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Abstract

Natural disasters are showing an increase in the magnitude, frequency, and geographic
distribution. Studies have shown that individuals’ self-sufficiency, which largely depends
on household preparedness, is very important for hazard mitigation in at least the first 72
hours following a disaster. However, for factors that influence a household’s disaster
preparedness, though many studies are trying to identify from different aspects, we still
lack an integrative analysis on how these factors contribute to a household’s preparation.
This paper aims to build a classification model to predict whether a household has prepared
for a potential disaster based on their characteristics and the environment they located. We
collect data from the Federal Emergency Management Agency’s National Household
Survey in 2018 and train four classification models - logistic regression, decision trees,
support vector machines, and multi-layer perceptron classifier models- to predict the
impact of personal characteristics and the environment they located on household prepare
for the potential natural disaster. Results show that the multi-layer perceptron classifier
model outperforms others with the highest scoring on both recall (0.8531) and fl1 measure
(0.7386). In addition, feature selection results also show that among other factors, a
household’s accessibility to disaster-related information is the most critical factor that
impacts household disaster preparation. Though there is still room for further parameter
optimization, the model gives a clue that we could support disaster management by
gathering publicly accessible data.

Keywords: Household Disaster Preparation;, Natural Hazards Mitigation, Prediction
Model

Introduction

In recent years, natural disasters have shown an increase in the magnitude, frequency, and
geographic distribution aspects. According to a World Bank report, nearly 3.8 million km
2 and 790 million individuals are exposed to at least two natural disasters (Dilley,2005).
Millions of people in the world are exposed to the growing multi-hazard environment,
which increases the importance of disaster preparation to mitigate damage, especially in a
disaster-prone area. Disaster preparation needs collaboration from multiple social units:
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households, public organizations, and local and federal disaster management departments.
The preparedness could be reflected both in disaster risk perceptions and disaster
preparedness practices and plays an important role in other phases (Jagnoor,2019). For
individuals and households, preparedness actions before a disaster greatly reduce their risk
of getting trapped into severe trouble and enable them to respond actively when disaster
does happen (Das, 2018). For an organization in charge of disaster management, besides
their plans for all levels of the emergency chain of action (Khorram-Manesh, 2020),
information on how households prepared for disaster also provide support for their
response strategies such as the allocation of resources and urgent evacuation (Khorram-
Manesh, 2020). Therefore, as a basic unit to respond to disasters, households play an
important role, and how to increase the households’ engagement for disaster preparation is
critical. However, though many factors have been put forward, we still lack an integrative
analysis of how these factors contribute to the household’s preparation. This paper aims to
build a classification model to predict whether a household has prepared for a potential
disaster based on their characteristics and the environment they are located, to provide
information for governments to carry out more targeted resource distribution strategies in
post disaster.

Literature Review

In recent decades, numerous studies have been focused on assessing individuals’ levels
of preparedness for natural hazards, and the factors that promote the adoption of
preparedness measures. Bronfman surveyed individuals’ preparedness for different natural
hazards and revealed that participants are significantly better prepared for earthquakes than
floods (Bronfman, 2019). Different theoretical frameworks have also been put forward to
conceptualize the adoption of preparedness measures to face natural hazards. The most
cited models are the Protective Action Decision Model and the Social-Cognitive Model.
The first model reveals that people respond to natural hazards depending on environmental
and cues, warnings, as well as receivers’ characteristics (Lindell, 2012). The social
cognitive model focuses on the role of motivational factors on the decision to adopt
preparedness actions (Aton,2005). While these models may have different emphases on
modeling an individual’s preparation and response to hazards, general factors such as
individual characters and environmental impacts have both been involved.

For individual characters, many studies tried to figure out how perception influences
people’s behavior in both pre-and post-disaster periods (Bronfman,2016; Tobin, 2011).
However, perception is subjective and difficult to measure based on a unified standard.
While several studies have concluded that previous experience of disaster is positively
related to risk perception of natural hazards ((Plapp, 2006; Miceli, 2008). We extend the
scope of experience and assume that age and education level could also play a role.
Previous research also reveals that household preparedness has a positive relationship with
family income since income is positively related to access to better and safer housing, low-
income households are at greater risk from many hazards (Das, 2018). Therefore,
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individual features of age, education level, family income level, and hazard experience
have been chosen as part of the input for the prediction model.

