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 Annotation 

The digital representation of various signals allows, at the subsequent stages of their 
transmission, to apply correction codes that provide protection against possible errors arising 
from the action of interference in the communication channel. At the same time, it is important 
that, with the required correcting ability, these codes have the maximum possible speed. The 
article presents the results of calculations for linear codes, showing their really achievable 
limiting capabilities. 
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Introduction 

The theory and practice of correcting codes continues to develop [1 - 11]. Various coding 
constructions and theoretically achievable limits on the coding rate are known. For example, the 
Hamming border: 
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The Plotkin boundary: 

𝑑௠௜௡ ≤
௡∙ଶೖషభ

ଶೖିଵ
  or  𝑟 ≥ 2 ∙ (𝑑௠௜௡ − 1) − logଶ 𝑑௠௜௡ for 𝑛 ≤ 2 ∙ 𝑑௠௜௡ − 1 ,                           (2) 

Varshamov - Hilbert boundary: 

𝑟 ≥ logଶ൫∑ 𝐶௡ିଵ
௜ௗ೘೔೙ିଶ

௜ୀ଴ ൯ ,                                                                                                        (3) 

Singleton boundary: 

𝑑௠௜௡ ≤ 𝑛 − 𝑘 + 1 .                                                                                                                    (4) 

where 𝑑௠௜௡ is the minimum code distance, 𝑛 is the length of the code word, 𝑘 is the number of 
information symbols, 𝑟 is the number of check symbols. (The 𝑘 / 𝑛 ratio determines the encoding 
rate). 
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In this case, it is practically important to know about the real possibility of the attainability of 
these boundaries, which is investigated in this work for linear block codes. 

1. Limit and achievable boundaries of the efficiency of error-correcting coding 

Using [10] and expressions (1, 4), let us compare the limiting and achievable boundaries of 
error-correcting coding for 𝑑௠௜௡ = 2, 3, 4.  

For 𝑑௠௜௡ = 2 from [10] 

𝑘 = 𝑛 − 1;                                                                                                          (5) 

for 𝑑௠௜௡ = 3 

𝑘 = 𝑛 − 1 − ⌊𝑙𝑜𝑔ଶ 𝑛⌋                                                                                       (6) 

for 𝑑௠௜௡ = 4  

𝑘 = 𝑛 − 2 − ⌊𝑙𝑜𝑔ଶ(𝑛 − 1)⌋ .                                                                          (7) 

For the upper Hamming bound for 𝑑௠௜௡ = 2 we have: 

𝑘 ≤ 𝑛 ;                                                                                                                 (8) 

for 𝑑௠௜௡ = 3 and 4 

𝑘 ≤ 𝑛 − logଶ(𝑛 + 1) .                                                                                  (9) 

For the upper Singleton boundary at 𝑑௠௜௡ = 2 we have: 

𝑘 ≤ 𝑛 − 1 ;                                                                                                 (10) 

for 𝑑௠௜௡ = 3 

𝑘 ≤ 𝑛 − 2 ;                                                                                                  (11) 

for 𝑑௠௜௡ = 4 

𝑘 ≤ 𝑛 − 3 .                                                                                                   (12) 

Comparing the corresponding formulas, we are convinced that the Hamming bound gives 
slightly overestimated estimates, especially when the minimum code distance is an even number. 

The Singleton boundary and the achievable estimate coincide for 𝑑௠௜௡ = 2. However, further 
with 𝑑௠௜௡ = 3, 4 the differences become more and more noticeable. 

For the purpose of further comparison at other values of 𝑑௠௜௡, computer calculations were 
carried out. In this case, the algorithm corresponded to the following model. 

As follows from [12], all possible code combinations of a binary code, the number of which is 
equal to 𝑁௡ = 2௡, for a given value of the minimum code distance 𝑑௠௜௡, can be decomposed into 

a set of allowed code combinations, the number of which is 𝐾௡
ௗ೘೔೙ = 2௞, and the remaining set 

of prohibited code combinations, which in turn can be structured into 𝑅௡
ௗ೘೔೙  groups. Moreover 
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𝑁௡ = 𝐾௡
ௗ೘೔೙ ∙ 𝑅௡

ௗ೘೔೙                                                                                       (13) 

The set of allowed code combinations, among which there will be a zero code combination, 

will be called the main group and written in the form of a matrix 𝐴௡. The dimension of 𝐴௡ is 

obviously 𝐾௡
ௗ೘೔೙ × 𝑛. The remaining groups included in the set of forbidden code 

combinations will be called adjacent groups. The dimension of these groups is the same, 

but we will denote them by 𝐵௡
௜ , where 𝑖 = 1, (𝑑௠௜௡ − 1) is the code distance between  the 

main group and the adjacent one. 

Since there is a zero code word in the main group, then, consequently, the weight of the 

remaining code words in this group is 𝑤 ≥ 𝑑௠௜௡. This condition is not met for adjacent 

groups. 

For 𝑑௠௜௡ = 1, it is obvious that 𝐾௡
ௗ೘೔೙ = 𝑁௡, and there is only one main group. When 𝑑௠௜௡ =

2, there are two groups. One main and one adjacent. Moreover 2 ∙ 𝐾௡
ௗ೘೔೙ = 𝑁௡. 

