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Abstract: Resistance spot welding is an established joining process in the production of safety-rele-
vant components in the automotive industry. Therefore, a consecutive process monitoring is essen-
tial to meet the high-quality requirements. Artificial neural networks can be used to evaluate the
process parameters and signals to ensure the individual spot weld quality. The predictive accuracy
of such algorithms depends on the provided training data set and the prediction of untrained data
is challenging. The aim of this paper is to investigate the extrapolation capability of the multi-layer
perceptron model. That means, that the predictive performance of the model will be tested with
data that clearly differs from the training data in terms of material and coating composition. There-
fore, three multi-layer perceptron regression models were implemented to predict the nugget diam-
eter from process data. The three models were able to predict the trained datasets very well. The
models, which were provided with features from the dynamic resistance curve predicted the new
dataset better than the model with only process parameters. This study shows the beneficial influ-
ence of the process signals on the predictive accuracy and robustness of artificial neural network
algorithms. Especially, when predicting a data set from outside of the training space.

Keywords: Automotive; Resistance Spot Welding; Quality Assurance; Quality Monitoring; Artifi-
cial Intelligence

1. Introduction

Resistance spot welding (RSW) is an efficient and highly automated joining technol-
ogy used in the car manufacturing. A typical car body has up to 5000 resistance spot welds
[1] with a varying number of joining partners, different materials and different sheet thick-
nesses [2]. These variations, the high process speed and the several sources of errors, like
gaps and improper component alignment [3] increase the process complexity [4]. This is
also reflected in the high testing efforts and the extensive destructive tests in mass pro-
duction [3]. An automotive production line of high-volume models produces daily more
than 7 million welds [5]. It can be estimated that up to 20% of the spot welds are only
made to ensure the component safety of welded assemblies [6]. Hence, a reliable process
monitoring is essential to save costs and limit the production effort.

The welding power supply manufacturer developed real-time control approaches [7] that
record the dynamic resistance (DR) curve for each spot weld and compare it with a previ-
ously determined optimal master data set. In case of deviations, the weld current is

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202110.0411.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2021 d0i:10.20944/preprints202110.0411.v1

controlled [8] to keep the heat input constant for all welds. The final quality documenta-
tion of the process, is carried out by the production personnel. For this purpose, destruc-
tive testing [8] is applied on random samples to measure the geometrical attributes of the
weld nugget. For example, it is necessary to ensure that the weld nugget is large enough
and is formed across all joining planes [9], because of its significant influence on the me-
chanical properties of the welded joint [10]. In this case, the quality evaluation is largely
dependent on the experience of the inspector and the inspection interval [8].

A digitalized solution that provides consistent results regarding the individual qual-
ity evaluation of spot welds is desirable: Especially safety-relevant components (e.g. car
bodies) require a comprehensive documentation [11] to ensure the traceability of manu-
facturing failures [12]. In some disciplines, e.g. additive manufacturing, there are already
efforts towards the individual documentation of the component quality [13]. The aim is
to evaluate the quality of an individual production step (additive manufacturing, weld-
ing, etc.) with the aid of sensors, algorithms and simulations to document it and finally to
certify it [14]. Especially, the growing trend of offering highly configurable products,
drives the increase of the manufacturing efforts [15]. To overcome this rise of the com-
plexity, artificial intelligence (AI) methods are suitable tools.

As data-driven approaches, Al algorithms are appropriate to predict the RSW process
[16]. They are able to model very complex, highly nonlinear relations [17]. The implemen-
tation and modelling of the algorithm represent the main effort, whereas the calculation
of each weld spot can be done in real time [18]. Furthermore, Al algorithms can be used
to leverage historical process data [19] in order to improve process parameter predictions.
In contrast to empirical and statistical models, the AI models do not require any assump-
tions and prior knowledge about the physical phenomena of a context to be modelled.
Commonly used Al algorithms are artificial neural networks (ANN) [20], decision trees
[21] and support vector machines [20].

