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 Abstract: Safety issues related to the electrification of more electric aircraft (MEA) need to be ad-
dressed because of the increasing complexity of aircraft electrical power systems and the growing 
number of safety-critical sub-systems that need to be powered. Managing the energy storage sys-
tems and the flexibility in the load-side plays an important role in preserving the system’s safety 
when facing an energy shortage. This paper presents a system-level centralized operation manage-
ment strategy based on model predictive control (MPC) for MEA to schedule battery systems and 
exploit flexibility in the demand-side while satisfying time-varying operational requirements. The 
proposed online control strategy aims to maintain energy storage (ES) and prolong the battery life 
cycle, while minimizing load shedding, with fewer switching activities to improve devices lifetime 
and to avoid unnecessary transients. Using a mixed-integer linear programming (MILP) formula-
tion, different objective functions are proposed to realize the control targets, with soft constraints 
improving the robustness of the model. Besides, an evaluation framework is proposed to analyze 
the effects of various objective functions and the prediction horizon on system performance, which 
provides the designers and users of MEA and other complex systems with new insights into opera-
tion management problem formulation. 

Keywords: Model predictive control; Mixed-integer linear programming; Multi-objective optimiza-
tion; Energy storage management; Load management; More electric aircraft; Demand-side flexibil-
ity 
 

1. Introduction 
Onboard power demands increase dramatically with the development of more elec-

tric aircraft (MEA) and the replacement of traditional hydraulics and pneumatics by elec-
trical systems to achieve higher efficiency and less fuel burn [1]. Critical loads, which are 
responsible for flight safety, such as flight surface actuators and environmental control 
systems, must be powered in all flight scenarios regardless of high power peaks or fault-
causing emergencies. The energy storage system (ESS) has an important role in MEA, not 
only for supporting bus voltages, but also as a backup to deal with power shortages dur-
ing faults occurring in generation or transmission systems, or high power peaks. In addi-
tion, shedding of non-critical loads (e.g. passenger cabin lighting) is also used to reduce 
peak power usage, helping to maintain power for safety-critical loads [2]. Intelligently 
combining the load shedding with the ESS capabilities is essential for the safe onboard 
electrical power system (EPS) operation. 

Due to the complexity of MEA optimal operation management and the importance 
of their safety and reliability resulting from an advanced operating strategy, considerable 
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attention is being devoted to developing suitable models and algorithms. Finite state ma-
chines are adopted in [3], [4], and [5] to model the onboard DC-based EPS of MEA as a set 
of states and transitions. In these studies, several sets of safety rules are defined to cope 
with different failure cases to ensure uninterrupted power supply to the high priority 
loads. However, this method relies on accurate measurements to change the operation 
state and it is hard to integrate multiple operating goals. In addition, setting optimal rules 
can be difficult for complex systems because of the large number of system states. 

Heuristic and metaheuristic algorithms are also widely used to solve energy and load 
management problems for microgrids (MGs), such as fuzzy logic algorithm [6], [7], [8], 
[9], genetic algorithms [10], [11], [12], particle swarm optimization [13], [14], [15], and evo-
lutionary algorithms [16], [17]. However, these approaches are not suitable for real-time 
application, since they might fall into the trap of suboptimal solutions and can still be 
computationally intensive. Neural networks, studied in [18], [19], are fast but need train-
ing, hence are less capable of coping with unexpected situations, and it can be difficult to 
verify their reliability for aircraft usage.  

Recently, Model Predictive Control (MPC) has drawn the attention of the power sys-
tem community for the control and operation management of MGs. MPC provides an 
optimal operating strategy based on predicted future system trajectories, thereby avoid-
ing operating based on the worst-case scenarios with high costs. The inherent feedback 
mechanism of MPC stemming from its receding horizon mechanism makes the system 
more robust against uncertainty [20]. In [21], [22], an MPC-based hierarchical control 
structure is applied for achieving economic efficiency in residential MGs. In [23], [24], 
MPC supervisory control is used to compensate for the mismatch between the offline 
scheduling process and the real-time operation of a hybrid PV-wind-battery MG. In this 
research, the system models are formulated as Mixed-Integer Linear Programming 
(MILP) problems. The MPC method has also been adopted for battery management in 
Hybrid Electric Vehicles (HEV) in [25], [26], in which the MPC controller attempts to min-
imize the vehicle equivalent fuel consumption and the battery capacity fade at the same 
time. To enhance the battery lifespan and power performance, [27] and [28] propose an 
MPC approach to reduce the battery power variation and maintain supercapacitors’ SOC 
at their desired values. In [29], the battery capacity fading is described by an online least-
squares identification method, and the degradation cost function is used in the MPC 
scheme to increase the battery lifetime. Since MPC has shown good performance for resi-
dential MGs and HEVs energy management, researchers have been explored the possibil-
ity of its application in MEA EPS. In the application for MEA, on the one hand, the robust-
ness of controller design can benefit from the intrinsic robust characteristics of MPC due 
to the rolling horizon strategy. On the other hand, the system operational and time-cou-
pling constraints can be integrated into the MPC model. In [30], a hierarchical MPC frame-
work for a hybrid propulsion system is presented to minimize power generation costs and 
delivery losses. However, the possibility of load shedding and system failure is not con-
sidered. In [31], a rate-based MPC method is adopted for power sharing between two 
generators that are driven by the same engine. The optimal energy management based on 
MPC by sharing power among different power sources for hybrid propulsion system on-
board is studied in [32]. In [33] and [34], MPC is used for both power scheduling and load 
shedding optimization to cope with scenarios with one generator and one transmission 
cable failure. However, in these papers, the MPC for battery management is not the focus 
and the control problem is formulated without much detail about, for example, how to 
cope with different control targets and increase algorithm robustness, which has left con-
siderable scope for further investigation and analysis here. Hence, this paper aims to ad-
dress these issues in the proposed MPC strategy for MEA EPS. 

