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Abstract: Background: Processing whole-slide images (WSI) to train neural networks can be
intricate and laborious. We developed an open-source library covering recurrent tasks in processing
of WSl and in evaluating the performance of the trained networks for classification tasks. Methods:
Two histopathology use-cases were selected. First we aimed to train a CNN to distinguish H&E-
stained slides obtained from neuropathologically classified low-grade epilepsy-associated
dysembryoplastic neuroepithelial tumor (DNET) and ganglioglioma (GG). The second project we
trained a convolutional neural network (CNN) to predict the hormone expression of pituitary
adenoms only from hematoxylin and eosin (H&E) stained slides. In the same approach, we
addressed the issue to also predict clinically silent corticotroph adenoma. We included four clinico-
pathological disease conditions in a multilabel approach. Results: Our best performing CNN
achieved an area under the curve (AUC) of 0.97 for the receiver operating characteristic (ROC) for
corticotroph adenoma, 0.86 for silent corticotroph adenoma and 0.98 for gonadotroph adenoma.
Our DNET-GG classifier achieved an AUC of 1.00 for the ROC curve. All scores were calculated
with the help of our library on predictions on a case basis. Conclusions: Our comprehensive library
is most helpful to standardize the work-flow and minimize the work-burden in training CNN. It is
also compatible with fastai. Indeed, our new CNNss reliably extracted neuropathologically relevant
information from the H&E staining only. This approach will supplement the clinico-pathological
diagnosis of brain tumors, which is currently based on cost-intense microscopic examination and
variable panels of immunohistochemical stainings.
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1. Introduction

With increasing availability of digital microscopy scanners and whole slide imaging,
digital pathology (DP) will continue to successfully implement into our daily routine
diagnostic practice. These digitized slides provide the intriguing opportunity to also
apply image analysis techniques for advanced applications, such as disease classification.
Deep learning (DL) is the most commonly applied technology in the realm of feature
learning, and iteratively improves learned representations of the region-of-interest in
order to achieve maximum class separability. Medical and non-medical image-
classification tasks have been remarkably successful utilizing DL. Successful examples
range from utilization of different types of cancer detection/classification/grading [1,2],
Focal Cortical Dysplasia in human focal epilepsies [3], classification of liver cirrhosis, heart
failure detection, and classification of Alzheimer plaques [4]. Disease grading, prognosis
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prediction and imaging biomarkers for genetic subtype identification are more
challenging tasks but have also been successfully established [5,6].

The area of computational image analysis of DP images has been addressed already
by many previous works. A prerequisite to successfully apply deep learning requires
domain-associated knowledge in the field of DL and DP. Whereas many pathologists are
not familiar with the problem-specific tasks and technical issues for applying DL
techniques, DL developers most often have little experience with histology and
histopathology-associated workflows. In addition, currently available open-source tools
and tutorials do not provide guidance for the needs of both groups and available
programming libraries and tools (either open- or closed-source) are not targeted for an
application by a pathologist or clinician with little experience into DL programming
routine. This is a major obstacle for researchers to use or extend the available technology
and investigate their clinical use-case and hypotheses. We developed, therefore, an open-
source library specifically tuned and adjusted to the special needs of digital pathology-
associated analysis tasks in the context of DL. We showcase the potential of our library by
outlining two specific projects, each driven by a unique clinical hypotheses.

1.1. Use case 1: Classifying low-grade epilepsy-associated brain tumors

Dysembryoplastic neuroepithelial tumor (DNET) and ganglioglioma (GG) are slowly
growing tumors composed of both, glial and neuronal cell elements, and
histopathologically often difficult to classify [7]. They account for 1-2% of all brain tumors
and do not metastasize or spread beyond the primary site of origin. These tumors occur
mainly in children and young adults with long-standing drug-resistant epilepsy. The
average age at seizure onset was 12 years in 984 GG and 14 years in 565 DNET when
reviewing a large European cohort of 9523 patients who underwent epilepsy surgery.
Seizures are commonly focal with or without secondary generalization, and neurosurgical
resection has proven as most successful treatment option. Malignant transformation has
been reported for the group of GG [8,9] whereas DNET almost never show this behavior
[10]. Therefore, a precise histopathological diagnosis and differentiation of these two
tumor entities is important for clinical patient management [11]. The problem is that even
in specialized medical centers the inter-rater agreement on the diagnosis accounts for only
40% of these tumors [7]. The DL task was to develop, therefore, a binary classifier
distinguishing between the two entities.

1.2. Use case 2: Prediction of pituitary adenoma subtypes and their neuroendocrine features

Better neuroimaging techniques and diagnostic modalities recognize more pituitary
adenomas than previously thought [12]. We consider three clinical subclasses: Pituitary
adenomas with A. prominent neuroendocrine symptoms, B. slowly developing, insidious,
non-specific complaints delaying accurate diagnosis, or C. incidentally detected
adenomas being symptom-free. It remains, therefore, challenging to accurately determine
the prevalence and incidence of pituitary adenomas in the general population. They
account for 15 % of all intracranial neoplasms, being the third most frequent tumor type
after meningiomas and gliomas. In multiple postmortem studies, the mean prevalence of
pituitary adenomas was 14.4% [12]. The overall estimated prevalence of pituitary
adenomas in the general population was calculated as 16.7 %. Radiography studies
showed a higher prevalence of 22.5% (Aflorei & Korbonits, 2014)(Ezzat et al., 2004). The
tumor has its maximum age frequency in patients between 40 and 60 years of age. The
frequency of different subtypes varies depending on the age and gender of the patients
[13].

