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Abstract: Two-wheeler vehicles are the most significant mode of transportation for Kenyans in both 

rural and urban regions thereby contributing to local air pollution, and greenhouse gas emissions 

(GHG). The transition to electric two-wheeler vehicles can make a significant contribution to reduc-

ing GHG and improving the socio-economic lives of people living in rural Kenya. Renewable energy 

systems can considerably contribute to the charging of electric two-wheeled vehicles, thus leading 

to the reduction of carbon emissions and the expansion of renewable energy penetration in rural 

Kenya. Therefore, this paper focuses on integrating and modelling electric two-wheeled vehicles (e-

bikes) into an off-grid photovoltaic Water-Energy Hub located in the Lake Victoria Region of West-

ern Kenya using the Conventional and Renewable Energy Optimization (CARNOT) Toolbox in 

MATLAB / Simulink. Electricity demand data obtained from the Water-Energy Hub was investi-

gated and analysed. Potential solar energy surplus was identified and electric two-wheeler vehicles 

were integrated based on the surplus. A field measurement investigation on the energy consump-

tion of the electric two-wheeler vehicles based on the rider’s driving behaviour was also carried. 

The annual electricity demand of 27,267 kWh, photovoltaic (PV) electricity production of 37,785 

kWh with an electricity deficit of 370 kWh were obtained from the simulation results. To reduce the 

electricity deficit, a load optimisation algorithm was developed to optimally integrate the electric 2-

wheeler vehicle into the Water-Energy Hub. It was found that using the load optimisation algo-

rithm, the annual electricity deficit was reduced to 1 kWh and the annual electricity demand was 

increased by 11% (30,767 kWh) which is enough to charge 4 additional electric two-wheeler batteries 

daily. 

Keywords: Lake Victoria; Photovoltaic; off-grid; model; electric two-wheeled vehicle; Water-Energy 

Hub; CARNOT; 

 

1. Introduction 

To reduce carbon dioxide emissions, a global leapfrog to electric vehicles is already 

ongoing in countries like Norway, China, etc. Transportation accounts for about a quarter 

of all CO2 emissions from energy usage [1]. By 2050, when the global number of passenger 

cars is expected to more than double, it is likely to hit one-third. This rise is primarily 

anticipated in low-income countries, where vehicle emissions standards are rarely en-

forced [1].  
Electric vehicles (EVs) have an efficiency of 80–95% [2], which makes them a better 

alternative than conventional vehicles (CVs), which have an efficiency of less than 20% 

[3]. EVs are a crucial component of modern transportation because they include a range 

of innovative industrial technologies (e.g., an electric motor, a battery, and a charging fa-

cility). However, electric car adoption is not progressing as quickly as expected. The re-

stricted range and long charging time of electric vehicles are often viewed as the most 

significant impediments to their adoption [4, 5]. Despite their high purchase price, electric 

vehicles have low maintenance costs and use far less energy than conventional automo-

biles [6]. 
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As the demand for power and electricity by EVs was rising rapidly, numerous re-

search centers and energy supply businesses started seriously thinking about decreasing 

pressure on local electricity networks due to the increasing number of charging outlets for 

electric vehicles. The most efficient way of addressing this deficiency in the face of local 

electricity grids is to supply the EV charging infrastructure [7] with renewable energy 

sources (RES), like wind and solar. 

RES can considerably contribute to the reduction of carbon emissions and the expan-

sion of renewable energy penetration. However, the challenges of implementing RES are 

in its variabilities such as seasonal changes to wind and sunlight, and daily cloud ran-

domness in solar power panel coverage [8]. Hence, proper design of solar PV systems is 

important to avoid oversizing or under-sizing the system, resulting in either excessive 

capital costs or insufficient solar electricity production [9].  

Therefore, this paper presents the results of a modelled off-grid photovoltaic Water-

Energy Hub (WeTu Hub) that is implemented by Siemens Foundation through WeTu Ltd (i.e. 

its implementation partner) [10] around Lake Victoria. The WeTu Hub is used to provide 

reliable and clean electricity for charging fishing lanterns, other electric appliances, and 

batteries for electric 2-wheeler (e-bikes) for water and local transportation.  

2. Motivation 

More than 90% of Africa’s transportation of goods and services is done by road which 

leads to a huge dependency on fossil fuels and contributes to greenhouse (GHG) emis-

sions. This huge dependency on fuels mostly imported, pressurizes African governments 

to heavily subsidise fuels to protect consumers from ever-increasing oil prices. Despite 

this, consumers and vehicle drivers are often faced with huge cost burdens, fuel shortages 

leading to long hours of queuing for fuel [11, 12]. 

Moreover, SLoCaT [13] reports that global transport emissions had grown by 31 % 

from 2000 to 2016 and Asia had the highest transport emission growth of 92 % followed 

by Africa (84 %), then Latin America (49 %) while they have been falling in Europe and 

North America. Transport emissions which are primarily driven by an increase in passen-

ger and freight transport activity have increased by 75 % in SSA from 2000 to 2016 to a 

level of 156 million tonnes (Mt) CO2. This CO2 transport emissions increase includes e.g., 

161 % in Algeria, 153 % in Ghana, 123 % in Kenya, 73 % in Egypt, and 40 % in South Af-

rica.  

Mbita is chosen for this study because it fits well to the criteria set for the selection of 

case study location (i.e., opportunities for short-range electrical vehicles). The transport 

business in Mbita is very vibrant and a significant source of income for the residents of 

Mbita. The motorcycle is the most important mode of transport in Mbita and is used to 

transport goods and people within short distances and to the town of Kisumu, which is 

the largest urban centre in the region [14].  