For the environmental factors, regions with a long history of natural hazards may have
more attention from the government and institutions, which will lead residents in these
areas to be more aware of potential natural disasters. Take Japan, a country with frequent
earthquakes, as an example, many places in Japan have established special earthquake
prevention centers, which mainly to popularize knowledge related to earthquake and first
aid methods to the residents, especially primary and secondary school students. Studies
also suggest that those residing in chronic hazardous environments are more likely to have
disaster experience than those living in an area where only one event had occurred in recent
times (Tobin, 2011). On the other hand, a household's access to a community may also
matter, as providing information about hazards and associated protective measures will
lead to people preparing (Paton, 2009).

Though many factors have been put forward in existing research, there is still a lack of
integrative and systematic analysis on how these factors contribute to a household’s
preparation. In this paper, utilizing data from FEMA’s 2018 National Household Survey,
we build and compare the performance of four classification models for predicting
households' preparedness for natural disasters based on their characteristics and the
environment in which they are located. The results create a quantitative relationship
between factors household’s preparedness and also show which features matter more

Methodology

Classification model

In this study, we trained four widely used classification models: logistic regression,
decision trees, support vector machines, and multi-layer perceptron classifier models. The
support vector machine uses kernel functions and edge-dependent support vectors to map
low-dimensional variables to high-dimensional variable spaces and has strong theoretical
foundations and numerous practical successes (Koo, et al., 2019). The decision tree
repeatedly splits the data set according to a criterion that maximizes the separation of the
data, resulting in a tree-like structure, which is not black-box models and can easily be
expressed as rules compared with other machine learning models (Breiman, 1984). Logistic
regression and multi-layer perceptron classifier differ from the other two algorithms in the
sense that they all need a function form f and parameter vector x to train the model
(Dreiseitl,2002). The difference between the two models is that the contribution of
parameters in logistic regression (coefficients and intercept) can be interpreted, whereas
this is not always the case with the parameters of a neural network (weights)

Data set

The data was collected from the Federal Emergency Management Agency (FEMA)’s
National Household Survey (NHS) in 2018. FEMA was formed in 1979 to coordinate the
response to a disaster that has occurred in the United States and that overwhelms the
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resources of local and state authorities. They have conducted this survey through a
telephone interview to assess how personal disaster preparedness and resilience have
changed over time in the United States since 2007. Subjects, which includes 5003 adults
in the 2018 NHS, in their survey are coming from certain areas of the country that are at
higher risk of one of six hazards (Tornado, Flood, Hurricane, Wildfire, Earthquake, Urban
Event).

The Survey includes not only the factors that may potentially influence a household’s
preparedness but also the detailed information of how they prepared for each hazard type,
for prediction modeling, in this research we only extracted information of potential factors.
Table 1 lists the definition and measurement of each variable. For hazard preparedness, it
is reflected in many aspects, such as the financial insurance, documents copied, and
suppliers preserved, which, however, are often hard to access and quantify in a uniform
metric. The survey provides the stage of preparedness to measure how well the household
has been prepared for the disaster regardless of concrete actions. It was a S-degree
classification where 1 means “not prepared and do not intend to prepare in the next year”,
and 5 means “have been prepared for more than a year and will continue preparing”.
Personal demographics such as age, education level, and family income are collected as
the actual information provided.

