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Abstract: The Mediterranean basin is a hot spot of climate change where the Posidonia oceanica (L.) 13 

Delile (PO) and other seagrass are under stress due to its effect on marine coastal habitats and the 14 

rising influence of anthropogenic activities (i.e. tourism, fishery). The PO and seabed ecosystems, in 15 

the coastal environments of Pantelleria and Lampedusa, suffer additional growing impacts from 16 

tourism in synergy with specific stress factors due to increasing vessel traffic for supplying potable 17 

water and fossil fuels for electrical power generation. Earth Observation (EO) data, provided by 18 

high resolution (HR) multi/hyperspectral operative satellite sensors of the last generation (i.e. Sen- 19 

tinel 2 MSI and PRISMA) have been successfully tested, using innovative calibration and sea truth 20 

collecting methods, for monitoring and mapping of PO meadows under stress, in the coastal waters 21 

of these islands, located in the Sicily Channel, to better support the sustainable management of these 22 

vulnerable ecosystems. The area of interest in Pantelleria was where the first prototype of the Italian 23 

Inertial Sea Wave Energy Converter (ISWEC) for renewable energy production was installed in 24 

2015, and sea truth campaigns on the PO meadows were conducted. The PO of Lampedusa coastal 25 

areas, impacted by ship traffic linked to the previous factors and tropicalization effects of Italy 26 

southernmost climate change transitional zone, was mapped through a multi/hyper spectral EO- 27 

based approach, using training/testing data provided by side scan sonar data, previously acquired. 28 

Some advanced machine learning algorithms (MLA) were successfully evaluated with different su- 29 

pervised regression/classification models to map seabed and PO meadow classes and related Leaf 30 

Area Index (LAI) distributions in the areas of interest, using multi/hyperspectral data atmospheri- 31 

cally corrected via different advanced approaches. 32 

Keywords: Posidonia oceanica (PO), LAI & density; PO health & Pergent model; sea truth collec- 33 
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 38 

1. Introduction 39 

In the Mediterranean, Posidonia oceanica (PO) is one of the most important seagrass 40 

carbon sink species for the variety and extension of its meadows, but it is increasingly at 41 

risk and sometimes in decline, with the frequent reduction of its extent and an increase in 42 

meadow fragmentation [1, 2, 3]. This arises from the variations in sea water parameters 43 

(i.e. turbidity, temperature, acidity, salinity) linked to climate change and impacts from 44 

anthropogenic activities (fishing, traffic of ships and oil tankers, new coastal 45 
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infrastructures) with coastal habitat modifications even favorable to tropical alien species 46 

invasion [4, 5, 6, 7]. Like other seagrasses, PO plays a role of paramount importance in 47 

coastal habitats worldwide, providing ecological goods and ecosystem services that con- 48 

tribute to human welfare and shoreline protection [8]. To evaluate the ecological status of 49 

PO meadows, different approaches have been developed using also the relationship be- 50 

tween their genetic/genotypic diversity [9,10] and the main biophysical parameters (i.e. 51 

shoots density, LAI) that today can be effectively monitored and mapped using integrated 52 

approaches based on remote sensing techniques [11]. 53 

The recent advances in Earth Observation (EO) applications, based on satellite and 54 

airborne platforms [12], provide operative tools for supporting extensive monitoring 55 

needs for sustainable management of sea/inland waters [13, 14] and agri-ecosystems, nat- 56 

ural and managed [15, 16], in various environments of the Earth's surface [17, 18]. How- 57 

ever, EO based monitoring of shallow waters and seabed of the coastal environment char- 58 

acterized by anthropogenic impacts, still represent a challenge, due to coastal water tur- 59 

bidity often associated with various atmospheric effects and noises, joined with the diffi- 60 

culties of in situ sampling for collecting sea truth calibration data of submerged plants on 61 

seabed by means of scuba diving. These are important limiting factors to useful exploita- 62 

tion of EO High Resolution (HR) data for extensive mapping of PO and coastal seabed 63 

and water quality parameters [14, 19], especially where the coastal sea currents are signif- 64 

icant like in the Southern Mediterranean islands, with consequent additional signal deg- 65 

radations from increased water turbidity from sediment resuspension and sun glint pres- 66 

ence [19, 20, 21, 22]. 67 

The Italian islands of the southern Mediterranean, like Pantelleria and Lampedusa, 68 

generally present transparent coastal waters and PO meadows, with seabed habitats that 69 

still exhibit significant levels of biodiversity and specific adaptation to the accentuated 70 

energy levels of sea waves that characterize this area of the Sicily Channel [2, 20]. This 71 

aspect favored the installation of the first Italian Inertial Sea Wave Energy Converter 72 