However, from a general public welfare point of view, motorcycle transport presents 

clear disadvantages in terms of negative externalities such as pervasive noise, increased 

local air pollution, and greenhouse gas emissions [15]. Consequently, given that gasoline-

powered motorcycles present huge economic and environmental challenges, the transi-

tion to electric motorcycles can make a significant contribution to improving the socio-

economic lives of people living in Mbita and around Lake Victoria by reducing fuel costs, 

CO2 emissions. 

 Therefore, this paper intends to optimally integrate e-bikes into an off-grid solar-

powered Water-Energy Hub (WeTu Hub) around Lake Victoria in Western Kenya. The 

paper presents the analysis of the measured electricity consumption data of the WeTu Hub, 

a simulation model of the WeTu Hub using the CARNOT simulation toolbox in MATLAB 

/ Simulink environment, identification of potential energy surplus for e-bikes integration. 

The paper also presents a measurement investigation on distance-related energy con-

sumption of e-bikes in kWh / 100km. The e-bikes considered in this study were provided 

by WeTu Ltd through Siemens foundation and these comprise of e-OpiBus, e-BodaWerk, 

and Anywhere Berlin e-cargo bikes.  
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3. Reviews on optimal modelling and sizing of EV charging infrastructure 

The transition and penetration of EVs into the society have been made possible due 

to the investments in battery charging infrastructure. However, this increases the pressure 

on the conventional electricity distribution networks (CEDN). Therefore, the capacity of 

electricity distribution systems needs to be upgraded through the integration of RESs into 

the charging stations to reduce potential overload challenges. Moreover, it is the most 

demanding task to fulfill the expanding demands of EVs by optimising their charging 

infrastructure size and operation. Several studies to overcome the above difficulties have 

been documented and are presented in Table 1.  

From Table 1, it can be seen that research on off-grid and on-grid PV systems used 

for electric vehicle charging had been conducted. This paper intends to adapt the work of 

[16] by integrating e-bikes (e-motorcycles and e-cargo) into a rural off-grid PV system. 

This paper will also present the optimal integration of the e-bikes using a load optimisa-

tion algorithm that utilises 7 days PV forecast which is missing in the work of [16].  
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Table 1. Summary of literature reviews on EV charging infrastructure.  1 

Study Configura-

tion 

Type of 

Vehicle 

System size Location Research Findings 

[17] Off-gid PV E-car   281 kWp PV with 

420 kWh battery 

storage 

Spain • The system was optimised using Hybrid Optimization Model for Electric Renewable 

(HOMER) software and then enhanced the outcome using the load shifting principle.  

• In total, 12 EVs' full recharges of 35 kWh were obtained by employing 50 kW DC fast 

charge with 281 kWp of photovoltaic units over 13.5 hours per day. 

• Following the obtained results, the proposed price (0.4 € / kWh during [15h to 19h] and 

[8h to 11h], and 0.25 € / kWh during [11h to 15h]) applied for the off-grid PV-BESS is 

quite competitive compared to the grid-connected charging stations. 

• The obtained results demonstrate that the off-grid PV-BESS are technically and econom-

ically viable and reliable. Moreover, they are profitable while allowing a significant re-

duction of air pollution.  

[18] PV, Grid,  

diesel genset 

E-cars 300 kWp PV Canada • To allow EV customers to travel long distances with ease, the feasibility of isolated EV 

charging stations (EVCS) along highways was studied in this work. 

• It was noted that the diesel-solar PV-BESS mix had the lowest net present cost (NPC) 

and a fairly small carbon footprint when compared to a diesel-based EVCS.  

• Although a fully renewable-based EVCS, which had no carbon footprint, was the most 

preferred, the NPC was higher. 

[19] PV, Wind E-car 200 kW wind tur-

bine; 250 kWp PV 

Turkey • The optimal solution for the hybrid system consists of 44.4% wind energy and 55.6% 

solar energy and the total annual electricity production is 843 MWh with the 0.055 € / 

kWh production cost. 

• The hybrid charging station works 14 h a day and charges 5 electric vehicles per hour 

[20] PV, Grid E-car 294 kWp PV Sweden • The results obtained show that 823.2 kWh daily energy was generated throughout the 

year with an approximate 136 kWh daily energy output in winter. 

• The system can charge up to 27 electrical vehicles at once with 6.2 hrs of charging time 

and 15.1 hrs of charging time using the AC power grid. 

[21] Off grid PV E-car 1.02kWp USA • A smart electric car was efficiently charged using off-grid solar energy  

• Three months of testing showed that the car was able to strictly charge from the off-

grid PV system without power supplied from the grid. The results showed that the sys-

tem was able to provide 1 - 4 kWh a day which translated to 5 - 20 km of driving. 

[22] PV, Grid E-bikes 2.61 kWp PV Nether-

lands 

• A DC charger was used to provide DC power when charging from the PV panels and 

an AC charger when charging from the grid.   

• A 10.5 kWh battery storage was used to support off-grid and grid operations. The re-

sults obtained show that the system was able to provide DC, AC, and contactless 

charging from 2.6 kW PV power while considering the grid connection for backup sup-

ply. 

[23] PV, Grid E-car 50 kWp PV South 

Korea 

• The research analysed the charging schedule of an electric vehicle based on electricity 

consumption and PV output predictions for smart homes.  

• The electricity consumption and PV output predictions were made by a time series 

model with weather forecast and variability.  

• The study considered 50 kWp PV panels and 3 electric vehicles for numerical analysis.  

