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Abstract: Background: Processing whole-slide images (WSI) to train neural networks can be 
intricate and laborious. We developed an open-source library covering recurrent tasks in processing 
of WSI and in evaluating the performance of the trained networks for classification tasks. Methods: 
Two histopathology use-cases were selected. First we aimed to train a CNN to distinguish H&E-
stained slides obtained from neuropathologically classified low-grade epilepsy-associated 
dysembryoplastic neuroepithelial tumor (DNET) and ganglioglioma (GG). The second project we 
trained a convolutional neural network (CNN) to predict the hormone expression of pituitary 
adenoms only from hematoxylin and eosin (H&E) stained slides. In the same approach, we 
addressed the issue to also predict clinically silent corticotroph adenoma. We included four clinico-
pathological disease conditions in a multilabel approach. Results: Our best performing CNN 
achieved an area under the curve (AUC) of 0.97 for the receiver operating characteristic (ROC) for 
corticotroph adenoma, 0.86 for silent corticotroph adenoma and 0.98 for gonadotroph adenoma. 
Our DNET-GG classifier achieved an AUC of 1.00 for the ROC curve. All scores were calculated 
with the help of our library on predictions on a case basis. Conclusions: Our comprehensive library 
is most helpful to standardize the work-flow and minimize the work-burden in training CNN. It is 
also compatible with fastai. Indeed, our new CNNs reliably extracted neuropathologically relevant 
information from the H&E staining only. This approach will supplement the clinico-pathological 
diagnosis of brain tumors, which is currently based on cost-intense microscopic examination and 
variable panels of immunohistochemical stainings. 
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1. Introduction 
With increasing availability of digital microscopy scanners and whole slide imaging, 

digital pathology (DP) will continue to successfully implement into our daily routine 
diagnostic practice. These digitized slides provide the intriguing opportunity to also 
apply image analysis techniques for advanced applications, such as disease classification. 
Deep learning (DL) is the most commonly applied technology in the realm of feature 
learning, and iteratively improves learned representations of the region-of-interest in 
order to achieve maximum class separability. Medical and non-medical image-
classification tasks have been remarkably successful utilizing DL.  Successful examples 
range from utilization of different types of cancer detection/classification/grading [1,2] ⁠, 
Focal Cortical Dysplasia in human focal epilepsies [3], classification of liver cirrhosis, heart 
failure detection, and classification of Alzheimer plaques [4] ⁠. Disease grading, prognosis 
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prediction and imaging biomarkers for genetic subtype identification are more 
challenging tasks but have also been successfully established [5,6]. 

The area of computational image analysis of DP images has been addressed already 
by many previous works. A prerequisite to successfully apply deep learning requires 
domain-associated knowledge in the field of DL and DP. Whereas many pathologists are 
not familiar with the problem-specific tasks and technical issues for applying DL 
techniques, DL developers most often have little experience with histology and 
histopathology-associated workflows. In addition, currently available open-source tools 
and tutorials do not provide guidance for the needs of both groups and available 
programming libraries and tools (either open- or closed-source) are not targeted for an 
application by a pathologist or clinician with little experience into DL programming 
routine. This is a major obstacle for researchers to use or extend the available technology 
and investigate their clinical use-case and hypotheses. We developed, therefore, an open-
source library specifically tuned and adjusted to the special needs of digital pathology-
associated analysis tasks in the context of DL. We showcase the potential of our library by 
outlining two specific projects, each driven by a unique clinical hypotheses. 

1.1. Use case 1: Classifying low-grade epilepsy-associated brain tumors 
Dysembryoplastic neuroepithelial tumor (DNET) and ganglioglioma (GG) are slowly 

growing tumors composed of both, glial and neuronal cell elements, and 
histopathologically often difficult to classify [7]. They account for 1-2% of all brain tumors 
and do not metastasize or spread beyond the primary site of origin. These tumors occur 
mainly in children and young adults with long-standing drug-resistant epilepsy. The 
average age at seizure onset was 12 years in 984 GG and 14 years in 565 DNET when 
reviewing a large European cohort of 9523 patients who underwent epilepsy surgery. 
Seizures are commonly focal with or without secondary generalization, and neurosurgical 
resection has proven as most successful treatment option. Malignant transformation has 
been reported for the group of GG [8,9]⁠ whereas DNET almost never show this behavior 
[10]⁠. Therefore, a precise histopathological diagnosis and differentiation of these two 
tumor entities is important for clinical patient management [11]. The problem is that even 
in specialized medical centers the inter-rater agreement on the diagnosis accounts for only 
40% of these tumors [7]. The DL task was to develop, therefore, a binary classifier 
distinguishing between the two entities. 