In the aforementioned works of the MPC applications, the flexibility of the MPC de-
sign including the objective function formulation, prediction horizon length, and the 
weighting factors to prioritize different operating criteria and the related impacts to the 
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system performance has been neglected by adopting empirical settings. In fact, investigat-
ing how these degrees of freedom can affect the control system performance will help to 
better decide the settings of MPC to meet system requirements. This paper will contribute 
to this investigation by designing a system-level MPC-based operation management strat-
egy for a MEA. The analysis in this study can be extended to other complex systems in-
cluding storage systems and load management among their targets. 

In the studied system, the MPC controller aims to keep the battery energy storage 
highly charged, with fewer power variations to prolong the battery life cycle, and to min-
imize load shedding, with less contactor switching. Organizing these operating criteria in 
the form of an appropriate objective function is essential for MPC optimization models. 
However, the flexibility in the formulation of the objective functions adds to the complex-
ity of the design.  

In this paper, to solve the multi-objective optimal operation management problem of 
the MEA EPS, a MPC-based operation management strategy is introduced targeting on 
intelligently managing the energy storage systems onboard and exploiting flexibility in 
the demand-side while satisfying time-varying operational requirements. Different objec-
tive functions are proposed with various cost function terms to reach the MEA operating 
goals, where each objective function can perform differently for each control target. To 
evaluate the designed control system performance, an evaluation index for each target is 
proposed to quantify system performance for overall flight stages. All objective functions 
are evaluated by the proposed indices with the prediction horizon changing from short to 
long; hence, the impact of various prediction horizons for each objective function can be 
compared. This evaluation procedure is conducted with the load profiles having different 
changing frequencies and variations, so that the analysis can consider different load cases. 
Based on the proposed index for each target, a multi-objective evaluation index is also 
proposed as an overall performance criterion, by which the final selection of the objective 
function and the length of the prediction horizon is performed. 

In addition to analysis of the degrees of freedom in an MPC setting, this work also 
improves the robustness of the MPC-based control strategy to adapt the controller to real-
time operating conditions. On the one hand, soft constraints are introduced to cope with 
the non-accurate estimation of the battery SOC. The optimization problem to be solved by 
the control system is formulated as a MILP problem, which includes both objective func-
tions and system constraints related to the system power flow, energy conversion, and 
connection constraints, benefitting from certainty for global optimal solutions [35]. As the 
system only operates normally when the MILP-MPC algorithm provides a feasible solu-
tion, the algorithm should be robust enough to tolerate bounds exceeding situations (i.e. 
SOC exceeds the target range). On the other hand, the real-time application requires that 
the sample time of the MPC can meet the possible computation time variations when deal-
ing with different operating conditions. For each objective function, the worst-case values 
of the maximum computation time are recorded for various prediction horizon lengths. 
The sample time can be selected appropriately by considering the maximum computation 
time at the design stage, which guarantees that the MPC can be adopted for online opti-
mization in real-time. Finally, a hardware-in-the-loop (HIL) experiment is conducted for 
the studied system, to verify the real-time application of the proposed MPC-based opera-
tion management strategy. 

The rest of this paper is organized as follows: Section 2 introduces the MEA system 
under consideration while the proposed MILP-MPC controller framework is introduced 
in Section 3. The system model with different objective functions is proposed in Section 4. 
In Section 5, the evaluation framework is set up, based on which, the performance for each 
objective function is evaluated with the changing prediction horizon for two different load 
profiles. The real-time analysis regarding the sample time selection is also presented in 
this section. The experiment setup and the results are presented in Section 6. Finally, con-
clusions are drawn in Section 7. 
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2. System Description 

 
Figure 1. The architecture of EPS under study 

The EPS on the aircraft are normally symmetrically allocated for the left and right 
sides [36]. Figure 1 presents the architecture for one side of EPS studied in this work, and 
Table 1 listed all the main symbols used in this paper. As can be seen in this figure, the 
EPS includes a main source (MS) consisting of one generator connected to an HV bus, an 
ESS, DC/DC power converters, and several loads. The MS powers the loads connected to 
a low voltage (LV) bus. In this system, the ES, which consists of one battery, one bidirec-
tional DC/DC converter, and one contactor, is connected to the same LV bus, to both main-
tain the bus voltage and supply the loads when faults result in insufficient power available 
from the MS.  

Table 1 Nomenclature 

Parameters  Cost function terms  
k Time intervals, k∈ℤ≥0  JSLi Cost function for minimizing total load 

shedding 
H Prediction horizon [s]  JδLi Cost function for minimizing switching 

activities 
Ts Sampling time [s]  JPch Cost function for maximining charging 

power 
T Total simulation time [s]   JPdisch Cost function for minimizing discharging 

power  
ηch / ηdisch Battery charging/discharging 

efficiency  
 JΔ Cost function for keeping SOC within the 

target range  
Bcap Battery capacity [kWh]  JSOC Cost function for maximizing SOC to the 

upper bound 
max
chP , 
max
dischP  

Maximum 
charging/discharging power 
[kW] 

 JPbatt Cost function for minimizing battery power 
variations 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2021                   doi:10.20944/preprints202110.0365.v1

https://doi.org/10.20944/preprints202110.0365.v1


 5 of 22 
 

LO / HI Lower/upper bounds of the 
battery SOC target range 

 Weighting factors 

max
inP  Maximum input power from 

the MS-side [kW] 
 wS Weighting factor for JSLi 

( )shed
LiP k  The ith non-critical load 

power [kW] 
 wδ Weighting factor for JδLi 

γLi The priority of the ith non-
critical load 

 wPch Weighting factor for JPch 

NLi Total number of non-critical 
loads 

 wPdisch Weighting factor for JPdisch 

( )nonshed
L iP k  The ith critical load power 

[kW] 
 wΔ Weighting factor for JΔ 

Continues Variables  wSOC Weighting factor for JSOC 

Pin(k) Input power from the MS-
side [kW] 

 wPbatt Weighting factor for JPbatt 

Pch(k) Battery charging power [kW]  Evaluation Indices 
Pdisch(k) Battery discharging power 

[kW] 
 GSLi Evaluation index for total load shedding 

Pbatt(k) Battery overall power [kW]  GδLi Evaluation index for contactor status 
change 

SOC(k) Battery state of charge  GSOC Evaluation index for battery energy storage 
level 

