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Annotation

The digital representation of various signals allows, at the subsequent stages of their
transmission, to apply correction codes that provide protection against possible errors arising
from the action of interference in the communication channel. At the same time, it is important
that, with the required correcting ability, these codes have the maximum possible speed. The
article presents the results of calculations for linear codes, showing their really achievable
limiting capabilities.

Keywords

Code construction, minimum code distance, noise immunity, coding efficiency, theoretically
achievable boundary, correction codes.

Introduction

The theory and practice of correcting codes continues to develop [1 - 11]. Various coding
constructions and theoretically achievable limits on the coding rate are known. For example, the
Hamming border:

dmin=1
2k < orrzm&<sz q), (1)
Tico®  Ch
The Plotkin boundary:
n2k-1
Amin < Sk, or’r 22 (dpin—1) —loga dmip forn < 2-dpjp — 1, (2)

Varshamov - Hilbert boundary:

r > logz(zd"”"_2 ck ), 3)
Singleton boundary:
Apin <n—k+1. “4)

where d,;,;, 1s the minimum code distance, n is the length of the code word, k is the number of
information symbols, r is the number of check symbols. (The k / n ratio determines the encoding
rate).
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In this case, it is practically important to know about the real possibility of the attainability of
these boundaries, which is investigated in this work for linear block codes.

1. Limit and achievable boundaries of the efficiency of error-correcting coding

Using [10] and expressions (1, 4), let us compare the limiting and achievable boundaries of
error-correcting coding for d,,;;,, = 2, 3, 4.

For din = 2 from [10]

k=n-1,; (5)
for d,; = 3

k=n—-1-|log,n| (6)
ford,i, =4

k=n-2-llog,(n—1)]. @)

For the upper Hamming bound for d,,;, = 2 we have:

k<n; ®)
ford,,;, = 3 and 4

k<n-log,(n+1). )

For the upper Singleton boundary at d,,;,, = 2 we have:

k<n-1,; (10)
for d,; = 3
k<n-2; (11)
ford,,i, =4
k<n-3. (12)

Comparing the corresponding formulas, we are convinced that the Hamming bound gives
slightly overestimated estimates, especially when the minimum code distance is an even number.

The Singleton boundary and the achievable estimate coincide for d,,,;;, = 2. However, further
with d,,,;, = 3, 4 the differences become more and more noticeable.

For the purpose of further comparison at other values of d,,;,, computer calculations were
carried out. In this case, the algorithm corresponded to the following model.

As follows from [12], all possible code combinations of a binary code, the number of which is
equal to N,, = 2", for a given value of the minimum code distance d,;,;,,, can be decomposed into

a set of allowed code combinations, the number of which is Kg min = 2K and the remaining set

of prohibited code combinations, which in turn can be structured into Rffmi" groups. Moreover
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Nn — K;limin . Rzmin (13)
The set of allowed code combinations, among which there will be a zero code combination,

will be called the main group and written in the form of a matrix A4,,. The dimension of 4,, is
obviously K,‘fm"" X n. The remaining groups included in the set of forbidden code
combinations will be called adjacent groups. The dimension of these groups is the same,

but we will denote them by B, where i = 1, (d,,;, — 1) is the code distance between the
main group and the adjacent one.

Since there is a zero code word in the main group, then, consequently, the weight of the
remaining code words in this group is w = d,;;,- This condition is not met for adjacent
groups.

For d,,;, = 1, itis obvious that K,‘fmm = N,,, and there is only one main group. When d,,,;;, =
2, there are two groups. One main and one adjacent. Moreover 2 - K,‘f"”'" = N,.

With a larger value of the minimum code distance, the number of adjacent groups also
changes with increasing n. Moreover, this process is complex, depending on the value of
the minimum code distance.

[t is easy to see that for a given d,,;, the value Ksm"n = 2 with an increase in the length of
the code word will be for the first time at n = d,;,;,,. And further, for all increasing values of

the code word length n = d,in, (dmin — 1 + [dmin/21]), the number of allowed code words
will remain the same. And, therefore, for these values of length n, the number of adjacent
groups will increase for the fulfillment of equality (13).

According to [12], we can write that the number of allowed code combinations and the

number of groups, respectively, are equal to K,‘lim"” =2k and Rzmi" = 2", where k and r are
integers, and equalityn =k +r.

The first main group consists of a zero code word and a combination of ones, the number of
which is equal to d,,,;,- According to [12], it is possible to construct a recurrence relation
for constructing the matrix 4,,,;, which allows them to be calculated programmatically.

_ (0,0, 0; A
An+i - {1112 11' Bgmin_l > (14)

where i =1, (d,i, — 1), and (0;) are columns of zeros and (1;) are columns of ones of the
corresponding dimension.

The main problem of forming the matrix A,,; with known A4,, is to determine the matrix
Bdmin_1

» .
The matrix B,‘li min~1 is constructed from the matrix A, by summing all its rows with the
generating code combination of weight w = d,,;;;,, — I. In this case, the search for such a
combination is carried out starting with i = 1. After detecting the generating codeword, the

adjacent matrix Bg min~ is formed and then, according to (14), the main matrix A, ;.

