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Featured Application: The outcomes of this work can be applied to forecast C5 content in1

debutanizer columns based on data obtained by a few pressure and temperature sensors. In2

addition, the proposed visualization can be used as a models’ global explanation, highlighting3

opportunities regarding feature selection, the most important features guiding the forecasts,4

and threshold values within which the forecasting model can operate.5

Abstract: Refineries execute a series of interlinked processes, where the product of one unit6

serves as the input to another process. Potential failures within these processes affect the quality7

of the end products, operational efficiency, and revenue of the entire refinery. In this context,8

implementation of a real-time cognitive module, referring to predictive machine learning models,9

enables to provide equipment state monitoring services and to generate decision-making for10

equipment operations. In this paper, we propose two machine learning models: 1) to forecast the11

amount of pentane (C5) content in the final product mixture; 2) to identify if C5 content exceeds12

the specification thresholds for the final product quality. We validate our approach by using13

a use case from a real-world refinery. In addition, we develop a visualization to assess which14

features are considered most important during feature selection, and later by the machine learning15

models. Finally, we provide insights on the sensor values in the dataset, which help to identify the16

operational conditions for using such machine learning models.17

Keywords: Artificial Intelligence; Machine Learning; Explainable Artificial Intelligence; Soft18

Sensors; Industry 4.0; Smart Manufacturing; Cyber-Physical System; Crude Oil Distillation;19

Debutanization; LPG Purification20

1. Introduction21

Petroleum refineries receive crude oil of different provenances with their specific22

characteristics. The inlet crude oil feedstock is transformed into final products through23

multiple processes. Each process provides products whose qualities are prescribed by24
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different standards, such as the Liquefied Petroleum Gas (LPG), a mixture of hydrocar-25

bon gases used in heating appliances and vehicles. The final mixture product usually26

contains 48% propane, 50% butane, and up to 2% pentane (hereafter, also referred to as27

C5) which is developed based on local regulations and composition requirements, the28

intended use, and even seasonal limitations (e.g., a higher proportion of propane is used29

in winter due to its evaporation point).30

In order to achieve the desired quality, the LPG obtained from crude oil distillation31

must undergo several processes to remove impurities. One of these purification processes32

is debutanization, which removes C5. To ensure the final mixture meets the specification33

standards, samples are taken in various stages of the refinement and purification process34

and undergo lab analysis. Results are passed on to production engineers so that they35

can adjust process settings if required. However, lab analysis may take up to several36

hours to be completed and is not conducted every day, causing the identification of an37

already existing off-specs situation to be delayed. This, in turn, makes recovery harder,38

since the sooner an off-spec situation is identified and resolved, the better it is for the39

recovery efforts in terms of both, time and cost. Hence, there is a need for early (or40

ideally real-time) identification of situations where C5 content exceeds specifications.41

This brings a strong motivation to create a model-based approach for a cognition module42

supporting the operation which alerts of an C5 off-spec situation, and enables real-time43

decision-makings based on such alerts.44

Currently, several approaches to estimate debutanization process outcomes exist.45

Among them, Aspen HYSYS 1 uses mathematical models to simulate a debutanizer unit46

and predict process outputs. Such simulation models frequently use elaborate math and47

complicated equations to achieve enough generalization to be applied across different48

units. Data-driven models overcome limitations regarding equation solving complexity49

by utilizing past data to learn and produce possible solutions. While the ability to reuse50

them across units strongly depends on the model design, once trained, such models can51

provide forecasts with almost no latency. If forecasts are good enough, the models can52

get frequently insights regarding C5 content in the LPG, for providing ground for earlier53

off-spec product identification and timely decision making.54

Real-time prediction of C5 content during the debutanization processes provide55

new insights that guide decision-makings for process monitoring and control. To create56

machine learning models capable of such forecasts, we utilize historical sensor data57

regarding operational temperature and pressure, as well as laboratory results obtained58

from the samples analysis. Such data and analysis results enable to support machine59

learning model training and evaluation by identifying correlations between sensed60

conditions and measured outcomes for two purposes: (i) with real-time sensor data,61

such models can provide real-time C5 content estimates; (ii) with new real-time sensor62

data and lab analysis data update, the machine learning model performance is expected63

to be promoted in time, if retrained with the new data available.64

In this paper, we develop machine learning models for a real-world use case, based65

on sensor data provided by a Tüpras2 refinery. By examining the actual process in the66

use case, we found that different debutanizer columns have different features because67

of their different designs. Moreover, only a few sensors are located in the debutanizer68

column. Most sensor data corresponded to the pipping system that connected the69

debutanizer column with the condensation unit and the units that follow. We used70

several debutanizer unit diagrams to understand where the sensors are located and71

which sensors are close to the distillation column exit. Temperature and pressure72

conditions are identified by the ones near the column exit, and hence the first ones placed73

in the pipes close to the related exit but before the condensation unit. We assume such74

data provides good insight on how operating conditions relate to extracted samples and75

1 https://www.aspentech.com/en/products/engineering/aspen-hysys
2 https://www.tupras.com.tr
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measured composition. Furthermore, we observed that there are some cases where both,76

temperature and pressure sensors, exist for any given point in the debutanizer column,77

but at least one of them exists. Considering these limitations, machine learning models78

are developed to predict C5 content based on the inputs of two sensors (one pressure79

sensor and one temperature sensor). Finally, we develop two machine learning models80

that provide predictions based on the data from these two sensors for independent81

estimate: (i) one that predicts the expected amount of C5 in the LPG; and (ii) one that82

forecasts whether C5 content is off-spec (higher than 2%).83

The contribution of this paper is the utilization of operational temperature and84

pressure sensor data to develop:85

1. a machine learning model to predict C5 content in LPG stream;86

2. a machine learning model to predict if C5 content exceeds specification levels87

Machine learning models built utilizing data from a few sensors can be more easily88

applied to a broad range of debutanizer columns since they impose fewer restrictions89

on the number of input data sources required to provide forecasts. Thus, we consider90

that a major strength of our approach is the fact that it relies only on data of two sensors,91

one measuring pressure and the second one measuring temperature in the debutanizer92

column - both placed at separate locations within the column.93

Along with the development of the aforementioned models, we also provide a94

prototype dashboard, which provides global explanations to understand which features95

were considered most relevant during the feature selection, and which features were96

considered relevant by the forecasting model. In addition, we provide insights on the97

sensor values’ distribution in the training set, to understand the models’ operational98

limitations.99

To evaluate our models, we have utilized three metrics: two for measuring regres-100

sion features and one for measuring the classification features. We assess the regression101

models’ performance with the Root Mean Square Error (RMSE) and the Mean Absolute102

Error (MAE). The MAE is not sensitive to outliers and can thus provide a reasonable103

estimate of the models’ performance for normal C5 levels. The RMSE penalizes large104

errors and thus better indicates if out-of-spec measurements were predicted adequately.105

The classification models’ performance is measured with the Area Under the Receiver106