1.2. Use case 2: Prediction of pituitary adenoma subtypes and their neuroendocrine features 
Better neuroimaging techniques and diagnostic modalities recognize more pituitary 

adenomas than previously thought [12] ⁠. We consider three clinical subclasses: Pituitary 
adenomas with A. prominent neuroendocrine symptoms, B. slowly developing, insidious, 
non-specific complaints delaying accurate diagnosis, or C. incidentally detected 
adenomas being symptom-free. It remains, therefore, challenging to accurately determine 
the prevalence and incidence of pituitary adenomas in the general population. They 
account for 15 % of all intracranial neoplasms, being the third most frequent tumor type 
after meningiomas and gliomas. In multiple postmortem studies, the mean prevalence of 
pituitary adenomas was 14.4% [12] ⁠. The overall estimated prevalence of pituitary 
adenomas in the general population was calculated as 16.7 %. Radiography studies 
showed a higher prevalence of 22.5% (Aflorei & Korbonits, 2014)(Ezzat et al., 2004). The 
tumor has its maximum age frequency in patients between 40 and 60 years of age. The 
frequency of different subtypes varies depending on the age and gender of the patients 
[13]⁠. 

The WHO classification of pituitary adenoma from 2017 is based mainly on the 
hormone and transcription factor expression of the adenoma cells [14] ⁠. In common routine 
workup for adenomas of the pituitary gland, the morphological evaluation is based, 
therefore, on H&E and a panel of immunohistochemical staining for all pituitary 
hormones (adrenocorticotropic hormone (ACTH), luteinizing hormone (LH), follicle-
stimulating hormone (FSH), prolactin (PRL), thyroid stimulating hormone (TSH), 
somatotropic hormone (STH)) and transcription factors. In our study, we focused on 
corticotroph and gonadotroph adenomas since they represent the most common 
subtypes. We labeled our tumor samples of corticotroph and gonadotroph adenomas 
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accordingly, e.g. corticotroph adenoma, gonadotroph adenoma with the expression of LH, 
and gonadotroph adenoma with the expression of FSH. As adenomas are often non- 
exclusively positive for only one hormone, many cases received more than one label. 
Therefore we chose to tackle the problem as a multilabel approach, which means that the 
different classes are rated and scored individually, and possible correlations must be 
learned by the CNN. To make sure that the labels are correct for each tile, we manually 
reviewed the extracted regions from the H&E slides with the corresponding regions in the 
immunohistochemically stained images. In addition, we included those corticotroph 
adenomas as a separate class, in which the patient does not show clinical symptoms of 
Morbus Cushing (silent corticotropic adenoma). The DL tasks were to classify entities of 
adenomas of the pituitary gland from H&E-stained slides as well as to predict the clinical 
parameter of asymptomatic or clinically silent corticotroph adenomas. 

2. Materials and Methods 
2.1. The library 

Compared to common image datasets consisting of small files in e.g. PNG or TIFF 
format WSI provide more challenges in the context of training a neural network with 
them. First there is the size. A WSI's typical size in the realm of Neuropathology is 0.5 – 3 
Gbyte. Therefore, it is impossible to feed an entire WSI let alone a batch of WSI into a 
CNN, since graphic processing units or graphic cards (GPUs) do not have enough 
memory. So WSI need to be divided into smaller images usually referred to as tiles. WSI 
are also stored in special file types and most WSI scanner manufacturer provide their own. 
Usually, WSI are also not independent of each other. A WSI belongs to a case and a case 
belongs to a patient. This is important for the dataset split and evaluation of the model 
after the training. It is common practice to not mix data from one patient in the training, 
validation and test set. For evaluation it is interesting how the model performs on tile 
level, but usually the performance on WSI, case or patient level has a higher value in 
practice. So these connections need to be tracked throughout the whole process from 
preprocessing until postprocessing/evaluation. Our library [15] ⁠is meant to help with this 
common overhead in preprocessing and the evaluation for training a classification model 
with WSI. 

2.2.Tile calculation 
So the first step is to split up a WSI into multiple small tiles. A complete sample 

pipeline can be found in the github repository of the library (https://github.com/FAU-
DLM/wsi_processing_pipeline/tree/master/tile_extraction/example.ipynb) and in the 
repositories of the the two use cases 
(https://github.com/ChristophNeuner/DNET_vs_Ganglioglioma/blob/main/dnet_vs_gg.i
pynb and 
(https://github.com/ChristophNeuner/glioblastoma_methylation/blob/master/methylatio
n_status_binary_classification.ipynb). 

Usually not all parts of a WSI are of interest for further processing. So in general there 
are two main ways of making sure only the relevant parts are used: Marking the 
interesting regions manually or using some sort of filtering algorithms that e.g. 
distinguish tissue from background, filter out pencil markings or blurred tissue. Both 
ways are supported by the library and will be further explained in the following lines. 

2.3 Filters applied on complete WSI 
Our library originated as a fork of Deron Eriksson’s github repository “python-wsi-

preprocessing” (https://github.com/deroneriksson/python-wsi-preprocessing), which 
was originally written and used for his and his team’s pariticipation in the Tumor 
Proliferation Assessment Challenge 2016 (TUPAC16) [16]⁠. 