Let's give an example. Since the zero code word is included in the main group, then 4, = (0).
For n = d,;;;, it is obvious that expression (14) will take the form:
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_ {0102 0pyq Ao}_ 00 00
Apa, _{1112 SR {1 L 1}, (15)

where the first row of the matrix consists of n = d,,;;;, zeros, and the second of n = d,,;;, ones.
For illustration purposes, let d,,;, = 5. Then (15) becomes:

_ (00000
An=dyin=s = {1 111 1}' (16)

Continuing the construction of the next basic matrix, it is easy to determine that the generating

combination can be, for example, the combination b,‘f’”""_i = b2 = (11000), which in relation

to the combinations from (16) has a minimum code distance equal to 2. Therefore, according to
(14), we have

00000000O0

_)00011111
An=g = 11111000 (16)

11100111

It should be noted that when searching for the generating code word b;fmf"‘i, there may be
several solutions that allow constructing the basic matrix A, ;. So in the example considered,
any code combination with weight w = 2 could be chosen as a generating code word, for
example b2 = (00011) or b3 = (10001). However, with a further increase in the length of the
code word n, the number of such solutions decreases.

Continuing the construction of the main matrix, we are convinced of the need to use the

capabilities of computer search for the generating code combination bzmm_i. For this example,
this combination in the next step becomes the combination b3 = (10010100). This combination

is used to construct the adjacent matrix B,‘li min™t — B3 equal to

10010100
00
11

O =

01011

01100 (7
01110011
Further, according to (14), the main matrix is formed

(000000000 0y

Ap=10 = J (18)

= =0 OO0
R Rk, O o0
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P OO kR RrOo
P OO Rk RrO
R OO R O RE
=m0 O R
O R O R RFE O
O RrRPr O RFr OoOr o
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-

1
‘11011

J

001

In [10], the dependences of k on n are presented for d,;;;, = 3 and 4 in comparison with the
Hamming boundary. These dependences are stepwise and only at separate points at d,,,;;, = 3
coincide with the potential Hamming boundary.
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Fig. 1 Dependence of k onn

(Figure 1 shows: black for d,;,;;, = 3, red for d,;,;;, = 4, blue for d,,;, = 3 and 4 the upper
Hamming limit, purple for d,,;, = 2)

Further calculations made it possible to obtain similar data shown in Fig. 2 for d,;,;;, = 1,20 and

n = 1,34 (The value of k is shown on the vertical axis in Fig. 2).
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Fig. 2 The number of information symbols k for different values d,;,,

2. Efficiency of matrix iterated coding

The matrix construction of the correcting code makes it possible to obtain a simpler practical

implementation of the code with the required correcting properties. Moreover, as shown in [§],

the construction itself can be both two-dimensional and multidimensional.

The total length of the code word is determined by the product of the lengths of the codes used in

this design, as well as the number of information symbols.

The minimum code distance of the matrix code is equal to the product of the minimum code

distances of the applied correction codes.

In practice, due to the requirements for simplicity of implementation, a two-dimensional

construction using a parity-checked code is usually used.
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At the same time, it is of interest to evaluate the effectiveness of such a solution, provided that
codes that reach theoretically possible boundaries are used for coding.

Suppose that block codes are used according to the Hamming bound.

In this case, the parameters of these codes will be (n4, k;) and ((n,, k), respectively.
Considering the above, the length of the code word is n; - n,, and the number of information
symbols is k; - k.

Since it was assumed that the codes implement the Hamming boundary, using (1), we can
estimate the corresponding number of information symbols k.., based on the total length of the
codeword, and then, assuming that n; = n, = n and k; = k, = k, we obtain:

2
Amin=1

Ey = keor __n2-loga X 4 Ch (19)

= = = .
k? Amin=1
n-1 2 Zl'=02 C'h

In fig. 3 shows the results of calculations proving that the efficiency of the optimal choice of a
code of the corresponding length n?is higher than the efficiency of a matrix construction
consisting of two codes of shorter length n. At the same time, with an increase in the length of
the code word, this gain decreases and tends to 1.
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Fig. 3 Efficiency of optimization as a whole in relation to optimization by parts (Hamming
bounds

For the Singleton boundary, a similar expression can be obtained

k n?—dZ,;,+1
ES — tot __ min

k2 (n—dmpmin+1)?

(20)
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The illustration is shown in Fig. 4.
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Fig. 4 Efficiency of optimization as a whole in relation to optimization by parts (Singleton
bounds)

The results obtained show that for relatively small values of the length of the codeword,
preference should be given to the search for the optimal code of length n?, unless, of course, the
requirements for the simplicity of the implementation of the correcting code are not decisive.

Conclusion

The obtained practically achievable boundaries as close as possible to the potential boundaries
show the existing possibilities of implementing error-correcting codes with maximum efficiency.
At the same time, they differ from the theoretically achievable boundaries by 5-10% and this
difference cannot be reduced.

Matrix constructions of error-correcting codes, which have a relatively simple implementation,
provide lower efficiency (coding rate) compared to a block code of length n? with the same
correcting properties. Moreover, this effect is more noticeable at large values of the minimum
code distance d;p,.
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