The proposed method showed that the vehicles can be charged during a low peak pe-

riod, thereby, efficiently minimizing charging costs. Effective electric vehicle charging 

exclusively based on numerical assumptions and simulation, however, can never be ac-

curate. Similarly, the paper did not show the impacts of the electricity consumption 

and PV output forecast error. 
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[24] PV, Grid E-cars 10 kWp PV Nether-

lands 

• Grid, PV, V2G 10 kW solar-powered EV charger with V2G for workplaces in the Neth-

erlands is analysed. 

• 10 kWh local storage reduced grid energy exchange by 25%. 

• It was proved that local battery storage does not eliminate the grid dependence of the 

EV - PV charger in the Netherlands, especially due to seasonal variations in insolation 

[25] Microgrid-

PV,  

Genset 

E-car 13 kWp PV; 51 

kVA Genset 

Mal-

dives 

• Energy management scheme for electric vehicle (EV) charging using photovoltaic (PV) 

and energy storage, connected to the microgrid was presented based on the heuristic 

rule-based strategies to optimize energy flow within a microgrid 

• During the absence of PV power, the EV demand is fulfilled by the GenSet 

• Using the PV as the main source for charging Evs, the burden on the microgrid is reduced 

significantly thereby becoming more economical compared to charging from the 

standalone generator. 

[26]  Microgrid-

PV,  

Genset 

E-car 7,497 kWp PV Rwanda • Integration of solar PV microgrids for the satisfaction of electric vehicle (EV) technology 

in Rwanda using HOMER. 

• The outcome of the proposed research can lead to an efficient increase in national energy 

resource exploitation in Rwanda. 

[16] Standalone 

PV- mini-grid 

E-car 4.5 kWp PV Gambia • Research explores the commercial viability of using electric vehicles (EVs), recharged by 

solar mini-grids, to provide transport services in off-grid communities in the Gambia 

using 4.5 kWp of photovoltaic modules from the roof of a parking shelter for the vehicle. 

• Results provide confidence that several modes of operation are possible in which solar-

recharged electric taxis can be commercially viable in The Gambia. The most optimistic 

scenarios arise from the use of lightweight vehicles, such as tuk-tuks (autorickshaws) 

and cargo bikes. 

[27] PV, Grid, 

Wind,  

Hydro 

E-car 3,175 kWp PV, 60 

Wind turbines, 

50.7 kW hydro 

South 

Korea 

• Explores the use of potential renewable electricity generation systems by local taxi ser-

vices in Daejeon, using HOMER. 

• Systems using solar energy, wind energy, batteries, converters, and the electrical grid are 

proposed for the third stage of the adoption of electric-powered taxis (EP taxis) in Dae-

jeon, South Korea  

• The uncertainty in producing electricity by renewable energy resources supports the eco-

nomic feasibility and reliability of the proposed grid-connected system.  

• Simulation results indicated that establishing renewable electricity generation systems 

with grid connections is a more optimal solution than independent renewable electricity 

generation systems. It may be economic to sell any surplus electricity and buy any insuf-

ficient electricity from the local grid when required. 

[28] PV, Grid E-scoot-

ers 

3 kWp PV Ger-

many 

• The researchers conducted a study on 6 electric scooters used by university students, 

which were charged by using a grid-connected PV system. The charging from the PV 

system was obtained when the PV system generated enough energy to charge the electric 

scooters, otherwise charging from the grid was obtained.   

• The field results showed that 94.3 % direct charging from the 3 kWp PV system and 5.7 

% charging from the grid were obtained during the summer period and a higher per-

centage of grid charging during winter. The grid charging during winter periods makes 

the research not fully eco-friendly because a big extent of grid power was generated from 

fossil fuels. 

 2 

 3 
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4. About the Water-Energy Hub 

WeTu Ltd owns the Water-Energy Hubs (WeTu Hub), an off-grid PV-powered energy 

hub that allows Kenyans in remote areas surrounding Lake Victoria to have access to sus-

tainably generated electricity [10, 29]. The WeTu Hub (see                    

 Figure 1 top) are self-contained PV systems (about 30 kWp) in which the power gen-

erated is temporarily stored in appropriate battery storage systems (capacity roughly 104 

kWh) and made available to the on-site residents. In addition to traditional usage (such as 

charging fishing lights), electricity is utilised to purify drinking water (see                   

  Figure 1, bottom) and therefore contributes positively to the environment.  

Table 2 and    

 

 

Table 3 show the detailed information of the electricity generation and major elec-

tricity consumers at Mbita WeTu Hub respectively. 

 

 
                    Figure 1. Location of the case study area - Mbita, Kenya (Lake Victoria) [29] 

 Table 2. Detailed information on electricity generation at Mbita WeTu Hub [30–36]. 

System Components  System Specifications 

PV  Modules Bosch Solar c-Si-M60-M240-3BB (240W) 

PV Module Quantity 126 

PV Module Power Rating  30.24 kWp 

PV  Inverters STP15000TL-30 (SMA Sunny Tripower 15kVA) 

PV Inverter Rating 30 kVA 

Batteries  104 kWh 
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Table 3. Detailed information on major electricity consumers at Mbita WeTu Hub [37]. 

Major Electricity Consumers Power Rating (W) Number 

Fishing Lanterns 105  200 

Water Purifier 120 1 

Floodlight 40 1 

CFL Light Bulbs 8 7 

Fluorescent   18 2 

Computer 150  2 

5. Methodology 

The methodology of this paper is divided into four sections; 1) Analysis of the WeTu 

Hub, 2) Measurement investigation on e-bikes, 3) Integration of e-bikes into WeTu Hub, 4) 

Development of a load management algorithm. Figure 2 shows the proposed methodol-

ogy of this paper. 