The WHO classification of pituitary adenoma from 2017 is based mainly on the
hormone and transcription factor expression of the adenoma cells [14]. In common routine
workup for adenomas of the pituitary gland, the morphological evaluation is based,
therefore, on H&E and a panel of immunohistochemical staining for all pituitary
hormones (adrenocorticotropic hormone (ACTH), luteinizing hormone (LH), follicle-
stimulating hormone (FSH), prolactin (PRL), thyroid stimulating hormone (TSH),
somatotropic hormone (STH)) and transcription factors. In our study, we focused on
corticotroph and gonadotroph adenomas since they represent the most common
subtypes. We labeled our tumor samples of corticotroph and gonadotroph adenomas


https://doi.org/10.20944/preprints202110.0359.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2021 d0i:10.20944/preprints202110.0359.v1

accordingly, e.g. corticotroph adenoma, gonadotroph adenoma with the expression of LH,
and gonadotroph adenoma with the expression of FSH. As adenomas are often non-
exclusively positive for only one hormone, many cases received more than one label.
Therefore we chose to tackle the problem as a multilabel approach, which means that the
different classes are rated and scored individually, and possible correlations must be
learned by the CNN. To make sure that the labels are correct for each tile, we manually
reviewed the extracted regions from the H&E slides with the corresponding regions in the
immunohistochemically stained images. In addition, we included those corticotroph
adenomas as a separate class, in which the patient does not show clinical symptoms of
Morbus Cushing (silent corticotropic adenoma). The DL tasks were to classify entities of
adenomas of the pituitary gland from H&E-stained slides as well as to predict the clinical
parameter of asymptomatic or clinically silent corticotroph adenomas.

2. Materials and Methods
2.1. The library

Compared to common image datasets consisting of small files in e.g. PNG or TIFF
format WSI provide more challenges in the context of training a neural network with
them. First there is the size. A WSI's typical size in the realm of Neuropathology is 0.5 - 3
Gbyte. Therefore, it is impossible to feed an entire WSI let alone a batch of WSI into a
CNN, since graphic processing units or graphic cards (GPUs) do not have enough
memory. So WSI need to be divided into smaller images usually referred to as tiles. WSI
are also stored in special file types and most WSI scanner manufacturer provide their own.
Usually, WSI are also not independent of each other. A WSI belongs to a case and a case
belongs to a patient. This is important for the dataset split and evaluation of the model
after the training. It is common practice to not mix data from one patient in the training,
validation and test set. For evaluation it is interesting how the model performs on tile
level, but usually the performance on WSI, case or patient level has a higher value in
practice. So these connections need to be tracked throughout the whole process from
preprocessing until postprocessing/evaluation. Our library [15] is meant to help with this
common overhead in preprocessing and the evaluation for training a classification model
with WSI.

2.2.Tile calculation

So the first step is to split up a WSI into multiple small tiles. A complete sample
pipeline can be found in the github repository of the library (https://github.com/FAU-
DLM/wsi_processing_pipeline/tree/master/tile_extraction/example.ipynb) and in the

repositories of the the two use cases
(https://github.com/ChristophNeuner/DNET_vs_Ganglioglioma/blob/main/dnet_vs_gg.i
pynb and

(https://github.com/ChristophNeuner/glioblastoma_methylation/blob/master/methylatio
n_status_binary_classification.ipynb).

Usually not all parts of a WSI are of interest for further processing. So in general there
are two main ways of making sure only the relevant parts are used: Marking the
interesting regions manually or using some sort of filtering algorithms that e.g.
distinguish tissue from background, filter out pencil markings or blurred tissue. Both
ways are supported by the library and will be further explained in the following lines.

2.3 Filters applied on complete WSI

Our library originated as a fork of Deron Eriksson’s github repository “python-wsi-
preprocessing”  (https://github.com/deroneriksson/python-wsi-preprocessing), which
was originally written and used for his and his team’s pariticipation in the Tumor
Proliferation Assessment Challenge 2016 (TUPAC16) [16].

Most parts of this library have gotten a substantial rewrite and many additions were
made since. However, the filters were mostly kept untouched. A great documentation
about them can be found in Deron Erikson’s github repository [17]:
https://github.com/deroneriksson/python-wsi-preprocessing/blob/master/docs/wsi-
preprocessing-in-python/index.md#apply-filters-for-tissue-segmentation.
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2.4 Calculation of tile locations

Our preferred way of defining polygonal regions of interest (ROls) in a WSI is to use
the program QuPath [18] (Supplement 7). The next step is to extract the coordinates of the
polygons’ vertices. We wrote a small QuPath script which can be used in the “Automate”
Tab in QuPath and exports the polygons’ vertices’ coordinates into a json file. The script

can be found here:https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/QuPath_scripts/polygon_points_to_json.gro
ovy

The next step is to convert this information into RegionOfInterestPolygon objects
(https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/shared/roi.py#L66). There is a convenience
function if the ROIs were annotated and extracted with our script from QuPath. This
function can be found here: https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/shared/roi.py#L195

It is important to notice that this part is completely optional. You do not have to

define any ROlIs.
Subsequently all relevant tile locations are calculated. For this process the function
“WsisToTilesParallel” (https://github.com/FAU-

DLM/wsi_processing_pipeline/blob/8c5e4a360fa369221ce86dd35837e91£31817d30/tile_ex
traction/tiles.py#L1275) is used. It basically calls the function “WsiToTiles” for every WSI
and runs in parallel. It takes a few interesting parameters. We will elaborate on the few
most interesting here, the rest is covered in the function’s doc string.

“wsi_paths”:

First of all a list with the paths to the WSI files has to be passed. Notice that not only
WHI files but also PNG files are supported here. So If one has already extracted the
interesting parts of the WSI as PNGs, one can use them and do not have to specify ROI
coordinates like described before.

“grids_per_roi”, “optimize_grid_angles”, “angle_stepsize”,
“minimal_tile_roi_intersection_ratio”:

The library lays a grid of all possible tiles over each ROI (Supplement 8). If no ROl is
specified, the library internally creates one ROI, which simply spans the complete WSI.

The logic for this part of the pipeline resides in the tiles.py module. To be more
specific in the Vertex, Rectangle, Grid and GridManager classes. A Vertex object
represents one vertex of the polygonal ROI and provides simple arithmetic operations like
add, subtract and multiply with scalars and matrices. It also provides the functionality to
rotate itself around a specified point. This is done by multiplying a rotation matrix with
the vertex coordinates represented as a 2x1 vector.