Operating Characteristic Curve (AUC ROC [1]). AUC ROC is invariant to a priori class107

probabilities, referring to a relevant property when measuring models’ discrimination108

power in an imbalanced dataset. After evaluating the models, results show that our109

approach is applied to effectively provide real-time C5 content predictions in the LPG110

debutanization process of our given use case.111

The rest of this paper is structured as follows: Section 2 presents related work.112

Section 3 describes a Tüpras refinery use-case,and Section 4 introduces the features113

created for the C5 content forecasting model, as well as the way to develop and evaluate114

these models. Section 5 presents the experiments we performed and the obtained results.115

Finally, Section 6 offers our conclusions and provides an outline for future work.116

2. Related work117

2.1. Distillation process-related models118

Debutanizer columns are an important part of several processing units in oil refiner-119

ies. Therefore, the objective of the online composition of debutanizer outlet streams is to120

maximize the production of LPG while meeting the corresponding quality standards.121

Currently, the quality of the debutanizer output is measured via laboratory analysis.122

Hence, changes in the quality are identified only upon the analysis of the sample, which123

may take several hours. Therefore, in order to maintain the quality of the product within124

the predefined specifications, it is of imperative importance to predict the top and bottom125

outputs of the debutanization process precisely [2].126

To realize this objective, [3] identifies three major approaches to develop the required127

models: (i) first-principle (a.k.a. fundamental) models, which consider mass, energy, and128
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momentum principles and equations to provide a forecast; (ii) machine learning models,129

which are created by training an algorithm on input-output data of the process; and (iii)130

hybrid models, which combine both the fundamental and the empirical models.131

First-principle models involve sets of non-linear differential equations (usually in132

the order of 102 or 103 non-linear differential equations) and a comparable number of133

algebraic equations [4,5]. The equations usually take into account the global balance134

of matter, partial balances of matter, pressure, temperature, flow, reflux policies, and135

the relationship between component concentrations at different levels of the distillation136

column [6,7]. While additional information regarding the structure of the distillation137

column can further enhance such models (e.g., the number of trays in a column or the138

column hydraulics [8]) with the increasing computational complexity of such models.139

To alleviate the computational needs, simplified distillation column models have140

been proposed [9,10], at the expense of an increased error whose applicability often141

restricted to a single column [11]. These models are usually implemented in Advanced142

Process Control systems (APC), such as a Multivariable Model Predictive Control (MPC),143

for managing relevant process variables and their dynamics. The equations mentioned144

above govern the control logic between variables. Algorithms that perform matrix145

computations are used to solve such system dynamic models with multiple variables146

simultaneously. In addition to their computational complexity, the usefulness of such147

models is constrained to the model assumptions, e.g., sensor colocation points[12].148

Data-driven models provide an alternative modeling approach for developing149

the forecast models [13]. In particular, machine learning models are developed based150

on the prior knowledge of the physical processes for creating good features of model151

outputs. The models are trained with the collected data from the actual operations of152

the unit: 1) The raw data is transformed into a dataset for developing models which153

perform features that reflect different dynamic features for the raw data variables; 2)154

Through the developed models, observed outputs are generated through the the feature155

vectors. Through such model features, the machine learning models can accurately learn156

non-linear features from the data, even when some noises exist in the data [14].157

Hybrid models arise from the combination of the first-principle and data-driven158

models [15]. Such models are used to retain the theoretical knowledge of the process,159

which is mirrored in equations. In contrast, the data-driven models can augment such160

knowledge using data, and can be used to model parts of the process that are hard to161

formulate and would otherwise require overly complex first principle models [3,16].162

Hybrid models have been implemented widely in various chemical processes such163

as batch distillation [17], reactive distillation [18], and polymerization process [19,20].164

However, only a handful of models have been implemented in continuous distillation165

columns.166

In the literature, there are some attempts to model continuous distillation processes167

in refineries. Such attempts not only include debutanizer columns [12,21], but also168

various other units such as Crude Distillation Units (CDU) [22,23] and Fluid Catalytic169

Crackers (FCC) [24,25]. Among the models developed for debutanizer columns, we find170

the artificial neural networks (ANN) [23,26,27], partial least square regression [28,29],171

support vector regression (SVR) [23,28], principal component regression [30], super-172

vised latent factor analysis [31,32], probabilistic regression [33], and state-dependent173

autoregressive model with exogenous variables [34].174

To evaluate C5 and C4 product concentrations in the debutanizer column, [3]175

created a dynamic neural model that acts as a soft sensor based on the data provided. In176

a similar manner, [35] developed an ANN model to predict LPG composition at the top177

and bottom of a distillation column, comparing its performance to a partial least squares178

model. A comparison between different models was also performed by [27], which179

developed multiple linear regression, principal components regression, and neural180

networks models for a debutanizer column. They concluded that the performance181

of such models was superior to least square regression models and support vector182
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regression models reported in the literature. Finally, [36] aimed to identify the governing183

equations regarding a distillation column using a white-box machine learning approach.184

Cyber-physical systems describe systems that integrate the physical processes185

into the digital world, where monitoring and analytics can be performed [37,38]. A186

standard abstraction model considers three significant layers: physical, cybernetic,187

and an interface between both [39]. The concept of cyber-physical systems has been188

successfully implemented in petrochemical plants [40].189

This paper highlights the importance of artificial intelligence applications com-190

pared to traditional analytic methods based on mathematical models. It proposes a191

cyber-physical integration using machine-learning models to provide real-time LPG C5192

content estimates based on streamed sensor data. In our use case, sensor data regard-193

ing pressure and temperature was available only from a few sensors at the top of the194

debutanizer column; hence, such models could not be replicated. Nevertheless, we have195

acknowledged the algorithms described in the related work and implemented models196

based on them and our set of features.197

2.2. Explainable Artificial Intelligence198

The machine learning models are growing in complexity and sophistication provid-199

ing accurate forecasts based on historic data. At the same time, there is an increasing200

need to understand the logic behind such models, to comply with regulatory require-201

ments, and provide ground for responsible decision-making [41,42]. Insights on the202

process followed by such models when applying operations on the input to provide a203

forecast enable to decide whether such forecasts can be trusted or not [43,44]. To respond204

to such challenges, research on techniques, approaches and visualizations is done in a205

sub-field of artificial intelligence, known as Explainable Artificial Intelligence (XAI).206

Multiple taxonomies were proposed to categorize the different XAI approaches.207

Arrieta et al. distinguish between transparent models and post-hoc explainability tech-208

niques, dividing the last category into model-agnostic and model-specific approaches209