Most parts of this library have gotten a substantial rewrite and many additions were 
made since. However, the filters were mostly kept untouched. A great documentation 
about them can be found in Deron Erikson’s github repository [17] ⁠: 
https://github.com/deroneriksson/python-wsi-preprocessing/blob/master/docs/wsi-
preprocessing-in-python/index.md#apply-filters-for-tissue-segmentation. 
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2.4 Calculation of tile locations 
Our preferred way of defining polygonal regions of interest (ROIs) in a WSI is to use 

the program QuPath [18] (Supplement 7). The next step is to extract the coordinates of the 
polygons’ vertices. We wrote a small QuPath script which can be used in the “Automate” 
Tab in QuPath and exports the polygons’ vertices’ coordinates into a json file. The script 
can be found here:https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/QuPath_scripts/polygon_points_to_json.gro
ovy 

The next step is to convert this information into RegionOfInterestPolygon objects 
(https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/shared/roi.py#L66). There is a convenience 
function if the ROIs were annotated and extracted with our script from QuPath. This 
function can be found here: https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/shared/roi.py#L195 

It is important to notice that this part is completely optional. You do not have to 
define any ROIs.  

Subsequently all relevant tile locations are calculated. For this process the function 
“WsisToTilesParallel” (https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/8c5e4a360fa369221ce86dd35837e91f31817d30/tile_ex
traction/tiles.py#L1275) is used. It basically calls the function “WsiToTiles” for every WSI 
and runs in parallel. It takes a few interesting parameters. We will elaborate on the few 
most interesting here, the rest is covered in the function’s doc string. 

“wsi_paths”: 
First of all a list with the paths to the WSI files has to be passed. Notice that not only 

WSI files but also PNG files are supported here. So If one has already extracted the 
interesting parts of the WSI as PNGs, one can use them and do not have to specify ROI 
coordinates like described before. 

“grids_per_roi”, “optimize_grid_angles”, “angle_stepsize”, 
“minimal_tile_roi_intersection_ratio”: 

The library lays a grid of all possible tiles over each ROI (Supplement 8). If no ROI is 
specified, the library internally creates one ROI, which simply spans the complete WSI. 

The logic for this part of the pipeline resides in the tiles.py module. To be more 
specific in the Vertex, Rectangle, Grid and GridManager classes. A Vertex object 
represents one vertex of the polygonal ROI and provides simple arithmetic operations like 
add, subtract and multiply with scalars and matrices. It also provides the functionality to 
rotate itself around a specified point. This is done by multiplying a rotation matrix with 
the vertex coordinates represented as a 2x1 vector. 

 
 
The Vertex class also provides a convenience function to change the WSI level of the 

coordinates. Because of its size a WSI is stored in a pyramid like format (Supplement 10) 
in multiple images per level. So only if you zoom in the images of that particular region 
are loaded with higher resolution. Therefore during the process of tile calculations it is 
important to specifiy the zoom level for a given coordinate to get correct results. So it is 
often necessary to convert various coordinate values to another zoom level. All the 
filtering steps for example in our pipeline are done on a scaled down version by the factor 
32 of the WSI to enhance the speed and get the results in reasonable time span. 

A Rectangle object represents the bounds of a tile. It also wraps necessary 
functionality like rotation. The Grid class implements all the functionality to represent a 
grid of Rectangles and therefore possible tile locations that are laid over a ROI. Finally 
there is the GridManager class. It creates as many Grid objects for each ROI as it is 
specified in “grids_per_roi” and contains some convenience functions for e.g. 
visualization. It also merges overlapping ROIs. To check out the full spectrum of 
functionality of these classes checkout the code on github: https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/tile_extraction/tiles.py#L78 

If “grids_per_roi” is greater than one, multiple slightly shifted grids are laid over 
each ROI. This increases the number of tiles and therefore the amount of training data. 

Rotation Matrix
𝑥′
𝑦′

= ൤
𝑐𝑜𝑠(𝛼) −𝑠𝑖𝑛(𝛼)
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This of course means, that the same tissue is present in multiple tiles, but nonetheless all 
tiles are unique. If “optimize_grid_angles” is true, the grid is rotated in an iterative 
approach by “angle_stepsize” in each iteration and the angle which results in the most 
tiles per ROI will be used for further calculations. This is done for each ROI individually. 
So the smaller “angle_stepsize” is, the closer the angle gets to the optimum, but the longer 
the process takes. The last important parameter in this context is 
“minimal_tile_roi_intersection_ratio”. If it is 1.0, only tiles which lay 100% in the ROI will 
be considered for further processing. The closer it gets to 0.0, the more tiles can be outside 
of the ROI, but never completely, since 0.0 is outside of the possible range of this value. 

2.5 Tile filtering 
Among these tiles there might still be some, which are not worth to be kept. If ROIs 

are specified this amount should be fairly small, but if no ROIs are specified, there should 
be plenty to be filtered out. The user of the library can specify a tile scoring function that 
only takes the tile in form of a PIL image as parameter and returns a score for it. The user 
also has to provide a threshold for that score. All tiles with a score above this threshold 
pass filtering and will be considered for training. 

The library provides a default tile scoring functionality which works for H&E stained 
slides. 