To analyse the WeTu Hub, measurement data between August 2020 and December 

2020 of electricity consumption at the Hub was evaluated. Workdays, weekends during 

non-moon phases, and moon phases based on the lunar calendar [38] for the year 2020 

were identified from the measurement data. A synthetic load profile was generated using 

the identified workdays and weekends load profiles. This resulted in the generation of an 

annual load profile using MATLAB and was fed into a simulation model of the WeTu Hub. 

A historic annual weather data of Mbita (with one-hour resolution) obtained from Mete-

onorm [39] was also fed into the simulation model. Energy surplus was identified for e-

bikes integration.  

To determine the potential number of battery swaps a rider might require per day / 

100 km, a field measurement investigation was carried out on the e-bikes by MOI univer-

sity and WeTu Ltd engineers [10] considering factors such as trip distance, speed, payload 

weight. The outcome of the measurement was used to determine the distance-related en-

ergy consumption of the e-bikes in kWh / 100 km.  

To integrate the e-bikes into the WeTu Hub, a daily and annual load profile for the e-

bikes was generated and integrated into the existing WeTu Hub’s load profile using the 

outcome of the measurement investigation. Charging time, charging rate, battery capac-

ity, etc. from the measurement investigation aided in the load profile generation for the 

individual type of bikes. 

To optimise the load profile for optimum integration of the e-bikes into the WeTu 

Hub, a load management algorithm was developed using Non-linear programming 

(NLP). The generated hourly resolution simulation results such as annual PV electricity 

production, battery supply, battery state of charge (SoC), and electricity deficit were ana-

lysed.  
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Figure 2. Proposed methodology. 

6. Analysis of electricity data from WeTu Hub 

Electricity consumption during night and day was measured using the SMA data 

manager that was installed at Mbita WeTu Hub. A carpet plot (see Figure 3) of the electric-

ity consumption was generated to help understand the energy usage at the Mbita WeTu 

Hub and generate the future load profiles of the e-bikes. The existing loads that constitute 

the carpet plot for the WeTu Hub electricity consumption can be seen in Table 2 

 

 

Table 3. It can be seen in Figure 3 that the normal operating period at the WeTu Hub 

was between August and October, while field measurement on e-bikes was between Oc-

tober – December. The least electricity demand was recorded in December due to partial 

lockdown to reduce Christmas activities.  

 
Figure 3. Carpet plot of measured electricity consumption data from Mbita WeTu Hub. 

6. 1 Analysis of electricity demand during the normal operation period 
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From Figure 3, it was identified that there was a normal operation period at the WeTu 

Hub from 27th August to 7th October 2020. The carpet plot in Figure 4 shows the extracted 

normal operation period.  

 

Figure 4. Carpet plot of measured electricity consumption data from Mbita WeTu Hub during the 

normal operation period. 

The 2020 gregorian calendar was used to identify weekends and weekdays, while the 

2020 lunar calendar [38] was used to identify moon phases. From Figure 4, it can be seen 

that there is less electricity demand from 27th August to 7th September, and from 27th Sep-

tember to 6th October. This was as a result of full moon phases. Moon phases are days 

within the moon cycle in a month. These days consist of full moon days and non-full moon 

days. There are approximately 10 full moon days in every month of the year. During full 

moon phases, there is naturally a low fishing catch on Lake Victoria because there is too 

much light for the fish to come to the top, and otherwise happens during non-full moon 

phases. In the case of the latter non-full moon phase, the fishermen utilise floatable electric 

lamps on the lake to attract small insects, yielding the fish to come to the water surface 

where they are caught by the fishermen. In the case of full moon conditions, however, the 

bright moonlight distracts the insects from the floatable lamps, and, as a consequence, 

there is less fishing catch.  

 Therefore, a smaller number of fishing lanterns are charged at the Mbita WeTu Hub 

during full moon phases. Figure 5 shows the daily electricity demand in correlation to 

moon phases for the normal operation period. 
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Figure 5. Daily electricity demand in correlation to moon phases for the normal operation period. 

6. 2 Extraction of electricity demand profile for weekdays, weekends during moon phases 

Weekdays, weekends during moon phases from 27th August 2020 – 6th October 2020 

were extracted from the data of Figure 5. A MATLAB script was written to extract the 

average hourly electricity demand profile from the measurement data shown in Figure 5 

for weekdays, weekends during a full moon phase, and non - full moon phases (see Figure 

6, Figure 7, and Figure 8). 

 
Figure 6. Average hourly electricity demand profile from the measurement during moon phases. 
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Figure 7. Average hourly electricity demand profile from the measurement during moon phases. 

 
Figure 8. Average hourly electricity demand profile from the measurement during moon phases. 

6.3 Annual load profile generation 

 An hourly resolution annual load profile for the Mbita WeTu Hub was generated 

using the extracted profiles in Figure 6, Figure 7, and Figure 8. A MATLAB script was 

also used to generate the year 2021 annual electricity load profile of 6,278 kWh / year 

(see Figure 9). Weekdays and weekends used the gregorian calendar of 2021 and for 

moon phase days, the lunar calendar of 2021 was used. 

 
Figure 9. Annual hourly electricity demand profile from the measurement during moon phases. 
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6.4 Simulation Model of the Mbita WeTu Hub 

The annual load profile generated in the previous chapter was used as input to a 

simulation model. Similarly, corresponding historical annual weather data [39] of Mbita 

town was converted into a mathematical model and fed as input to the simulation model. 

The mathematical model is then able to calculate annual PV electricity production or an-

nual electricity demand with sufficient accuracy in hourly resolution for one year. Conse-

quently, for example, hours with a high electricity deficit can be identified.  