(ISWEC) there, choosing Pantelleria as a representative of many small-islands in the Med- 73 

iterranean Sea, whose energetic independence through eco-compatible innovative solu- 74 

tions can improve the lives of the isolated coastal communities while safeguarding their 75 

coastal fragile ecosystems from the perspective of global sustainability [23]. 76 

Despite their shallow water wealth and natural heritage, often safeguarded in pro- 77 

tected areas, the actual increase in anthropogenic activities, linked to tourism and fishing, 78 

negatively impacts on these natural ecosystems, with consequent potential damage and a 79 

need for more effective monitoring to support their sustainable management. Other 80 

threats derive from the difficulties of supplying potable water and electrical power to 81 

many islands not connected to the national electricity grid, where additional factors of 82 

environmental impacts come from the traffic of boats carrying fossil fuels for local elec- 83 

tricity production, also used for desalinization of sea water [24]. 84 

In order to provide eco-compliant electric power from renewable resources, in 2015, 85 

the ISWEC prototype was installed for testing purposes in the coastal area offshore of 86 

Pantelleria. Even designed to minimize the impacts, the prototype installation and opera- 87 

tion involved interactions with local PO and seagrass meadows, with possible plant dam- 88 

age and water transparency decreasing due to seabed sediment resuspension [25, 24].  89 

Thus, the effective monitoring of the local PO ecosystems in the two islands is rec- 90 

ommended in order to allow the detection of potential stress and damage linked to the in- 91 

crease in anthropogenic activities mentioned above and/or other natural factors. In 2015 92 

and 2016, two measurement campaigns were carried out in the vicinity of the ISWEC pro- 93 

to-type for collecting sea truth data on PO meadows [24, 26]. 94 

Satellite EO-based approaches for PO and seagrass monitoring can be very effective, 95 

but they must be based on suitable HR sensors, as well as effective atmospheric prepro- 96 

cessing and calibration based on appropriate in situ measurements. Once suitably cor- 97 

rected for atmospheric noise, the satellite HR EO techniques can provide effective mul- 98 

tiscale tools for monitoring marine ecosystems on shallow water seabed. However, the 99 
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basic requirements for characterizing the PO meadow and sub-merged habitats of shallow 100 

waters and their distribution patches at the "land-sea" inter-face area, in optically complex 101 

coastal waters, first focus mainly on remote HR sensors within the 30-10 m a.g.r. (above 102 

ground resolution) and suitable radiometry, sensible to weak signals coming from the 103 

coastal seabed [21, 20]. In recent years, various satellite sensors have started to provide 104 

EO data with these features for EO applications, like multispectral Landsat 8 OLI by 105 

NASA and Sentinel 2 MSI (of the Copernicus ESA EU program), or the most recent hyper- 106 

spectral PRISMA, implemented by ASI (Italian space agency), having different additional 107 

capabilities based on its 240 acquisition bands, to be checked for these specific coastal 108 

monitoring applications. These sensors, compared to previous ones of the same family, in 109 

addition to the increase in the acquisition bands in the visible and TIR, present improve- 110 

ment in their radiometry that offer greater capacity for operational monitoring of coastal 111 

ecosystems previously unavailable [19]. In particular, the PRISMA sensor makes available 112 

the opportunity to test this satellite EO hyperspectral technique in this specific sector, 113 

where airborne remote sensing techniques have been mostly used. 114 

Since atmospheric noise can greatly affect the useful reflectance signals exiting from 115 

the water surfaces, the radiometric preprocessing must include an effective atmospheric 116 

correction to remove, in particular, the significant contribution from the aerosol load and 117 

other factors typical of the water column at the sea-land interface [20, 27, 28]. In addition, 118 

the necessary sea truth measurements, devoted to quantitative PO characterization, are 119 

expensive and labor-intensive due to human and instrumental resources needed to oper- 120 

ate during diving for sample collection and subsequent laboratory analyses. 121 

Considering these limiting factors, in this work, original EO-based monitor-ing/map- 122 

ping methods for the useful exploitation of information extracted from the necessarily 123 

exiguous number of available in situ measurement stations were implemented. The de- 124 

veloped approach allowed us to exploit the radiometric variability related to EO data of 125 

the entire sampling area (~50 m2) of Pantelleria stations, within a calibration/validation 126 

schema for the regression models, based on some machine learning regression algorithms 127 

(MLRA), designed to be robust against possible outliers and incomplete/limited samples 128 