𝑠𝑐𝑜𝑟𝑒 = 1 −
10

10 +
𝑡𝑖𝑠𝑠𝑢𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ∗ 𝑐𝑜𝑙𝑜𝑟𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑛𝑑𝑉𝑎𝑙𝑢𝑒𝐹𝑎𝑐𝑡𝑜𝑟

1000

 

The scoring formula generates good results for the images in the dataset and was 
developed through experimentation with the training dataset.  

The first criteria is the amount of tissue in a tile. To separate tissue from background 
we applied four filters to a tile image (Supplement 9). First the image was converted to 
greyscale and then its complement was created. After that Otsu’s threshold was applied. 
Thresholding using Otsu's method is a popular thresholding technique. This technique 
was used in the image processing described in A Unified Framework for Tumor 
Proliferation Score Prediction in Breast Histopathology [18] ⁠. Otsu‘s method produces a 
binary mask in which 0 stands for background and 1 for tissue. Finally this mask is applied 
to the original image and background becomes black. By dividing the number of 1s by the 
total number of pixels the tissue percentage can be obtained. 

The colorFactor value is used to weigh hematoxylin staining heavier than eosin 
staining. Utilizing the Hue-Saturation-Value (HSV) color model, broad saturation and 
value distributions are given more weight by the saturationAndValueFactor. The score is 
scaled to a value from 0.0 to 1.0. 

Tissue with hematoxylin staining is most likely preferable to eosin staining. 
Hematoxylin stains acidic structures such as DNA and RNA with a purple tone, while 
eosin stains basic structures such as cytoplasm proteins with a pink tone.  

Differentiating purplish shades from pinkish shades can be difficult using the RGB 
color space (see https://en.wikipedia.org/wiki/RGB_color_space). 
Therefore, to compute our colorFactor value, we first convert our tile in RGB color space 
to HSV color space (see https://en.wikipedia.org/wiki/HSL_and_HSV). In 
this color model, the hue is represented as a degree value on a circle. Purple has a hue of 
270 degrees and pink has a hue of 330 degrees. We remove all hues less than 260 and 
greater than 340. Next, we compute the deviation from purple (270) and the deviation 
from pink (330). We compute an average factor which is the squared difference of 340 and 
the hue average. Saturation and value standard deviations should be relatively broad if 
the tile contains significant tissue. The colorFactor is computed as the pink deviation 
times the average factor divided by the purple deviation. It favors purple (hematoxylin 
stained) tissue over pink (eosin stained) tissue. 

 
The information about one tile is then stored in a Tile object. 
The result of the filtering process is a TileSummary object for each WSI. A 

TileSummary object contains the information about the WSI including dimensions, scaled 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2021                   doi:10.20944/preprints202110.0359.v2

https://doi.org/10.20944/preprints202110.0359.v2


 

dimensions, which were used for faster tile calculations, ROIs, the GridManager object 
and all tiles. It also implements some visualization methods to display the WSI with ROI 
and tile boundaries. 

In the next step the PatientManager class in 
wsi_processing_pipeline.shared.patient_manager.py comes into play. Its main purpose is 
to manage the typically hierarchical structure of a pathological dataset. A tile belongs to a 
ROI. A ROI belongs to a WSI. A WSI belongs to a case and a case belongs to a patient. It 
is good practice to split datasets on patient level. To measure performance of a model after 
training usually it is not only of interest how a model performs on tile level, but also how 
it performs on WSI or case level. Therefore it is important to store those relationships. It 
is also responsible for setting the labels of each tile. The PatientManager class implements 
some convenience functions for dataset splitting into a training, validation and test set 
and for a k-fold cross validation split. It can print out a class distribution and is capable of 
undersampling the dataset, 

In the next step the fastai [19] ⁠library takes over for training the neural network. 
During tile filtering the user of our library can specify in the WsiToTiles function, if each 
tile should be extracted and stored to disc as a PNG file. We wrote a custom fastai 
ImageBlock called TileImageBlock that works with fastai’s data block API. This allows to 
renounce saving each tile to disc because the TileImageBlock can extract a tile image on 
the fly during the training process given the spatial information about a tile which is 
stored in each Tile object. This has the advantage of consuming less storage space and 
since it is usually necessary to play around with the parameters that are used for filtering 
until only the desired tiles are left, not saving the tiles is a huge speedup for this part of 
the process. 

Our preferred library for training a neural network is fastai [19] ⁠, which is built on top 
of Facebook's increasingly popular PyTorch [20] ⁠ library. 

After training has finished one wants to know how good the trained model performs 
on the validation or an unseen test set. For this use case we implemented the Predictor 
class which resides in wsi_processing_pipeline.postprocessing.predictor.py. It takes a 
fastai [19] Learner and one of our library’s PatientManager class objects. In a first step it 
calculates predictions for each tile image in desired dataset. In a second step it calculates 
the predictions for each WSI or case by calculating the mean raw prediction for all classes 
for each tile and applying a threshold that can be specified for each class by the user of the 
library. 

The last step is to evaluate the performance of the model. We therefore implemented 
the Evaluator class in wsi_processing_pipeline.postprocessing.evaluator.py. 