6.4.1 Method 

A suitable simulation model was developed using the CARNOT toolbox in MATLAB 

/ SIMULINK simulation environment [40, 41]. The relevant components such as PV mod-

ules, inverters, battery storage, battery inverters (see Figure 10) have been parameterised 

according to the available datasheets. A PV field with a total of 30 kWp is converted into 

alternating current using a 30-kVA inverter (see Figure 10, left) to either cover the electri-

cal load profile demands of the Mbita WeTu Hub (see Figure 10, above) or charge a central 

backup battery storage system of 104 kWh (see Figure 10, right).  

 

Figure 10. The layout of the developed PV system simulation model. 

The Conventional and Renewable Energy Optimization Toolbox (CARNOT) is used 

as a tool for modelling the Mbita WeTu Hub PV system size to cover the electric demand 

requirements. Similarly, modelling of a yield simulation requires a time-series of input 

weather data like solar irradiation, ambient temperature, load profile, and other technical 

parameters of the planned PV systems [42]. 

The CARNOT tool allows a MATLAB / Simulink time-series assessment of the sys-

tem’s electricity production, consumption, battery SoC, inverter efficiency, and electricity 

deficit.   

The CARNOT PV model uses a CARNOT block set in a MATLAB / Simulink envi-

ronment that consists of weather data, PV module orientation, PV modules. The CARNOT 

tool uses a block set called ‘PV module’ to simulates and calculates the output power (P) 

of the PV module in watt (W) based on the module characteristic parameter using the 

equation below: 

     P =  
SR 

IR
×  IAM × Pmax  ×  (1 −  (Ta  +  Td ×

Sp

IR
)  − MT )          (1) 

where:  

P = output power of the PV module in W 
 SR = solar radiation 
IR = incident radiation at STC: 1000 W/m² 

 
IAM 

= incidence angle modifier: 1 for vertical direct 

solar radiation. It follows the reflection law 

of Fresnel.  
Pmax  = peak power (Wp) at STC in W 
Ta = ambient temperature 
Td = temperature difference to ambient at full so-

lar radiation (1000 W/m²): 40 K 
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Sp = solar power 
MT = module temperature at STC: 25°C 

6.4.2 Simulation results 

Figure 11 shows the total annual hourly PV electricity production of 37,785 kWh, the 

electricity demand of 6,278 kWh, and the electricity surplus of 30,493 kWh. There was a 0-

kWh electricity deficit obtained because the PV system can cover the whole annual elec-

tricity demand. It can also be seen in Figure 11 that the battery SoC wasn’t below 80% 

because of low electricity demand. Therefore, the number of e-bike batteries to be charged 

daily at the WeTu Hub will be assumed in line with the obtained electricity surplus. 

 
Figure 11. Annual hourly PV electricity production, demand, surplus in kW. 

7. Field measurement investigation on e-bikes 

Various driving tests have been carried out on the e-bikes by MOI university and 

WeTu engineers at Mbita to measure the distance-related energy consumption (kWh / 

100 km) of the bikes. During the field measurement, trip distance, terrain, speed, and pay-

load weight of the bikes were taken into consideration. 

The test's outcome, which aims to quantify battery energy usage in kWh per 100km, 

will aid in determining how many batteries swaps a rider may require per daily trip dis-

tance. As a result, the data can be used to optimise the integration of e-bikes into the WeTu 

Hub. 

7.1. Measurement investigation on OpiBus bike 

The OpiBus bike batteries' energy recording and assessment results were deter-

mined. The distance traveled, the payload of the bike (driver + passenger), and the energy 

requirement (kWh / 100 km) were among the other data determined (see Figure 12). De-

pending on the road surface, 7 separate tests were conducted on tarmac-surfaced routes 

and 6 different tests on non-tarmac-surfaced routes (i.e., gravel or soil roads were evalu-

ated). Figure 12 depicts a graphical representation of the OpiBus bike’s battery energy 

requirement as a function of the road surface. It can be seen that driving on non-tarmac 

terrain consumes more energy than driving on tarmac. From the evaluation process, it can 

be seen that battery test number 4 has a lower energy consumption of 6 kWh / 100 km at 

an average payload weight of 160 kg and an average speed of 45 km / hr than in contrast 

to battery test number 3 where higher energy consumption of 6.3 kWh / 100 km at a pay-

load 80 kg at speed of 45 km / hr. This may be attributed to the landscape (i.e., gradient 

angle) of the road surface which was not recorded during the measurement investigation. 

The average battery electricity demand on tarmac terrain was 5.7 kWh / 100 km at an 

average payload of 145 kg at 50.7 km / hr. The average battery electricity demand on non 
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- tarmac terrain was 7.3 kWh / 100 km at an average payload of 136 kg at 45.8 km / hr. The 

total test distance-related average electricity consumption on both terrains was 6.4 kWh / 

100 km at an average payload of 141 kg at 48.5 km / hr. Therefore, it can be concluded that 

an OpiBus bike with 2.16 kWh battery capacity running at an average payload of 141 kg 

and, at an average speed of 48 km / hr would require at least 2 batteries swap to cover a 

trip of 100 km / day.  This is comparatively in line with the report of [34] that an electric 

motorcycle has a real-world energy consumption varying from 0.71 kWh / 100 km to 9.3 

kWh / 100 km. 

 
Figure 12. Battery electricity demand depending on the road surface (OpiBus).  