[29, 30, 31].  129 

Recently, machine learning/artificial intelligence (AI) computer applications have in- 130 

creasingly gained more popularity, especially in sectors where there is a need to make 131 

effective predictions or trends calculations in case of limited/incomplete calibration/train- 132 

ing data, statistical noise or collinearity presence, taking advantage of the so-called in- 133 

creasing Big Data availability and robust statistical modelling advances. One of them re- 134 

fers to re-mote sensing EO applications, where the increase in spectral/spatial capabilities 135 

of the new sensors on board of the operative satellite platforms provides an unprece- 136 

dented amount of EO data, continuously upgraded and made available online to the users 137 

[18, 32]. On the other hand, in EO based monitoring and modelling applications, the fre- 138 

quent necessity to face growing costs and resources to collect expensive in situ data re- 139 

duces the possibility to plan a calibration as ample and complete as needed and desired. 140 

Machine learning algorithms (MLAs) and schemas were developed to more effectively 141 

exploit this kind of incomplete information through their self-adapting and learning ca- 142 

pacities for useful predictive modeling with suitable assessment of mapping functions 143 

from inputs, even limited, to outputs, optimized function approximation, or classification 144 

[32]. In particular, they focus on two typical main usages of EO data processing, involving 145 

the classification and regression approaches [29]. The classification aims at predicting a 146 

discrete class of output labels from input data (typically, EO data as atmospherically cor- 147 

rected multi/hyperspectral reflectance responses), after a learning phase termed training. 148 

The regression is instead aimed at predicting continuous quantities on the basis of input 149 

(the EO data) and a function model obtained from a calibration set of input/output data. 150 

To support the development of a methodology for monitoring and mapping the PO hab- 151 

itats in these islands, various typical MLA were preliminarily considered for regression 152 

(MLRA) modeling and supervised classification (MLCA) of the multi/hyperspectral data, 153 
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taking into account their different capabilities and performance in various situations of 154 

noise, limited class samples, and outlier presence in input data that frequently occurs in 155 

EO applications for coastal marine monitoring [26, 30, 33].  156 

According to previous works, these satellite remote sensing HR  techniques were 157 

combined with in situ point measurements of biophysical parameter to monitor and map 158 

the PO meadows and benthic habitats in the shallow coastal waters of the Pantelleria and 159 

Lampedusa islands [34, 35].  160 

Starting from the in situ measurements of the density and LAI (Leaf Area Index) of 161 

PO, estimated for the sampling station areas in proximity of the ISWEC installation, vari- 162 

ous distributions of these important biophysical parameters were assessed in the coastal 163 

shallow waters of Pantelleria, using regression models based on different MLRA algo- 164 

rithms and the original calibration/validation schema with Sentinel 2 MSI multispectral 165 

data [36, 37].  166 

According to Pergent [38], the developed methodology included the assessment of 167 

the health distribution of PO located along the entire coast of Pantelleria island, using 168 

bathymetry and the EO-derived PO density distribution. 169 

The distribution of PO meadows and other seabed classes of the Lampedusa coast 170 

were estimated through PRISMA hyperspectral data by means of an advanced MLCA and 171 

supervised classification scheme, using the side scan sonar data, available for the western 172 

part of the coastal seabed [39], as the training/validation set [40,41]. 173 

The ENMAP (Environmental Mapping and Analysis Program) software box package 174 

was used for both regression and classification tasks, based on learning machine algo- 175 

rithms [37]. This software is integrated into the free and open-source widely distributed 176 

QGIS and was developed in the framework of the German hyperspectral EO HR mission, 177 

with the launch of the satellite mission expected in the next few months and a sensor sim- 178 

ilar to the operative PRISMA by ASI (Italian Space Agency). The PRISMA data, distrib- 179 

uted as hdf5 format files, was decoded using the PRISMAREAD package, working in the 180 

R statistic environment [42].  181 

2. Materials and Methods  182 

2.1. Methodology 183 

In the developed methodology, the S2 and PRISMA EO data, preprocessed using dif- 184 

ferent atmospheric correction options, available through the packages considered (ACO- 185 

LITE, ICOR, System Pre-processors of EO Data provider), were exploited for assessing 186 

regression/classification models, based on sea truth independent data and MLA, whose 187 

effectiveness was assessed by means of a performance metric using various statistic pa- 188 

rameters. In such a way, at the same time, both the atmospheric correction effectiveness 189 

and algorithm suitability were evaluated. The most performant models were then used 190 

for the production of the final thematic maps of seabed classes and biophysical parameter 191 

distributions of PO on which are based the intercomparisons and considerations at differ- 192 

ent scales, referring to the anthropogenic and natural impact factors. 193 

2.2. Areas of interest and EO data 194 

The EO techniques for estimating the concentrations of the various optically active 195 

constituents of the shallows waters and monitoring submerged plant, make widely use of 196 

the multispectral data currently provided by HR and VHR (High and Very high spatial 197 

resolution) satellite/airborne sensors with resolutions  respectively from a few tens of m 198 

up to sub-metric (QuickBird, WorldView 2, Dedalus ATM,…). The VHR satellite systems 199 

operate on user request and in a non-systematic way, with frame areas of about 10X10 200 