Al algorithms have been already used to reliably perform quality checks during manufac-
turing [22]. Afshari et al. [23] implemented an ANN based on process parameters to esti-
mate the size of the weld nugget in RSW of two-sheet joints. Subsequently, the authors
compared the results with a finite element simulation and found that both, ANNs and
simulations are equivalent in terms of accuracy. Ahmed et al. [18] implemented a decision
tree algorithm to predict the spot diameter from process parameters like: current, weld
time, material and coating. The authors trained the algorithm with the whole dataset and
showed that the trained parameters were sufficient to predict the nugget diameter well.
Arunchai et al. [24] implemented an ANN algorithm to predict the shear strength of alu-
minium RSW specimens from the following parameters: current, electrode force, welding
time and contact resistance. The algorithm was able to predict the shear strength accu-
rately. The model was trained with 75% of the whole data set and tested with 25%. This
so called “train-test split” technique is used to evaluate the performance of an Al algo-
rithm. The train dataset is used to fit the model, whereas the test dataset is used to evaluate
the accuracy. Panda et al. [20] implemented a support vector machine algorithm to predict
the failure load of spot welded aluminium sheets. Martin et al. [25] used an ANN algo-
rithm to evaluate the welding time, current, electrode force and to predict the tensile shear
strength of spot-welding joints of AISI 304.

The accuracy and robustness of the models is dependent on the provided data for the
training. Wang et al. [17] examined the application of Al models in welding for monitoring
and diagnosis purposes. They acknowledged that Al algorithms can predict the observed
processes well, but can have large errors when extrapolating beyond the observation
range. Zhou et al. [22] stated that most Al approaches lack generality and can only be
applied in limited fields where the input data is sufficiently available. Fabry et al. [26]
investigated the extrapolation capabilities of an ANN model at the edge and beyond the
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trained parameter space. The authors found out, that often high deviations from the orig-
inal data occurred. Therefore, they recommended to only rely on the approximation of a
previously trained ANN for areas inside the parameter space of the training dataset.
Hence, the evaluation of unknown data, which were not part of the training, is still chal-
lenging. A possible approach to improve the robustness is to include process signals. It
can be assumed, that the behaviour of the process signals for different specimens and ma-
terials will be on average similar.

In their work, Boersch et al. [27] developed a decision tree algorithm for the prediction of
weld spot diameters based on process data and features extracted from the DR curve. The
authors segmented the curve and calculated for every segment different geometric and
statistical features. This resulted in a highly accurate decision tree regression model to
predict the weld nugget size. Wan et al. [28] used an ANN to predict the size of weld
nuggets during RSW of two-sheet joints. The authors also were able to achieve a high
prediction accuracy by evaluating the DR. Lee et al. [29] implemented an Al algorithm to
predict the electrode misalignment based on process parameters and the DR curve. The
authors showed that Al models trained with features from the DR curve are able to predict
data that differs slightly from the training data.

In the literature, the authors were predicting with high accuracy target variables like nug-
get diameter and shear strength mainly on the basis of process data obtained from lab
environments. The conditions in the industry differ from those in the laboratory. To trans-
fer such Al models to a real manufacturing, it is necessary to prove the robustness of the
models. In this paper, the weld nugget diameter will be predicted from process parame-
ters and signals using a multi-layer perceptron (MLP) regression algorithm. Moreover,
the behaviour of the Al model with a new data set, which has not been part of the training,
will be tested and the extrapolation ability of the model will be investigated

2. Materials and Methods
2.1. Experimental Procedure

The welding experiments were conducted using a servo-mechanical C-type welding
gun, equipped with F1-16-20-8-50-5.5 type electrode caps according to DIN EN ISO 5821
[30] and a medium frequency inverter power source. The experimental setup is illustrated
in Figure 1, it includes a Rogowski-coil to measure the current and voltage sensors at the
electrodes to calculate the DR for each weld. The Signals are recorded using the
SPATZMulti04 Weld Checker with a maximum sampling rate of 20 kHz and an accuracy
of 3% [31], which is adequate for the data acquisition in RSW [8].

The welding current range (WCR) for every steel was determined in accordance to the
standard SEP 1220 [32]. The electrode force, the welding time, holding time and squeeze
time were kept constant during the experiments, only the current was varied. The first
weld is done with a current of 3 kA. For the further welds, the current is increased by 200
A per weld, until the first spatter occurs. Afterwards, the current is reduced by 100 A until
no spatter occurs. The current at which no spatter occurs is determined as the maximum
current of the WCR. The minimum current of the WCR is the current that at least creates
a weld spot that is larger or equal than the minimum spot diameter, which is 4 times the
square root of the sheet thickness.

After the welding experiments, destructive testing was conducted to separate the welded
sheets and to measure the nugget diameter. Afterwards, the recorded process parameters
and signals were linked together and saved in a database.
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Figure 1. Experimental setup. Schematic of the welding setup: welding gun with a Rogowski coil
and voltage sensors.