. . x"  [cos(a) —sin(a)]x
Rotation Matrlxy, = sin(a)  cos(a) [y]

The Vertex class also provides a convenience function to change the WSI level of the
coordinates. Because of its size a WSl is stored in a pyramid like format (Supplement 10)
in multiple images per level. So only if you zoom in the images of that particular region
are loaded with higher resolution. Therefore during the process of tile calculations it is
important to specifiy the zoom level for a given coordinate to get correct results. So it is
often necessary to convert various coordinate values to another zoom level. All the
filtering steps for example in our pipeline are done on a scaled down version by the factor
32 of the WSI to enhance the speed and get the results in reasonable time span.

A Rectangle object represents the bounds of a tile. It also wraps necessary
functionality like rotation. The Grid class implements all the functionality to represent a
grid of Rectangles and therefore possible tile locations that are laid over a ROI. Finally
there is the GridManager class. It creates as many Grid objects for each ROI as it is
specified in “grids_per roi” and contains some convenience functions for e.g.
visualization. It also merges overlapping ROIs. To check out the full spectrum of
functionality of these classes checkout the code on github: https://github.com/FAU-
DLM/wsi_processing_pipeline/blob/master/tile_extraction/tiles.py#L78

If “grids_per_roi” is greater than one, multiple slightly shifted grids are laid over
each ROL This increases the number of tiles and therefore the amount of training data.
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This of course means, that the same tissue is present in multiple tiles, but nonetheless all
tiles are unique. If “optimize_grid_angles” is true, the grid is rotated in an iterative
approach by “angle_stepsize” in each iteration and the angle which results in the most
tiles per ROI will be used for further calculations. This is done for each ROI individually.
So the smaller “angle_stepsize” is, the closer the angle gets to the optimum, but the longer
the process takes. The last important parameter in this context is
“minimal_tile_roi_intersection_ratio”. If it is 1.0, only tiles which lay 100% in the ROI will
be considered for further processing. The closer it gets to 0.0, the more tiles can be outside
of the ROI, but never completely, since 0.0 is outside of the possible range of this value.

2.5 Tile filtering

Among these tiles there might still be some, which are not worth to be kept. If ROIs
are specified this amount should be fairly small, but if no ROIs are specified, there should
be plenty to be filtered out. The user of the library can specify a tile scoring function that
only takes the tile in form of a PIL image as parameter and returns a score for it. The user
also has to provide a threshold for that score. All tiles with a score above this threshold
pass filtering and will be considered for training.

The library provides a default tile scoring functionality which works for H&E stained

slides.
10
score =1— - -
tissuePercentage * colorFactor * saturationAndV alueFactor
10+ 1000

The scoring formula generates good results for the images in the dataset and was
developed through experimentation with the training dataset.

The first criteria is the amount of tissue in a tile. To separate tissue from background
we applied four filters to a tile image (Supplement 9). First the image was converted to
greyscale and then its complement was created. After that Otsu’s threshold was applied.
Thresholding using Otsu's method is a popular thresholding technique. This technique
was used in the image processing described in A Unified Framework for Tumor
Proliferation Score Prediction in Breast Histopathology [18]. Otsu’s method produces a
binary mask in which 0 stands for background and 1 for tissue. Finally this mask is applied
to the original image and background becomes black. By dividing the number of 1s by the
total number of pixels the tissue percentage can be obtained.

The colorFactor value is used to weigh hematoxylin staining heavier than eosin
staining. Utilizing the Hue-Saturation-Value (HSV) color model, broad saturation and
value distributions are given more weight by the saturationAndValueFactor. The score is
scaled to a value from 0.0 to 1.0.

Tissue with hematoxylin staining is most likely preferable to eosin staining.
Hematoxylin stains acidic structures such as DNA and RNA with a purple tone, while
eosin stains basic structures such as cytoplasm proteins with a pink tone.

Differentiating purplish shades from pinkish shades can be difficult using the RGB

color space (see https://en.wikipedia.org/wiki/RGB color space).

Therefore, to compute our colorFactor value, we first convert our tile in RGB color space

to HSV color space (see https://en.wikipedia.org/wiki/HSL. _and HSV). in
this color model, the hue is represented as a degree value on a circle. Purple has a hue of
270 degrees and pink has a hue of 330 degrees. We remove all hues less than 260 and
greater than 340. Next, we compute the deviation from purple (270) and the deviation
from pink (330). We compute an average factor which is the squared difference of 340 and
the hue average. Saturation and value standard deviations should be relatively broad if

the tile contains significant tissue. The colorFactor is computed as the pink deviation
times the average factor divided by the purple deviation. It favors purple (hematoxylin
stained) tissue over pink (eosin stained) tissue.

The information about one tile is then stored in a Tile object.
The result of the filtering process is a TileSummary object for each WSL A
TileSummary object contains the information about the WSI including dimensions, scaled
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dimensions, which were used for faster tile calculations, ROIs, the GridManager object
and all tiles. It also implements some visualization methods to display the WSI with ROI
and tile boundaries.

In the next step the PatientManager class in
wsi_processing_pipeline.shared.patient_manager.py comes into play. Its main purpose is
to manage the typically hierarchical structure of a pathological dataset. A tile belongs to a
ROI. A ROI belongs to a WSI. A WSI belongs to a case and a case belongs to a patient. It
is good practice to split datasets on patient level. To measure performance of a model after
training usually it is not only of interest how a model performs on tile level, but also how
it performs on WSI or case level. Therefore it is important to store those relationships. It
is also responsible for setting the labels of each tile. The PatientManager class implements
some convenience functions for dataset splitting into a training, validation and test set
and for a k-fold cross validation split. It can print out a class distribution and is capable of
undersampling the dataset,

In the next step the fastai [19] library takes over for training the neural network.
During tile filtering the user of our library can specify in the WsiToTiles function, if each
tile should be extracted and stored to disc as a PNG file. We wrote a custom fastai
ImageBlock called TilelmageBlock that works with fastai’s data block API. This allows to
renounce saving each tile to disc because the TilelmageBlock can extract a tile image on
the fly during the training process given the spatial information about a tile which is
stored in each Tile object. This has the advantage of consuming less storage space and
since it is usually necessary to play around with the parameters that are used for filtering
until only the desired tiles are left, not saving the tiles is a huge speedup for this part of
the process.