[45]. Transparent models are also known as inherently-interpretable or white-box models,210

while the models that do not fall into this category, are considered opaque or black-box211

models [46]. A more elaborate taxonomy was proposed by Das et al. [47], who consid-212

ered dividing XAI techniques based on three criteria: scope (considering global or local213

explanations), methodology (if the technique focuses on the input data or model param-214

eters), and usage (if is model-agnostic or model-specific). Regarding the scope, local215

explanations provide insights regarding a particular forecast, while global explanations216

attempt to describe the overall model’s behavior [48].217

When providing global explanations for models trained on tabular data, a frequent218

model specific approach is to consider the features’ weight in the model to determine219

the features’ relevance ranking. Model agnostic alternatives have been devised by220

several authors using surrogate models [49–51]. While much research has been done on221

explaining models’ behavior, less research was invested towards crafting comprehensive222

explanations with insights regarding the data and the model creation process. Part of223

this void was addressed by MELODY (MachinE Learning MODel SummarY) [52], and224

SUBPLEX [53], which connect local explanations to data analytics either summarizing225

insights regarding the whole dataset or a relevant subpopulation. INFUSE [54], on the226

other side, focused on providing explanations regarding the feature selection process,227

and the influence of different feature selection strategies on it. While INFUSE takes into228

account a process of cross-validation, it does not bind it to the resulting model and any229

model related explanations.230

Visual interpretations are considered particularly effective to explain the models’231

forecasting rationale [55]. While much work was invested towards developing XAI232

techniques, some researchers consider not enough research was invested on making233

such explanations end-user-centered [56,57]. Visual explanations comprehend insights234

regarding the dataset and feature contributions at a local and global level. Scatterplots235
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are frequently used to visualize data distribution, using some dimensionality reduction236

technique to map the high-dimensional dataset into two dimensions [58,59]. Color-237

coded instances are frequently used in classification tasks, and interactive interfaces238

provided, to enable the user focus on specific instances and conduct further research [48].239

To represent features’ contributions, horizontal bar plots [53,60,61], breakdown plots240

[62,63], heatmaps [64,65], Partial Dependence Plots [66], or Accumulated Local Effects241

Plots [67] are used.242

In this research, we complemented our model development with a dashboard, that243

provides insights into the most informative features within the dataset, when considering244

feature selection, while also informing their relevance from the models’ point of view.245

In addition, we inform the value ranges of each sensors’ readings found in the dataset.246

Such values must be taken into account, since the model is able to issue good predictions247

within the observed ranges, and not outside them.248

3. Problem Statement249

3.1. Tüpras refinery250

The use case corresponds to a Tüpras refinery located in Izmit, which began oil251

production in 1961 and currently has a design capacity to process 11.3 million tons of252

crude oil per year. The crude oil is supplied from four countries: Iran, Iraq, Russia, and253

Saudi Arabia. Each of these crude oil feedstocks have different characteristics such as254

density, sulfur content, and impurities. The refinery complies with Euro 5 standards255

[68] and produces mostly diesel, gasoline, and LPG. The entire refining unit consists256

of atmospheric and vacuum distillation units, hydrocrackers, fluid catalytic crackers,257

continuous catalyst regeneration reformers, diesel and kerosene desulphurization units,258

merox, asphalt units, and sulfur recovery units. In Fig. 1, we provide a diagram showing259

the relation between processing units of this refinery, highlighting the LPG and gas flows.260

In this research, we focus on the LPG debutanizer units, which is implemented for the261

atmospheric distillation process. While feedstock changes regularly, experts pointed out262

that they do not display much difference in light hydrocarbons content regardless of the263

crude oil provenance. The atmospheric distillation process ameliorates this difference264

before the LPG enters the debutanizer unit. Given that the concentration of pentanes265

does not depend on the crude oil provenance, we consider it as a specific function of266

the debutanization process which is a distillation process with two control variables:267

pressure and temperature.268

3.2. Debutanization process269

The debutanization process is a fractional distillation process that aims to recover270

the light gases (C1− C4) and the Liquefied Petroleum Gas (LPG) from the overhead271

distillate coming from the distillation unit [27]. This distillation process aims to separate272

liquid components by heating a liquid to vapor, condensing the vapor back to liquid273

to purify or separate it. To that end, three components are required: (1) a distillation274

column (used to separate a liquid mixture into its fractions based on the differences in275

volatilities); (2) a reboiler (used to provide the necessary vaporization of the distillation276

process); (3) a condenser (used to cool and condense the overhead vapor).277

The CH4 (methane) component exists in the feedstock with the other alkane com-278

pounds, with the C4H10 (butane) fraction only gaining its freedom when the vapourised279

gas condenses inside the array of valve trays that line the interior of the debutanizer280

column. Based on thermal unit conversion technology, the butane is efficiently siphoned281

from the raw feed. To achieve this, the boiling point of butane is used as a reference282

point to determine temperature and pressure conditions. Pure butane condenses in283

the debutanizer column when the architecture of the column locks in the mandated284

variables, so few impurities can form. Similarly, propane, ethane, and methane are285

liberated and refined as valuable fuel sources in the other alkane processing columns.286
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Figure 1. High-level schematic diagram of some of units found in crude oil refineries. In this research we focus on one of the LPG
debutanizer units.

The distillation process can be manipulated with three control variables: the feed287

flow rate, reflux flow rate, and reboiler flow rate. Feed flow rate controls the feed of288

the distillation column, reflux flow rate controls the overhead temperature, and reboiler289

flow rate controls the bottom temperature. However, modeling such a column is a290

complex process as it involves various non-linearities and includes multiple variables291

with interactions between them [69].292

In the Tüpras refinery, there is an abundance of sensors to monitor the entire293

debutanization processes. Data from these sensors include measurements of input and294

output flows, temperatures, and pressures across the whole refinery. These are used in295

feedback loops to maintain the process stable and control the system dynamics close to296

the set-point values that the process engineers have selected for seamless plant operation.297

While rich sensor data exists, we only obtained the data from the temperature and the298

pressure sensors on the top of the debutanizer columns. Although a limited number of299

sensors was provided, our proposed approach presents excellent results as shown in300

Section 5.301

3.3. Relevant physical and chemical principles and laws302

In our use case, we have sensor data for the temperature and pressure measurement.303

To formalize meaningful features enabling the models to predict C5 content, we have304

considered the following laws and equations from physics:305

• Raoult’s law states that the total pressure of a component equals the vapor pressure306

of its pure components multiplied by their mole fraction (see Eq. 1);307

• Antoine’s equations provide a relationship between the vapor pressure of a pure308

component and three empirically measured constants at a given temperature (see309

Eq. 2);310

• Combined Gas Law states that the ratio of the product of pressure and volume311

and the absolute temperature of a gas equal a constant (see Eq. 3);312

• Clausius-Clapeyron relation describes pressure at a given temperature T2 if the313

enthalpy of vaporization and vapor pressure are known at some other temperature314

T1 (see Eq. 4)315

For the case study, we obtained data from sensors P1 and T2 of the debutanizer unit316

(in the Fig. 1); while we missed sensor readings from T1 and P2.317

Not having both temperature and pressure at a given point of the debutanizer318

column prevents us from using the Ideal Gas Law equation to compute the gas molar319

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 October 2021                   doi:10.20944/preprints202110.0364.v1

https://doi.org/10.20944/preprints202110.0364.v1


Version October 23, 2021 submitted to Appl. Sci. 8 of 24

Figure 2. Schematic diagram of an LPG debutanizer column. In the diagram we reference two locations on which the sensors are
placed. In this research, we developed models that take into account only sensors P1 and T2.

