
1 
 

Prediction modeling of Household’s Preparedness of 
Natural Hazards Mitigation 

 
Chen Xia1, Yuqing Hu2 

 

1Department of Architectural Engineering, The Pennsylvania State University, University 
Park, PA 16802, United States of America; e-mail: cpx5037@psu.edu 
2Department of Architectural Engineering, The Pennsylvania State University, University 
Park, PA 16802, United States of America; e-mail: yfh5204@psu.edu 

Abstract 

Natural disasters are showing an increase in the magnitude, frequency, and geographic 
distribution. Studies have shown that individuals’ self-sufficiency, which largely depends 
on household preparedness, is very important for hazard mitigation in at least the first 72 
hours following a disaster. However, for factors that influence a household’s disaster 
preparedness, though many studies are trying to identify from different aspects, we still 
lack an integrative analysis on how these factors contribute to a household’s preparation. 
This paper aims to build a classification model to predict whether a household has prepared 
for a potential disaster based on their characteristics and the environment they located. We 
collect data from the Federal Emergency Management Agency’s National Household 
Survey in 2018 and train four classification models - logistic regression, decision trees, 
support vector machines, and multi-layer perceptron classifier models- to predict the 
impact of personal characteristics and the environment they located on household prepare 
for the potential natural disaster. Results show that the multi-layer perceptron classifier 
model outperforms others with the highest scoring on both recall (0.8531) and f1 measure 
(0.7386). In addition, feature selection results also show that among other factors, a 
household’s accessibility to disaster-related information is the most critical factor that 
impacts household disaster preparation. Though there is still room for further parameter 
optimization, the model gives a clue that we could support disaster management by 
gathering publicly accessible data. 

Keywords: Household Disaster Preparation; Natural Hazards Mitigation; Prediction 
Model 

Introduction 

In recent years, natural disasters have shown an increase in the magnitude, frequency, and 
geographic distribution aspects. According to a World Bank report, nearly 3.8 million km 
2 and 790 million individuals are exposed to at least two natural disasters (Dilley,2005). 
Millions of people in the world are exposed to the growing multi-hazard environment, 
which increases the importance of disaster preparation to mitigate damage, especially in a 
disaster-prone area. Disaster preparation needs collaboration from multiple social units: 
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households, public organizations, and local and federal disaster management departments. 
The preparedness could be reflected both in disaster risk perceptions and disaster 
preparedness practices and plays an important role in other phases (Jagnoor,2019). For 
individuals and households, preparedness actions before a disaster greatly reduce their risk 
of getting trapped into severe trouble and enable them to respond actively when disaster 
does happen (Das, 2018). For an organization in charge of disaster management, besides 
their plans for all levels of the emergency chain of action (Khorram-Manesh, 2020), 
information on how households prepared for disaster also provide support for their 
response strategies such as the allocation of resources and urgent evacuation (Khorram-
Manesh, 2020). Therefore, as a basic unit to respond to disasters, households play an 
important role, and how to increase the households’ engagement for disaster preparation is 
critical. However, though many factors have been put forward, we still lack an integrative 
analysis of how these factors contribute to the household’s preparation. This paper aims to 
build a classification model to predict whether a household has prepared for a potential 
disaster based on their characteristics and the environment they are located, to provide 
information for governments to carry out more targeted resource distribution strategies in 
post disaster.  

Literature Review  

In recent decades, numerous studies have been focused on assessing individuals’ levels 
of preparedness for natural hazards, and the factors that promote the adoption of 
preparedness measures. Bronfman surveyed individuals’ preparedness for different natural 
hazards and revealed that participants are significantly better prepared for earthquakes than 
floods (Bronfman, 2019). Different theoretical frameworks have also been put forward to 
conceptualize the adoption of preparedness measures to face natural hazards.  The most 
cited models are the Protective Action Decision Model and the Social-Cognitive Model. 
The first model reveals that people respond to natural hazards depending on environmental 
and cues, warnings, as well as receivers’ characteristics (Lindell, 2012). The social 
cognitive model focuses on the role of motivational factors on the decision to adopt 
preparedness actions (Aton,2005). While these models may have different emphases on 
modeling an individual’s preparation and response to hazards, general factors such as 
individual characters and environmental impacts have both been involved.  