Our preferred library for training a neural network is fastai [19], which is built on top
of Facebook's increasingly popular PyTorch [20] library.

After training has finished one wants to know how good the trained model performs
on the validation or an unseen test set. For this use case we implemented the Predictor
class which resides in wsi_processing_pipeline.postprocessing.predictor.py. It takes a
fastai [19] Learner and one of our library’s PatientManager class objects. In a first step it
calculates predictions for each tile image in desired dataset. In a second step it calculates
the predictions for each WSI or case by calculating the mean raw prediction for all classes
for each tile and applying a threshold that can be specified for each class by the user of the
library.

The last step is to evaluate the performance of the model. We therefore implemented
the Evaluator class in wsi_processing_pipeline.postprocessing.evaluator.py.

Its constructor takes an instance of the above mentioned Predictor class as the only
argument. It implements a few commonly used methods to measure model performance.
It can calculate the per class accuracy and plot receiver operating characteristic (ROC)
curves, precision recall curves, confusion matrices (Figure 1) and probability histograms
(Figure 2). It can also print out sklearn’s classification report and print a list of tiles with
the highest losses or a list of cases, WSI or tiles sorted by a user specified metric calculated
with the predictions. It is also capable of creating Gradient-weighted Class Activation

Mappings (Grad-CAMs) [22].
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Figure 1. Results Confusion Matrices from left to right: case level, slide level, tile level.
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Figure 2. Results | Histograms and ROC-Curves were calculated on a case basis. The predictions were made for all 5
validation sets with the respectively corresponding model that was not trained on that validation set. So, the graphs
represent the complete dataset.
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2.6. Dataset preparation for both use-cases

Histopathology slides from all patients of interest for the study design were retrieved
from the archives of the Dept. of Neuropathology (see below) and subsequently digitized
using a Hamamatsu S60 scanner with a 40x magnification. We included only H&E
stainings, thus eliminating the need for more complex and expensive immunostainings.
The WSI of our dataset were reviewed by two expert neuropathologists of our institute.

Use case 1: For the DNET and ganglioglioma classifier slides from 219 patients were
used. 52 of them were DNETs and 167 were ganglioglioma. Two of our expert
neuropathologists in epilepsy pathology used QuPath to define polygonal ROIs
containing tumor tissue in the WSI and exported their coordinates to json files. These json
files were then used by the library to only extract tiles from relevant regions of the WSL
In total 171,514 tiles from GG and 34,520 tiles from DNETSs with a size of 1024x1024 pixels
were defined for further processing and training.

Use case 2: To train and evaluate the pituitary adenoma classifier, H&E and
immunohistochemically stained (ACTH, LH, FSH) tissue slides of 410 patients were
collected. 181 of these were diagnosed with corticotroph and 229 with gonadotroph
adenoma of the pituitary gland (Supplement 1 and 2). Overall, the dataset consisted of 431
H&E (202 corticotroph and 229 gonadotroph) slides with the corresponding ACTH
respectively LH/FSH whole slide images for comparing and identifying the correct ROI
(Figure 3). The ROIs on an individual H&E slide were defined as regions, where the
immunostainings showed tumor expressions of the specific hormone. Care was taken that
no normal pituitary gland tissue was included (Figure 3). This time-consuming ROI
selection process was necessary to ensure the correct labeling of each tile and therefore
the validity of the resulting models. Otherwise, biases through wrong labeled areas could
have worsened the performance. For example, areas with only connective tissue had been
excluded. Also, the hormone expression of the adenoma is not homogeneously spread
over the sample. This was particularly important to consider for the gonadotropic
adenomas. When an adenoma expresses LH and FSH that does not mean that all
subregions express both two hormones. So, there can be tiles that only get labeled with
LH or FSH although the whole tumor expresses both. ROIs were defined at 40x
magnification level and cropped into smaller tiles of 1024x1024 pixels to further
preprocess and feed into our model (Figure 3). The tile extraction resulted in 206,517
gonadotropic and 63,893 corticotropic tiles.

<]

H.E. staining Tile definition
Immuno- ROI definition -
histochemistry Filtering

Tile extraction Tile collection
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Figure 3. Tile Extraction a: We compared H&E and immuno-stained slides and extracted only those corresponding parts
of the H&E stained WSI with QuPath where the immuno-stained WSI showed the expression of the hormone. b: We
subdivided the image into 1024x1024 pixel tiles and used complement filter and otsu thresholds to identify tissue and
background. Then we only extracted and saved those tiles that pass a scoring function that takes tissue percentage and
color characteristics into account.

2.7. Convolutional Neural Network Architecture

Use case 1: For the DNET-GG classifier a ResNet50 was implemented, using the open
source Python library fastai [19] which is based on PyTorch [20]. It was pretrained on
ImageNet [23,24] and the classification head was replaced to predict two (DNET or GG)
instead of the 1000 classes included in the ImageNet dataset. (Supplement 3).

Use case 2: For the pituitary gland classifier a ResNeXt-101-32x8d CNN architecture
also pre-trained on ImageNet [23,24] was implemented. ResNeXt-101-32x8d [25,26] was
chosen, as it yielded the best results with the least overfitting out of a couple of state-of-
the-art network architectures including ResNet50, se_ResNeXt101_32x4d, xception and
inceptionv4 (Supplement 5). The basic network architecture was not changed. Only a
customized classification head (Figure 4, Supplement 3) was used to predict four instead
of the 1000 ImageNet classes. It consisted of several pooling, batch normalization, dropout
and fully connected layers with four final output channels with a sigmoid-activation
function with a threshold of 0.5 to produce individual output probabilities representing
the four classes of corticotropic adenoma, silent corticotropic adenoma, gonadotropic
adenoma with the expression of LH and gonadotropic adenoma with the expression of
FSH (Figure 4).
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Figure 4. Prediction Pipeline A tile is forwarded through the model and the model outputs four independent probabilities
for each class. If the probability is over a certain threshold (0.5) the tile gets the label. All tiles of one case are evaluated
and if more than 50% of the tiles are labeled with one class, the case is also labeled with that class (majority voting).