P = P1 · x1 + ... + Pn · xn (1)

Equation 1: Raoult’s law. P refers to pressure, x refers to mole fraction, and the n indicates
different mixture components.

log10P =
A˘B

C + T
(2)

Equation 2: Antoine’s equation. P refers to pressure, T refers to temperature. A, B, C are
empirical, component specific constants.

weight (see Eq. 5) of the mixture. The gas molar weight could provide further insights320

on the mixture composition using the gas molar weight equation (see Eq. 6). The gas321

molar weight equation expresses that the gas molar weight equals to the sum of the322

molar weights of the pure components multiplied by their mole fraction.323

LPG specifications require LPG to have a mixture of propane and butane, with no324

more than 2% of the volume of five carbon components (C5) and no more than 5% of325

the volume of two and five carbon components (C2 and C5). Though many possible326

components have two and five carbons, we decided to approximate them as a single327

pure component. Considering the laws, equations, and restrictions described above, we328

can derive a set of equations, which provide meaningful cues on the expected mixture329

composition, and thus drive better forecasts. E.g., from the Eq. 1 and approximating the330

LPG composition to the four elements described above, we obtain that C5 proportion can331

be expressed as Eq. 7. While pressure is known from the sensor readings (P1), we do not332

know the exact proportion of propane and butane. We also miss sensor data regarding333

the temperature at the same point where the pressure is sensed (T1). Considering that334

the relationship between temperature and pressure is linear, and given a snapshot of335

sensor data, we approximate T1 based on P1 and T2. Such an approximation allows us336

to compute saturation pressures for pure LPG components based on Antoine’s equations337

(see Eq. 2). Considering various scenarios of possible LPG composition, we compute338

features (see Section 4.3) signaling expected pressure for given conditions and how339

it compares to the pressure sensed in the debutanizer unit. When considering the340

constants for Antoine’s equations, we approximated two carbon hydrocarbon elements341

with methyl-disulfide (C2H6S2), and five carbon hydrocarbon elements with pentane342
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k =
P ·V

T
(3)

Equation 3: Combined Gas Law equation. P refers to pressure, V refers to volume, and T
refers to temperature. k is a constant.

ln
(

P1

P2

)
= − L

R
·
(

1
T2
− 1

T1

)
(4)

Equation 4: Clausius-Clapeyron relation. P refers to pressure, T refers to temperature, L
is the specific latent heat of the substance, and R is the specific gas constant.

(C5H12)). When doing so, we considered the vaporization temperature and sulfur343

content (sulfur is removed in later stages).344

4. Methodology345

4.1. Data preparation346

In order to realize the proposed machine learning models, we used data provided347

by Tüpras. The data included temperature and pressure sensor data, and 263 labora-348

tory measurements (167 measurements from the debutanizer Unit A, and 96 from the349

debutanizer Unit B), all sampled simultaneously at irregular day intervals. We consider350

that the irregular sampled data should not affect the machine learning model training351

since temperature and pressure sensor inputs are used to estimate LPG C5 content.352

As described in Section 3, experts informed us that light components, such as C5, do353

not vary much between feedstocks. The debutanizer follows a previous distillation354

phase, where LPG is separated from the rest of crude oil derivatives. Therefore, debu-355

tanizer’s operational pressure and temperature are used to influence the observed LPG356

C5 concentration.357

When creating the dataset for training machine learning models, we sampled sensor358

data at an each minute, for computing the average of raw sensor measurements between359

two minutes. We chose to impute values using forward filling for missing values,360

considering that missing sensor readings are most likely to have a value similar to the361

last one observed. Since we had no information regarding set-point configurations on362

past operations, we ran a change level detection algorithm on sensor reading time series.363

The algorithm identified changes in sensor data which refers to that values above a364

certain threshold. We empirically tried different threshold values and obtained the best365

results, corroborated with plots manual inspection, by setting it to 4%. In Fig. 3A, we366

provide an example of three time series of sensor data, enclosing some level changes367

within dashed squares. In Fig. 3B, we show two plots that illustrate how the change368

level detector works.369

Experts instructed us that the timestamps from laboratory samples did not match370

sensor data timestamps. In order to match them, timestamps from laboratory samples371

had to be transposed four to five hours earlier. Since accurate data regarding time372

transposition was missing, we decided to consider sensor values measured in fifteen373

minutes slots for a time range of an hour and a half (see Fig. 4). Since operational374

conditions change when a new set-point is given, we computed the median sensor value375

since the last change level detected and the upper bound time considered to match the376

laboratory reading.377

4.2. Data analysis378

To perform our research, we focused on the data provided from the two LPG379

debutanizer units. We got a total of 263 laboratory analysis results: 167 for Unit A and 96380

for Unit B. Sensor reading values were attached to them through the procedure described381

in the previous subsection. We observed that only Unit A had pentane concentrations382
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Figure 3. Fig. 3A shows a plot with three sample sensors timeseries. The dashed squares enclose some of the change levels observed in
those time series. Fig. 3B shows two plots, related to the change level detector: on the top we observe the signal, and on the bottom the
residual. If the residual exceeds certain threshold, a new interval is created.

Figure 4. Timestamp conciliation between sensor and laboratory sample timestamps, based on insights provided by experts. Since
a time range is provided, we decided to sample sensor values in the given interval every fifteen minutes, adding a fifteen minutes
tolerance at the interval edges. Times provided in this example do not correspond to real timestamps in data.

P ·V = n · R · T (5)

Equation 5: Ideal Gas Law. P stands for pressure, V stands for volume, n represents the
amount of substance, R is the ideal gas constant, and T corresponds to the temperature.

M = M1 · x1 + ... + Mn · xn (6)

Equation 6: Molar weight equation. M stands for molar weight, x represents mole
fractions, while the subindexes indicate different mixture components.

that exceeded the allowed out-of-specification threshold, reaching a total of fourteen383

off-specification events. We provide the summarized statistics of the sensor readings384

and target values in Table 1.385

4.3. Feature creation386

When creating features for our models, Raoult’s law and the Gas molar weight387

equation in Section 3.3 assume that all the components and proportions of a given gas388

are known to compute the final pressure and molar weight. While specifications indicate389
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Unit A Unit B
mean stdev min 25% 50% 75% max mean stdev min 25% 50% 75% max

P1 (kg/cm2) 7,42 0,29 6,54 7,28 7,43 7,60 8,32 4,98 3,84 0,00 0,00 7,61 8,02 8,78
T2 (°C) 62,66 19,82 0,00 66,17 67,41 69,13 89,70 35,99 30,84 0,00 0,00 58,20 61,38 80,36
C5 0,63 1,15 0,00 0,02 0,17 0,70 6,52 0,04 0,11 0,00 0,00 0,00 0,03 0,74

Table 1. Description statistics for sensor and laboratory analysis data obtained for debutanizer Unit A and Unit B.