    For individual characters, many studies tried to figure out how perception influences 
people’s behavior in both pre-and post-disaster periods (Bronfman,2016; Tobin, 2011). 
However, perception is subjective and difficult to measure based on a unified standard. 
While several studies have concluded that previous experience of disaster is positively 
related to risk perception of natural hazards ((Plapp, 2006; Miceli, 2008). We extend the 
scope of experience and assume that age and education level could also play a role. 
Previous research also reveals that household preparedness has a positive relationship with 
family income since income is positively related to access to better and safer housing, low-
income households are at greater risk from many hazards (Das, 2018). Therefore, 
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individual features of age, education level, family income level, and hazard experience 
have been chosen as part of the input for the prediction model. 

       For the environmental factors, regions with a long history of natural hazards may have 
more attention from the government and institutions, which will lead residents in these 
areas to be more aware of potential natural disasters. Take Japan, a country with frequent 
earthquakes, as an example, many places in Japan have established special earthquake 
prevention centers, which mainly to popularize knowledge related to earthquake and first 
aid methods to the residents, especially primary and secondary school students. Studies 
also suggest that those residing in chronic hazardous environments are more likely to have 
disaster experience than those living in an area where only one event had occurred in recent 
times (Tobin, 2011). On the other hand, a household's access to a community may also 
matter, as providing information about hazards and associated protective measures will 
lead to people preparing (Paton, 2009).  

Though many factors have been put forward in existing research, there is still a lack of 
integrative and systematic analysis on how these factors contribute to a household’s 
preparation. In this paper, utilizing data from FEMA’s 2018 National Household Survey, 
we build and compare the performance of four classification models for predicting 
households' preparedness for natural disasters based on their characteristics and the 
environment in which they are located. The results create a quantitative relationship 
between factors household’s preparedness and also show which features matter more  

Methodology 

Classification model  

In this study, we trained four widely used classification models: logistic regression, 
decision trees, support vector machines, and multi-layer perceptron classifier models. The 
support vector machine uses kernel functions and edge-dependent support vectors to map 
low-dimensional variables to high-dimensional variable spaces and has strong theoretical 
foundations and numerous practical successes (Koo, et al., 2019). The decision tree 
repeatedly splits the data set according to a criterion that maximizes the separation of the 
data, resulting in a tree-like structure, which is not black-box models and can easily be 
expressed as rules compared with other machine learning models (Breiman, 1984). Logistic 
regression and multi-layer perceptron classifier differ from the other two algorithms in the 
sense that they all need a function form f and parameter vector x to train the model 
(Dreiseitl,2002). The difference between the two models is that the contribution of 
parameters in logistic regression (coefficients and intercept) can be interpreted, whereas 
this is not always the case with the parameters of a neural network (weights) 

Data set 

The data was collected from the Federal Emergency Management Agency (FEMA)’s 
National Household Survey (NHS) in 2018. FEMA was formed in 1979 to coordinate the 
response to a disaster that has occurred in the United States and that overwhelms the 
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resources of local and state authorities. They have conducted this survey through a 
telephone interview to assess how personal disaster preparedness and resilience have 
changed over time in the United States since 2007. Subjects, which includes 5003 adults 
in the 2018 NHS, in their survey are coming from certain areas of the country that are at 
higher risk of one of six hazards (Tornado, Flood, Hurricane, Wildfire, Earthquake, Urban 
Event). 

The Survey includes not only the factors that may potentially influence a household’s 
preparedness but also the detailed information of how they prepared for each hazard type, 
for prediction modeling, in this research we only extracted information of potential factors. 
Table 1 lists the definition and measurement of each variable. For hazard preparedness, it 
is reflected in many aspects, such as the financial insurance, documents copied, and 
suppliers preserved, which, however, are often hard to access and quantify in a uniform 
metric. The survey provides the stage of preparedness to measure how well the household 
has been prepared for the disaster regardless of concrete actions. It was a 5-degree 
classification where 1 means “not prepared and do not intend to prepare in the next year”, 
and 5 means “have been prepared for more than a year and will continue preparing”. 
Personal demographics such as age, education level, and family income are collected as 
the actual information provided.  