For hazard experience, this variable could be explained in many measurements, such as
how often the family experienced a disaster in past years or how many natural hazards they
have experienced. In addition to looking at whether a disaster has been experienced, the
study also analyzed whether the time that has passed since the disaster has any effect on
the preparedness. So we used the year of last experience of natural hazard for the
measurement of hazard experience. For regional hazard history, we only include the natural
hazard, thus using a binary variable to denote whether there is a natural hazard happening
in the region where the family is located. For information accessibility, the information
mainly involves how to get better prepared for a disaster. A binary measurement is also

used here.
Table 1. Definition and measurement of variables
Variable Definition Measurement Data type

Hazard How well the household Stages of preparedness Category
preparedness prepared for potential (5 categories)

natural hazards.
Age Code actual age Numerical
Education level Houschold basic Highes:t completed level of | Category

— information cducation
Family income Total monthly household | Category
income, before taxes,

Hazard Whether the family ever | The year of last experience of | Numerical
experience experienced the impacts of a | natural hazard

disaster
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Regional Hazards counted are a | Whether there is at least one of | Category
hazard history | tornado, flood, hurricane, | these hazards has ever happened.
wildfire, and earthquake.
Information Information about how to get | In the past six months, whether | Binary
accessibility better prepared for a disaster. | the interviewee has read, seen, or
heard any information.

Exploratory data analysis

For the 5003 samples provided by the survey, we first filter and clear those focusing on an
urban event as man-made disaster is not included in the research scope. Initial data
processing left 4503 subjects. Also, we delete those points with missing values on variables,
which are mainly caused by the answer “do not know” and “refused to answer” responses.
In this step, another 2148 subjects have been left out. Finally, 2355 samples are included
in our research. To better visualize how these data points are distributed in the whole
country, this paper uses postcodes to locate each interviewee on the map. Figure 1 shows
that these data points distribute quite evenly over a large part of the county in America
which reduces the bias on those places with high hazard frequency.
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Figure 1 data point distribution in America

For category variables, Table 2 gives the information of their value category and proportion.
For hazard preparedness, due to the biased distribution of samples, to build the prediction
model, we simplify it into two main categories as prepared and not prepared. Generally,
answers with multiple choices distribute quite randomly and no special pattern exists.
Figure 2 shows how the numerical data distributes. The individuals who complete the
whole interview are all above 18 and kind of following a normal distribution. For the
convenience of analysis, samples in hazard experience marked as no are given with a value
of 0.1 to it. Though Figure 2(b) shows that most experience seems to have happened in
recent years since the interview question is the most recent hazard experience year.
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Table 2. Information of category variable value distribution

Variable Category Number Percentage
Hazard preparedness Not prepared 1078 45.77%
Prepared 1277 54.22%
Interviewee demographics
Education level Less than a high school diploma 157 6.67%
High school degree or diploma 484 20.55%
Technical/Vocational school 120 5.10%
Some college 529 22.46%
College graduate 652 27.69%
Postgraduate work or degree 413 17.54%
Family income Under $60 32 1.36%
$60 to $499 55 2.34%
$500 to $999 169 7.18%
$1,000 to $1,999 275 11.68%
$2,000 to $2,999 279 11.85%
$3,000 to $3,999 204 8.66%
$4,000 to $4,999 219 9.30%
$5,000 to $7,499 401 17.03%
$7,500 to $9,999 203 8.62%
$10,000 to $14,999 219 9.30%
$15,000 to $19,999 69 2.93%
$20,000 and over 230 9.77%
Environment demographics
Regional hazard history No 1045 44.37%
Tornado 261 11.08%
Flood 255 10.83%
Hurricane 252 10.70%
Wildfire 277 11.76%
Earthquake 265 11.25%
Information accessibility No 1124 47.73%
Yes 1231 52.27%
500 - Frequency
400 g
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Figure 2 (a) Distribution of interviewee age; (b) Hazard experience year distribution (Note: the number

means experiencing in specific years. For example, 10° means experiencing in last 10 years)
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Model building

Figure 3 shows the process of model building. First, we perform normalization for
numerical data and one-hot representation for category data. Then, noticing that for some
variables, the distribution of data is severely skewed, revealing that some imbalance issues
have to be solved. With these processed data, we further perform the feature selection to
reduce redundant or irrelevant variables. Finally, we input all these data and run the models.
Results will be compared through accuracy and F1 scores.