ε(k) Tolerance for lower bound of 
battery SOC 

 GPbatt Evaluation index for battery power 
variations 

ϑ(k) Tolerance for upper bound of 
battery SOC 

 SOCR
G , 

SOCRG
 

Evaluation index for SOC target range: 
upper and lower range bound 
correspondingly 

Binary Variables  Weighting factors for multi-objective evaluation index 
SLi(k) Contactor connection status 

of the ith non-critical load 
 vS Weight for GSLi 

ζch(k) Indicator for charging the 
battery 

 vδ Weight for GδLi 

ζdisch(k) Indicator for discharging the 
battery 

 vSOC Weight for GSOC 

   vPbatt Weight for GPbatt 

   SOCR
v , 

SOCRv  

Weight for 
SOCR

G , 
SOCRG  correspondingly 

 
The MEA loads can be classified into critical and non-critical loads. Critical loads link 

with flight safety status and avionics systems, such as environment control system and 
flight control system, etc. The noncritical loads are the other classes of loads that provide 
a comfortable environment for passengers and some of them are more essential which are 
evaluated with a higher priority. For example, the in-flight entertainment and galley ser-
vices are considered as a lower priority load than other non-critical loads such as water 
and waste [37], [38]. Therefore, in this study, three types of load are considered, namely 
critical loads (Load1) which must be supplied under all circumstances, high priority loads 
(Load2), which can be shed but should not where possible, and low priority loads (Load3), 
which should be shed in preference to high priority loads when load shedding is needed.  

The control system is responsible for optimizing the control commands related to the 
MS (Pin) and ES (Pbatt) as well as determining the connection/disconnection status of non-
critical loads (SLi) to guarantee power balance in the system while following operational 
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goals. To do so, the power from the MS and the battery should equal the required power 
by the connected critical and non-critical loads, as shown below. 

    ( ) ( ) ( ) ( ) ( ) 0shed nonshed
in batt Li Li Lji j

P k P k S k P k P k  (1)

 ( ) ( ) ( )batt ch dischP k P k P k  (2)

Eq(2) shows the battery power being equal to Pch(k) and Pdisch(k) during charging 
and discharging time, respectively. The charging/discharging power of the battery is the 
control command that needs to be determined by the EPS control system by directly ad-
justing the Pin as load power changes. The SOC of the battery as the system state variable 
is evaluated using the discrete dynamic equation in (3), which is essential for predicting 
the future status of the ESS. 




      


( ) ( )
( 1) ( ) ch disch

s ch s
cap disch cap

P k P k
SOC k SOC k T T

B B
 (3)

According to (1)-(3), the system model includes both continuous variables related to 
the power from the MS and the ESS as well as binary variables representing the connec-
tion/disconnection status of the noncritical loads. Besides, to avoid simultaneous charg-
ing/discharging of the battery, additional binary variables are introduced to show the 
charge/discharge status of the battery at each stage. The system dynamics introduced 
above together with operation limitations over the prediction horizon are considered as 
constraints in a MPC-based controller, which is presented in detail in Section IV. The core 
of the MPC strategy is a model of the system under control to predict the evolution of 
system output over the desired horizon. Thus, the system model introduced in this section 
is repeatedly updated based on the most recent information obtained from the system. 
Besides, a prediction of the system load over the prediction horizon is required.  

The MEA load can potentially be predicted by online machine learning-based meth-
ods combining the adjustment of the flight stages, height, and historical data [24], [39], 
which is out of the scope of this study. In this paper, the sampled load profile is used for 
prediction without adjustment for real-time flight power changes, and the deviations be-
tween the predicted load and the real values are neglected to simplify the analysis. 

3. MILP-MPC Controller Framework 

 

Figure 2. Online MILP-MPC optimization procedure with receding horizon 

The proposed MPC-based control architecture is represented in Figure 2. This paper 
concentrates on the system-level MPC controller, which is assumed to be weakly depend-
ent on the transient behavior of the fast control dynamics. As can be seen in Figure 2, the 
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controller received the updated information of the system at the beginning of each control 
cycle defined by the desired sampling time. This information includes the updated net-
work constraints, battery status, and the prediction of the load demands and associated 
priorities. 

The control problem of the target MEA is formulated as a dynamic MILP optimiza-
tion problem and the CPLEX solver [40] is used to solve the problem at each time step, 
guaranteeing to find an optimal solution for each time step. The MS-ES-L system is mod-
eled as a discrete-time dynamic system with sampling time Ts as introduced in the previ-
ous section. The MILP-MPC controller framework is structured as follows. 
3.1 MILP-MPC framework 

As illustrated in Figure 2, at each time step k, k = 0, 1, …, N-1, an online optimization 
problem is solved over the finite prediction horizon H. The prediction horizon indicates 
the time looked ahead in the future to evaluate the cost function subject to several tech-
nical and operational constraints, which can be calculated as H=NTs [41]. The MPC works 
based on a receding horizon scheme presented in Figure 2. At each time step k, the MPC 
controller receives the updated status of the system and finds the solution of a finite hori-
zon optimization problem. The result is an optimal control sequence over the optimization 
horizon. However, only the first sample of the optimal control sequence is applied to the 
system, and the control problem is shifted to the next time step k+1 as shown in Figure 2. 
The MPC control procedure is explained in detail in the following. The controller aims to 
keep the battery energy storage highly charged, with fewer power variations to prolong 
the battery life cycle, and to minimize load shedding, with less contactor switching which 
needs to be appropriately modeled in the MPC optimization problem. The optimization 
problem including these operating criteria and system constraints is introduced in the 
next section. 

 
MILP-MPC controller 
1) Update system state at time step k 

a) Initialize the model with the measured/estimated state of the components, e.g. 
SOC(k), each load power measurement PLi(k) 

b) Predict load demands over the prediction horizon H at each future sampling time 
Ts,, e.g. PLi(k), PLi(k+1), ..., PLi(k+N-1)  

2) Perform optimization: the high-level controller computes the optimal input se-
quence for the prediction horizon H, based on the updated system status and the 
predictions of the future system behavior. The optimal input sequence includes the 
decision of load shedding or not (SLi, k = 0, 1, …, N-1, H = NTs) and the input power 
reference on the MS-side Pin (k = 0, 1, …, N, H = NTs). The optimization problem is 
solved using the CPLEX solver.  