Figure 5. Measured C5 content in laboratory samples over time. Please notice, that the samples are taken at irregular intervals. On Fig
5A we present measurements from Unit A, while on Fig 5B we present measurements from Unit B.

xC5 =
P− (PB · xB + PP · xP + PC2 · (1− xB − xP))

PC5 − PC2
(7)

Equation 7: Estimated C5 content. We obtain P from sensor data, Pi can be computed
based on a given temperature, xB and xP can be approximated to LPG specification, or
other useful values.

that no more than 2% of the LPG volume is compound by C5 hydrocarbons and that the390

sum of C2+C5 hydrocarbons must not exceed 5% of the LPG volume, a wide range of391

possible mixture proportions is observed in reality. In some scenarios, the C5 proportion392

exceeds the specifications, which is detrimental to propane and butane content. The393

same is observed for C2 content. In our model, we decided to consider five hypothetical394

LPG compositions as described in Table 2. Our hypothesis is that such simplifications395

could be useful towards understanding the real LPG composition given temperature and396

pressure sensor readings. To compute specific pressures given Antoine’s equations, and397

given the wide variety of C2 and C5 components, we approximated them with a single398

type of chemical compound: methyl-disulfide (C2H6S2), and pentane (C5H12). The399

constants for Antoine’s equations were obtained from the National Institute of Standards400

and Technology3, and the University of Maryland4, which cite the following scientific401

literature sources: [70–77].402

For each of these scenarios, we estimated the T1 values using the Clausius-Clapeyron403

relation based on the enthalpy of vaporization we computed for a snapshot of data pro-404

vided in debutanizer unit diagrams (see Fig. 2). By analyzing temperature and pressure405

for three segments of measurements, we identified that high or low C5 content is likely406

associated to certain pressure thresholds. We thus created dummy variables considering407

those thresholds.408

In Table 3 we describe some of the features we developed for our machine learning409

models. We grouped then in Feature Groups, based on their common characteristics.410

While features from Features Group 1 correspond to raw sensor readings, the rest of the411

features was developed based on physical principles and equations presented in Section412

3 https://webbook.nist.gov/
4 https://user.eng.umd.edu/ nsw/chbe250/antoine.dat
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LPG sample mixture C2H6S2 C3H8 C4H10 C5H12
1 0.000 0.485 0.505 0.010
2 0.000 0.480 0.500 0.020
3 0.030 0.465 0.485 0.020
4 0.000 0.465 0.485 0.050
5 0.000 0.455 0.475 0.070

Table 2. Description of sample mixtures considered to compute expected pressure for certain temperature, given the
mixture composition and constants from Antoine’s equations.

Features Group (FG) FG ID Feature Description Type

Sensor reading values 1 P1 Pressure measurement from sensor P1 Real number
T2 Temperature measurement from sensor T2 Real number

Expected mixture vapor saturation pressure for temperature T2 2

spt002 Mixture #1 Real number
spt0 Mixture #2 Real number
spt1 Mixture #3 Real number
spt2 Mixture #4 Real number
spt3 Mixture #5 Real number
spt4 Mixture #6 Real number

Pressure P1 in range 3
p<7.06 Pressure below 7.06 kg/cm2 Boolean
p<7.14 Pressure below 7.14 kg/cm2 Boolean
p>7.63 Pressure above 7.63 kg/cm2 Boolean

Expected T1 temperature for mixture 4

T1-spt1 Mixture #3 Real number
T1-spt2 Mixture #4 Real number
T1-spt3 Mixture #5 Real number
T1-spt4 Mixture #6 Real number

Relative pressure, comparing pressure P1 and expected mixture pressure for temperature T2. 5

spr002 spt002/P1 Real number
spr0 spt1/P1 Real number
spr1 spt2/P1 Real number
spr2 spt3/P1 Real number
spr3 spt4/P1 Real number
spr4 spt5/P1 Real number

Ratio between estimated T1 temperature for mixture, and the P1 pressure. 6

T1/P1-spt1-T2 Mixture #3 Real number
T1/P1-spt2-T2 Mixture #4 Real number
T1/P1-spt3-T2 Mixture #5 Real number
T1/P1-spt4-T2 Mixture #6 Real number

Categorical feature indicating whether the relationship between estimated T1 temperature and P1
pressure is above or below the value measured from normal operating conditions, from values obtained in
diagrams provided.

7

T1/P1-spt1.vref Mixture #3 Boolean
T1/P1-spt2.vref Mixture #4 Boolean
T1/P1-spt3.vref Mixture #5 Boolean
T1/P1-spt4.vref Mixture #6 Boolean

Table 3. Some of the features we created for the machine learning models. spr abbreviates saturation pressure ratio, while
spt abbreviates saturation pressure total.

3.3. Features corresponding to Features Group 2 indicate the expected vapor pressure413

at P2 for the sensed temperature at T2, considering the mixtures from Table 2. Features414

Group 3 groups three categorical features defined in relation to P1, where thresholds415

were defined based on average P1 pressure values and standard deviations of each416

group and their relation to measured LPG C5 content. The features in Features Group417

4 are analogous to the features from the Features Group 2, computing the expected T1418

temperature based on pressure P1, for LPG mixtures specified in Table 2. These features419

are used to compute the Features Group 5 when contrasted with sensed pressure at P1.420

The Features Group 6 computes the ratio between the estimated T1 temperature, and421

the pressure at P1. Finally, Features Group 7 indicates whether the ratio between the422

estimated temperature T1 and pressure P1 is greater than the value measured from the423

diagrams obtained under normal operating conditions.424

We created a total of 198 features. To avoid overfitting the machine learning models,425

we selected only K features, obtaining K from
√

N, where N is the number of instances in426

the training subset, as suggested by [78]. Feature selection was performed by computing427

their mutual information [79], and selecting the top K most informative ones. We describe428

the correlation between the selected features and target C5 content values we aim to429

forecast in Fig. 6, 7, and 8.430

4.4. Machine learning model Development431

4.4.1. Regression Machine learning models432

Forecasting LPG C5 content solely from temperature and pressure data is a chal-433

lenging task. In Fig. 5, C5 content could reach very disparate values: from values close434

to zero to a range of valid values when considering the LPG specifications, and some435

peaks corresponding to samples with C5 concentrations well above the specification436
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Figure 6. Feature correlation for ten selected features in each case, when forecasting the amount of C5 present in distilled LPG at the
end of the distillation process in the debutanizer columns, for Unit A. On Fig. 6A we present feature correlations for Experiment 1,
while on Fig. 6B we present feature correlations for Experiment 2.