For hazard experience, this variable could be explained in many measurements, such as 
how often the family experienced a disaster in past years or how many natural hazards they 
have experienced. In addition to looking at whether a disaster has been experienced, the 
study also analyzed whether the time that has passed since the disaster has any effect on 
the preparedness. So we used the year of last experience of natural hazard for the 
measurement of hazard experience. For regional hazard history, we only include the natural 
hazard, thus using a binary variable to denote whether there is a natural hazard happening 
in the region where the family is located. For information accessibility, the information 
mainly involves how to get better prepared for a disaster. A binary measurement is also 
used here.  

Table 1. Definition and measurement of variables 

Variable Definition Measurement Data type 
Hazard 
preparedness  

How well the household 
prepared for potential 
natural hazards. 

Stages of preparedness 
(5 categories) 

Category 

Age 

Household basic 
information 

Code actual age Numerical  
Education level Highest completed level of 

education 
Category 

Family income Total monthly household 
income, before taxes, 

Category 

Hazard 
experience 

Whether the family ever 
experienced the impacts of a 
disaster 

The year of last experience of 
natural hazard 

Numerical 
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Regional 
hazard history 

Hazards counted are a 
tornado, flood, hurricane, 
wildfire, and earthquake.  

Whether there is at least one of 
these hazards has ever happened. 

Category 

Information 
accessibility  

Information about how to get 
better prepared for a disaster. 

In the past six months, whether 
the interviewee has read, seen, or 
heard any information. 
 

Binary 

Exploratory data analysis  

For the 5003 samples provided by the survey, we first filter and clear those focusing on an 
urban event as man-made disaster is not included in the research scope. Initial data 
processing left 4503 subjects. Also, we delete those points with missing values on variables, 
which are mainly caused by the answer “do not know” and “refused to answer” responses. 
In this step, another 2148 subjects have been left out. Finally, 2355 samples are included 
in our research.  To better visualize how these data points are distributed in the whole 
country, this paper uses postcodes to locate each interviewee on the map. Figure 1 shows 
that these data points distribute quite evenly over a large part of the county in America 
which reduces the bias on those places with high hazard frequency.  

 

Figure 1 data point distribution in America 

For category variables, Table 2 gives the information of their value category and proportion.  
For hazard preparedness, due to the biased distribution of samples, to build the prediction 
model, we simplify it into two main categories as prepared and not prepared. Generally, 
answers with multiple choices distribute quite randomly and no special pattern exists. 
Figure 2 shows how the numerical data distributes. The individuals who complete the 
whole interview are all above 18 and kind of following a normal distribution. For the 
convenience of analysis, samples in hazard experience marked as no are given with a value 
of 0.1 to it. Though Figure 2(b) shows that most experience seems to have happened in 
recent years since the interview question is the most recent hazard experience year. 
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Table 2. Information of category variable value distribution 

Variable Category Number Percentage 

Hazard preparedness Not prepared 1078 45.77% 
Prepared 1277 54.22% 

Interviewee demographics  
Education level Less than a high school diploma 157 6.67% 

High school degree or diploma 484 20.55% 
Technical/Vocational school 120 5.10% 
Some college 529 22.46% 
College graduate 652 27.69% 

 Postgraduate work or degree 413 17.54% 
Family income Under $60 32 1.36% 
 $60 to $499 55 2.34% 
 $500 to $999 169 7.18% 
 $1,000 to $1,999 275 11.68% 
 $2,000 to $2,999 279 11.85% 
 $3,000 to $3,999 204 8.66% 
 $4,000 to $4,999 219 9.30% 
 $5,000 to $7,499 401 17.03% 
 $7,500 to $9,999 203 8.62% 
 $10,000 to $14,999 219 9.30% 
 $15,000 to $19,999 69 2.93% 
 $20,000 and over 230 9.77% 
Environment demographics  
Regional hazard history No 1045 44.37% 
 Tornado 261 11.08% 
 Flood 255 10.83% 
 Hurricane 252 10.70% 
 Wildfire 277 11.76% 
 Earthquake 265 11.25% 
Information accessibility No 1124 47.73% 
 Yes 1231 52.27% 

 

  
Figure 2 (a) Distribution of interviewee age; (b) Hazard experience year distribution (Note: the number 

means experiencing in specific years. For example, ’10’ means experiencing in last 10 years) 
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Model building 

Figure 3 shows the process of model building. First, we perform normalization for 
numerical data and one-hot representation for category data. Then, noticing that for some 
variables, the distribution of data is severely skewed, revealing that some imbalance issues 
have to be solved. With these processed data, we further perform the feature selection to 
reduce redundant or irrelevant variables. Finally, we input all these data and run the models.  
Results will be compared through accuracy and F1 scores. 