Its constructor takes an instance of the above mentioned Predictor class as the only 
argument. It implements a few commonly used methods to measure model performance. 
It can calculate the per class accuracy and plot receiver operating characteristic (ROC) 
curves, precision recall curves, confusion matrices (Figure 1) and probability histograms 
(Figure 2). It can also print out sklearn’s classification report and print a list of tiles with 
the highest losses or a list of cases, WSI or tiles sorted by a user specified metric calculated 
with the predictions. It is also capable of creating Gradient-weighted Class Activation 
Mappings (Grad-CAMs) [22] ⁠. 
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Figure 1. Results Confusion Matrices from left to right: case level, slide level, tile level. 
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Figure 2. Results | Histograms and ROC-Curves were calculated on a case basis. The predictions were made for all 5 
validation sets with the respectively corresponding model that was not trained on that validation set. So, the graphs 
represent the complete dataset. 

 

 

2.6. Dataset preparation for both use-cases 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 October 2021                   doi:10.20944/preprints202110.0359.v2

https://doi.org/10.20944/preprints202110.0359.v2


 

Histopathology slides from all patients of interest for the study design were retrieved 
from the archives of the Dept. of Neuropathology (see below) and subsequently digitized 
using a Hamamatsu S60 scanner with a 40x magnification. We included only H&E 
stainings, thus eliminating the need for more complex and expensive immunostainings. 
The WSI of our dataset were reviewed by two expert neuropathologists of our institute. 

Use case 1: For the DNET and ganglioglioma classifier slides from 219 patients were 
used. 52 of them were DNETs and 167 were ganglioglioma. Two of our expert 
neuropathologists in epilepsy pathology used QuPath to define polygonal ROIs 
containing tumor tissue in the WSI and exported their coordinates to json files. These json 
files were then used by the library to only extract tiles from relevant regions of the WSI. 
In total 171,514 tiles from GG and 34,520 tiles from DNETs with a size of 1024x1024 pixels 
were defined for further processing and training. 

 
Use case 2: To train and evaluate the pituitary adenoma classifier, H&E and 

immunohistochemically stained (ACTH, LH, FSH) tissue slides of 410 patients were 
collected. 181 of these were diagnosed with corticotroph and 229 with gonadotroph 
adenoma of the pituitary gland (Supplement 1 and 2). Overall, the dataset consisted of 431 
H&E (202 corticotroph and 229 gonadotroph) slides with the corresponding ACTH 
respectively LH/FSH whole slide images for comparing and identifying the correct ROI 
(Figure 3). The ROIs on an individual H&E slide were defined as regions, where the 
immunostainings showed tumor expressions of the specific hormone. Care was taken that 
no normal pituitary gland tissue was included (Figure 3). This time-consuming ROI 
selection process was necessary to ensure the correct labeling of each tile and therefore 
the validity of the resulting models. Otherwise, biases through wrong labeled areas could 
have worsened the performance. For example, areas with only connective tissue had been 
excluded. Also, the hormone expression of the adenoma is not homogeneously spread 
over the sample. This was particularly important to consider for the gonadotropic 
adenomas. When an adenoma expresses LH and FSH that does not mean that all 
subregions express both two hormones. So, there can be tiles that only get labeled with 
LH or FSH although the whole tumor expresses both. ROIs were defined at 40x 
magnification level and cropped into smaller tiles of 1024x1024 pixels to further 
preprocess and feed into our model (Figure 3). The tile extraction resulted in 206,517 
gonadotropic and 63,893 corticotropic tiles. 

 
Figure 3. Tile Extraction a: We compared H&E and immuno-stained slides and extracted only those corresponding  parts 
of the H&E stained WSI with QuPath where the immuno-stained WSI showed the expression of the hormone. b: We 
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subdivided the image into 1024x1024 pixel tiles and used complement filter and otsu thresholds to identify tissue and 
background. Then we only extracted and saved those tiles that pass a scoring function that takes tissue percentage and 
color characteristics into account. 

2.7. Convolutional Neural Network Architecture 
 
Use case 1: For the DNET-GG classifier a ResNet50 was implemented, using the open 

source Python library fastai [19] which is based on PyTorch [20] ⁠⁠. It was pretrained on 
ImageNet [23,24] and the classification head was replaced to predict two (DNET or GG) 
instead of the 1000 classes included in the ImageNet dataset. (Supplement 3). 

 
Use case 2: For the pituitary gland classifier a ResNeXt-101-32x8d CNN architecture 

also pre-trained on ImageNet [23,24] was implemented.  ResNeXt-101-32x8d [25,26] was 
chosen, as it yielded the best results with the least overfitting out of a couple of state-of-
the-art network architectures including ResNet50, se_ResNeXt101_32x4d, xception and 
inceptionv4 (Supplement 5). The basic network architecture was not changed. Only a 
customized classification head (Figure 4, Supplement 3) was used to predict four instead 
of the 1000 ImageNet classes. It consisted of several pooling, batch normalization, dropout 
and fully connected layers with four final output channels with a sigmoid-activation 
function with a threshold of 0.5 to produce individual output probabilities representing 
the four classes of corticotropic adenoma, silent corticotropic adenoma, gonadotropic 
adenoma with the expression of LH and gonadotropic adenoma with the expression of 
FSH (Figure 4). 