Km, more suitable for local and not operational monitoring with limited space-time cov- 201 

erage. Thus, to provide support for more operational monitoring needs, in the 2013 the 202 

new polar HR sensor Landsat 8 OLI (Operational Terra Imager), started to provide sys- 203 

tematically multispectral images (180X180 km2) of the earth's surface with 30 m of a.g.r. 204 
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resolution, made continuously available to the users in repositories, accessible online. This 205 

sensor, compared to previous ones of the same family, in addition to the increase in the 206 

number of acquisition bands in the visible and TIR (Thermal Infrared), presents improve- 207 

ments in its radiometry that offer greater capacity for operational monitoring of coastal 208 

ecosystems previously unavailable. In addition to the usual spectral bands, a new 209 

“coastal” acquisition channel have been introduced in the higher frequencies of blue, to 210 

improve its coastal monitoring capabilities at the spatial resolution of 30 m. most profita- 211 

ble in coastal and inland waters, often optically complex. In 2015, ESA (European Space 212 

Agency) launched on board of Sentinel 2 (S2) polar satellite the MSI (MultiSpectral Instru- 213 

ment) sensor, able to acquire data at 10 m a.g.r., and providing EO data open to scientific 214 

user and application, with improved revisiting capability of 5 day, based on the twin plat- 215 

form, Sentinel 2 B, that became operational shortly after the first one. In the 2019, the hy- 216 

perspectral sensor PRISMA (240 acquisition bands) by ASI (Italian Space Agency) became 217 

operational and with its capability of many acquisition channels in the visible range, at 30 218 

m of a.g.r., currently represents an unprecedented opportunity even for the applications 219 

in the coastal monitoring sectors. 220 

The 10-m multispectral HR data, provided by the S2 MSI satellite sensor, including 221 

the entire coastal areas of interest, were acquired and preprocessed, with the objective to 222 

test their improved monitoring capabilities of PO distribution with the related LAI (Leaf 223 

Area Index) and other biophysical parameters. Furthermore, the hyperspectral data in the 224 

VIS-NIR (Visible – Near Infrared) range (470-970 nm) at 30 m of a.g.r. (above ground res- 225 

olution) provided by PRISMA, have been tested for mapping the PO meadows and seabed 226 

in the coastal shallow waters of Lampedusa.  227 

The monitoring activities in Pantelleria were primarily focused on the area of the 228 

ISWEC installation but with the perspective to test the spatial extensibility of calibration, 229 

carried out in the proximity of the converter (visible within the sampling station 1 borders 230 

in the figure 1), over remaining coastal areas of the island.  231 

The figure 1 shows the Pantelleria island image in true color acquired by S2 on 20- 232 

08-2015 (upper part), with the detailed area of interest (lower part) including the sampling 233 

station areas indication and global localization map (lower right corner). The ISWEC pro- 234 

totype is visible in the area of sampling station n. 1. The detailed image shows also the sea 235 

waves perturbing the water surface with sun glint and sediment suspension that intro- 236 

duce noises to the useful EO reflectance signals from seabed and shallow water.  237 

Considering also the lower size of Lampedusa (Figure 2), the EO derived map of its 238 

PO meadows and other seabed main classes, has been produced for the coasts of the entire 239 

island, using the partial distribution obtained through side-scan sonar as training/valida- 240 

tion. 241 
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 242 

Figure 1 – Pantelleria island in the S2 frame acquired on 20-08-2015, reported in true color (R:665 243 
nm, G:560 nm, B:490 nm). In the upper image of the entire island, the area of interest including the 244 
ISWEC location with the four sampling station of 2016 sea truth campaign, is indicated by the box 245 
de-limited by red lines. The image at lower half shows the detail of the area of interest with the 246 
three sampling stations of the 2015 campaign and the location of ISWEC converter (in the red cir- 247 
cle)  enclosed in the station n. 1 area. The synoptic map, with location of the islands of interest in 248 
the Sicily channel of Mediterranean, is also provided (lower right corner). 249 

The position of the converter was chosen on the basis of the energy distribution of 250 

wave motion along the coasts of the island, evaluated through oceanographic modeling 251 

and multi-temporal data appropriately acquired at adequate resolution, it is located 252 

within areas where there are sparse PO meadows that need to be monitored to highlight 253 

any consequent potential threats.  254 
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 255 