3) Apply the first sample of the optimal control sequence. 
4) Set k = k+1, go to step 1, and repeat the process with the new state. 

 

4. Formulation of Objectives and Constraints in MPC 
The MEA system control problem can be mathematically modeled using a set of tech-

nical and operational constraints and objective functions. In this section, three different 
objective functions are proposed for multiple control targets, and the system constraints 
are introduced. 
4.1 Designing the objective functions 

There are several control targets followed by the MEA system under study. Firstly, 
the controller needs to minimize the total time for which loads are shed while maximizing 
the time duration for which the energy stored in the battery is kept within the target range 
(SOC(k)∈[LO, HI]). Besides, it needs to be ensured that the high priority loads are less 
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shed than the low priority loads. Regarding the load management, instead of shed-
ding/connecting loads continually, it is preferable to keep the contactors’ switching activ-
ity as low as possible to prolong the components lifetime, and to avoid the transients and 
instabilities in the system, even though this may potentially increase the total time for 
which loads are disconnected. Moreover, the battery is preferred to be charged/dis-
charged smoothly rather than constantly changing the status between charging and dis-
charging modes to improve the life span of the battery [42]. Apart from load shedding 
targets, the battery management-related goals could be formulated with different cost 
functions as well as different weighting factors for battery charging/discharging power, 
maintaining battery SOC, and minimizing battery power variation. The following three 
objective functions are therefore proposed to formulate the desired operating criteria and 
to analyze the effects of different cost functions on the system performance. 
4.1.1 The first proposed objective function (Obj1) 

Obj1 in (4) denotes the first objective function combining the cost functions in (5)-
(9) for each target by different weighting factors Sw , w , Pchw , Pdischw , and w . Cost 
function (5) indicates minimizing the total load shedding time by penalizing the shedding 
of loads with the load priorities. The change in load connections (connected/disconnected) 
for each time interval is minimized in (6). Since the energy stored in the battery can be 
calculated from the net power flowing to the battery, the cost function (7) and (8) can 
lead to maximizing the energy stored by penalizing the discharging and rewarding charg-
ing of the battery: the cost function in (7) encourages the system to charge the battery with 
as much power as is available, up to the rated value, while the cost function in (8) encour-
ages the system to avoid battery discharging by minimizing the discharging power for 
every time interval. The charging speed of the battery can be changed by adopting differ-
ent weighting factors for (7) and (8). For example, when Pch Sw w , the system will allow 
more load shedding to use power from the MS to charge the battery. When

 Pdisch S Pchw w w , the system will shed loads when the battery is needed, but the charg-
ing will be slow as the MS priority is to supply loads rather than charging the battery. 

       1
Li Li ch dischS S Pch P Pdisch PObj w J w J w J w J w J  (4)

Where 

 


  
   1

0 1 1
(1 ( ))Li Li

Li

N N N
S Li Li Lik i i

J S k N  (5)




 
    10 1

| ( 1) ( )|Li

Li

N N
Li Li Lik i

J S k S k N N  (6)




  1 max max

0
( ( ))

ch

N
P ch ch chk

J P P k NP  (7)




 1 max

0
( ( ))

disch

N
P disch dischk

J P k NP  (8)

 


 
  1

0
( ( ) ( ))

N

k
J k k N  (9)

For battery management, the battery SOC is preferred to be kept in a target range 
[LO, HI] that can be modeled as a constraint. However, when there is a deviation between 
the predicted load and the realized load, the battery SOC might be temporarily out of the 
target range, which would prevent the solver from finding a feasible solution. Hence, ra-
ther than enforcing this requirement as a hard constraint, two additional variables ( ( )k  
and ( )k ) are introduced to penalize the deviation of the battery SOC from the the target 
lower and upper bounds in the objective function as presented in (9). In this way, it is tried 
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to keep the SOC within the target range or minimize the deviations. These variables are 
explained further in Subsection 4.2 below. 
4.1.2 The second proposed objective function (Obj2) 

Adding the cumulative battery SOC to the objective function will increase the aver-
age energy stored in the battery. Eq(8) represents a normalized cost function to increase 
the battery SOC to be as close as possible to the upper bound. Hence, Obj2 in (10) is 
formed by adding the battery SOC cost function to Obj1 in (4), with its weighting factor 

SOCw . Compared to the cost for charging/discharging power in (7) and (8), including 
SOC in the cost function will directly control SOC to maintain the desired reference value, 
which can be adjusted according to the applications. In this work, the desired reference 
value is set to be HI. Moreover, the charging will speed up more when longer prediction 
horizons are selected, as the SOC is a time-accumulated value, reflecting the accumulated 
charge for the whole prediction horizon. 

        2
Li Li ch dischS S SOC SOC Pch P Pdisch PObj w J w J w J w J w J w J  (10)

Where 




    1

0
| ( 1)| ( )

N
SOC k

J HI SOC k N HI  (11)

4.1.3 The third proposed objective function (Obj3) 
The aforementioned objective functions control the energy stored in the battery. 

However, proposing a cost function to prolong the battery life is also important for aircraft 
EPS for longer-term safe flights, for example, reducing the battery charging/discharging 
current variations and reducing charging/discharging operations [18]. In this work, it is 
assumed that the battery voltage has small deviations, so that reducing the battery charg-
ing/discharging current variations is equivalent to reducing the charging/discharging 
power variations. This also reduces the charging/discharging operations to reduce the 
charging cycle, which also benefits the battery lifetime. The cost for minimizing the bat-
tery charging/discharging power change

battPJ  is presented in (13), where

 ( ) ( ) ( )batt ch dischP k P k P k  presents the battery net power. Obj3 represented in (12) is for-
mulated by adding this prolonging battery lifetime cost to Obj2 in (10) with the weighting 
factor Pbattw . 