7.2. Measurement investigation on BodaWerk bike 

An investigation on the BodaWerk bike was done in the same manner as the investi-

gations on the OpiBus batteries. Among other metrics, the distance traveled, the payload 

of the bike, and the energy usage (kWh / 100 km) were determined. Five distinct tests were 

carried out on tarmac-surfaced routes. Figure 13 depicts a graphical representation of the 

battery energy requirement for the BodaWerk bike on a tarmac road surface. According 

to Figure 13, the average battery energy consumption on the tarmac terrain was 3.9 kWh 

/ 100 km at an average payload weight of 74 kg and an average speed of 39 km / hr during 

the assessment phase. As a result, it is possible to deduce that a BodaWerk bike with 

2.2 kWh battery capacity running at an average payload of 74 kg and, at an average speed 

of 39 km / hr would require at least 1 battery swap to cover a trip of 100 km. This is com-

paratively in line with the report of [43] that an electric motorcycle has a real-world energy 

consumption varying from 0.71 kWh / 100 km to 9.3 kWh / 100 km. This has further con-

firmed the report of [44] that a BodaWerk bike with 2.2 kWh battery capacity operating at 

an average payload of over 70 kg would require at least 1 battery swap for 100 km range. 
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Figure 13. Distance-related battery electricity demand depending on the road surface (Bodawerk). 

7.3. Measurement investigation on Cargo bike  

Furthermore, testing was performed on the business Anywhere Berlin's electrically 

powered cargo bicycles. Figure 14 depicts the evaluation of the particular, distance-re-

lated energy consumption in kWh / 100 km. Four distinct tests were conducted on non-

tarmac roads, and one test was conducted on mixed terrain (tarmac and non-tarmac). Ac-

cording to Figure 14, the average battery energy requirement over non-tarmac terrain was 

3.3 kWh / 100 km at an average payload of 86 kg and an average speed of 22.7 km / hr 

during the assessment procedure. The average battery energy requirement over mixed 

terrain was 10.2 kWh / 100 km with a payload weight of 210 kg and a speed of 24 km/hr. 

On both terrains, the total test distance-related average power consumption was 4.2 kWh 

/ 100 km with a payload weight of 102 kg at 22.9 km / hr. As a result, a cargo bike with a 

1.1 kWh battery capacity and an average payload weight of 102 kg, and an average speed 

of 22.9 km/hr would require at least three battery swaps to cover a 100 km journey. This 

is in line with the report of [44] that a 4-kWh battery capacity would be required for an 80 

km range on Anywhere Berlin cargo bike. 
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Figure 14. Distance-related battery electricity demand depending on the road surface (Anywhere 

Berlin cargo bikes). 

The summary of the future consumer (i.e., e-bikes) measurement results is shown in 

Table 4. It can be seen that the OpiBus bike has an average energy usage per recharge of 

2.16 kWh with an average energy requirement of 6.3 kWh / 100 km at 129 kg average 

payload (rider + passenger). The BodaWerk bike has an average energy usage per re-

charge of 2.2 kWh with an average energy requirement of 3.9 kWh / 100 km at a 74.12 kg 

average payload. The cargo bike has an average energy usage per recharge of 1.05 kWh 

with an average energy requirement of 4.23 kWh / 100 km at a 102.31 kg average payload.  

It is clear from Table 4 that the energy demand in kWh for the different bikes differs from 

each other. The BodaWerk bike has the lowest energy demand of 3.93 kWh / 100 km while 

the OpiBus has the highest energy demand of 6.3 kWh / 100 km. This can partly be at-

tributed to the different payload weights on the bikes. However, further effects that were 

not considered during the measurement phase have to be further investigated such as the 

gradient of the road surface. The energy demands recorded during the measurement are 

still in line with what other studies have indicated that the certified and real-world energy 

consumption for e-bikes vary between 0.17 and 9.3 kWh / 100 km [43]. 

 

Table 4. Summary of electric bikes measurement results. 

Type  

of  

load 

Battery  

Size in 

kWh 

Distance 

covered in 

km 

Weight  

in 

kg 

Speed 

 In 

 km/h 

Charge 

time 

 in h 

Charge 

 rate  

in W 

Energy  

demand in 

kWh/100km 

OpiBus  2.16 36.89 129.84 47.80 2.7 800.00 6.40 

BodaWerk 2.20 48.12 74.12 39.40 2.4 900.00 3.60 

E-Cargo  1.05 29.03 102.31 22.88 5.0 200.00 4.23 

The measurement analysis determined the quantity of daily power and energy re-

quired to charge the e-bike batteries. The results of the measurement analysis aided in the 

development of hourly, daily, and annual load profiles (see next chapter) for each bike, 

considering energy consumption, battery capacity, charging power and charging time. 

8. Integration of e-bikes and additional fishing lanterns into WeTu Hub 

A scenario was used to describe the prospective integration of the e-bikes into the 

WeTu Hub considering the surplus obtained in Figure 11. The scenario considered / as-

sumed different numbers of e-bike batteries and additional lanterns depending on the 

type of day (see Table 5). 

 

Table 5. System Design Scenario for load profile generation. 

Type 

 of 

day 

Bodawerk 

battery 

target 

Cargo 

battery 

target 

OpiBus  

battery 

target 

Fishing 

lantern 

target 

  Total electricity de-

mand in 

kWh / day 

Full moon 9 6 9 100   51.9 

Non-full moon 9 6 9 200   60.6 

Realistic daily runtimes for the various major electric loads shown in Table 5 were 

estimated, generated based on the surplus in Figure 11, and integrated into the existing 

load profile in Figure 9. The annual electricity profiles from the daily profiles were gener-

ated using MATLAB. The annual electricity demand of 27,267 kWh has been generated 

with the specific peak electricity demand of 14.8 kWh (see Figure 15) 
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Figure 15. WeTu Hub annual hourly electricity demand profile including e-bikes. 