Figure 2 – Lampedusa island (True color RGB) as seen by S2 MSI (10 m a.g.r.) multispectral sensor 256 
(upper) on the 17-08-2015 and by PRISMA hyperspectral sensor on 11-08-2020 (panchromatic 257 
channel at 5 m a.g.r.). 258 

2.3. Sea truth 259 

In general, the sea truth surveys for the assessment of PO focus mainly on the char- 260 

acterization of meadows with continuous distributions (cover > 60-80%), without any op- 261 

timization aimed at providing an area-based effective calibration for modelling based on 262 

EO data. In case of discontinuous, fragmented, and patchy distributions of PO meadows, 263 

the in situ calibration for the extensive distribution estimate of their biophysical parame- 264 

ters through EO data, should require the assessment of the entire local area of interest, 265 

including the sub-areas lacking plants, with a mean cover percentage lower than 20% that 266 

must be accounted for. To address this limiting factor, an original methodology has been 267 

exploited here for the sea truth acquisition of calibration measurements on the fragmented 268 

PO meadows near the ISWEC installation in Pantelleria based on a systematic sampling 269 

scheme. To better deal with PO patchy distribution, an on-purpose implemented sam- 270 

pling method was exploited that allowed the estimation of a percent cover parameter us- 271 

ing a semiautomatic digital procedure, from digital images of measurement plots ac- 272 

quired by scuba. The estimated cover parameter was then exploited for refining the in situ 273 

LAI distribution assessment, more area than meadow oriented, with the specific objective 274 

of improving EO calibration [24, 26]. 275 

The ISWEC prototype was installed in late July-early August 2015, and the first sea 276 

truth campaign was carried out in the second half of August, while the second one started 277 

in the middle of October of the following year. During the campaigns, various measure- 278 

ments of several biophysical parameters related to PO phenology have been acquired, in 279 
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correspondence with sampling stations distributed along the bathymetric negative gradi- 280 

ent, starting from the converter prototype location, at 31 m. of depth (fig 3). Three meas- 281 

urement stations in 2016 were located at the same coordinates as those exploited in 2015, 282 

while the fourth was positioned between the last two, at about 30 m. of bathymetry. Some 283 

GPS techniques and other auxiliary instrumentation (i.e. compass, underwater digital 284 

photo camera, containers for plant samples), used in diving supported information col- 285 

lection of in situ biometric measurements completed with the subsequent laboratory anal- 286 

yses for the assessment of the biophysical parameters of interest (biomass, shoot density, 287 

cover, LAI). The work in the field, consisting mainly of the underwater activities using the 288 

1 m2 sampling frame (Figure 6) and auxiliary instrumentation, took place respectively in 289 

the second half of last August and in the middle of October, according to logistic and 290 

organization constraints and weather/sea conditions. In the perspective of EO based re- 291 

gression model calibration and in accordance with the most popular protocols, for each 292 

measurement station, a systematic sampling scheme based on 1 m2 plots was exploited 293 

(Fig. 3). The measurement stations are identified by their respective GPS center coordi- 294 

nates on the surface and are associated with the related plots, each of 1 m2, where the 295 

biophysical measurements and samples were collected using an oriented frame with the 296 

objective of allowing the characterization of an area compatible with the a.g.r resolution 297 

of satellite images. The station coordinates coincide with those of plot n. 1 center, while 298 

the d parameter of the plot scheme was set at 25 m, in order to cover a square area of about 299 

50 m2, corresponding to the 5x5 pixel of the S2 MSI sensor. In addition, RGB digital images 300 

of plots, taken with a special underwater camera, including approximately the frame with 301 

a defined orientation, were acquired to support the development of a robust, innovative 302 

and semi-automatic procedure for estimation of more reliable coverage/density values 303 

(see below). Various phenology parameters of PO were visually assessed within each plot 304 

identified by a North-oriented white frame (Fig 3), whose photograph image was taken 305 

preliminary to other diving measurement activities. The density was appraised by visu- 306 

ally counting the number of shoots (shoot/m2) in the North-West quadrant of the sampling 307 

frame. Some PO plant samples (3-5 shoots) were then collected from the North-West 308 

quadrant of the frame and properly stored for the successive laboratory analyses. Conse- 309 

quently, by applying the conventional protocol, the average density was calculated and 310 

expressed in the number of shoots/m2 for the whole station area. The laboratory analyses 311 

provided the characterization of phenology (i.e. LAI) and physiological parameters of PO 312 

samples, such as biomass (fresh and dry weight) and biometry, together with genetic pol- 313 

ymorphism for the determination of the genetic structure of the meadows (These genetic 314 

and others aspects will be widely discussed within another paper in preparation). The 315 

most common protocols for estimating the coverage of the PO meadows in diving are 316 

based on the visual evaluation of the percentage coverage of PO within a plot sample area. 317 
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 318 