2.8. Preprocessing and Data Augmentation

Image preprocessing is an important step in every computer vision task to augment
the number of samples, to prevent overfitting, and to support the model against invariant
aspects that are not correlated with the label [27,28]. First the tiles were resized to 512x512
pixel images to increase the possible batch size. Following this approach, we made sure
to have a wider field of view per tile instead of the maximum possible resolution. In our
approach, we used a pipeline of several augmentation techniques performed batch-wise
on the GPU consisting of a random crop with reflection padding, randomly flipping
(horizontal or vertical) and rotating by a multiple of 90 degrees, a random symmetric warp
with a magnitude between -0.2 and 0.2, a random rotation between -10 and +10 degrees,
a random zoom with a zoom factor between 1.0 and 1.1, a random change in brightness
with a factor between 0.4 and 0.6 where a factor of 0 will transform the image to black, a
factor of 1 will transform the image to white and a factor of 0.5 doesn't adjust the brightness.
Furthermore, an augmentation on contrast of the image was applied with a factor between
0.8 and 1.25 where a factor of 0 will transform the image to grey, a factor over 1 will
transform the picture to super-contrast and a factor = 1 does not adjust the contrast. These
augmented images were then normalized. The augmentations were applied on the fly
with a randomness factor for reproducibility for every batch so that there was no need to
save augmented images and one image could be augmented in multiple ways. This whole
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approach ensures that out of one image multiple new images of the same class can be
obtained multiplying the number of images available for training the neural network.

2.9. Training and Evaluation

Training was performed with 16-bit precision floating-point numbers [29] using the
Adam-Optimizer [30] and the initial learning rate was determined by using fastai’s
learning rate finder (Supplement 4). Learning rate was adjusted during the training
according to the one-cycle-policy [31]. The batch size was twelve for the pituitary
adenoma classifier and 35 for the DNET-GG classifier. At first, only the randomly
initialized custom head (Figure 2, Supplement 3) was trained for five epochs with a

maximum learning rate of 102 (Supplement 4) in both projects to not interfere with the
pretrained weights of the CNN’s body. Thereafter the body’s layers were unfrozen, and
the complete network was trained for ten epochs with differential learning rates between
10" and 107 for the pituitary gland adenoma classifier and between 10 and 10 for the
DNET-GG classifier (Supplement 4) where earlier layers are trained with a lower learning
rate than the later ones. The idea behind this is, to maintain the basic image-classification
patterns of the pretrained model and prevent overfitting. Training performance was
controlled using accuracy with a threshold of 0.5 as metric per tile and the used loss
function was binary cross-entropy loss. Model parameters were saved every epoch and
the weights of the epoch with the best results were used for evaluation. We further
evaluated model performance with 5-fold cross-validation, without having any training-
and validation-slide and patient overlap. After the training, predictions on the five
validation sets were calculated with the corresponding model based on the combined
predictions of all tiles of a case. The prediction for a case was calculated using majority
voting for the pituitary gland adenoma classifier and the arithmetic mean of the raw
predictions (between 0.0 and 1.0) of all the case’s tiles for the DNET-GG classifier. These
results were then combined and used to calculate true and false-positive rates, which were
then used to plot Receiver Operating Characteristic curves, true/false positive frequency
histograms, and in conjunction with false-negative rates to plot precision-recall curves.

Since silent corticotroph adenomas only made up 9.7% of the dataset, we decided to
train a second neural net on an undersampled training set. The original training set (80%
of the complete dataset) consisted of 226,422 tiles from which 59% were positive for LH,
62% for FSH, 22% for ACTH, and 9.4 % were silent corticotroph adenomas. After the
downsampling procedure, 54,713 tiles were left from which 43% were positive for LH,
43% for FSH, 43% for ACTH and 39 % were silent corticotroph adenomas. We assured
that at least 30 tiles per WSI were left after downsampling. Again, we used the
resnext101_32x8d architecture. The head was trained for five epochs with a maximum

learning rate of 103. The complete model was then trained for ten epochs with maximum

discriminative learning rates ranging from 1077 to 10-°. In both cases, the one-cycle learning
rate policy was used with minimum learning rates of 1/25 of the maximum learning rates.

2.10. Hardware

We implemented our approach on a local server running Ubuntu (18.04 LTS) with
one NVIDIA GeForce GTX 1080Ti and one NVIDIA Titan XP, AMD CPU (AMD Ryzen
Threadripper 1950X 16 x 3.40 GHz), 128 Gb RAM, CUDA 10.2, and cuDNN 7.

2.11. Availability and implementation

The datasets generated and analyzed during the presented study are not publicly
available, but parts of the pipeline used in this project including training and visualization
are available on our Project Homepage.

https://github.com/FAU-DLM/wsi_processing_pipeline

https://github.com/ChristophNeuner/pituitary_gland_adenomas
https://github.com/ChristophNeuner/DNET_vs_Ganglioglioma
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3. Results
3.1. Use case 1: DNET- GG classifier

We evaluated the performance on the validation set which made up 20% of the whole
dataset and which was not used for training. It consisted of 24 slides of ganglioglioma and
seven slides of DNET. 29,333 tiles were extracted from the GG slides and 6,597 tiles were
extracted from the DNET slides for evaluation. No hyperparameter tweaking was
performed, which could have led to overfitting on the validation set. On tile level the
accuracy was 0.936 and on slide level 0.968. The AUC on tile level was 0.93 and 1.00 on
slide level for the ROC-curve. The average precision calculated from precision and recall
was 0.88 for DNET and 0.97 for GG on tile level. On slide level it was 1.00 for DNET and
GG. (Figures 5 and 6)
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Figure 5. Results | ROC (left) and precision recall curves (right) on tile level.
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Figure 6. Results | ROC (left) and precision recall curves (right) on slide level.