8.1. Result and Discussion  

Figure 16 shows the annual monthly- hourly PV electricity production, electricity 

demand, and electricity deficit. It can be seen that June to August has the lowest electricity 

deficit. November has the highest electricity deficit followed by May, then April due to 

weather conditions. An annual PV electricity production of 37,785 kWh, the electricity 

demand of 27,267 kWh, and electricity deficit of 376 kWh were respectively obtained. Fig-

ure 17 shows the week in April with the lowest PV production, thereby yielding the high-

est energy deficit of 70.6 kWh across the month. 

 
Figure 16. Annual hourly PV electricity production, demand, and deficit in kW 
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Figure 17. Hourly PV electricity production, demand, and deficit in kW for a week 

in April (23.04 – 29.04). 

It can be also seen from Figure 17 that an electricity deficit was obtained between 

hours 2768 and 2800 due to low PV electricity production and the central battery has been 

drained to its set minimum SoC of 40 %.  

9. Development of a load optimisation algorithm for Mbita WeTu Hub 

For energy deficit reduction and optimum integration of electric mobility into the 

Mbita WeTu Hub PV system, a load optimisation problem was formulated which resulted 

in a nonlinear programming (NLP) problem. The optimisation problem helped in reducing 

energy deficit without necessarily increasing the PV system size, use of grid connection, or 

diesel generator. The optimisation model was developed to solve the NLP problem by op-

timising electric loads including e-bikes and fishing lanterns to properly utilise the PV gen-

eration, thereby reducing energy deficit and cost. A metrological hourly dataset for a com-

plete year was used for the successful simulation of the PV system. A sensitivity analysis 

of the NLP optimisation model was carried out to evaluate the impact of the electric loads 

on the objective function.  

9.1 Load Optimisation using Non-Linear Programming (NLP) 

The main purpose of the load optimisation concept is to design a system that cap-

tures the maximum amount of variable PV generation, then sizes and schedules a finite 

number of electric loads to track available PV power. The approach is to use the MATLAB 

fmincon solver for NLP.  

NLP is the optimisation problem of minimising an objective function expressed by 

variables, subject to nonlinear equality and inequality constraints. Constraints are neces-

sary to ensure that the load sizing is adequate, avoiding system overloads at the same time. 

Figure 18 shows the architecture of the NLP-based load optimisation algorithm.  
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Figure 18. The architecture of the NLP-based load optimisation algorithm. 

NLP optimisation problems are often solved using the branch and bound branch and 

cut, or branch and price algorithms. Similar to linear programming an objective function, 

general constraints, and variables bounds have to be solved. However, the difference is 

that a nonlinear program includes at least one nonlinear function, which could be the ob-

jective function or some or all of the constraints.  

MATLAB nonlinear programming solver finds the minimum of a problem specified 

by:  

Minimise 𝑓𝑇𝑥 subject to 

{
 
 

 
 
   𝑐(𝑥) ≤ 0

𝑐𝑒𝑞 (𝑥) = 0
𝐴. 𝑥 ≤ 𝑏

𝐴𝑒𝑞. 𝑥 = 𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 

 

𝑏 and 𝑏𝑒𝑞,  are vectors,  𝐴 and 𝐴𝑒𝑞 are matrices, 𝑐(𝑥) and 𝑐𝑒𝑞 (𝑥) are functions that 

return vectors, and 𝑓(𝑥)  is a function that returns a scalar.  𝑓(𝑥),  𝑐(𝑥) and 𝑐𝑒𝑞 (𝑥) can be 

nonlinear functions. x, lb, and ub can be passed as vectors or matrices. 𝐴𝑒𝑞. 𝑥 = 𝑏𝑒𝑞 is an 

equality, 𝐴. 𝑥 ≤ 𝑏 and 𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏  are inequality constraints that are considered in the 

optimisation problem for attaining the accurate, efficient optimal solution of the objective 

function.  

 

9.1.1 Formulation of the load optimisation problem 

The load optimisation problem is formulated by the objective function which consid-

ers the charging capacity and operational priority of each load as well as the maximum 

number of loads charged per hour. The fmincon solver then minimises the objective func-

tion at a given PV generation by optimally scheduling the different loads. The objective 

function is defined as 

    fun = ∑ ( 𝐿𝑃𝑘(𝑡) × 𝐴𝑒𝑞𝑘(𝑡) . 𝑥𝑘(𝑡)) 
𝑛
𝑘=1          (2) 

Where 𝐿𝑃𝑘 is the load priority for each load at any given time (t), 𝑥𝑘  is the hourly 

target of various loads that can be optimised at any given time (t), 𝐴𝑒𝑞𝑘 is the charging 

rate of each load per hour in kW, 𝑛 is the total number of the different loads as shown in 

Table 6. The final objective function for the given problem is shown in equation 5 where 

the first priority goes to lanterns, second, third, and fourth priority goes to e-bikes respec-

tively.  

    fun = ( 1 × 37 . 𝑥1) + (2 × 200 . 𝑥2) + (3 ×  800 . 𝑥3) + (4 × 900 . 𝑥4)    (3) 

                            

To maintain the balance in the system and to meet the load demand, the total demand 

of the loads mustn't exceed the PV-generated power (𝑏𝑒𝑞) at any given time (t). This is 

giving by  

    ∑ ( 𝐴𝑒𝑞𝑘(𝑡) . 𝑥𝑘(𝑡))
𝑛
𝑘=1 = 𝑏𝑒𝑞                     (4) 
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The hourly target of each load (i.e., 𝑥𝑘 , 𝑥𝑘+1) that can be charged at any given time (t) 

should not be less than the minimum required number of each load (i.e., 𝑙𝑏𝑘 , 𝑙𝑏𝑘+1 )  

which is 0 and should not exceed the maximum hourly target of each load (i.e. 𝑢𝑏𝑘, 𝑢𝑏𝑘+1) 

at any given time. This is given by: 

             𝑙𝑏𝑘(𝑡) ≤ 𝑥𝑘(𝑡) ≤ 𝑢𝑏𝑘 (𝑡)                        (5) 

       𝑙𝑏𝑘+1(𝑡) ≤ 𝑥𝑘+1(𝑡) ≤ 𝑢𝑏𝑘+1 (𝑡)                       (6) 

 

Table 6. Detailed information of the major loads at Mbita WeTu Hub. 