With a larger value of the minimum code distance, the number of adjacent groups also 

changes with increasing 𝑛. Moreover, this process is complex, depending on the value of 

the minimum code distance. 

It is easy to see that for a given 𝑑௠௜௡ the value 𝐾௡
ௗ೘೔೙ = 2 with an increase in the length of 

the code word will be for the first time at 𝑛 = 𝑑௠௜௡. And further, for all increasing values of 

the code word length 𝑛 = 𝑑௠௜௡ , (𝑑௠௜௡ − 1 + ⌈𝑑௠௜௡ 2⁄ ⌉), the number of allowed code words 

will remain the same. And, therefore, for these values of length 𝑛, the number of adjacent 
groups will increase for the fulfillment of equality (13). 

According to [12], we can write that the number of allowed code combinations and the 

number of groups, respectively, are equal to 𝐾௡
ௗ೘೔೙ = 2௞  and 𝑅௡

ௗ೘೔೙ = 2௥, where 𝑘 and 𝑟 are 

integers, and equality 𝑛 = 𝑘 + 𝑟. 

The first main group consists of a zero code word and a combination of ones, the number of 

which is equal to 𝑑௠௜௡. According to [12], it is possible to construct a recurrence relation 

for constructing the matrix  𝐴௡ା௜, which allows them to be calculated programmatically. 

𝐴௡ା௜ = ቊ
0ଵ

1ଵ

0ଶ

1ଶ
…

0௜

1௜
  

𝐴௡

𝐵௡
ௗ೘೔೙ି௜ቋ,                                                                    (14) 

where 𝑖 = 1, (𝑑௠௜௡ − 1), and (0௜) are columns of zeros and (1௜) are columns of ones of the 
corresponding dimension. 

The main problem of forming the matrix 𝐴௡ା௜ with known 𝐴௡ is to determine the matrix 

𝐵௡
ௗ೘೔೙ିଵ. 

The matrix 𝐵௡
ௗ೘೔೙ିଵ is constructed from the matrix 𝐴௡ by summing all its rows with the 

generating code combination of weight 𝑤 = 𝑑௠௜௡ − 𝑖. In this case, the search for such a 
combination is carried out starting with 𝑖 = 1. After detecting the generating codeword, the 

adjacent matrix 𝐵௡
ௗ೘೔೙ି௜ is formed and then, according to (14), the main matrix 𝐴௡ା௜. 

Let's give an example. Since the zero code word is included in the main group, then 𝐴଴ = (0). 
For 𝑛 = 𝑑௠௜௡, it is obvious that expression (14) will take the form: 
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𝐴௡ୀௗ೘೔೙
= ൜

0ଵ

1ଵ

0ଶ

1ଶ
…

0௡ିଵ

1௡ିଵ
  

𝐴଴

𝐵଴
ଵൠ =  ቄ

0
1

  0
  1

…
0
1

  
0
1

ቅ,                                                                    (15) 

where the first row of the matrix consists of 𝑛 = 𝑑௠௜௡ zeros, and the second of 𝑛 = 𝑑௠௜௡ ones. 
For illustration purposes, let 𝑑௠௜௡ = 5. Then (15) becomes: 

𝐴௡ୀௗ೘೔೙ୀହ =  ቄ
0
1

  0  0  
1  1

0
1

  
0
1

ቅ.                                                                    (16) 

Continuing the construction of the next basic matrix, it is easy to determine that the generating 

combination can be, for example, the combination 𝑏௡
ௗ೘೔೙ି௜

= 𝑏଼
ଶ = (11000), which in relation 

to the combinations from (16) has a minimum code distance equal to 2. Therefore, according to 
(14), we have  

𝐴௡ୀ଼ =  ቐ

0  0  0  0
0  0  0  1

  0  0  
1  1

0
1

  
0
1

1  1  1  1  1  0  0  0
1  1  1  0  0  1  1  1

ቑ.                                                                    (16) 

It should be noted that when searching for the generating code word 𝑏௡
ௗ೘೔೙ି௜, there may be 

several solutions that allow constructing the basic matrix 𝐴௡ା௜. So in the example considered, 
any code combination with weight 𝑤 = 2 could be chosen as a generating code word, for 
example 𝑏଼

ଶ = (00011) or 𝑏଼
ଶ = (10001). However, with a further increase in the length of the 

code word 𝑛, the number of such solutions decreases. 