Figure 3- Location of the 3 stations and sampling scheme used for the survey campaign on the PO 319 
meadows at the installation site of the ISWEC prototype (left part). Sampling schema for sea truth 320 
collection (right part). 321 

This estimate is likely always affected by approximations due to the subjectivity of 322 

the operator, further worsened by uneven lighting situations and various limitations re- 323 

lated to underwater operating modes. The use of digital images of the area of interest at 324 

adequate resolution, duly oriented and pre-processed, allows areal assessment through 325 

semi-automatic operating procedures aimed at increasing repetitiveness and the reliabil- 326 

ity of the assessed cover values. Some digital pre-processing procedures, on purpose de- 327 

veloped for both radiometric (normalization for illumination unevenness) and geometric 328 

(perspective and frame rectification/overlay) corrections of the acquired image of the sta- 329 

tion plots (fig 4), were applied before we proceeded with a supervised segmentation/clas- 330 

sification algorithm. The classification output, without subjective photointerpretation, al- 331 

lowed us to appropriately segment the pre-processed image into three classes consisting 332 

of PO (green), sea bottom (blue) and frame (Fig. 4 bottom right), from which it is possible 333 

to easily derive the coverage percentage of the PO. The procedure developed was then 334 

applied to the entire set of plot images acquired for each sampling station. 335 

At the ENEA Casaccia laboratory, Biomass and Biotechnology for Energy, the biom- 336 

etry of each plant (number, length, and width of the collected leaves) was also estimated, 337 

and the biomass was calculated in both fresh and dry weight after drying at 70 ° C for 72 338 

hours, both in the epigeal (foliar) and rhizome. Once removed from the plants, the young 339 

leaves were previously washed in distilled water, removing the epiphytes, placed in liq- 340 

uid nitrogen and stored at-80 ° for the subsequent analyses. The density distribution of 341 

the PO (shoots/m2) at station level was derived by averaging the values assessed in diving 342 

on its plots. 343 

Following the well established methods, the LAI and other parameters, at the level 344 

of the single stations, were calculated by averaging the laboratory biometric measure- 345 

ments of samples collected at plot level (i.e. PO leave areas and number of leaves per 346 

shoot, wet/dry specific weight) and related density values, with final normalization ac- 347 

counting for plot surface. 348 
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 349 

Figure 4 Use of the sampling frame on the PO meadows. Original image (top left) and after digital 350 
corrections to minimize the effects of uneven lighting (top right). Corrected image for perspective 351 
geometric distortion effects (bottom left) and classified using a semi-automatic procedure for iden- 352 
tifying the PO coverage (bottom right) 353 

The percent cover, obtained from digital processing of frame imagery taken while 354 

diving, was then introduced as a multiplying correction factor aimed at the optimization 355 

of the calibration of the regression modelling approaches based on EO data (see next chap- 356 

ter). 357 

In 2016, the PO meadows of Lampedusa (western part) were preliminarily mapped 358 

using side-scan sonar on board a ship [39]. In addition to seabed classes of PO, some others 359 

related to differently grained sand and rock were also discriminated (Fig. 5). Given the 360 

scarce sonar detection capability of low density seabed vegetation, in addition to suitably 361 

detected PO, a sparse (potential) PO class was introduced too. The three classes of differ- 362 

ently grained sand and dunes, discriminated by sonar acoustic waves due to their textures 363 

not easily detectable in EO data, were grouped into just two. According to the historical 364 

maps, the most reliable part of this achieved data was used for training/validation of 365 

MLCA (see next chapter), in the form of stratified randomly selected points extracted for 366 

the seven seabed classes. 367 

 368 
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 369 

Figure 5- Side scan sonar map used for training /validation of machine learning classification mod- 370 
els. The map is in overlay to true color hyperspectral PRISMA, frame acquired on the 11-08-2020 371 
and atmospherically corrected (BOA).  372 