         3
Li Li ch disch battS S SOC SOC Pch P Pdisch P Pbatt PObj w J w J w J w J w J w J w J  (12)

Where 




    1 max max

0
| ( 1) ( )| ( )

batt

N
P batt batt ch dischk

J P k P k N P P  (13)

4.2 System constraints 
1) Power balance constraints 

For the LV bus, the sum of power flowing into/out of it equals zero (Kirchhoff’s Cur-
rent Law for a given voltage), assuming no losses within the bus itself. Hence, for the 
system presented in Figure 1, the power from the MS and the battery equals that required 
by the connected critical and non-critical loads, which can be formulated as (1) and (2), 
which is mentioned in Section 2. 
2) Storage dynamics 

The battery SOC can be calculated from the charging/discharging power over time 
using (3) presented in Section 2 [32]. 
3) Hard and soft constraints of SOC 
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Battery [0,1]SOC , where SOC = 1 indicates a fully charged battery, while SOC = 0 
corresponds to a depleted battery. In the aircraft, SOC is preferred to be kept within a 
target range [LO, HI]. Therefore, upper and lower bounds are defined in (14), where 
LO=0.3, HI=0.9 is selected in this case, which could be presented as hard constraints for 
the optimization. 

  9(0 ).3 0.C kSO  (14)

However, the hard constraints (14) increase the sensitivity of the algorithm to the 
power fluctuations. Because SOC is related to the stored or released energy, which is in-
fluenced by the power fluctuations, it is necessary to allow SOC to vary slightly outside 
of this range in real situations, due to unpredicted power consumption variations. In this 
case, the hard constraints (14) would prevent finding a feasible solution. Therefore, soft 
constraints in (15) - (17) are proposed in our model to improve the robustness of the MILP-
MPC algorithm. Variables ε(k) and ϑ(k) are introduced to relax the hard upper and lower 
bounds in (14). The maximum allowed deviation for both bounds is 0.1 in this case. By 
adding two large weight factors to ε(k) and ϑ(k) in the cost function as presented in Obj1 
(4) and (9), SOC will usually be kept within the target range [0.3, 0.9], while allowing some 
tiny deviations when necessary. 

       (0 9).3 0.k k kSOC  (15)

  0 0.1k  (16)

  0 0.1k  (17)

4) Charging/discharging mode constraints 
The battery can be either charged or discharged by the system. Therefore, two binary 

indicators are introduced to represent different modes in (18), (19), and (20), allowing the 
modes to be treated differently. 

              1,  ,  0,1ch disch ch dischk k k k  (18)

   max0 ( ) ( )ch ch chP k k P  (19)

   max0 ( ) ( )disch disch dischP k k P  (20)

5) Bounds of input power from the MS-side 
The input power from the MS-side is limited by the maximum power that can be 

transferred by the DC/DC converters, and these input power bounds are presented in (21) 

   max0  in inP Pk  (21)

5. Evaluation for Various Objectives 
The objective functions designed in Section IV lead to different control problems and 

consequently different operating strategies for the MS-ES-L system, which are also im-
pacted by the prediction horizon and the load profile. To compare the differences caused 
by these factors, an evaluation framework is proposed in this section to quantify the con-
trol results for all flight stages. The overall flight time is T=M·Ts, where M is the total num-
ber of time intervals. Moreover, to verify that the proposed method is suitable for real-
time applications, the computation time for the MILP-MPC controller should be less than 
the sample time Ts. As the computation time can be impacted by the objective function 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2021                   doi:10.20944/preprints202110.0365.v1

https://doi.org/10.20944/preprints202110.0365.v1


 11 of 22 
 

formulation, prediction horizon, and load samples, the impact of these factors on the com-
putation time is also studied in this section. 
5.1 Model parameters 

The model parameters including the MS-ES-L system component parameters are 
listed in Table 2, and the weighting factors are listed in Table 3. These weighting factors 
are selected by the method proposed in [43]. The MILP-MPC controller sample time Ts is 
selected as 1min, the verification for the sample time selection will be demonstrated in 
Subsection 5.3. The total flight time is 150min. 

Table 2 Parameters for the MS-ES-L system 

capB  4kWh max
chP , max

dischP  4kW 
max

inP  4kW ch , disch  90% 
max

LoadP  4kW SOC(0) 0.3 

Table 3 Weighting factors in objective functions 

Sw  5 w  34.7 

SOCw  16 w  1e5 

Pbattw  2 Pdischw  5.1 

Pchw  3.1 in Obj1, 2.8 in Obj2 and Obj3 
 

      

         (a) Case 1: Random load profiles                  (b) Case 2: Load profiles based on flight stages 

Figure 3 Different load cases 

For evaluating the load profile impacts on the results, two types of load profiles are 
used. In Figure 3 (a), a randomly changing load profile is considered, while Figure 3 (b) 
demonstrates the load profiles based on different flight stages. The flight stages include 
ground (pre-departure and taxiing-out), takeoff, climb, cruise, descent, landing, and taxi-
ing-in. Each load system requires a different amount of power at each flight stage. For 
example, the cabin power demand reaches the highest level at the cruise stage which can 
be several times larger than the power demand at other stages. In addition, the power 
demand of the environment control system increases dramatically as soon as the aircraft 
takes off and keeps almost the same value for the following stages, while the landing gear 
only requires power during ground, takeoff, landing, and taxiing-in stages [44], [45]. 
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Therefore, compared to the load profiles in Figure 3 (a) changing every minute, the pro-
files in Figure 3 (b) change much slower where each load level lasts at least for 15min. 
However, an average load power of 2kW can be seen in both cases. 
5.2 Evaluation indices 

In the following subsections, eight evaluation indices are proposed. The control re-
sults are evaluated by each of the proposed indices for both load scenarios when objectives 
Obj1-Obj3 are adopted for prediction horizons H varying from 1Ts to 30Ts (N=1, 2,…, 30). 
Each index represents the corresponding quantified performance, and lower values indi-
cate better performance. 
5.2.1 Load Shedding index 

The normalized load shedding index quantifies the ratio of shed loads throughout 
the whole flight time T=150min, as shown in (22). 