Figure 7. Feature correlation for ten selected features in each case, when forecasting the amount of C5 present in distilled LPG at the
end of the distillation process in the debutanizer columns, for Unit B. On Fig. 7A we present feature correlations for Experiment 1,
while on Fig. 7B we present feature correlations for Experiment 2.

ranges. In our research, we developed and compared six models. These models include437

two baseline models and four models that aim to provide enhanced forecasts, and which438

we describe below:439

• Baseline 1 (C5 median): our prediction is the median of C5 values observed in the440

data set for model training;441

• Baseline 2 (LiR): linear regression to predict C5 content based on raw temperature442

and pressure sensor measurements (P1 and T2 from Fig. 1, described in Feature443

Group ID #1 at Table 3);444

• Model 1 (LiR): linear regression considering raw sensor measurements of P1 and445

T2 sensors at fifteen minute intervals (see Fig. 1, and all features described in Table446

3), for the time range as presented in Fig. 4;447

• Model 2 (SVR): Support Vector Regressor [80], which takes into account most448

relevant features assessed over all created features;449

• Model 3 (MLPR): Multi-layer Perceptron regressor [81], which takes into account450

most relevant features assessed over all created features;451
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Figure 8. Feature correlation for ten selected features in each case, when forecasting if the amount of C5 present in distilled LPG at the
end of the distillation process in the debutanizer columns remains within the required specification thresholds, for Unit A. On Fig. 8A
we present feature correlations for Experiment 1, while on Fig. 8B we present feature correlations when considering Experiment 2.

• Model 4 (VR): composite model introduced in Fig 9, and described in detail later452

in this section. The model takes into account most relevant features assessed over453

all created features.454

While the Baseline 2 (LiR) is a linear regression model that forecasts C5 content based455

only on raw temperature and pressure readings obtained from two sensors, Model 1 (LiR)456

provides insights on how the forecasting quality is improved by introducing a more457

extensive set of features (all features presented in Table 3), considering Roult’s law and458

Antoine’s equations, given the assumptions and simplifications described in Section 4.3.459

Model 2 (SVR) and Model 3 (MLPR) were built based on the SVR and MLPR algorithms,460

which were frequently reported in the related work. We instantiated the Model 2 (SVR)461

model with a radial basis function kernel, using an epsilon value of 0,1 and non-scaled462

L2 regularization. We did not impose constraints on the number of iterations required463

by the solver. Model 3 (MLPR) was instantiated with a single hidden layer of a hundred464

neurons, using a ReLU activation [82] and the Adam solver [83]. The learning rate was465

set to a fixed constant (0,001), and we trained it for 300 iterations.466

We designed Model 4 (VR) (see Fig 9) as a voting regressor (VR) [84] that takes the467

input from four estimators to decide on the final forecast. Two estimators are Catboost468

[85] models ((A) and (B)), each of them optimized with a different metrics function.469

(A) is optimized for the Root Mean Square Error (RMSE) metric, which tends to give470

more weight to points further away from the mean, and thus focuses on better adjusting471

off-specification values. On the other side, (B) is optimized for the Mean Absolute472

Error (MAE), which is not sensitive to outliers and ends up providing better estimates473

on the usual C5 levels. For both models, we use the expectile loss [86], which places474

unequal weights on disturbances. The expectile level (α) represents the center of mass475

of a probability distribution. The probabilities to the right are measured with α, while476

the probabilities to the left are measured with 1 - α[87]. Providing an asymmetric477

penalization of errors for the scored instances emphasizes instances whose output was478

not properly learned and yielded a greater forecast error. Both estimators are fed to the479

voting regressor. The voting regressor then issues a final forecast computing the mean480

predicted regression targets of the estimators in the ensemble.481

It is important to highlight that though C5 content data is available from laboratory482

analysis, we avoid using features based on past C5 measurements to ensure that the483

final model can load the sensor data and provide real-time C5 content estimates.484
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Figure 9. To estimate C5 content we created a voting regressor, that considers only sensor data as input. Regressors (A) and (B)
correspond to Catboost models with different optimization objectives: (A) optimizes against RMSE, penalizing large errors, while (B)
optimizes against MAE to achieve best median performance. Outputs from models (A), and (B) are weighted by the voting regressor
(C), to create the final forecast.

4.4.2. Classification machine learning models485

Forecasting if C5 content is off-specification is a challenging task given the strongly486

imbalanced data. Only 14 out of 167 measurements in Unit A corresponded to such487

events in our particular use case, while no such events were registered in Unit B. In our488

research, we compared six models; two baseline models and four models that aim to489

provide better predictions:490

• Baseline 1 (zero forecast): we predict no off-spec occurrence takes place;491

• Baseline 2 (LgR): logistic regression to predict C5 content based on raw temperature492

and pressure sensor measurements (P1 and T2 from Fig. 1, described in Feature493

Group ID #1 at Table 3);494

• Model 1 (LgR): logistic regression considering raw sensor measurements of P1 and495

T2 sensors at fifteen minute intervals (see Fig. 1), and all features described in Table496

3), for the time range as presented in Fig. 4;497

• Model 2 (SVC): Support Vector Classifier [80], which takes into account most498

relevant features assessed over all created features;499

• Model 3 (MLPC): Multi-layer Perceptron Classifier [81], which takes into account500

most relevant features assessed over all created features;501

• Model 4 (Catboost): a CatBoost classifier with a Focal loss [88], which provides502

an asymmetric penalization to train instances, focusing more on those that are503

missclassified. The model takes into account most relevant features assessed over504

all created features.505

The Baseline 2 (LgR) and Model 1 (LgR) were initialized with the same parameters,506

using a limited-memory Broyden–Fletcher–Goldfarb–Shanno solver algorithm [89–92],507

along with a L2 regularization. In both cases, a class balancing strategy was used to508

weights classes inversely proportional to class frequencies. Model 2 (SVC) was initialized509

with a radial basis function kernel and epsilon value of 0,1 and L2 regularization. We did510

not constrain the number of solvers’ iterations. We initialized the Model 3 (MLPC) with a511

single hidden layer of a hundred neurons, with a ReLU activation and Adam solver. We512

used a constant learning rate (0,001) and trained the model over 300 iterations. Finally,513

the Catboost model was initialized with a Focal loss, growing asymmetric trees, a depth514

of six nodes, and a maximum number of sixty-four leaves. We trained the model over515

a thousand iterations, with a learning rate of 0,0299 evaluating against the AUC ROC516

metric. In all cases, we standarized features by removing the mean and scaling them to517

unit variance.518

When building the classification models, we avoided using features based on past519

C5 measurements to ensure the models consume only data that can be provided in520

real-time, and thus issue real-time forecasts.521
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5. Experiments and Results522