Figure 2.a shows an exemplary weld nugget directly after the torsion testing. In Accord-
ance to DVS 2916-1 [33], the fracture surface after a torsion test, can be subdivided into an
adhesive zone and the weld nugget. In Figure 2.b marks these areas; the blue ring denotes
the adhesive zone and the yellow area the weld nugget. The weld nugget diameter is de-

termined as the average of the vertical and horizontal measurement of extracted circle.
: PsiE) mmisa 3

(a) (b)

Figure 2. Exemplary specimen after torsion testing: a) Weld nugget after torsion testing; b) adhesive zone is represented
by the blue ring and the yellow circle marks the weld nugget.

Table 1 lists all advanced high-strength steels (AHSS), which were used in this work. The
sheet thicknesses range from 1.0 mm to 2.2 mm. All the materials are of one strength class,
but differ in the coating and in the specific material composition because they were pro-
vided by different suppliers.
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Table 1. Material overview. Name of materials in accordance to DIN EN 10346:2015 and DIN EN

10152:2017
No. Supplier Name of Material Sheet thickness
1 HCT 780X +ZM90 1.8
2 HCT 780X +ZE50/50 1.0
3 1 HCT 780X 1.5
4 HCT 780X +Z100 22
5 HCT 780X +Z110 1.5
6 HCT 780X +ZF100 1.5
7 HCT 780X +ZM120 1.5
8 2 HCT 780X +ZM100 1.75
9 HCT 780X +Z140 1.8

2.2. Data Analysis

The collected database consists mainly of discrete quantitative data: the applied elec-

trode force, the current the process times, the material names and their sheet thicknesses.
The DR is recorded as time-series data for each spot. All the data is linked through a weld
identification number, to assure the traceability and to connect the measured diameters to
the recorded data.
For pre-processing, a numeric label was assigned to each material and the data was scaled
to reach similar input units. Then, the features of the DR curves were extracted. Two ap-
proaches were used in this paper. A manual feature extraction based on physical consid-
erations was done and an automated approach using the python library “TSFRESH” [34]
was applied to extract the features from the DR curves. Figure 3 shows a typical DR curve
[29] with a starting point (SP), two peaks (P1 and P2) and an end point (EP). The DR curve
can be subdivided into three stages. In the first stage the DR curve drops from the SP to
the local minimum P1, due to current application and the enlargement of the contact sur-
face that forces a decline of the film resistance at the faying surfaces and electrode work-
piece interface. The second stage is characterized by a steep rise of the DR until it reaches
the local maximum P2, due to the starting of the nugget formation and the accompanying
temperature rise. With the initiating nugget solidification in the third stage, the DR curve
sinks from P2 to EP until the welding process is completed. Further, the area (A) under
the curve was also calculated, as it correlates with the heat input, which influences the
nugget size.

SP p2

P1 = P

dyn. resistance

n >
time

Figure 3. Typical DR curve for steel [29]. The following features are marked: Starting point (SP),
Peak no. 1 (P1), Peak no. 2 (P2), end point (EP) and Area (A) under the curve.
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The feature extraction tool “TSFRESH” calculated a total of 779 time-series features from
the DR curve and their statistical significance. Nearly one-third of the features were la-
belled as statistically significant by “TSFRESH”. The five most significant features were
taken as input data for the Al algorithm. These features mainly include statistical values
that are less descriptive than the manually extracted features from Figure 3 (e.g. the sum
of reoccurring data points). However, also the global minimum of the curve was identified
as one of the most significant features.

In this work, the extrapolation capabilities of the MLP model will be tested. Hence,
the available data is subdivided mainly into two datasets. The first dataset includes only
the data of the materials that were provided by the first supplier and the second dataset
is related to the data of the materials of supplier no. 2. Then, three different models will
be set up. The first model evaluates only the process parameters, the second model in-
cludes also the manual extracted features from the DR curve and the third model will be
trained with the automated extracted features. All models are set up as MLP regressors
with one hidden layer.

A MLP regressor is a supervised learning algorithm that learns the following function by
training on a dataset:

f:R™ > R",
)
fO) = wiaxy +worxy + o+ Wi Xom,
where x represents the input variables, w is devoted to the weights of the input variables,

m is the number of inputs, n represents the number of outputs and k is the number of the
neurons of the hidden layer.