Process Methodology
\ 4 A —]
. / Normalization & one-hot
Data Processing .
\ representation
v \ —
Imbalance / / DownSampling
Issues \ |
Y \
Feature / Mutual i.nformation
Selection l & chi-square
Y A 4 _|
Model Building / / SVM & K-means
\ l & Decision Tress & MLP

A 4

Comparison

Model /
\

N\

Y =

Accuracy & Fl-score

Final Model

Figure 3 Modeling Process

Data processing

In this step, we perform normalization and one-hot representation for the data. The
normalization scales data so that it falls into a small specific range. In some comparison
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and evaluation index processing, it is often used to remove the unit limit of data and convert
it into dimensionless pure value, so that indexes of different units can be compared and
weighed. In this research, the range of numerical data varies a lot due to different measuring
units. To fix this problem, normalization is applied to numerical features to make the range
of values into [0, 1]. For categorical data, because many machine learning algorithms
require all input and output variables to be numeric and cannot operate on label data
directly, we need to convert the categorical data to a numerical form. In this study, one-hot
representation was used. It encodes N states using n-bit state registers. Each state has its
independent register bit, and at any time, it has only one valid point. Samples of data form
after the initial process are shown in Table 3.

Table 3. The sample of data after processing

Number Preparedness Age Education Family income HazardOexperience Hazard history Information access
0 100001 2 0.679012 3 5} 0.998514 0 1
1 100002 1 0.234568 5 4 0.999009 1] 1
2 100003 1 0.012345 3 " 0.996533 1] 1]
3 100004 1 0703704 ) 6 0.000000 1] 0
4 100006 0 0.691358 5 10 0.000000 0 0

Imbalance Issues

Imbalanced data typically refers to a problem where the classes are not represented equally
due to the skewed nature of data. In such problems, classes have different ratios of
specimens in which a large number of specimens belong to one class and the other class
has fewer specimens that are usually an essential class but unfortunately misclassified by
many classifiers (Ali, 2019). If not dealt with appropriately, it will give us an illusion that
the model is good with high accuracy. Note that data imbalance exists in this dataset,
typically in the distribution of regional hazard history, where the number of data with a
value of no is far more than others. To solve this problem, data can be resampled either
using oversampling or downsampling method to construct more balanced data. (add the
difference between the two methods, or clarify why downsampling methods are more
suitable in our case). In this study, we used the method of downsampling and finally got
1810 samples.

Feature Selection

Variables in this study are put forward through literature review, with values coming from
the National Household Survey, which may not all be suitable for the model designing.
Since there may be redundant and irrelevant features, we need feature selection to remove
those features, to improve the prediction performance of the predictors, and provide faster
and more cost-effective predictors. In this study, we perform feature selection based on the
results of correlation analysis, where chi-square is used for categorical data and mutual
information is used for numerical data. Partial datasets are generated by only using top k
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(k =1, 3, 5) most correlated categorical features and numerical features for model training
(i.e., k categorical features + k numerical features). Then, the model performance of partial
datasets is compared to choose the best subsets. The chi-square returns scores and p-values
for each variable. The scores are better if greater, while the p-values are better if smaller.
According to this metric and the results shown in Table 4, Education and Information
access are chosen for further modeling. As for mutual information, it measures the
dependency between two variables, and the higher values mean higher dependency. they
are better if smaller. Since there is no big difference in the coefficient among the two
numerical variables, both variables are kept. After this process, Age, Hazard Experience,
Education, and Information access are finally included.

Table 4 Results of feature selection

Feature Type Method Coefficient P-value

Age Numerical mutual 0.03750 /
information

Hazard Numerical mutual 0.02130 /

Experience information

Education Category chi-square 25.7431 3.9000

Family Income Category chi-square 16.2378 5.5867

Hazard History | Category chi-square 0.1237 7.2503

Information Category chi-square 76.4180 2.2954

access

Model Training

In this process, we use these data to train logistic regression, decision trees, support vector
machines, and multi-layer perceptron classifier models. To build the model, we use K-Fold
cross-validation for experiments. The k-fold cross-validation method labeled data D (of
size N) into k equal-sized partitions (or folds). During the ith run, one of the partitions of
D is chosen as D.test(i) for testing, while the rest of the partitions are used as D.train(i) for
training. A model m(i) is learned using D.train(i) and applied on D.test(i) to obtain the sum
of test errors (Tan, 2016). The right choice of k in k-fold cross-validation depends on
several characteristics of the problem. A small value of k will result in a smaller training
set at every run, which will result in a larger estimate of generalization error rate than what
is expected of a model trained over the entire labeled set. On the other hand, a high value
of k results in a larger training set at every run, which reduces the bias in the estimate of
generalization error rate. In this study, k=5 is applied to the model.