 
Figure 4. Prediction Pipeline A tile is forwarded through the model and the model outputs four independent probabilities 
for each class. If the probability is over a certain threshold (0.5) the tile gets the label. All tiles of one case are evaluated 
and if more than 50% of the tiles are labeled with one class, the case is also labeled with that class (majority voting). 

2.8. Preprocessing and Data Augmentation 
Image preprocessing is an important step in every computer vision task to augment 

the number of samples, to prevent overfitting, and to support the model against invariant 
aspects that are not correlated with the label [27,28] ⁠. First the tiles were resized to 512x512 
pixel images to increase the possible batch size. Following this approach, we made sure 
to have a wider field of view per tile instead of the maximum possible resolution. In our 
approach, we used a pipeline of several augmentation techniques performed batch-wise 
on the GPU consisting of a random crop with reflection padding, randomly flipping 
(horizontal or vertical) and rotating by a multiple of 90 degrees, a random symmetric warp 
with a magnitude between -0.2 and 0.2, a random rotation between -10 and +10 degrees, 
a random zoom with a zoom factor between 1.0 and 1.1, a random change in brightness 
with a factor between 0.4 and 0.6 where a factor of 0 will transform the image to black, a 
factor of 1 will transform the image to white and a factor of 0.5 doesn't adjust the brightness. 
Furthermore, an augmentation on contrast of the image was applied with a factor between 
0.8 and 1.25 where a factor of 0 will transform the image to grey, a factor over 1 will 
transform the picture to super-contrast and a factor = 1 does not adjust the contrast. These 
augmented images were then normalized. The augmentations were applied on the fly 
with a randomness factor for reproducibility for every batch so that there was no need to 
save augmented images and one image could be augmented in multiple ways. This whole 
approach ensures that out of one image multiple new images of the same class can be 
obtained multiplying the number of images available for training the neural network. 
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2.9. Training and Evaluation 
Training was performed with 16-bit precision floating-point numbers [29] using the 

Adam-Optimizer [30] ⁠and the initial learning rate was determined by using fastai’s 
learning rate finder (Supplement 4). Learning rate was adjusted during the training 
according to the one-cycle-policy [31]. ⁠The batch size was twelve for the pituitary 
adenoma classifier and 35 for the DNET-GG classifier. At first, only the randomly 
initialized custom head (Figure 2, Supplement 3) was trained for five epochs with a 
maximum learning rate of 10-3 (Supplement 4) in both projects to not interfere with the 
pretrained weights of the CNN’s body. Thereafter the body’s layers were unfrozen, and 
the complete network was trained for ten epochs with differential learning rates between 
10-9 and 10-6 for the pituitary gland adenoma classifier and between 10-8 and 10-6 for the 
DNET-GG classifier (Supplement 4) where earlier layers are trained with a lower learning 
rate than the later ones. The idea behind this is, to maintain the basic image-classification 
patterns of the pretrained model and prevent overfitting. Training performance was 
controlled using accuracy with a threshold of 0.5 as metric per tile and the used loss 
function was binary cross-entropy loss. Model parameters were saved every epoch and 
the weights of the epoch with the best results were used for evaluation. We further 
evaluated model performance with 5-fold cross-validation, without having any training- 
and validation-slide and patient overlap. After the training, predictions on the five 
validation sets were calculated with the corresponding model based on the combined 
predictions of all tiles of a case. The prediction for a case was calculated using majority 
voting for the pituitary gland adenoma classifier and the arithmetic mean of the raw 
predictions (between 0.0 and 1.0) of all the case’s tiles for the DNET-GG classifier. These 
results were then combined and used to calculate true and false-positive rates, which were 
then used to plot Receiver Operating Characteristic curves, true/false positive frequency 
histograms, and in conjunction with false-negative rates to plot precision-recall curves. 

 
Since silent corticotroph adenomas only made up 9.7% of the dataset, we decided to 

train a second neural net on an undersampled training set. The original training set (80% 
of the complete dataset) consisted of 226,422 tiles from which 59% were positive for LH, 
62% for FSH, 22% for ACTH, and 9.4 % were silent corticotroph adenomas. After the 
downsampling procedure, 54,713 tiles were left from which 43% were positive for LH, 
43% for FSH, 43% for ACTH and 39 % were silent corticotroph adenomas. We assured 
that at least 30 tiles per WSI were left after downsampling. Again, we used the 
resnext101_32x8d architecture. The head was trained for five epochs with a maximum 
learning rate of 10-3. The complete model was then trained for ten epochs with maximum 
discriminative learning rates ranging from 10-7 to 10-5. In both cases, the one-cycle learning 
rate policy was used with minimum learning rates of 1/25 of the maximum learning rates. 