 


  
    1

0 1 1
[ (1 ( ))] ( ( ))Li Li

Li

M N N
S Li Li Lik i i

G S k M  (22)

In Figure 4, the load shedding index values are compared when adopting different 
prediction horizons and objective functions, with case 1 and case 2 showing the results for 
adopting different load profiles. For both load cases, the Obj2-3 have similar changes: 
when the prediction horizon is short, load shedding remains lower than for Obj1, while 
the load shedding increases quickly as the prediction horizon becomes longer, causing 
Obj2-3 to have more load shedding than Obj1 with long prediction horizons. Although 
the load shedding for Obj1 also has the incrementally increasing tendency when N in-
creases for the second load case, the growth rate is much slower compared to Obj2-3. This 
difference between Obj1 and Obj2-3 is caused by the cost function JSOC - more loads are 
shed to speed up the SOC accumulating when N increases. 

 
Figure 4 Comparison of different prediction horizons and objective functions based on the normal-
ized shedding index for two load cases 

Comparing Obj2 and Obj3, when the loads frequently vary, as presented in case 1, 
the load shedding for Obj3 increases at a higher rate than Obj2, while Obj3 has less load 
shedding than Obj2 when N≤6. This is caused by the cost function JPbatt in Obj3. By chang-
ing the load shedding scheduling and adjusting the input power from MS, the battery can 
be charged/discharged smoothly. Combining with JSOC, more load shedding will be con-
ducted as N increases so that the system keeps charging the battery with fewer power 
fluctuations. When the load varies less and slowly as load profiles in case 2, the load shed-
ding curves for Obj2 and Obj3 are mostly overlapped, because the stable load profile lacks 
the scheduling possibilities while the WF for JPbatt is small, hence JSOC dominates JPbatt in this 
case. Comparing the results for N=9 in Figure 4, there is a sharp rise of the index value at 
N=10, which indicates that the shedding of high-priority loads is increased.  

In summary, Obj1 has better performance in load shedding compared to Obj2-3 on 
average. However, when the selected prediction horizon is not too long, e.g. N≤9 in our 
case, the Obj2-3 can have better load shedding performance. 
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5.2.2 Contactor status change index 
The average number of connection status changes for each contactor in the whole 

time period is presented in (23), where NLi indicates the total number of non-critical shred-
dable loads. 

1

0 1
| ( 1) ( )| ( )Li

Li

M N
Li Li Lik i

G S k S k M N


 
      (23)

These index values are compared in Figure 5 when adopting different prediction ho-
rizons and objective functions, with case 1 and case 2 showing the results for different 
load profiles. In general, the change of contactor status is reduced as N increases in both 
cases for Obj1-Obj3, while the curve for Obj1 in case 2 fluctuates the most. In both load 
cases, the contactor change values for Obj2-3 decrease very quickly when N<10 and then 
keep a low level when the prediction horizon is longer. Moreover, when N is in this range, 
compared with the results for load shedding in Figure 4, Obj2-3 also has good perfor-
mance for load shedding index. This also benefits from the inclusion of JSOC, as it takes 
results of power integration over time into consideration within the prediction horizon. 

 
Figure 5 Comparison of different prediction horizons and objective functions based on the contac-
tor status change index for two load cases 

It can be concluded that Obj2 and 3 perform better than Obj1 for maintaining the 
contactor status in different load cases. Moreover, for the contactor status change index, a 
very long prediction horizon is unnecessary for Obj2-3, saving computation time while 
still achieving good results. 
5.2.3 Battery energy storage level index 

In aircraft applications, it is preferable to keep the battery highly charged to cope 
with emergency cases and unforeseen situations. Hence, when designing the optimization 
algorithms, the objective functions are designed to maximize the average energy stored in 
the battery. The index (24) is proposed to evaluate the average level of the energy stored 
during the studied scenarios. 

1

0
|0.9 ( )| ( 0.9)

M
SOC k

G SOC k M



    (24)

Figure 6 shows the comparison of the GSOC index values with different prediction 
horizons and objective functions, with case 1 and case 2 showing the results for adopting 
different load profiles. In general, the energy storage level index value is reduced as N 
increases in both cases for Obj1-Obj3, while for the load case 1, the index values for MILP 
(N=1) are less than the ones for MILP-MPC (N≥2) when N≤12 for Obj3, N≤16 for Obj2, and 
N≤30 for Obj1. When N=1, the contactor status changes will not impact the optimization 
results for each time step. Combined with the frequently varying loads, the SOC is there-
fore improved by shedding/connecting loads with high power demands continuously. 
However, when N=2, the number of contactor status changes is much reduced (the index 
value is reduced by 1.3) compared to the value when N=1. In the meantime, the battery 

G
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i
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will be used for supporting loads even the loads’ demands could be high, which slows 
down the SOC accumulation. 

 
Figure 6 Comparison of different prediction horizons and objective functions based on the battery 
energy storage level index for two load cases 

Comparing the SOC changing rate for Obj1-3 with the MILP-MPC method, for both 
load cases, Obj2 and 3 improve SOC level at a higher rate than Obj1 when N increases, 
since both Obj2 and Obj3 benefit from the cost function JSOC to speed up the energy storage 
in the long term. For load case 1, Obj3 speeds up the SOC accumulation with a higher rate 
than Obj2, as the cost function JPbatt in Obj3 tends to keep the battery charging with few 
power fluctuations.  

This suggests that Obj3 has the best performance for the battery storage level index. 
When adopting Obj3, the prediction horizon does not necessarily need to be selected too 
long, as it charges the battery much faster than Obj1. 
5.2.4 Battery power change index 

The battery life will be shortened when the battery power is frequently changed [18]. 
The index (25) is therefore proposed to calculate the total battery power change for all 
flight stages. 