Type 

of 

loads 

Daily 

battery 

target 

Peak sun 

hours 

 (hr) 

Charing 

time (hr) 

per device 

Hourly 

battery target 

(𝑥𝑘) 

Charging 

rate (W) 

per device 

Energy 

required 

(Wh) per 

device 

Cargo bike 6 6.5 7 5 200 1,050 

Lanterns 200 6.5 2.8 193 37 105 

OpiBus bike 9 6.5 2.7 4 800 2,160 

BodaWerk bike 9 6.5 2.4 4 900 2,200 

Hourly target = Daily battery target ÷ (peak sun hours ÷ charging time) 

 

9.1.2 Simulation results with NLP load optimisation algorithm  

Load demands for fishing lanterns and e-bike batteries were generated based on the 

MATLAB developed NLP load optimisation algorithm. The developed load optimisation 

algorithm captures the maximum amount of variable solar generation, which then sizes 

and schedules a finite number of loads (i.e., e-bikes, fishing lanterns) to track available 

intra-day solar PV power. The annual load profiles were also generated for workdays and 

weekends based on the moon phase.  

The NLP load optimisation algorithm also can check for todays and tomorrow’s PV 

power production and if there is a potential lack of energy in tomorrow’s PV power pro-

duction, part of tomorrow’s loads will be shifted to today in order to avoid the risk of not 

meeting the daily target of tomorrow. This concept checks the surplus of today and shifts 

tomorrow’s loads to today. Figure 21 shows the flowchart of the NLP load optimisation 

algorithm with the load shifting concept.  

After NLP optimisation, an annual load profile of 30,767 kWh was generated which 

is an 11 % increased over the non-optimised load profile of 27,267 kWh. This increase is 

enough to charge 4 additional OpiBus bike batteries daily. Figure 19 shows the hourly 

results of the electricity PV production, demand, and deficit after load shifting and opti-

misation. An annual PV electricity production and a reduced deficit of 37,785 kWh and 1 

kWh were respectively obtained from the simulated PV system.  
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Figure 19. Hourly results after load shifting and optimisation.  

Figure 20 shows the result of Figure 17 after load shifting. After optimisation, the 

electricity deficit was reduced by shifting and optimising the major daily loads which are 

shown in Figure 20. However, some loads of hours 2744 to 2756 in Figure 20 were shifted 

to hours between 2718 and 2730 because of the potential lack of energy in hours 2744 to 

2756. The load shifting is limited to the number of available devices to be charged for 

hours 2744 to 2756 and the energy surplus of hours 2718 to 2730.  

 
Figure 20. A week in April after load shifting and optimisation. 
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Figure 21. Flowchart of the NLP load optimisation algorithm with load shifting concept. 

The development of a load optimisation scheme using MATLAB NLP algorithm for 

optimum integration of the e-bikes solutions into the Mbita WeTu Hub off-grid PV system 

helped in reducing energy deficit without necessarily increasing the PV system size, the 

use of grid connection or diesel generator.  

The results obtained show that the system with the NLP algorithm was able to prior-

itise, schedule, and optimise the major loads' demand in line with intra-day PV produc-

tion. The NLP algorithm was also able to shift loads of days with a potential lack of energy 

to the days with surplus energy based on the moon phase.  

Furthermore, the NLP algorithm was able to generate more annual electricity de-

mand of 30,767 kWh which is 11% more than the annual electricity demand of 27,276 kWh 

for the system without NLP optimisation.  

The further obtained results show that the system with NLP algorithm was able to 

reduce the annual energy deficit for the system without NLP optimisation from 376 kWh 

to 1 kWh. Hence, it is concluded that the load optimisation algorithm using MATLAB 

NLP has helped in the optimal integration of the e-bikes solutions into the Mbita WeTu 

Hub’s 30 kWp off-grid PV system at a low cost. 
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10. Conclusions 

This paper investigated the integration of e-bikes into an off-grid 30 kWp WeTu Hub 

PV system, which is located in rural Kenya using MATLAB / Simulink / CARNOT 7.0 

Toolbox. Analysis of the electricity PV production, demand, and deficit was carried out. 

The obtained annual PV electricity production stood at 37,785 kWh, with an annual elec-

tricity demand of 27,267 kWh (non-optimised load profile). Since, PV system size and per-

formance strongly depend on metrological variables such as solar irradiation, wind speed, 

and ambient temperature, consequently, the results obtained show an annual electricity 

deficit of approximately 376 kWh for the system with non-optimised load profile. That 

means the system could not cover the whole electricity demand at the WeTu Hub due to 

the aforementioned variabilities of the PV system.  

Therefore, to avoid increasing the technical size of the PV system or the use of diesel 

generators or grid connections for electricity deficit reduction, a load management algo-

rithm was developed to optimally integrate the e-bikes solutions into the WeTu Hub. The 

load management algorithm captured the maximum amount of variable solar generation, 

which then sizes and schedules a finite number of devices to track available solar PV 

power. After the load optimisation, an annual electricity demand of 30,767 kWh was ob-

tained which is 11 % more than the non-optimised load profile of 27,267 kWh. This 11 % 

increase (3,500 kWh), is enough to charge 80 additional lanterns or 4 additional OpiBus 

batteries per day. 
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