Continuing the construction of the main matrix, we are convinced of the need to use the 

capabilities of computer search for the generating code combination 𝑏௡
ௗ೘೔೙ି௜. For this example, 

this combination in the next step becomes the combination 𝑏଼
ଷ = (10010100). This combination 

is used to construct the adjacent matrix 𝐵௡
ௗ೘೔೙ି௜

= 𝐵଼
ଷ, equal to 

𝐵଼
ଷ =  ቐ

1  0  0  1
1  0  0  0

  0  1  
1  0

0
1

  
0
1

0  1  1  0  1  1  0  0
0  1  1  1  0  0  1  1

ቑ.                                                                    (17) 

Further, according to (14), the main matrix is formed 

𝐴௡ୀଵ଴ =  

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0  0  0  0  0  0
0  0  0  0  0  1

  0  0  
1  1

0
1

  
0
1

0  0  1  1  1  1  1  0  0  0
0  0  1  1  1  0  0  1  1  1
1  1  1  0  0  1  0  1  0  0
1  1  1  0  0  0  1  0  1  1
1  1  0  1  1  0  1  1  0  0
1  1  0  1  1  1  0  0  1  1⎭

⎪
⎪
⎬

⎪
⎪
⎫

.                                                                    (18) 

In [10], the dependences of 𝑘 on 𝑛 are presented for 𝑑௠௜௡ = 3 and 4 in comparison with the 
Hamming boundary. These dependences are stepwise and only at separate points at 𝑑௠௜௡ = 3 
coincide with the potential Hamming boundary. 
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                                 Fig. 1 Dependence of  𝑘 on 𝑛 

(Figure 1 shows: black for 𝑑௠௜௡ = 3, red for 𝑑௠௜௡ = 4, blue for 𝑑௠௜௡ = 3 and 4 the upper 
Hamming limit, purple for 𝑑௠௜௡ = 2) 

Further calculations made it possible to obtain similar data shown in Fig. 2 for 𝑑௠௜௡ = 1, 20 and 

𝑛 = 1, 34 (The value of 𝑘 is shown on the vertical axis in Fig. 2). 
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Fig. 2 The number of information symbols 𝑘 for different values 𝑑௠௜௡ = 1, 20 and 𝑛 = 1, 33 

 

2. Efficiency of matrix iterated coding 

The matrix construction of the correcting code makes it possible to obtain a simpler practical 
implementation of the code with the required correcting properties. Moreover, as shown in [8], 
the construction itself can be both two-dimensional and multidimensional. 

The total length of the code word is determined by the product of the lengths of the codes used in 
this design, as well as the number of information symbols. 

The minimum code distance of the matrix code is equal to the product of the minimum code 
distances of the applied correction codes. 

In practice, due to the requirements for simplicity of implementation, a two-dimensional 
construction using a parity-checked code is usually used. 
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At the same time, it is of interest to evaluate the effectiveness of such a solution, provided that 
codes that reach theoretically possible boundaries are used for coding. 

Suppose that block codes are used according to the Hamming bound. 

In this case, the parameters of these codes will be (𝑛ଵ, 𝑘ଵ) and ((𝑛ଶ, 𝑘ଶ), respectively. 
Considering the above, the length of the code word is 𝑛ଵ ∙ 𝑛ଶ, and the number of information 
symbols is 𝑘ଵ ∙ 𝑘ଶ. 

Since it was assumed that the codes implement the Hamming boundary, using (1), we can 
estimate the corresponding number of information symbols 𝑘௧௢௧, based on the total length of the 
codeword, and then, assuming that 𝑛ଵ = 𝑛ଶ = 𝑛 and 𝑘ଵ = 𝑘ଶ = 𝑘, we obtain: 

𝐸ு =
௞೟೚೟

௞మ =
௡మି୪୭୥మ ∑ ஼೙

೔

೏೘೔೙
మ షభ

మ
೔సబ

ቌ௡ି୪ మ ∑ ஼೙
೔

೏೘೔೙షభ

మ
೔సబ

ቍ

మ .                                                                              (19) 

In fig. 3 shows the results of calculations proving that the efficiency of the optimal choice of a 
code of the corresponding length 𝑛ଶis higher than the efficiency of a matrix construction 
consisting of two codes of shorter length 𝑛. At the same time, with an increase in the length of 
the code word, this gain decreases and tends to 1.  

 

Fig. 3 Efficiency of optimization as a whole in relation to optimization by parts (Hamming 
bounds 

For the Singleton boundary, a similar expression can be obtained 

𝐸ௌ =
௞೟೚೟

௞మ
=

௡మିௗ೘೔೙
మ ାଵ

(௡ିௗ೘೔೙ାଵ)మ
 .                                                                                               (20) 
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The illustration is shown in Fig. 4. 

 

Fig. 4 Efficiency of optimization as a whole in relation to optimization by parts (Singleton 
bounds) 

The results obtained show that for relatively small values of the length of the codeword, 
preference should be given to the search for the optimal code of length 𝑛ଶ, unless, of course, the 
requirements for the simplicity of the implementation of the correcting code are not decisive. 

Conclusion 

The obtained practically achievable boundaries as close as possible to the potential boundaries 
show the existing possibilities of implementing error-correcting codes with maximum efficiency. 
At the same time, they differ from the theoretically achievable boundaries by 5-10% and this 
difference cannot be reduced. 

Matrix constructions of error-correcting codes, which have a relatively simple implementation, 
provide lower efficiency (coding rate) compared to a block code of length 𝑛ଶ with the same 
correcting properties. Moreover, this effect is more noticeable at large values of the minimum 
code distance 𝑑௠௜௡. 
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