2.4. EO data processing and calibration 373 

The available EO frames, compatible with the sea truth data, were first selected on 374 

the basis of visual inspection, checking the presence of cloud cover and water turbidity 375 

patterns in the areas of interest. The selected data, atmospherically corrected using the 376 

different options, was then exploited in the MLRA and MLCA modelling approaches 377 

based on the sea truth calibration/training sets and using the various MLA algorithms. In 378 

the end, the final choice in terms of frame, pre-processing options, and MLA combina- 379 

tions, was accomplished on the basis of the performance parameters assessed in the model 380 

validation/accuracy assessment steps.  381 

2.3.1. Atmospheric pre-processing 382 

The general approach to water applications, based on the near infrared (NIR) reflec- 383 

tance channels for characterizing atmospheric aerosol parameters (i.e. aerosol optical 384 

depth as AOD) distributions, in case of shallow water, typical of oligotrophic open oceans, 385 

has proven to be less effective for monitoring shallow-water environments and seabed, 386 

including seagrass and PO coastal ecosystems [43]. In fact, coastal waters are rarely oligo- 387 

trophic due to their frequent optical complexity, with high concentrations of various op- 388 

tically active substances (case II waters), which is often accentuated by sediment suspen- 389 

sion dispersed in the water column, in the form of total suspended matter (TSM) concen- 390 

tration, which is increased by sea waves and currents. To properly address these difficul- 391 

ties in coastal water remote sensing, our approach includes atmospheric correction mainly 392 

accomplished using the current version of the ACOLITE package, specifically designed 393 

for atmospheric correction of multispectral remote sensing data at decametre resolution, 394 

for monitoring applications in coastal or inland waters, even with non-negligible turbidity 395 

[43]. It preliminarily starts with aerosol DSF fitting and system correction to produce a 396 

BOA (Bottom Of Atmosphere) reflectance distribution (without taking into account the 397 

detailed distribution of aerosol effects), then the corresponding WLR (Water Leaving Ra- 398 

diance/Reflectance) is assessed (taking into account the detailed aerosol effect distribu- 399 

tion), if the retrieved aerosol distribution (AOD) reaches a sufficient noise level to degrade 400 

the water reflectance responses [45]. The package also provides the subset function of area 401 

of interest, automatic selection of water surfaces (WLR option) and the sun-glint removal 402 

from the processed multispectral data. This capability is remarkably favourable if we con- 403 

sider also the turbidity of the waters due to the accentuated hydrodynamics of the marine 404 

area of Pantelleria, caused both by the morphology of its coastal seabed and by the rele- 405 

vant intensity of the sea current field, which, especially in summer, characterizes this area 406 

of the Strait of Sicily. This aspect constitutes a limiting factor in the selection of exploitable 407 

satellite acquisition frames for the monitoring of its shallow waters, which, in summer, 408 

are considerably few, due to the presence of excessive diffuse turbidity and significant 409 

sun-glint effects (figure 1).  410 

The radiometric correction for quantitative monitoring of the coastal seabed where 411 

the PO plants grow, in addition to atmospheric AOD, must take into account additional 412 

noise contributions from other factors, like water column and adjacency effects [46, 47]. 413 

Given the normal situation of water limpidity along these islands’ coasts in case of current 414 

minima, the selection of the few frames without visible turbidity pattern affecting the ar- 415 

eas of interest is assumed to guarantee negligible water column attenuation noises. Adja- 416 

cency effects result from contamination of water reflectance signals of interface pixels (fre- 417 

quently including useful signals from PO plants) from contiguous land areas, depending 418 

on atmospheric scattering and AOD [47]. Thus, for intercomparison purposes, another 419 
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atmospheric correction package, named ICOR [48], not specifically devoted to water ap- 420 

plications, is also exploited. The code is able to produce BOA distribution, including this 421 

radiometric correction, not performed by ACOLITE (i.e. adjacency). The ACOLITE code 422 

is based on the Dark Spectrum Fitting (DSF) algorithm for the optimized estimation of the 423 

reflectance of coastal and inland waters, even with non-negligible turbidity, with optional 424 

correction for sun-glint effects. In essence, DSF, instead of assuming a negligible signal 425 

over water in predefined NIR or SWIR bands, and some spatial extent of aerosol type and 426 

concentration, aims to achieve spatial-spectral modelling by choosing the optimal bands 427 

for a given image or subset of images. Recent studies have found good performance of the 428 

DSF algorithm in optically complex coastal or estuarine waters [44]. 429 

To test the capabilities of the S2 MSI satellite sensor for mapping the PO meadows in 430 

the shallow waters of the island of Pantelleria, various multispectral frames taken in 2015 431 

and 2016, at different levels of pre-processing, referring to different seasonal periods, have 432 

been first selected on the basis of both cloud coverage and turbidity patterns from sea 433 

current intensity.  434 

For the atmospheric correction, the used approach was the so-called "image-based" 435 

that exploits the specific information contained in the same multispectral image to be cor- 436 

rected and does not require further in situ measurements in the field simultaneous with 437 

the satellite passage. Moreover, being easy to apply, it is suitable for our operational use. 438 