2.10. Hardware 
We implemented our approach on a local server running Ubuntu (18.04 LTS) with 

one NVIDIA GeForce GTX 1080Ti and one NVIDIA Titan XP, AMD CPU (AMD Ryzen 
Threadripper 1950X 16 × 3.40 GHz), 128 Gb RAM, CUDA 10.2, and cuDNN 7. 

2.11. Availability and implementation 
The datasets generated and analyzed during the presented study are not publicly 

available, but parts of the pipeline used in this project including training and visualization 
are available on our Project Homepage. 

https://github.com/FAU-DLM/wsi_processing_pipeline 
https://github.com/ChristophNeuner/pituitary_gland_adenomas 
https://github.com/ChristophNeuner/DNET_vs_Ganglioglioma 

3. Results 
3.1. Use case 1: DNET- GG classifier 

We evaluated the performance on the validation set which made up 20% of the whole 
dataset and which was not used for training. It consisted of 24 slides of ganglioglioma and 
seven slides of DNET. 29,333 tiles were extracted from the GG slides and 6,597 tiles were 
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extracted from the DNET slides for evaluation. No hyperparameter tweaking was 
performed, which could have led to overfitting on the validation set. On tile level the 
accuracy was 0.936 and on slide level 0.968. The AUC on tile level was 0.93 and 1.00 on 
slide level for the ROC-curve. The average precision calculated from precision and recall 
was 0.88 for DNET and 0.97 for GG on tile level. On slide level it was 1.00 for DNET and 
GG. (Figures 5 and 6) 

 
Figure 5. Results | ROC (left) and precision recall curves (right) on tile level. 
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Figure 6. Results | ROC (left) and precision recall curves (right) on slide level. 

3.2. Use case 2: Pituitary adenoma classifier 
All CNN were trained to classify the ROIs containing adenoma and surrounding 

tissue. First, we performed a study to determine which model to use for our classification 
task. We tested ResNet50, ResNet101, ResNet152, DenseNet121, Xception, Inceptionv4, 
se_ResNext101_32x4d and ResNext101_32x8d. We compared those models on a 
predefined validation set with accuracy calculated on a case basis for each class with a 
threshold of 0.5 (Supplement 5). Inceptionv4, se_ResNext101_32x4d and 
ResNext101_32x8d showed similar promising results. We decided upon 
ResNext101_32x8d because of the slightly better test-set results. During training 
validation accuracies mostly stayed above training accuracies and validation loss stayed 
below training loss values, indicating little to no overfitting on the training dataset. We 
finally evaluated our model via 5-fold cross-validation. For each model within the process 
of cross-validation, we took 80% of the dataset as training data and 20% as validation data. 
There was no overlap between these five validation sets. All five validation sets showed 
similar AUCs with no significant outliers (Supplement 6). After that predictions were 
made for all tiles of the five validation sets with the respectively corresponding model that 
was not trained on that particular validation set. Via majority voting with a threshold of 
0.5 we then calculated the labels on a case basis and computed AUCs of ROC curves for 
each class. If more than 50% of the tiles of one case were labeled with the class ACTH, the 
whole case got the label ACTH. 

 
For ACTH the AUC of the ROC curve was 0.97 with a proportion of 44.7% of all cases. 

The AUC for silent ACTH was 0.86 with a proportion of 9.7%. The AUC for gonadotropic 
(LH and/or FSH) was 0.98 with a proportion of 55.3%. The AUCs of LH and FSH alone 
were 0.96 and 0.93 with proportions of 48.1% and 43.8% (Figure 2). Since the silent ACTH 
cases only made up 9.7% of the dataset the AUC of 86% of the ROC curve could have 
simply been a result of guessing. Therefore, we also calculated a precision-recall curve 
(Figure 7) which resulted in an AUC of 0.71 and furthermore trained another neural net 
on an undersampled dataset as described in the last paragraph of “Training and 
Evaluation”. We reached an accuracy of 88.6% and an AUC of 0.83 for the ROC-curve on 
the validation set for the silent ACTH class (Figure 8). 

 
Figure 7. Results | Precision-recall curve for the class silent corticotropic adenoma of the models 
from the 5-fold cross-validation which were trained on the unevenly distributed training set, in 
which silent-corticotroph adenoma made up only 9.7% of the tiles. 
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Figure 8. Results | Probability Histogram and ROC-Curve for the class silent corticotroph adenoma of the model that was 
trained on an undersampled training set, in which all four classes were evenly distributed. 

4. Discussion 
We developed a whole slide image processing library [15] addressing the needs of 

researchers to assess different DL tasks without the hurdles of complex dataset 
management. The large size of WSI and annotation of multiple regions of interest tend to 
increase such technical obstacles. It is also desirable to extract all tiles on-the-fly during 
training and only save their spacial information but not the images. This pipeline has the 
advantage of being more flexible. It is not necessary anymore to repeatedly store extracted 
tiles as images to disc, saving space and time. Also the evaluation of the trained model 
requires more steps when dealing with WSI. Results on the tile level are only of limited 
significance. They have to be transformed into predictions for the complete WSI and the 
entire case. For histopathologists or expert clinicians addressing a clinical hypothesis, 
these hurdles may become a real burden. Also DL experts familiar with the usage of DL 
frameworks may underestimate the specific handling of digital pathology-associated 
tasks. The new library provides convenient ways of dealing with WSI in the realm of 
Neuropathology thereby facilitating access to DL for both groups of researchers. 