 

Data Processing Normalization & one-hot 
representation

Imbalance 
Issues

DownSampling 

Feature 
Selection

Mutual information 
& chi-square 

Model Building SVM & K-means 
& Decision Tress & MLP

Model 
Comparison

Accuracy & F1-score

Data

Final Model

Process Methodology

 

Figure 3 Modeling Process 

Data processing 

In this step, we perform normalization and one-hot representation for the data. The 
normalization scales data so that it falls into a small specific range. In some comparison 
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and evaluation index processing, it is often used to remove the unit limit of data and convert 
it into dimensionless pure value, so that indexes of different units can be compared and 
weighed. In this research, the range of numerical data varies a lot due to different measuring 
units. To fix this problem, normalization is applied to numerical features to make the range 
of values into [0, 1]. For categorical data, because many machine learning algorithms 
require all input and output variables to be numeric and cannot operate on label data 
directly, we need to convert the categorical data to a numerical form. In this study, one-hot 
representation was used. It encodes N states using n-bit state registers. Each state has its 
independent register bit, and at any time, it has only one valid point. Samples of data form 
after the initial process are shown in Table 3. 

Table 3. The sample of data after processing 

 

 

Imbalance Issues 

Imbalanced data typically refers to a problem where the classes are not represented equally 
due to the skewed nature of data. In such problems, classes have different ratios of 
specimens in which a large number of specimens belong to one class and the other class 
has fewer specimens that are usually an essential class but unfortunately misclassified by 
many classifiers (Ali, 2019). If not dealt with appropriately, it will give us an illusion that 
the model is good with high accuracy. Note that data imbalance exists in this dataset, 
typically in the distribution of regional hazard history, where the number of data with a 
value of no is far more than others. To solve this problem, data can be resampled either 
using oversampling or downsampling method to construct more balanced data. (add the 
difference between the two methods, or clarify why downsampling methods are more 
suitable in our case). In this study, we used the method of downsampling and finally got 
1810 samples. 

Feature Selection 

Variables in this study are put forward through literature review, with values coming from 
the National Household Survey, which may not all be suitable for the model designing. 
Since there may be redundant and irrelevant features, we need feature selection to remove 
those features, to improve the prediction performance of the predictors, and provide faster 
and more cost-effective predictors. In this study, we perform feature selection based on the 
results of correlation analysis, where chi-square is used for categorical data and mutual 
information is used for numerical data. Partial datasets are generated by only using top k 
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(k =1, 3, 5) most correlated categorical features and numerical features for model training 
(i.e., k categorical features + k numerical features). Then, the model performance of partial 
datasets is compared to choose the best subsets. The chi-square returns scores and p-values 
for each variable. The scores are better if greater, while the p-values are better if smaller. 
According to this metric and the results shown in Table 4, Education and Information 
access are chosen for further modeling. As for mutual information, it measures the 
dependency between two variables, and the higher values mean higher dependency. they 
are better if smaller. Since there is no big difference in the coefficient among the two 
numerical variables, both variables are kept. After this process, Age, Hazard Experience, 
Education, and Information access are finally included.  

Table 4 Results of feature selection 

Feature Type Method  Coefficient P-value 
Age Numerical  mutual 

information 
0.03750 

 
/ 

Hazard 
Experience 

Numerical  mutual 
information 

0.02130 
 

/ 

Education Category  chi-square 25.7431 3.9000 
Family Income Category chi-square 16.2378 5.5867 
Hazard History Category  chi-square 0.1237 7.2503 
Information 
access 

Category chi-square 76.4180 
 

2.2954 
 

 

 

Model Training 

In this process, we use these data to train logistic regression, decision trees, support vector 
machines, and multi-layer perceptron classifier models. To build the model, we use K-Fold 
cross-validation for experiments. The k-fold cross-validation method labeled data D (of 
size N) into k equal-sized partitions (or folds). During the ith run, one of the partitions of 
D is chosen as D.test(i) for testing, while the rest of the partitions are used as D.train(i) for 
training. A model m(i) is learned using D.train(i) and applied on D.test(i) to obtain the sum 
of test errors (Tan, 2016). The right choice of k in k-fold cross-validation depends on 
several characteristics of the problem. A small value of k will result in a smaller training 
set at every run, which will result in a larger estimate of generalization error rate than what 
is expected of a model trained over the entire labeled set. On the other hand, a high value 
of k results in a larger training set at every run, which reduces the bias in the estimate of 
generalization error rate. In this study, k=5 is applied to the model. 