1 max max
0

| ( 1) ( )| ( )
batt

M
P batt batt ch dischk

G P k P k M P P



     (25)

 
Figure 7 Comparison of different prediction horizons and objective functions based on the battery 
power change index for two load cases 

Figure 7 presents the comparison of the battery power change index values with dif-
ferent prediction horizons and objective functions, with case 1 and case 2 showing the 
results for adopting different load profiles. In both load cases, for each N, Obj3 usually 
has a better performance compared to Obj1, because Obj1 doesn’t contain the cost function 
JPbatt to minimize the power change. However, as Obj2 has the cost function JSOC in common 
with Obj3 with relatively high WF, the index value curve of Obj2 has similar trends as 
Obj3 – the value is reduced to the minimum value and then slightly rises with variations 
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when N increases from 2 to 30. Because the load shedding and the reduction of the load 
on/off changes can avoid the battery changing between the charging and discharging 
modes, Obj2 and Obj3 perform similarly in these indices. By adding the cost function JPbatt 
in Obj3, the charging power can be smoothed whenever it is possible. On the other hand, 
when N increases (N>20) to keep accumulating SOC, more power will be injected into the 
battery, thereby increasing the battery charging power variation. Moreover, JPbatt and JSOC 
can impact the results for load shedding and the contactor status changes, which results 
in the battery power change fluctuations, as can be seen in Figure 7. 

Based on this comparison, Obj3 has the best performance for the index of battery 
power change, which also indicates that this objective function is preferred when battery 
life is important. 
5.2.5 SOC target range index 

Since the soft constraints of SOC are introduced to improve the robustness of the 
algorithm, the real SOC might exceed the target range of [0.3, 0.9]. The SOC target range 
index is built to evaluate the ratio of the outrange SOC by which the SOC is exceeded. 
Equations (26) and (27) are considered for the upper and lower bounds respectively, 
where S is the set of all time intervals which satisfy the desired ranges. The SOC can be 
out of range in the following situations: 1) there are deviations between the predicted and 
realized load which the controller cannot handle in time; 2) the controller has a delay in 
sending and receiving signals. In this section, the ideal situation is considered, hence the 
SOC target range index remains 0. 

:( ( ) 0.9)
( ( ) 0.9) (1 0.9)SOCR k S SOC k

G SOC k
 

    (26)

:( ( ) 0.3)
(0.3 ( )) 0.3SOCR k S SOC k

G SOC k
 

   (27)

5.2.6 Index for multi-objective problem 
Although the performance of each objective function has been analyzed in 1) – 5) for 

each index, the overall performance of each objective function concerning the length of 
prediction horizon N still needs to be investigated. For a multi-objective problem with 
conflicting cost functions, e.g. JSOC and JSLi, there are trade-offs among the evaluation indi-
ces. Hence, weight parameters for each index are selected to represent the practical re-
quirements, i.e. priorities of each optimization target. The final overall index is formed 
with the full knowledge of system performance throughout the whole operation, by using 
the above-mentioned indices, which are combined with appropriate user-specified weight 
parameters. The WFs utilized by the MPC to get the best overall results may differ from 
the weights used in the final evaluation. A neural network-based method in [43] is 
adopted for selecting WFs and weights in the overall index. The multi-objective evalua-
tion index is presented in (28) with the adopted weights listed in Table 4. 

Li Li battMO S S SOC SOC Pbatt P SOCR SOCRSOCR SOCRG G G G v G G G            (28)

Table 4 Weights for the multi-objective index 

sv  2.8 v   1.68 

SOCv  1 Pbattv  0.4 

S O C Rv  104 S O C Rv  104 
Figure 8 presents the comparison of the proposed multi-objective evaluation index 

values with different prediction horizons and objective functions, as case 1 and case 2 
show the results for adopting different load profiles. The figure shows that Obj2 and 3 can 
provide the optimal solutions with a shorter prediction horizon compared with Obj1. 
Compared to Obj2, Obj3 reaches a lower index value with a shorter horizon for load case 
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1. These results are heavily based on the selection of the weights for each index, but with 
the adjustment of the weights by the users according to their application requirements, 
the optimal objective function with a suitable prediction horizon can be selected. 

 
Figure 8 Comparison of different prediction horizons and objective functions based on the multi-
objective index for two load cases 

5.3 Real-time application analysis 
For real-time MPC applications, computation time is the key issue to be considered, 

as the time required to complete the computation should be less than the sampling time. 
When adopting the CPLEX solver, the computation time is influenced by several factors: 
1) more complex models will often take longer time; 2) longer prediction horizons will 
take longer time; 3) different input values, such as different load data as inputs to the MPC 
controller, can cause different computation times. Hence, to verify the MPC real-time ap-
plication, the worst-case analysis of the computation time is conducted for Obj1 – 3. For 
each objective function and each N, the MPC controller will finally adopt 150 optimal so-
lutions (one sample at each time step), and the maximum computation time for the MPC 
controller is recorded as the worst-case. 

 
Figure 9 Comparison of the worst-case computation time of different prediction horizons and ob-
jective functions for two load cases 

Figure 9 presents the maximum computation time GTmax changes for each objective 
function with respect to N. In both load cases, the maximum computation time for Obj1 – 
3 has similar incrementally increasing tendencies as N increases: when N≤10, the compu-
tation time is less than 0.2s; when 10<N≤15, the computation time is less than 1s; when 
15<N, the computation time will go above 1s with the maximum value less than 8s. This 
indicates that the proposed MPC method could be adopted for real-time application with 
selected sample times Ts larger than 10s, during which the optimization would be com-
pleted, with the additional time being used for data measuring and communicating [46]. 
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It is worth noting that a maximum computation time can be set in CPLEX. In this case, if 
the solver ran out of time, it would return the best solution that has been found in that 
time, rather than the optimal solution. In our case, Ts is selected to 1min because of the 
following reasons: 
1) A 1-min sample time can provide the controller with enough time to obtain the meas-

ured status and updated load prediction, complete the optimization, and send the 
control signals to the system.  

2) The proposed MPC method is mainly designed for satisfying the long-term battery 
SOC and load management requirements in the high-level control system. Since the 
SOC and average loads will not change very much in a few seconds, the MPC control-
ler would not be required to update the control references frequently in small time 
intervals in the order of seconds. On the other hand, if the MPC is required to run 
every few seconds, to update the reference to cope with transients, the battery power 
and loads might change with every load fluctuation, which might cause instability in 
the system. In fact, instead of using MPC with long-term operating goals to act fast in 
response to the transient load changes, another real-time controller is usually added 
to the system at a lower control level, which will respond to the transient issues. This 
is the future work of the authors that will be presented in the future work discussion. 
In summary, when adopting the proposed multi-objective evaluation index as the 

index for our overall preferred performance, Obj3 will have the best performance with a 
suitable prediction horizon (N=7 and N=9 for the corresponding load cases), with a com-
putation time of lower than 0.2s. 

