28–46. doi:10.1080/13669877.2020.1749118.

633 Plesner, U., L. Justesen, and C. Glerup. 2018. The transformation of work in digitized public sector  
634 organizations. *Journal of Organizational Change Management* 31(5), 1176–1190. doi:10.1108/jocm-06-  
635 2017-0257.

636 Plesner, U. and E. Raviola. 2016. Digital technologies and a changing profession. *Journal of Organizational  
637 Change Management* 29(7), 1044–1065. doi:10.1108/jocm-09-2015-0159.

638 Rajesh, M., A. Baisel, T. N. V. R. L. Swamy, and R. Sudhakar. 2017. e-payment technology as an interface  
639 between bank and the end user. *Journal of Advanced Research in Dynamical and Control Systems* 9(15),  
640 321–327.

641 Rehman, S. U., J. Coughlan, and Z. Halim. 2012. Usability based reliable and cashless payment system  
642 (rcps). *International Journal of Innovative Computing, Information and Control* 8(4), 2747–2759.

643 Saaty, T. L. 2001. Fundamentals of the analytic hierarchy process. In D. L. Schmoldt, J. Kangas,  
644 G. A. Mendoza, and M. Pesonen (Eds.), *The Analytic Hierarchy Process in Natural Resource and  
645 Environmental Decision Making*, Managing Forest Ecosystems, pp. 15–35. Springer Netherlands. doi:  
646 10.1007/978-94-015-9799-9\_2.

647 Saaty, T. L. 2004. Decision making the analytic hierarchy and network processes (ahp/anh). *Journal of  
648 Systems Science and Systems Engineering* 13(1), 1–35.

649 Saaty, T. L. 2005. Making and validating complex decisions with the ahp/anh. *Journal of Systems Science  
650 and Systems Engineering* 14(1), 1–36.

651 Saaty, T. L. 2008. Decision making with the analytic hierarchy process. *International Journal of Services  
652 Sciences* 1(1), 83–98. doi:10.1504/IJSSci.2008.01759.

653 Saaty, T. L. 2015. A marijuana legalization model using benefits, opportunities, costs and risks (BOCR)  
654 analysis. *International Journal of Strategic Decision Sciences* 6(2), 1–11. doi:10.4018/ijsts.2015040101.

655 Saaty, T. L. and K. Peniwati. 2013. *Group Decision Making: Drawing Out and Reconciling Differences*.  
656 RWS Publications.

657 Saaty, T. L. and L. G. Vargas. 2006. *Decision Making with the Analytic Network Process*, Volume 282.  
658 Springer.

659 Salama, M. A., N. El-Bendary, and A. E. Hassanien. 2011. Towards secure mobile agent based e-cash  
660 system. In R. Chbeir and B. Al Bouna (Eds.), *SeceS '11: Proceedings of the First International Workshop  
661 on Security and Privacy Preserving in e-Societies*, pp. 1–6.

662 Schweizer, P.-J. 2019. Systemic risks – concepts and challenges for risk governance. *Journal of Risk  
663 Research* 24(1), 78–93. doi:10.1080/13669877.2019.1687574.

664 Sheffi, Y. and J. B. Rice Jr. 2005. A supply chain view of the resilient enterprise. *MIT Sloan Management  
665 Review* 47(1), 41–48.

666 Stasik, A. and D. Jemielniak. 2021. Public involvement in risk governance in the internet era:  
667 impact of new rules of building trust and credibility. *Journal of Risk Research*, 1–17. doi:  
668 10.1080/13669877.2020.1864008.

669 Steed, J. C. 2000. Engineering project risk management. *Engineering Management Journal* 10(1), 43. doi:  
670 10.1049/em:20000112.

671 Tchangani, A. P. 2015. BOCR analysis: A framework for forming portfolio of developing projects. In  
672 M. Al-Shammari and H. Masri (Eds.), *Multiple Criteria Decision Making in Finance, Insurance and  
673 Investment*, Multiple Criteria Decision Making, pp. 189–204. Springer International Publishing. doi:  
674 10.1007/978-3-319-21158-9\_9.