3.2. Use case 2: Pituitary adenoma classifier

All CNN were trained to classify the ROIs containing adenoma and surrounding
tissue. First, we performed a study to determine which model to use for our classification
task. We tested ResNet50, ResNet101, ResNet152, DenseNet121, Xception, Inceptionv4,
se_ResNext101_32x4d and ResNext101_32x8d. We compared those models on a
predefined validation set with accuracy calculated on a case basis for each class with a
threshold of 0.5 (Supplement 5). Inceptionv4, se_ResNext101 32x4d and
ResNext101_32x8d showed similar promising results. We decided upon
ResNext101_32x8d because of the slightly better test-set results. During training
validation accuracies mostly stayed above training accuracies and validation loss stayed
below training loss values, indicating little to no overfitting on the training dataset. We
finally evaluated our model via 5-fold cross-validation. For each model within the process
of cross-validation, we took 80% of the dataset as training data and 20% as validation data.
There was no overlap between these five validation sets. All five validation sets showed
similar AUCs with no significant outliers (Supplement 6). After that predictions were
made for all tiles of the five validation sets with the respectively corresponding model that
was not trained on that particular validation set. Via majority voting with a threshold of
0.5 we then calculated the labels on a case basis and computed AUCs of ROC curves for
each class. If more than 50% of the tiles of one case were labeled with the class ACTH, the
whole case got the label ACTH.

For ACTH the AUC of the ROC curve was 0.97 with a proportion of 44.7% of all cases.
The AUC for silent ACTH was 0.86 with a proportion of 9.7%. The AUC for gonadotropic
(LH and/or FSH) was 0.98 with a proportion of 55.3%. The AUCs of LH and FSH alone
were 0.96 and 0.93 with proportions of 48.1% and 43.8% (Figure 2). Since the silent ACTH
cases only made up 9.7% of the dataset the AUC of 86% of the ROC curve could have
simply been a result of guessing. Therefore, we also calculated a precision-recall curve
(Figure 7) which resulted in an AUC of 0.71 and furthermore trained another neural net
on an undersampled dataset as described in the last paragraph of “Training and
Evaluation”. We reached an accuracy of 88.6% and an AUC of 0.83 for the ROC-curve on
the validation set for the silent ACTH class (Figure 8).
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Figure 8. Results | Probability Histogram and ROC-Curve for the class silent corticotroph adenoma of the model that was
trained on an undersampled training set, in which all four classes were evenly distributed.

4. Discussion

We developed a whole slide image processing library [15] addressing the needs of
researchers to assess different DL tasks without the hurdles of complex dataset
management. The large size of WSI and annotation of multiple regions of interest tend to
increase such technical obstacles. It is also desirable to extract all tiles on-the-fly during
training and only save their spacial information but not the images. This pipeline has the
advantage of being more flexible. It is not necessary anymore to repeatedly store extracted
tiles as images to disc, saving space and time. Also the evaluation of the trained model
requires more steps when dealing with WSI. Results on the tile level are only of limited
significance. They have to be transformed into predictions for the complete WSI and the
entire case. For histopathologists or expert clinicians addressing a clinical hypothesis,
these hurdles may become a real burden. Also DL experts familiar with the usage of DL
frameworks may underestimate the specific handling of digital pathology-associated
tasks. The new library provides convenient ways of dealing with WSI in the realm of
Neuropathology thereby facilitating access to DL for both groups of researchers.

Access from and to different levels of magnification, region of interest definition, and
handling as well as dataset splitting are essential mechanisms and tend to be technically
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intricate. The library manages these crucial steps and offers default parameters enabling
the user to focus on the problem-specific tasks. For the specific use-cases addressed in this
study, the library facilitated the management of pre-extracted image patches for a given
patient as well as extraction of image patches on-the-fly from predefined ROIL Our
evaluation of different state-of-the-art model architectures to identify the most suitable
model for the problem-specific tasks, i.e. best classification results and least overfitting,
resulted in the selection of resnet50 for the first use-case and the resnext101_32x8d [25,27]
architecture for the second use-case. We believe that these rather big networks with lots
of parameters worked well, because of their big input image size of 512x512 pixels. On
smaller images networks with less parameters tend to work better in our experience [3].
A crucial step in our pipeline was among sufficient training data the way of image
preprocessing. One part of this aspect was image augmentation to increase variance
presented to the network [32]. Normalization of the input data was done with the mean
and standard deviation of our own dataset. Fastai [19] does this conveniently for the user.

Use-case 1: In the first use case we developed a DL approach to distinguish between
two epilepsy associated tumors, the GG and the DNET. Since unlike DNET some GG can
undergo malignant transformation [8,9], a precise distinction between these two entities
is crucial. We were able to demonstrate that a CNN can differentiate these two entities
with a very high accuracy only using H&E-stained slides. This confirms the potential of
DL in assisting pathologists in their decision making diagnostic process and to eventually
reduce the necessity for further stains.

Use-case 2: In the second use case addressed we developed a DL approach to help to
diagnose the entity of pituitary adenomas without the necessity of additional
immunohistochemical stainings. Additionally, we could show that even a clinical
parameter, the clinical occurrence of M. Cushing of corticotroph adenomas, might be
hidden within the tissue as it could successfully be recognized by our neural network
approach. This evidence supports the hypothesis that clinical parameters can be found
within histomorphology and that distinct features may be revealed by DL in terms of
imaging biomarkers. Guided Grad-CAM:s [22] could now be used to visualize the decision
making and to teach pathologists which morphological structures are crucial for the
network in its decision making process.

We addressed the classification task on predictions per tile and collected all votes for
the given slides of a patient’s case. We then obtained the final diagnosis by majority voting
to get predictions on a case basis. If more than 50% of the tiles of one case were labeled
with one class, the case was given that class label. We chose that option for two reasons.

First, different from finding metastasis in lymph nodes where high sensitivity is
needed, histological slides from pituitary adenomas usually contain massive adenoma,
hence most of the tissue on the slide belongs to the tumor. Second, time was not a major
concern. We could simply take and analyze all possible tiles instead of only taking a
representative batch for inference.