To evaluate the models presented in Section 4.4, we ran a repeated ten-fold cross-523

validation [93], executing fifty cross-validation runs. We conducted four experiments:524

two for regression models and two for classification models. Either for regression and525

classification, the experiments consisted of training the model only with historical data526

of the debutanizer unit we aim to predict for (Experiment 1), and to enrich the model527

validation with the data available from another debutanizer unit (Experiment 2). We528

present the corresponding cross-validation setting in Fig. 10. We ensure results from both529

experiments are comparable by preserving the same cross-validation test sets among530

both experiments. We also assessed if the differences in results obtained for the different531

models were statistically significant. To that end, we executed the Wilcoxon signed-rank532

test [94] and tested for significance at a 95% level.533

5.1. Regression models534

When implementing the experiments for the regression models presented in Section535

4.4.1, we measured MAE and RMSE metrics. We present the results in Table 4 and Table536

5. From Experiment 1, we observed the best overall performance was achieved with537

Model 4 (VR), which demonstrates the best performances for all the scenarios except for538

one (RMSE for Unit B), where it achieved the second-best prediction. This performance539

was nearly matched by Baseline 1 (C5 median), which achieved the best performance in540

three cases: Unit B, and MAE for Unit A. We consider the Model 2 (SVR) was the third-541

best model among the evaluated ones, achieving the second-best prediction in all cases,542

except for MAE at Unit A, where it matched the best performance displayed by Model543

4 (VR) and Baseline 1 (C5 median). Moreover, we found the Model 1 (LiR) demonstrated544

a significantly worse performance, which we attribute to the features’ selection. We545

ground this conclusion on the fact that a better result was obtained by Baseline (LiR), and546

while some improvement was observed when augmenting the data in Experiment 2, it547

did not match the performance of the rest of the models. The best overall performance548

for Experiment 2 was achieved by Model 4 (VR), which achieved the best performance at549

Unit A, and second-best for Unit B. We consider the overall second-best performance550

was achieved by Baseline 1 (C5 median), which had the best performance in Unit B, and551

second-best considering MAE at Unit A.552

When comparing results from both experiments, we observed Model 4 (VR) dis-553

played the best performance, surpassing the Baseline 1 (C5 median). Model 4 (VR) is used554

to predict the C5 peaks providing good forecasts for low C5 levels, which reflects on555

the close results when compared to Baseline 1 (C5 median). While the SVR algorithm is556

frequently reported in the literature, it achieved a third-best performance in Experiment557

1 and degraded in Experiment 2. Using data from both units to train the models im-558

proved the performance of Baseline 2 (LiR) and Model 4 (VR) in all cases. It also improved559

the performance of Model 1 (LiR) for Unit B, and degraded the performance of Model 3560

(MLPR) in all cases, except when measuring RMSE for Unit B.561

Finally, we assessed which features were considered most informative by the feature562

selection criteria for both experiments. We found that from Experiment 1, the most563

relevant features were the pressure sensor readings, features from Feature Group 6 (ratio564

between expected T1 temperature and P1 pressure, for the given LPG mixtures - see565

Table 3), and categorical features indicating whether the pressure sensor readings are566

below 7,14 kg/cm2, or above 7,63 kg/cm2. However, the set of relevant features in567

Experiment 2 changed. Among the most important ones, we found those from Feature568

Group 2 (expected mixture saturation vapor pressure for considering temperature T2 - see569

Table 3), and those from Feature Group 6. Pressure measures were still considered relevant570

in Experiment 2, but their importance faded in the presence of the ones mentioned above.571
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Figure 10. We pose two experiments: Experiment 1 trains models only with data of the debutanizer unit we aim to predict for (Fig.
10A), while Experiment 2 enriches the training set with data from other debutanizer unit (Fig. 10B).

Model Unit A Unit B
RMSEmean MAEmean RMSEmean MAEmean

Baseline 1 (C5 median) **1,1179 *0,6028 0,1174 *0,0853
Baseline 2 (LR) **1,1794 0,7601 1,4150 0,7248
Model 1 (LR) 1632,9693 560,4650 96826,5563 46730,6566
Model 2 (SVR) *1,0754 *0,6087 *0,1240 0,0991
Model 3 (MLPR) *1,0728 0,7122 0,2115 0,1424
Model 4 1,0352 *0,6127 *0,1201 *0,0871

Table 4. Experiment 1 results. Mean RMSE and MAE values we obtained for different models with a ten-fold cross-
validation, repeated fifty times. Best results are bolded, second-best are reported in italics. The results within the same
column, which have no statistically significant difference between them when tested with a Wilcoxon paired rank test at a
95% confidence level, are marked with * and **.

5.2. Classification models572

When implementing the experiments for the classification models presented in573

Section 4.4.2, we measured the AUC ROC metric. From the Table 6, we found that the574

best classification performance was obtained by Model 4 (Catboost) in both experiments,575

with an AUC ROC of at least 0,7359, and surpassing the second-best model by 0,065576

points in the worst case. However, best results were achieved in Experiment 2.577

The second-best model in Experiment 1 was the Model 2 (MLPC), and the Model 1578

(LgR) for Experiment 2. When comparing the models’ performance across experiments,579

we observed an increased performance in Experiment 2 for the Baseline 2 (LR) and Model580

2 (SVC) models. On the other hand, a decreased discrimination power was measured for581

Model 1 (LgR), and Model 3 (MLPC). Model 2 (SVC) performed worse than a zero forecast582

in both experiments, but this difference was not statistically significant in Experiment583

2. We hypothesize that the performance decrease in Experiment 2 for certain models584

can be related to the stronger class imbalance (8% event occurrence in Experiment 1585

is reduced to 5% event occurrence in Experiment 2). Such imbalance influences the586

learning of the algorithms, and most likely affects the discrimination power of the587

trained models. We found the differences between results within the experiments were588

statistically significant, except between the Baseline 1 (zero forecast) and Model 2 (SVC) in589

Experiment 2.590
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Model Unit A Unit B
RMSEmean MAEmean RMSEmean MAEmean

Baseline 1 (C5 median) 1,1760↓ 0,6141↓ 0,1152↑ 0,0818↑
Baseline 2 (LR) 1,0603↑ 0,7009↑ **0,2126↑ 0,1978↑
Model 1 (LR) 1198266158,9503↓ 411001902,3054↓ **0,2753↑ 0,1900↑
Model 2 (SVR) 1,1098↓ 0,6193↓ *0,1287↓ 0,1021↓
Model 3 (MLPR) 1,0771↓ 0,7234↓ 0,2044↑ 0,1581↓
Model 4 0,9655↑ 0,5743↑ *0,1270↓ 0,0852↑

Table 5. Experiment 2 results. Mean RMSE and MAE values we obtained for different models with a ten-fold cross-
validation, repeated fifty times. Best results are bolded, second-best are reported in italics. The results within the same
column, which have no statistically significant difference between them when tested with a Wilcoxon paired rank test at a
95% confidence level, are marked with * and **. The arrows indicate whether the mean result improved (↑), or degraded
(↓) when compared to Experiment 1.