For each model, parameter fine-tuning is further performed. Classification performance is
not only affected by the models used but also by their parameter settings. As Table 5 shows,
we perform hyperparameters tuned for each model. For logistic regression models,
parameters of penalty and C are fine-tuned. Choices of penalty are options of regularization
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terms applicable to the classifier, which may improve numerical stability. It also helps to
prevent overfitting. C is to control the magnitude of the “actual cost”, relative to the
regularization term. By applying small values of C, the regularization strength is increased
which will create simple models. By applying big values of C, the power of regularization
is decreased, increasing model complexity (and potentially overfitting the data). After
training, the group ('C': 0.1, 'penalty': '12'}is chosen for this model.

Table 5 Parameters fine-tuning of each model

Model Parameters Selected group
Logistic Regression penalty: ['11','12'] {'C": 0.1, 'penalty"
C: [0.001, 0.01, 0.1, 1, 10, 100, "2'}
1000]
Decision Trees max_depth:  [3, 5, None] | {‘criterion" 'gini’,
min_samples_leaf: [1,2,3,4,5] 'max_depth'": 3,

'min_samples_leaf": 1}

qnon

criterion: ["gini", "entropy"]

Support Vector Machines | gamma: [0.01,0.1,1,10] {'gamma'": 0.01, 'C": 10}
C:[0.01,0.1,1,10]
Multi-layer Perceptron | hidden layer sizes: [(50,50,50), {'activation': 'relu’,

(50,100,50), (100,)] 'alpha': 0.0001,
activation: ['tanh’, 'relu'] 'hidden_layer sizes"
solver: ['sgd', 'adam'] (100,), 'learning_rate':
alpha: [0.0001, 0.05] 'constant', 'solver":

learning_rate:['constant','adaptive'] | 'adam'}

For the decision tree, parameters of criterion, max_depth, and min_samples_split are fine-
tuned. Criteria are the function to determine a split. Max_depth and min_samples_split
determine the maximum depth of the decision tree and the minimum number of samples
required to be at a leaf node respectively. After training, a group of {'criterion': 'gin,
'max_depth': 3, 'min_samples leaf': 1}is applied in the model. The SVM model has two
very important parameters C and Gamma, where C is the penalty coefficient. Generally,
the higher c is, the model is less tolerable for error and tends to be overfitting and vice-
versa. Gamma implicitly determines the distribution of the data mapped to the new
eigenspace. The larger the gamma, the less the support vector, whose number affects the
speed of training and prediction. After training, a group of {'gamma': 0.1, 'C": 10} has been
chosen for the final SVM model. For multi-layer perceptron classifier, parameters of
hidden layer sizes, activation, solver, alpha, learning rate have been fine-tuned, results
shows that groups of {'activation": 'relax, 'alpha': 0.0001, 'hidden layer sizes': (100,),
'learning_rate': 'constant’, 'solver': 'adam'} should be applied in the model.
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Model Comparison

We selected several indicators to compare the performance of the four models from two
aspects of classifying quality and complexity, including Precision (P), Recall (R), and F-
measure (F). Their basic definitions are as follows:

Precision:
p__ 1P
TP+ FP
Recall:
po_ 1P
TP+ FN
F measure:
2 1 1
—_— =t —
F P R

Among these functions, TP refers to the number of samples that are correctly classified
into the positive class. FN represents the number of samples that have been mistakenly
classified into the negative category. FP refers to the number of samples that have been
mistakenly classified into the positive class. TN represents the number of samples that are
correctly classified into the negative class. Precision measures the test results, the recall
rate focuses on the sample, and F represents the overall evaluation index.