675 Teger, A. I., D. G. Pruitt, R. St. Jean, and G. A. Haaland. 1970. A reexamination of the familiarization  
676 hypothesis in group risk taking. *Journal of Experimental Social Psychology* 6(3), 346–350. doi:  
677 10.1016/0022-1031(70)90068-5.

678 Tulasi, Ch. L. and A. R. Rao. 2015. Resource allocation in project scheduling application of fuzzy ahp. In  
679 *Proceedings of the International Conference on Technology Business Management*, pp. 512–521.

680 Ullah, A., M. Pirzada, S. Jahan, H. Ullah, N. Turi, W. Ullah, M. F. Siddiqui, M. Zakria, K. Z. Lodhi, and  
681 M. M. Khan. 2018. Impact of low-dose chronic exposure to bisphenol a and its analogue bisphenol b,  
682 bisphenol f and bisphenol s on hypothalamo-pituitary-testicular activities in adult rats: A focus on the  
683 possible hormonal mode of action. *Food and Chemical Toxicology* 121, 24–36.

684 Vafaei, N., R. A. Ribeiro, and L. M. Camarinha-Matos. 2016. Normalization techniques for multi-criteria  
685 decision making: analytical hierarchy process case study. In *Doctoral Conference on Computing,  
686 Electrical and Industrial Systems*, pp. 261–269. Springer.

687 Vamvakas, P., E. E. Tsiropoulos, and S. Papavassiliou. 2019. Risk-aware resource management in public  
688 safety networks. *Sensors* 19(18), 3853. doi:10.3390/s19183853.

689 Vandenberg, L. N., R. Hauser, M. Marcus, N. Olea, and W. V. Welshons. 2007. Human exposure to  
690 bisphenol a (bpa). *Reproductive Toxicology* 24(2), 139–177.

691 Waddock, S., G. M. Meszoely, S. Waddell, and D. Dentoni. 2015. The complexity of wicked problems in  
692 large scale change. *Journal of Organizational Change Management* 28(6), 993–1012. doi:10.1108/jocm-  
693 08-2014-0146.

694 Wang, D. and W. H. Ip. 2009. Evaluation and analysis of logistic network resilience with application to  
695 aircraft servicing. *IEEE Systems Journal* 3(2), 166–173.

696 Ward, Stephen and Chris Chapman. 2008. Stakeholders and uncertainty management in projects. *Construction  
697 Management and Economics* 26(6), 563–577. doi:10.1080/01446190801998708.

698 Weber, R. H. 2010. Internet of things - new security and privacy challenges. *Computer Law and Security  
699 Review* 26(1), 23–30.

700 Wijnmalen, D. J. D. 2007. Analysis of benefits, opportunities, costs, and risks BOCR with the  
701 AHP,ANP: A critical validation. *Mathematical and Computer Modelling* 46(7), 892–905. doi:  
702 10.1016/j.mcm.2007.03.020.

703 Winston, A. 2014. Resilience in a hotter world. *Harvard Business Review* 92(4), 56–64.

704 Wiratanaya, G. N., D. P. Darmawan, L. M. Kolopaking, and W. Windia. 2015. Selection of beef production  
705 systems in bali: An analytical network with bocr approach. *Journal of Economics and Sustainable  
706 Development* 6(2), 45–59.

707 Zhou, J., X.-H. Chen, S.-D. Pan, J.-L. Wang, Y.-B. Zheng, J.-J. Xu, Y.-G. Zhao, Z.-X. Cai, and M.-C. Jin.  
708 2019. Contamination status of bisphenol a and its analogues (bisphenol s, f and b) in foodstuffs and the  
709 implications for dietary exposure on adult residents in zhejiang province. *Food Chemistry* 294, 160–170.