For each model, parameter fine-tuning is further performed. Classification performance is 
not only affected by the models used but also by their parameter settings. As Table 5 shows, 
we perform hyperparameters tuned for each model. For logistic regression models, 
parameters of penalty and C are fine-tuned. Choices of penalty are options of regularization 
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terms applicable to the classifier, which may improve numerical stability. It also helps to 
prevent overfitting. C is to control the magnitude of the “actual cost”, relative to the 
regularization term. By applying small values of C, the regularization strength is increased 
which will create simple models. By applying big values of C, the power of regularization 
is decreased, increasing model complexity (and potentially overfitting the data). After 
training, the group ('C': 0.1, 'penalty': 'l2'}is chosen for this model.  

Table 5 Parameters fine-tuning of each model 

Model Parameters Selected group 
Logistic Regression penalty: ['l1','l2'] 

C: [0.001, 0.01, 0.1, 1, 10, 100, 
1000] 

{'C': 0.1, 'penalty': 
'l2'} 

 
Decision Trees max_depth: [3, 5, None]       

min_samples_leaf: [1,2,3,4,5] 
criterion: ["gini", "entropy"] 

{'criterion': 'gini', 
'max_depth': 3, 
'min_samples_leaf': 1} 
 

Support Vector Machines gamma: [0.01,0.1,1,10] 
C: [0.01,0.1,1,10] 

{'gamma': 0.01, 'C': 10} 
 

Multi-layer Perceptron hidden_layer_sizes: [(50,50,50), 
(50,100,50), (100,)] 
activation: ['tanh', 'relu'] 
solver: ['sgd', 'adam'] 
alpha: [0.0001, 0.05] 
learning_rate:['constant','adaptive'] 

{'activation': 'relu', 
'alpha': 0.0001, 
'hidden_layer_sizes': 
(100,), 'learning_rate': 
'constant', 'solver': 
'adam'} 
 

 

For the decision tree, parameters of criterion, max_depth, and min_samples_split are fine-
tuned. Criteria are the function to determine a split. Max_depth and min_samples_split 
determine the maximum depth of the decision tree and the minimum number of samples 
required to be at a leaf node respectively. After training, a group of {'criterion': 'gin, 
'max_depth': 3, 'min_samples_leaf': 1}is applied in the model. The SVM model has two 
very important parameters C and Gamma, where C is the penalty coefficient. Generally, 
the higher c is, the model is less tolerable for error and tends to be overfitting and vice-
versa.  Gamma implicitly determines the distribution of the data mapped to the new 
eigenspace. The larger the gamma, the less the support vector, whose number affects the 
speed of training and prediction. After training, a group of {'gamma': 0.1, 'C': 10} has been 
chosen for the final SVM model. For multi-layer perceptron classifier, parameters of 
hidden_layer_sizes,  activation, solver, alpha, learning_rate have been fine-tuned, results 
shows that groups of {'activation': 'relax, 'alpha': 0.0001, 'hidden_layer_sizes': (100,), 
'learning_rate': 'constant', 'solver': 'adam'} should be applied in the model. 
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Model Comparison 

We selected several indicators to compare the performance of the four models from two 
aspects of classifying quality and complexity, including Precision (P), Recall (R), and F-
measure (F). Their basic definitions are as follows: 

Precision： 

TP
P

TP FP


  

Recall： 

TP
R

TP FN


  

 F measure： 

1

2 1 1

F P R
 

 

Among these functions, TP refers to the number of samples that are correctly classified 
into the positive class. FN represents the number of samples that have been mistakenly 
classified into the negative category. FP refers to the number of samples that have been 
mistakenly classified into the positive class. TN represents the number of samples that are 
correctly classified into the negative class. Precision measures the test results, the recall 
rate focuses on the sample, and F represents the overall evaluation index. 