The first model has seven input neurons with one hidden layer and one output layer. The
input neurons evaluate the following parameters: current, force, base material, the base
thickness, the top material and the top thickness. The second model includes the following
features, which were extracted manually: starting point of the DR curve, end point, area
under the curve, first and second peak and their positions on the timeline. The third model
includes the five most significant features from the DR curve, which were extracted using
“TSFRESH”. The second and the third model have also one hidden layer and one output
layer to predict the nugget size.

2.3. Evaluation Metric

The deviation between the measured diameters and the predictions will be expressed with
the relative error of the prediction:

5 = el 5905, @)

m

with dm as the measured nugget diameter and d; as the prediction.

This metric will be calculated for each prediction. Then the calculated values are divided
into three groups. The first group contains all predictions with an error of less than 10 %,
the second group includes the predictions with an error between 10% and 20% and the
last group stands for the predictions with an error larger than 20%. In this work, an error
of less than 10% will be determined as a good prediction and a prediction with an error
between 10% and 20% is still acceptable, whereas predictions with errors larger than 20%
will be classified as an inaccurate prediction. Then, the predictions in the different groups
are counted to calculate a proportion of the groups in terms of the total number of the
predictions and the results will be plotted in a bar chart.
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3. Results and Discussion

Figure 4 shows a scatter plot that depicts the nugget diameters over the applied cur-
rent. It can be seen that the nugget size depends on the applied current. In general, an
increase of the current leads to larger nugget diameters. Also, other parameters (such as
electrode force, thickness and material) have an influence on the nugget formation, which
can be seen in the deviations of the nuggets with the same current level. The data is sub-
divided into two datasets which differ mainly in the material composition and the coating
of the specimens. The first dataset contains only the data related to the specimen that were
made out of the materials from supplier 1 and the second dataset represents the specimen
that were made out of the materials from supplier 2. Dataset 1 and 2 have some overlaps;
however, they differ in the applied process parameters. For example, the weld spots of
dataset 1 experienced a current from 3.2 kA to 8.3 kA, whereas the samples of dataset 2
experienced a current between 4.8 kA to 9.0 kA. In dataset 1, three different electrode
forces were applied: 3.5 kN, 4.5 kN and 5.0 kN, whereas in dataset 2 only an electrode
force of 4.5 kN was applied. The sheet thickness in dataset 1 ranges from 1.0 mm to 2.2
mm, whereas in dataset 2 only two sheet thicknesses were used: 1.5 mm and 1.8 mm.

81 @ datasetl
@® dataset?
7_
£
£ o o0
0 51 ..:!
: I
8 47 goople °
© ® ®
o o o
D 3 - .. '. °
& ° o8 o
S PY :.
C2-. .. . .
11 ® Y
O T I T T I T
3 4 5 6 7 8 9

current in kA

Figure 4. Data overview. Green spots marks measured diameters from supplier 1 and black spots
from supplier 2.

The first MLP model was trained only with the process parameters: current, welding time,
electrode force, sheet thickness and material. Figure 5.a shows a scatter plot of the meas-
ured nugget diameters from the dataset 1 and the blue crosses marks the prediction. It can
be seen, that the algorithm provides a good prediction of the dataset. The bar chart shows,
that 85% of the predictions had a relative deviation from the measured nugget diameters
of less than 10%. Figure 5.b shows a scatter plot of the measured nugget diameters from
dataset 2, which was not part of the training. Similar to the prior image, the predictions
are represented by the blue crosses. It is obvious that the model overestimates the nugget
diameter and it was not able to map the distribution of the nugget diameters correctly.
This can also be seen in the bar chart, 90% of the predictions had a relative deviation from
the real nugget diameters of more than 20%.
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Figure 5. Predictive performance of the first model. Only process parameters were used as input for training: (a) scatter
plot of the measured and predicted nugget diameters from dataset 1; (b) scatter plot of the measured and predicted nugget
diameters from dataset 2. The bar charts show the predictive accuracy based on the prescribed deviation.