6. Experimental Verification 

 
Figure 10 Experimental setup 

A HIL experiment is implemented in the lab at the Aerospace Technology Centre at 
the University of Nottingham, as presented in Figure 10. The MS-ES-L system is imple-
mented in dSPACE 1006 for real-time simulation. The MILP-MPC controller is run in 
Matlab on a host PC, connected with the dSPACE. Every Ts, Matlab on the host PC uses 
the XIL API interface to read the measured data from dSPACE, including the load power 
PLi(k) and battery SOC(k). The MILP-MPC controller in Matlab takes these values as inputs 
and calls the CPLEX solver to provide the optimal power reference on the MS side Pin(k) 
and load shedding SLi(k). Finally, these optimal values are sent to the system implemented 
in dSPACE by the XIL API interface to realize real-time control. It is worth mentioning 
that the main purpose of this experiment is validating the suitability of the proposed sys-
tem-level control framework for real-time implementation and the capability of the con-
troller to provide the system with optimal control commands at specified control intervals 
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to achieve the desired operating performance. However, deploying hardware devices rep-
resenting the MS-ES-L system component as well as including device-level control sys-
tems will help evaluate the performance of the proposed system-level strategy in the full 
control hierarchy which is the scope of future work of the authors. 

The control results of MPC with Obj1 – Obj3 for all flight stages are compared in this 
experiment. During the flight, the loads are changed following the profile in Figure 3 (b). 
According to the analysis in Section V, the MPC for Obj3 performs best when N=9 with a 
computation time of less than 0.2s. To verify this analytic conclusion based on the mathe-
matical model, the MPC with Obj1 – 3 when N=9 is applied in the experiment. The perfor-
mance of each objective function can be visualized by observing the figures presenting the 
SOC changes, load shedding results, and battery power change. The real-time application 
of MPC is also verified. It should be noted that the flight time slot has been scaled down 
from 60s to 3s to experiment within 7.5 min instead of 150 min. The battery capacity is 
accordingly scaled down to 0.2 kWh during the experiment. From both analyses in Figure 
8 and the experiment, Obj2 and Obj3 have the same control results when N=9 for this load 
profile. Hence, in the following comparisons, only the control results for Obj1 and Obj3 
are considered, to study the differences. 

Figure 11 presents the SOC measurement results during the flight stages, while (a) 
shows the results when MPC adopts Obj1 and (b) is related to Obj3. When Obj3 is adopted, 
the battery SOC is kept within 0.4 – 0.6 for the most time intervals with a maximum value 
of 0.56, while SOC is kept within 0.3 – 0.36 for the most time intervals when adopting 
Obj1, with a maximum value of 0.46. As the SOC is close to the lower limit when adopting 
Obj1, the system will be less robust for coping with unexpected failure scenarios. 

  

     (a) SOC change with Obj1                           (b) SOC change with Obj3 

Figure 11 SOC comparison for Obj1 and Obj3 when N = 9 

  

                      (a) Load shedding with Obj1                         (b) Load shedding with Obj3 

Figure 12 Load shedding comparison for Obj1 and Obj3 when N = 9 

The predicted and scheduled results for shedding of non-critical loads are presented 
in Figure 12, indicating load shedding in the system when adopting Obj1 in (a) and Obj3 
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in (b). The load contactors have more frequent on/off activities when adopting Obj1 com-
pared to the case of adopting Obj2. Also, when adopting Obj1, the minimum time period 
for keeping loads connected is 1 min, while Obj3 will keep loads connected for at least 8 
min, which is preferred for reducing transient issues. Although Obj3 has less load on/off 
activities, it still has less load shedding time for both high and low priority loads: the load 
shedding index for Load 2 is 0.317 with Obj1 compared to 0.299 with Obj3, while the load 
shedding index value for Load 3 is 0.617 with Obj1 compared to 0.599 with Obj3. In con-
clusion, Obj3 outperforms Obj1 in both load shedding and switching activities in the ex-
periment. 

The battery charging/discharging power measurements are presented in Figure 13, 
where (a) presents the results with Obj1, while (b) presents the results with Obj3. Com-
paring the two figures, when adopting Obj3, the battery has less switching between the 
charging and discharging modes, and the charging/discharging power is less changed 
during each mode. In addition, the battery power curve with Obj1 has several transient 
peaks, which happens when Load2 is connected/disconnected simultaneously with the 
Load3 connection action being reversed. This verifies that Obj3 performs better in terms 
of battery lifecycle as well as system stability. 

  

                     (a) Battery power with Obj1                           (b) Battery power with Obj3 

Figure 13 Battery power comparison for Obj1 and Obj3 when N = 9 

In summary, the MPC model with Obj1 – 3 proposed in Sections III and IV is appli-
cable for real-time applications. Besides, it was found that the MPC with Obj3 performs 
better than Obj1 in the real-time HIL experiment when N is selected as 9 for the given load 
profile. This supports the analysis and conclusions in Section 5. 

This research inspires our future work when the system extends to the whole com-
plex MEA power system configuration, such as HV buses, APU, multiple bidirectional 
converters, etc. A hierarchical controller based on the MPC method is proposed to cope 
with more operation constraints and scenarios, where the idea and findings mentioned in 
this work are adopted to design the objective function. Moreover, the model proposed for 
optimization in MPC can be applied to the battery/EPS sizing problem, which helps to 
decrease the weight and volume of the aircraft. This topic will also be explored in our 
future research.  

7. Conclusions 
This paper proposed a system-level MPC framework to optimize the control and 

management of the energy storage and flexibility in the load-side for a MEA system. Fol-
lowing the control targets, three different objective functions were presented, and the im-
portance of the different objective functions and prediction horizons was identified by 
analyzing the simulation results with the proposed evaluation framework including dif-
ferent performance indices. By assessing the impacts of different objectives, the paper pro-
vided the readers with a reference for selecting the most applicable objective function 
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combination, as well as its potential impacts on deciding prediction horizons for different 
use cases. 
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