Limitations and potential solutions moving into the future

A well-recognized obstacle in digital pathology represents batch effects including
variation in staining intensity or fixation artifacts [4,33]. We contained such batch effects
in our input data through hand-picked ROI and normalization. We did not directly
address the problem of stain normalization [34] for this dataset, because all staining was
performed in a single lab and only one device was used for scanning. For further usage of
our model in a production environment with whole slide images from other institutes,
this would be crucial. We are continuously working on this issue to make our models
more robust in the future.

Histopathology analysis represents a gold-standard in tumor diagnosis as it often
directs further treatment. Adenomas of the pituitary gland, although routinely classified
by immunohistochemical profiling of their neuroendocrine axis, are in urgent need of a
clinically meaningful histopathology classification of their risk for relapse. This was
partially addressed by the WHO classification from 2004 and 2016. The criteria of atypia
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to label more aggressive adenomas have been removed, however, as it has missed to proof
as predictive marker [14,35]. The “silent” corticotroph class of our dataset did represent
another clinical parameter of interest and was remarkably well recognized by our
network, even in the evenly distributed dataset. The good classification result of the
“silent” corticotroph class in our study shows that neuronal networks are capable in
revealing such clinical information hidden within tissue slides and hence it may also be
possible to extract a clinical relapse parameter from tissue slides via DL.

In conclusion, we developed a convenient open-access library compatible with fastai
to support hypothesis driven DL research projects in the realm of neuropathology. Both
use-cases demonstrated the successful diagnosis of adenoma of the pituitary gland and
distinguishing between DNET and GG by Hé&E-stained slides only and without the
necessity of cost- and labor-intense immunohistochemistry staining.

Supplementary Materials: The following are available online at
www.mdpi.com/xxx/s1, Table S1: Dataset

www.mdpi.com/xxx/s2, Table S2: Class Distribution

www.mdpi.com/xxx/s3, Figure S3: Custom head (Pytorch)

www.mdpi.com/xxx/s4, Figure S4: Learning rate finder pituitary adenoma classifier
www.mdpi.com/xxx/s5, Table S5: Evaluated Networks

www.mdpi.com/xxx/s6, Table S6: AUCs of the ROC-curves for the five validation sets of 5-fold
cross-validation

www.mdpi.com/xxx/s7, Figure S7: QuPath
www.mdpi.com/xxx/s8, Figure S8: ROIs with overlaid grids

www.mdpi.com/xxx/s8, Figure S9: Tissue filtering

Author Contributions: “Conceptualization, Christoph Neuner, Samir Jabari, Roland Coras and
Ingmar Bliimcke; methodology, Christoph Neuner and Samir Jabari; software, Christoph Neuner;
validation, Christoph Neuner, Samir Jabari, Roland Coras and Ingmar Bliimcke; formal analysis,
Christoph Neuner and Samir Jabari; investigation, Christoph Neuner and Samir Jabari; resources,
Samir Jabari, Ingmar Bliimcke, Sven-Martin Schlaffer and Michael Buchfelder; data curation,
Christoph Neuner and Alexander Popp; writing—original draft preparation, Christoph Neuner;
writing—review and editing, Samir Jabari, Roland Coras, Ingmar Bliimcke, Sven-Martin Schlaffer
and Michael Buchfelder; visualization, Christoph Neuner; supervision, Samir Jabari; project
administration, Samir Jabari; funding acquisition, Samir Jabari and Ingmar Bliimcke. All authors
have read and agreed to the published version of the manuscript.”

Funding: Please add: “This research was funded by the Interdisciplinary Center for Clinical
Research (IZKF) at the University Hospital of the University of Erlangen-Nuremberg , grant number
Junior Project J81.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Data Availability Statement: he code used here is available from the following three GitHub repositories:
https://github.com/FAU-DLM/wsi_processing_pipeline,

https://github.com/ChristophNeuner/pituitary gland_adenomas,
https://github.com/ChristophNeuner/DNET vs_Ganglioglioma

The whole-slide images used here are not publicly available.

Acknowledgments: The present work was performed in fulfillment of the requirements of the
Friedrich-Alexander Universitit Erlangen-Niirnberg (FAU) for obtaining the degree ‘Dr. med.” of
Christoph Neuner. The work was supported by the Interdisciplinary Center for Clinical Research
(IZKF) at the University Hospital of the University of Erlangen-Nuremberg (Junior Project “J81”).
We would also like to thank NVIDIA for the donation of a Titan XP.


https://doi.org/10.20944/preprints202110.0359.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2021 d0i:10.20944/preprints202110.0359.v1

Conflicts of Interest: The authors declare no conflict of interest

References

1.  Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic Assessment
of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA [Internet].
2017/12/14. 2017;318(22):2199-210. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29234806

2. Arvaniti E, Fricker KS, Moret M, Rupp N, Hermanns T, Fankhauser C, et al. Automated Gleason grading of prostate cancer
tissue microarrays via deep learning. Sci Rep [Internet]. 2018/08/15. 2018;8(1):12054. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/30104757

3. Kubach J, Muhlebner-Fahrngruber A, Soylemezoglu F, Miyata H, Niehusmann P, Honavar M, et al. Same same but different:
A Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malfor-
mations. Epilepsia [Internet]. 2020;61(3):421-32. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16447

4. Tang Z, Chuang KV, DeCarli C, Jin L-W, Beckett L, Keiser MJ, et al. Interpretable classification of Alzheimer’s disease pathol-
ogies with a convolutional neural network pipeline. Nat Commun [Internet]. 2019;10(1):2173. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/31092819

5. Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use
cases. ] Pathol Inf [Internet]. 2016/08/27. 2016;7:29. Available from: https://www .ncbi.nlm.nih.gov/pubmed/27563488

6.  Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D, et al. Classification and mutation prediction from
non-small cell lung cancer histopathology images using deep learning. Nat Med [Internet]. 2018/09/19. 2018;24(10):1559-67.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/30224757

7. Bliimcke I, Coras R, Wefers AK, Capper D, Aronica E, Becker A, et al. Review: Challenges in the histopathological classification
of ganglioglioma and DNT: microscopic agreement studies and a preliminary genotype-phenotype analysis. Neuropathol Appl
Neurobiol [Internet]. 2019;45(2):95-107. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/nan.12522

8.  Majores M, von Lehe M, Fassunke J, Schramm J, Becker A, Simon M. Tumor Recurrence and Malignant Progression of Gangli-
ogliomas. Cancer. 2008;113:3355-63.