Model Experiment 1 Experiment 2
AUC ROCmean AUC ROCmean

Baseline 1 (zero forecast) 0,5000 *0,5000
Baseline 2 (LR) 0,5656 ↑0,5675
Model 1 (LR) 0,6567 ↓0,6059
Model 2 (SVC) 0,4491 *↑0,4897
Model 3 (MLPC) 0,6709 ↓0,5381
Model 4 (Catboost) 0,7359 ↑0,7670

Table 6. Out-of-specification detection results for Unit A. Mean ROC AUC values we obtained for different models with a
ten-fold cross-validation, repeated fifty times. Best results are bolded, second-best are reported in italics. The results
within the same column, which have no statistically significant difference between them when tested with a Wilcoxon
paired rank test at a 95% confidence level, are marked with *. The arrows indicate whether the mean result improved (↑),
or degraded (↓) when compared to Experiment 1. Unit B is not reported, since the dataset did not include out-of-spec
measurements for Unit B.

Finally, we analyzed which features were considered most informative under the591

mutual information criteria for each experiment. For Experiment 1 the most informative592

features were the readings from the pressure sensor, categorical features indicating593

whether the sensed pressure is below 7,14 kg/cm2, or below 7,06 kg/cm2, and features594

from Features Group 4 (see Table 3). This changed for Experiment 2, where the most595

important features were related to readings from the pressure sensor and the Features596

Group 5.597

5.3. Explaining Artificial Intelligence models598

While models’ accuracy is of great importance, insights on models’ rationale are re-599

quired to assess the main factors driving the forecast are reasonable, and thus the forecast600

can be trusted. While much research in the literature was devoted to global explana-601

tions, we found a few authors taking into account the data or models’ training process.602

Furthermore, we found no authors combined insights regarding feature selection, and603

how relevant the selected features are to the model across a repeated cross-validation.604

We therefore propose a novel visualization that summarizes the aforementioned insights605

(see Fig. 11).606

While much research work in the literature has been devoted to global explanations,607

and some related work focuses on the characteristics of the dataset, little research has608

been done on integrating insights regarding the dataset, the experimental setting, and the609

resulting model. We therefore propose a novel visualization which combines the three610

aforementioned parts. Fig. 11A provides a brief description regarding the experimental611

setting. In this particular case, it states that the corresponding plots result from data612

obtained when training a forecasting model in a repeated 10-fold cross-validation setting,613

repeating the cross-validation 50 times. Fig. 11B shows a horizontal stacked bar plot,614
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Figure 11. The visualization summarizes relevant information regarding the dataset, and forecasting model: (A) describes the cross-
validation setting, (B) informs most relevant feature concepts when considering feature selection and models’ features relevance, (C)
details the weight of particular features within a feature concept, and (D) provides insights regarding values distribution for sensor
data.

where the intensity of feature concepts is presented to the users. We consider feature615

concepts as semantic abstractions that group certain features based on features’ metadata.616

In our particular case, such grouping was performed for features computed with the617

same formula, but using sensor data at different points in time (see Fig. 4). The shades618

of gray within the horizontal stacked bars represent how frequently was each feature of619

the feature concepts abstraction chosen when performing feature selection, within the 50620

times 10-fold cross-validation. The line chart overlayed to the horizontal stacked bar plot621

informs how relevant were those feature concepts to the forecasting machine learning622

models, on average. Such overlay provides useful information to the machine learning623

engineer, who can remove features found not informative to the model, to give room624

to better ones. In this particular case, we found three such cases (p < 7.06, p > 7.63,625

and p < 7.14), referring to features with boolean values, assessing whether the pressure626

values obtained from the sensor were above or below certain threshold value. By clicking627

a particular feature concept in the horizontal bar stacked plot, the section highlighted in628

Fig. 11C is updated. Fig. 11C enriches the aforementioned view, detailing each feature’s629

relevance within the specific feature concept. Finally, the bullet charts in Fig. 11D provide630

insights into the values distribution for both sensors (P1 and T2). We explain the bullet631

chart with greater detail in Fig. 12. The bullet chart has three segments, corresponding632

to quartiles Q1, Q2+Q3, and Q4. A vertical bar in the Q2+Q3 marks the median value,633

while a dark horizontal bar within the bullet chart, shows the mean value observed in634

the readings.635

6. Conclusions636

In this paper, two machine learning models are developed to forecast the concentra-637

tion of pentanes (C5) in the LPG debutanization process. The first one is a regression638

model that provides pentane concentration estimates. The second one is a classifier that639

predicts whether the pentane concentration levels exceed allowed thresholds. Both mod-640

els were designed to provide real-time forecasts based on sensor data. The advantages641
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Figure 12. The bullet chart summarizes the sensor values distribution: three segments, Q1, Q2+Q3, and Q4 mark values related to the
quartiles; a dark vertical bar within the Q2+Q3 segment represents the median value, while the dark horizontal bar within the bullet
chart informs the mean readings’ value.

of the models are that only two sensors are required (temperature and pressure sensors,642

located at two distinct points at the top of the debutanizer column). Both models were643

compared against several baseline models, and machine learning models developed644

based on algorithms cited in the literature.645

Our experiments show that the best results for the pentanes concentration estima-646

tion was obtained with a voting regressor, trained with historical data of the debutanizer647

unit. The model surpasses the performance achieved by a baseline predicting the pen-648

tane concentration as a median of past values and a linear regressor predicting the649

concentration from raw sensor values. When predicting the off-specification detection,650

best results were achieved with a CatBoost classifier trained with a focal loss over the651

data of both debutanizer units considered in this research. The model achieved an AUC652

ROC of 0,7670. In both cases, the addition of data from another debutanizer unit boosted653

the learning and consequent performance of most of the models.654

In addition to the aforementioned models, we developed a prototype dashboard,655

that allows to visualize relevant information regarding feature selection, features rele-656

vance to the model, and sensor reading values within which the model was trained. Such657

a dashboard is useful to assess strengths, limitations and improvement opportunities658

regarding the developed models.659

We envision several directions for future research. Firstly, we would like to extend660

these experiments to a broader range of debutanizer units. Secondly, we would like661

to compare the current approach to more complex settings, where a broader range of662

sensors is available. Finally, we consider that this approach can be applied in other in-663

dustries using distillation processes and where soft-sensors predicting specific substance664

concentrations are helpful.665
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The following abbreviations are used in this manuscript:680

681

ANN Artificial Neural Network
APC Advanced Process Control
AUC ROC Area Under the Receiver Operating Characteristic Curve
C1 Molecules with a single carbon atom
C2 Molecules with two carbon atoms
C4 Molecules with four carbon atoms
C5 Pentanes
CDU Crude Distillation Unit
FCC Fluid Catalytic Cracker
FG Features Group
LgR Logistic Regression
LiR Linear Regression
LPG Liquified Petroleum Gas
MAE Mean Absolute Error
MLPC Multi-layer Perceptron Classifier
MLPR Multi-layer Perceptron regressor
MPC Multivariable Model Predictive Control
ReLU Rectified Linear Unit
RMSE Root Mean Squared Error
SVC Support Vector Classifier
SVR Support Vector Regressor
VR Voting Regressor
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