The second MLP model was trained with the data from dataset 1 and the manual dynamic
resistance features. The features were extracted from the curves through the identification
of characteristic points: SP, P1, P2, EP and A. Figure 6.a shows a scatter plot of the meas-
ured nugget diameters from dataset 1. The algorithm provides a very good prediction of
the data set, similar to the first model. The bar chart shows, that 87% were predicted with
an acceptable accuracy of less than 10% and the model was able to map the distribution
of the nugget diameters very well. In Figure 6.b, the predictions are mostly spatially close
to the measurements with a considerable number of outliers. In comparison to the first
model, this model was also able to map the distribution of the nugget diameters of the
untrained dataset 2. The bar chart shows that only 5% of the predictions had a relative
deviation from the real nugget diameters of less than 10% and 32% have a relative devia-
tion between 10% and 20%. The proportion of predictions with a relative error of more

than 20% is still significantly smaller in this model than in the first one.
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Figure 6. Predictive performance of the second model. The training included manually extracted dynamic resistance fea-
tures: (a) scatter plot of the measured and predicted nugget diameters from dataset 1; (b) scatter plot of the measured and
predicted nugget diameters from dataset 2. The bar charts show the predictive accuracy based on the prescribed deviation.

The third MLP model was implemented with dataset 1 and validated with dataset 2. In
addition to the process parameters, the DR curves were also involved in the training. The
curves were measured during the experiments and were assigned to each spot. An auto-
mated feature extraction tool “TSFRESH” was used to determine the relevant features of
the DR curve. Figure 7.a shows that the third model achieved the highest accuracy rate in
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predicting dataset 1. The bar chart shows, that 90% of the predictions had a relative devi-
ation from the measured nugget diameters of less than 10%. From the scatter plot in Figure
7.b and the bar chart below it, it is obvious that the third model is the most robust algo-
rithm in this work. The MLP regressor represents the second dataset well, which can be
seen in the bar chart. 35% of the predictions had a relative deviation from the real nugget
diameters of less than 10% and another 17% have a relative deviation between 10% and
20%. The proportion of predictions with a relative error of more than 20% is significantly
smaller in this model than in the first and second one.
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Figure 7. Predictive performance of the third model. The training included the dynamic resistance features extracted by
“TSFRESH”: (a) scatter plot of the measured and predicted nugget diameters from dataset 1; (b) scatter plot of the meas-
ured and predicted nugget diameters from dataset 2. The bar charts show the predictive accuracy based on the prescribed
deviation.

The three models were able to predict the dataset 1 well with an accuracy ranging from
85% to 90%. From this it follows that, the structure of the models and the respective input
data are sufficient to evaluate the RSW process data and to predict the weld nugget diam-
eter. This was already shown in the literature by Afshari et al. [23]. Similar to Boersch et
al. [27] and Wan et al. [28] the models 2 and 3 achieved higher accuracy rates than model
1, due to the evaluation of the dynamic resistance features.

The models were not able to achieve such high accuracy rates with dataset 2. However,
the second and third model were able to yield significantly better results than the first
model. Hence, the models which were trained with features from the dynamic resistance
curve, can be seen as more robust than the first model that was trained only with process
parameters. In contrast to the work of Fabry et al. [26], the second and third model were
able to extrapolate to a certain degree. Both models leveraged the characteristic behaviour
of the dynamic resistance curve [8] to predict the nugget diameter for untrained input
parameters. Similar observations were made by Lee et al. [29]. The authors trained their
model with calculated features based on wavelet-transformation and they succeeded in
the prediction of data from outside of the trained process parameter space. In terms of
predicting a dataset from outside of the parameter space of the training data, the third
model performed better than the second one, because it included the most significant fea-
tures of the dynamic resistance curve.

4. Conclusions

This work aimed to investigate the extrapolation capabilities of an artificial neural net-
work algorithm to predict the nugget diameter of resistance spot welds of advanced high-
strength steels. Three multi-layer perceptron models were implemented and trained on
the same data set. The models predicted and mapped the trained dataset well. Hence, the
process parameters and structure of the models were sufficient to represent the RSW pro-
cess and to predict the nugget diameter. The first model was trained only with process
parameters, whereas the second and third model were provided with features from the
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dynamic resistance curve. This resulted in an increase of the predictive accuracy of both
models. Two approaches were used: a manual feature picking, based on the identification
of characteristic points on the dynamic resistance curve and an automated feature extrac-
tion tool that calculates a large number of possible features.

The second and third model were able to extrapolate and to predict the nugget diameters
from the non-trained data set. The latter was more successful in extrapolating, because the
most significant features were included. Hence, to ensure a certain level of extrapolation
capability and robustness for Al algorithms in RSW, it is essential to involve process sig-
nals, like the dynamic resistance curve in the training of the Al algorithms and to choose
the most significant ones for the training.
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