9.  Selvanathan S, Hammouche S, Salminen H, Jenkinson M. Outcome and prognostic features in anaplastic ganglioglioma: Anal-
ysis of cases from the SEER database. ] Neurooncol. 2011;105:539-45.

10. Thom M, Toma A, An S, Martinian L, Hadjivassiliou G, Ratilal B, et al. One Hundred and One Dysembryoplastic Neuroepithe-
lial Tumors: An Adult Epilepsy Series With Immunohistochemical, Molecular Genetic, and Clinical Correlations and a Review
of the  Literature. ] Neuropathol Exp  Neurol [Internet].  2011,70(10):859-78. Available  from:
https://doi.org/10.1097/NEN.0b013e3182302475

11. Slegers R], Blumcke I. Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol
Commun [Internet]. 2020;8(1):27. Available from: https://doi.org/10.1186/s40478-020-00904-x

12. EzzatS, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, et al. The prevalence of pituitary adenomas. Cancer [Internet].
2004;101(3):613-9. Available from: https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/cncr.20412

13.  Aflorei ED, Korbonits M. Epidemiology and etiopathogenesis of pituitary adenomas. ] Neurooncol [Internet]. 2014;117(3):379—
94. Available from: https://doi.org/10.1007/s11060-013-1354-5

14. Inoshita N, Nishioka H. The 2017 WHO classification of pituitary adenoma: overview and comments. Brain Tumor Pathol [In-
ternet]. 2018;35(2):51-6. Available from: https://doi.org/10.1007/s10014-018-0314-3

15. Neuner C. python-wsi-preprocessing [Internet]. https://github.com/FAU-DLM/python-wsi-preprocessing. GitHub; 2019.
Available from: https://github.com/FAU-DLM/python-wsi-preprocessing

16. Veta M, Heng Y], Stathonikos N, Bejnordi BE, Beca F, Wollmann T, et al. Predicting breast tumor proliferation from whole-slide
images: The TUPACI16 challenge. Med Image Anal. 2019 May 1,54:111-21.

17.  Eriksson D. python-wsi-preprocessing [Internet]. https://github.com/deroneriksson/python-wsi-preprocessing. GitHub; 2018.
Available from: https://github.com/deroneriksson/python-wsi-preprocessing

18. Paeng K, Hwang S, Park S, Kim M. A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology.
In: DLMIA/ML-CDS@MICCAL 2017.

19. Howard ], Gugger S. Fastai: A Layered API for Deep Learning. Information [Internet]. 2020;11(2):108. Available from:
https://www.mdpi.com/2078-2489/11/2/108

20. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In: Wallach H, Larochelle H, Beygelzimer A, d\textquotesingle Alché-Buc F, Fox E, Garnett R, editors. Ad-
vances in Neural Information Processing Systems [Internet]. Curran Associates, Inc.; 2019. Available from: https://proceed-
ings.neurips.cc/paper/2019/file/bdbca288fee7{92{2bfa9f7012727740-Paper.pdf

21. Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging
[Internet]. 2004;13(1). Available from: https://doi.org/10.1117/1.1631315

22. SelvarajuRR, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Grad-CAM: Why did you say that? [Internet]. arXiv e-prints.
2016. Available from: https://ui.adsabs.harvard.edu/abs/2016arXiv161107450S

23. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition [Internet]. arXiv e-prints.
2014. Available from: https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S

24. Deng ], Dong W, Socher R, Li L, Kai L, Li F-F. ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. 2009. p. 248-55.

25.  Saining X, Ross G, Piotr D, Zhuowen T, He K. Aggregated Residual Transformations for Deep Neural Networks [Internet].
arXiv e-prints. 2016. Available from: https://ui.adsabs.harvard.edu/abs/2016arXiv161105431X/abstract

26. Cadene R. pretrained PyTorch models [Internet]. https://github.com/Cadene/pretrained-models.pytorch. GitHub; 2019. Avail-
able from: https://github.com/Cadene/pretrained-models.pytorch


https://doi.org/10.20944/preprints202110.0359.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2021 d0i:10.20944/preprints202110.0359.v1

27. WuR, Yan S, Shan Y, Dang Q, Sun G. Deep Image: Scaling up Image Recognition [Internet]. arXiv e-prints. 2015. Available
from: https://ui.adsabs.harvard.edu/abs/2015arXiv150102876 W

28. WongSC, Gatt A, Stamatescu V, McDonnell MD. Understanding data augmentation for classification: when to warp? [Internet].
arXiv e-prints. 2016. Available from: https://ui.adsabs.harvard.edu/abs/2016arXiv160908764W

29. Micikevicius P, Narang S, Alben ], Diamos G, Elsen E, Garcia D, et al. Mixed Precision Training [Internet]. 2017. p.
arXiv:1710.03740. Available from: https://ui.adsabs.harvard.edu/abs/2017arXiv171003740M

30. Kingma DP, Ba]. Adam: A Method for Stochastic Optimization. arXiv e-prints. 2014 Dec;arXiv:1412.6980.

31. Smith LN. Cyclical Learning Rates for Training Neural Networks [Internet]. arXiv e-prints. 2015. Available from: https://ui.ad-
sabs.harvard.edu/abs/2015arXiv150601186S

32. Perez L, Wang J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. 2017;

33. Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image
Anal [Internet]. 2016/07/18. 2016;33:170-5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27423409

34. Anghel A, Stanisavljevic M, Andani S, Papandreou N, Riischoff JH, Wild P, et al. A High-Performance System for Robust Stain
Normalization of Whole-Slide Images in Histopathology. Front Med [Internet]. 2019;6:193. Available from: https:/pub-
med.ncbi.nlm.nih.gov/31632974

35. Mete O, Lopes MB. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr Pathol [Internet]. 2017;28(3):228-43.
Available from: https://doi.org/10.1007/s12022-017-9498-z



https://doi.org/10.20944/preprints202110.0359.v1