 
Access from and to different levels of magnification, region of interest definition, and 

handling as well as dataset splitting are essential mechanisms and tend to be technically 
intricate. The library manages these crucial steps and offers default parameters enabling 
the user to focus on the problem-specific tasks. For the specific use-cases addressed in this 
study, the library facilitated the management of pre-extracted image patches for a given 
patient as well as extraction of image patches on-the-fly from predefined ROI. Our 
evaluation of different state-of-the-art model architectures to identify the most suitable 
model for the problem-specific tasks, i.e. best classification results and least overfitting, 
resulted in the selection of resnet50 for the first use-case and the resnext101_32x8d [25,27] 
architecture for the second use-case. We believe that these rather big networks with lots 
of parameters worked well, because of their big input image size of 512x512 pixels. On 
smaller images networks with less parameters tend to work better in our experience [3] ⁠. 
A crucial step in our pipeline was among sufficient training data the way of image 
preprocessing. One part of this aspect was image augmentation to increase variance 
presented to the network [32]. Normalization of the input data was done with the mean 
and standard deviation of our own dataset. Fastai [19] ⁠does this conveniently for the user. 

 
Use-case 1: In the first use case we developed a DL approach to distinguish between 

two epilepsy associated tumors, the GG and the DNET. Since unlike DNET some GG can 
undergo malignant transformation [8,9] ⁠, a precise distinction between these two entities 
is crucial. We were able to demonstrate that a CNN can differentiate these two entities 
with a very high accuracy only using H&E-stained slides. This confirms the potential of 
DL in assisting pathologists in their decision making diagnostic process and to eventually 
reduce the necessity for further stains. 
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Use-case 2: In the second use case addressed we developed a DL approach to help to 
diagnose the entity of pituitary adenomas without the necessity of additional 
immunohistochemical stainings. Additionally, we could show that even a clinical 
parameter, the clinical occurrence of M. Cushing of corticotroph adenomas, might be 
hidden within the tissue as it could successfully be recognized by our neural network 
approach. This evidence supports the hypothesis that clinical parameters can be found 
within histomorphology and that distinct features may be revealed by DL in terms of 
imaging biomarkers. Guided Grad-CAMs [22] ⁠ could now be used to visualize the decision 
making and to teach pathologists which morphological structures are crucial for the 
network in its decision making process. 

We addressed the classification task on predictions per tile and collected all votes for 
the given slides of a patient’s case. We then obtained the final diagnosis by majority voting 
to get predictions on a case basis. If more than 50% of the tiles of one case were labeled 
with one class, the case was given that class label. We chose that option for two reasons. 

First, different from finding metastasis in lymph nodes where high sensitivity is 
needed, histological slides from pituitary adenomas usually contain massive adenoma, 
hence most of the tissue on the slide belongs to the tumor. Second, time was not a major 
concern. We could simply take and analyze all possible tiles instead of only taking a 
representative batch for inference. 

Limitations and potential solutions moving into the future 
A well-recognized obstacle in digital pathology represents batch effects including 

variation in staining intensity or fixation artifacts [4,33]. We contained such batch effects 
in our input data through hand-picked ROI and normalization. We did not directly 
address the problem of stain normalization [34] ⁠ for this dataset, because all staining was 
performed in a single lab and only one device was used for scanning. For further usage of 
our model in a production environment with whole slide images from other institutes, 
this would be crucial. We are continuously working on this issue to make our models 
more robust in the future. 

 
Histopathology analysis represents a gold-standard in tumor diagnosis as it often 

directs further treatment. Adenomas of the pituitary gland, although routinely classified 
by immunohistochemical profiling of their neuroendocrine axis, are in urgent need of a 
clinically meaningful histopathology classification of their risk for relapse. This was 
partially addressed by the WHO classification from 2004 and 2016. The criteria of atypia 
to label more aggressive adenomas have been removed, however, as it has missed to proof 
as predictive marker [14,35] ⁠. The “silent” corticotroph class of our dataset did represent 
another clinical parameter of interest and was remarkably well recognized by our 
network, even in the evenly distributed dataset. The good classification result of the 
“silent” corticotroph class in our study shows that neuronal networks are capable in 
revealing such clinical information hidden within tissue slides and hence it may also be 
possible to extract a clinical relapse parameter from tissue slides via DL. 

In conclusion, we developed a convenient open-access library compatible with fastai 
to support hypothesis driven DL research projects in the realm of neuropathology. Both 
use-cases demonstrated the successful diagnosis of adenoma of the pituitary gland and 
distinguishing between DNET and GG by H&E-stained slides only and without the 
necessity of cost- and labor-intense immunohistochemistry staining. 
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