Table 6 The performance comparison of classification models

Classification Precision Recall F measure
model
Logistic Regression 0.6916 0.7592 0.7244
Decision Tree 0.7071 0.7521 0.7042
Support Vector 0.7013 0.6660 0.6829
Machines
Multi-layer 0.7023 0.8531 0.7386
Perceptron

Table 6 shows the values of each model on indicators. The decision tree performs best on
Precision with the value of 70.71%, while Multi-layer Perceptron performs best on Recall
and F measures, with values of 85.31% and 73.99% on each indicator. In this study, we
want to use the model to predict whether the household has prepared for a disaster to make
a more responsive disaster mitigation strategy. Considering the application scenarios,
when referring to safety-related issues, we would rather sacrifice some accuracy than miss
those who are not prepared. Therefore, in this research, the indicator of recall is more
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critical. In addition, F measure is a harmonic mean of model precision and recall. It, thus,
can also reflect the degree of the model's precision to a certain degree. Given this
preference, the Multi-layer Perceptron is selected as the final model.

Conclusion and discussion

The main objective of this study is to find a classification model for predicting a
household’s preparedness for natural disasters based on their characteristics and the
environment in which they are located. To reach this objective, we collected data from the
Federal Emergency Management Agency’s National Household Survey in 2018, trained
logistic regression, decision trees, support vector machines, and multi-layer perceptron
classifier models, and compared their performance based on the indicators of precision,
recall and F measure. Results show that the multi-layer perceptron classifier model
performs best.

The prediction model could be applied in the scenarios of both disaster preparation and
disaster response. Since household preparation data are publicly accessible, through the
prediction results, the government could grasp information of how residents have been
prepared for potential natural hazards and thus carry out a more targeted disaster response
strategy. For this scenario, the intermediate result also plays a role. From the feature
selection, we know 2 numerical features (hazard experience and age) and 2 category
features (education and information accessibility) are finally included in the model. As the
selection is based on results of correlation analysis, compared with other features, these
included feature matters more on a household's disaster preparation. Though some features
such as age and education level could not be changed, the information access, however,
could be used well to improve a household's preparation for natural disasters, especially as
it ranks the highest value of correlation results with the response variable.

To figure out whether information access could be affected by a household's characteristics,
we further performed a chi-square test to evaluate whether there is a significant association
between information access and other variables. From the results shown in table 7, we see
that the p-value is less than the significance level of 5% for all variables. Like any other
statistical test, if the p-value is less than the significance level, we can reject the null
hypothesis (Ho: the variables are independent, knowing the value of one variable does not
help to predict the value of the other variable ) and assume that there is a correlation
existing in two variables. This means both households' characteristics and regional hazard
history could affect the disaster preparation information they get. while research has
revealed that local government and institutions in disaster-frequent regions may attach
more importance to hazard education and prepare activities than those that never
experience a severe natural disaster, whether the correlation between household’s
characteristics and information access is significant enough and how it works could be
conducted in future research to help make more customized hazard prepare information
propagation strategy to improve households’ preparedness for a potential natural disaster.
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Table 7 Results of chi-square test between information access and other variables

Variable Age Education Family Hazard Hazard
income history experience

X-squared 105.22 47.943 30.819 56.315 142.2

P-value 0.01222 3.648e-09 0.001177 6.999¢-11 7.177e-08

In addition, the model could also be applied for disaster response as existing research shows
that preparedness appears to pay off. On the one hand, households with more prepared
conditions appear to be cooperative with the regulations disaster mitigation-related
measures. On the other hand, families unprepared for a disaster are more likely to get into
trouble during a disaster due to lacking emergent knowledge and materials needed, they
may need more and faster rescue than those well prepared. Therefore, with a household’s
disaster preparedness information, governments can make it more efficient when making
response strategies towards disaster.

Limitation

In this study, data used for training for the model are collected from FEMA ‘s National
Household Survey, thus not being customized for the prediction variables. If possible,
future research could be performed based on self-designed surveys to optimize the model.
In addition, though with the highest score, the performance of the selected MLP model is
still not very good, indicating there may be still some room for parameters optimization to
make the model present the best performance, which needs to be continuously adjusted in
the following research.
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