Table 6 The performance comparison of classification models 

Classification 
model 

Precision Recall F measure  

Logistic Regression 0.6916 0.7592 0.7244 
Decision Tree 0.7071 0.7521 0.7042 
Support Vector 

Machines 
0.7013 0.6660 0.6829 

Multi-layer 
Perceptron 

0.7023 0.8531 0.7386 

 

Table 6 shows the values of each model on indicators. The decision tree performs best on 
Precision with the value of 70.71%, while Multi-layer Perceptron performs best on Recall 
and F measures, with values of 85.31% and 73.99% on each indicator. In this study, we 
want to use the model to predict whether the household has prepared for a disaster to make 
a more responsive disaster mitigation strategy.  Considering the application scenarios, 
when referring to safety-related issues, we would rather sacrifice some accuracy than miss 
those who are not prepared. Therefore, in this research, the indicator of recall is more 
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critical. In addition, F measure is a harmonic mean of model precision and recall. It, thus, 
can also reflect the degree of the model's precision to a certain degree. Given this 
preference, the Multi-layer Perceptron is selected as the final model. 

Conclusion and discussion 

The main objective of this study is to find a classification model for predicting a 
household’s preparedness for natural disasters based on their characteristics and the 
environment in which they are located. To reach this objective, we collected data from the 
Federal Emergency Management Agency’s National Household Survey in 2018, trained 
logistic regression, decision trees, support vector machines, and multi-layer perceptron 
classifier models, and compared their performance based on the indicators of precision, 
recall and F measure. Results show that the multi-layer perceptron classifier model 
performs best.  

The prediction model could be applied in the scenarios of both disaster preparation and 
disaster response. Since household preparation data are publicly accessible, through the 
prediction results, the government could grasp information of how residents have been 
prepared for potential natural hazards and thus carry out a more targeted disaster response 
strategy. For this scenario, the intermediate result also plays a role. From the feature 
selection, we know 2 numerical features (hazard experience and age) and 2 category 
features (education and information accessibility) are finally included in the model. As the 
selection is based on results of correlation analysis, compared with other features, these 
included feature matters more on a household's disaster preparation. Though some features 
such as age and education level could not be changed, the information access, however, 
could be used well to improve a household's preparation for natural disasters, especially as 
it ranks the highest value of correlation results with the response variable. 

To figure out whether information access could be affected by a household's characteristics, 
we further performed a chi-square test to evaluate whether there is a significant association 
between information access and other variables. From the results shown in table 7, we see 
that the p-value is less than the significance level of 5% for all variables. Like any other 
statistical test, if the p-value is less than the significance level, we can reject the null 
hypothesis (H0: the variables are independent, knowing the value of one variable does not 
help to predict the value of the other variable ) and assume that there is a correlation 
existing in two variables. This means both households' characteristics and regional hazard 
history could affect the disaster preparation information they get. while research has 
revealed that local government and institutions in disaster-frequent regions may attach 
more importance to hazard education and prepare activities than those that never 
experience a severe natural disaster, whether the correlation between household’s 
characteristics and information access is significant enough and how it works could be 
conducted in future research to help make more customized hazard prepare information 
propagation strategy to improve households’ preparedness for a potential natural disaster.  
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Table 7 Results of chi-square test between information access and other variables 

Variable Age Education Family 
income 

Hazard 
history 

Hazard 
experience 

X-squared 105.22 47.943 30.819 56.315 142.2 
P-value 0.01222 3.648e-09 0.001177 6.999e-11 7.177e-08 

 

In addition, the model could also be applied for disaster response as existing research shows 
that preparedness appears to pay off. On the one hand, households with more prepared 
conditions appear to be cooperative with the regulations disaster mitigation-related 
measures. On the other hand, families unprepared for a disaster are more likely to get into 
trouble during a disaster due to lacking emergent knowledge and materials needed, they 
may need more and faster rescue than those well prepared. Therefore, with a household’s 
disaster preparedness information, governments can make it more efficient when making 
response strategies towards disaster.  

Limitation  

In this study, data used for training for the model are collected from FEMA‘s National 
Household Survey, thus not being customized for the prediction variables. If possible, 
future research could be performed based on self-designed surveys to optimize the model. 
In addition, though with the highest score, the performance of the selected MLP model is 
still not very good, indicating there may be still some room for parameters optimization to 
make the model present the best performance, which needs to be continuously adjusted in 
the following research. 
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