In general, the S2 frames are available at two atmospheric basic pre-processing levels, 439 

termed TOA (Top Of Atmosphere) and standard atmospheric correction (performed 440 

through the Sen2Cor default processor), used for retrieving bottom atmosphere surface 441 

reflectance (BOA), without any refinement specifically devoted to suitably retrieving 442 

WLR. The latter includes both the contribution of optically active components in the water 443 

column, mainly including sediments (TSM) and CDOM (Coloured Dissolved Organic 444 

Matter) in addition to phytoplankton, as well as that relating to the coverage of the shal- 445 

low seabed, coming from seagrass, macro-algae and various benthic substrates. To pro- 446 

vide WLR distribution, more appropriate for our application, the ACOLITE package, re- 447 

cently made available in its last version among the open-source scientific codes, was in- 448 

troduced. ACOLITE code was designed to be specifically applied for atmospheric correc- 449 

tion in coastal and inland water EO monitoring applications and provides corrections for 450 

sun-glint with the production of both BOA and WLR corrected reflectance distributions 451 

(only in case of aerosol presence), with automatic detection of water surface, but it doesn’t 452 

include the adjacency effect removal. 453 

Therefore, the radiometric correction of the selected frames for atmospheric effects 454 

was carried out also through the ICOR code integrated into the SNAP ESA (European 455 

Space Agency) package, which is not specifically conceived for pre-processing water sur- 456 

face imagery but is able to correct reflectance signals for adjacency effects. This last cor- 457 

rection could be very important for the effective monitoring of the coastal shallow waters 458 

at the land-sea interface, due to the possible contamination of the upper reflection values 459 

by the contiguous earth zones. In this context, given the unavailability of processing tools 460 

able to do all the radiometric corrections above cited, it was introduced to allow a com- 461 

parison of the relative weights of the different noise effects. 462 

Considering the spectral ranges useful for water penetration and land-water dis- 463 

crimination, the PRISMA hyperspectral data in the 411-708 nm range (38 bands) has been 464 

selected preliminarily from its VIS-NIR dataset (66 bands) for the modelling step. Then 465 

they were used as they had been provided, directly under the form of BOA, without any 466 

water surface optimization and adjacency/sun glint effects removal, due to the unavaila- 467 

bility of devoted processing packages. The classification carried out using the MLCA and 468 

the information from the multiple PRISMA bands, in addition to the distribution of the 469 

seabed classes, allowed a reliable estimate of the relative probabilities and levels of confi- 470 

dence of the result, with the possibility of using a threshold for the effective selection of 471 

the unclassified areas. 472 
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2.3.2. Modelling and classification 473 

The pre-processed S2 multispectral images were first exploited for assessing the dis- 474 

tribution of PO biophysical parameters near the ISWEC converter of Pantelleria, using 475 

different MLRA and sea truth calibration data collected in correspondence with the meas- 476 

urement stations. 477 

The objective of regression is to forecast a target value based on independent predic- 478 

tors under the hypothesis of a cause/effect relationship function model between variables, 479 

to be estimated using suitable known input-output values as a calibration data set. Re- 480 

gression techniques mostly differ based on the number of independent variables and the 481 

type of relationship between the independent and dependent variables. The widely dif- 482 

fused linear regression works well in the case of linear relationships and an optimal cali- 483 

bration set, but in the case of model functions not known and different from linear de- 484 

pendence with a lacking calibration set, the results can be unsatisfactory. This situation is 485 

typical of EO based monitoring applications, especially in shallow waters and coastal sea- 486 

bed habitats, where the non-linearity of model functions and non-optimal and lacking 487 

calibration sets deriving from sea truth collection difficulties often occur. This is mainly 488 

linked to the complexity of radiative light interactions involved, coupled with the expen- 489 

siveness in terms of cost and resources needed for sampling and measurements in scuba 490 

diving activities.  491 

In general, regression models, based on field measurements (independent variables, 492 

responses), are usually implemented through a well-established calibration and valida- 493 

tion (CV) schema, in order to provide better predictive power. The calibration delivers the 494 

function model parameters by optimal fitting the responses of interest (i.e. LAI) using 495 

physically or statistically based functions models of independent variables (the spectral 496 

reflectance EO data) for a subset of the available measurements. In validation, the remain- 497 

ing measurements, different from those of calibration, provide a realistic predictive capa- 498 

bility of the estimated model using independent data. In such a way, a more realistic eval- 499 

uation of performance and expected errors may be available for the successive running of 500 

the calibrated model. In this framework, a sufficient number of measurements, likely 501 

greater than the few available at the station level, is required to apply such a scheme to 502 

suitably calibrate and validate models assessed, while also providing reliable insights into 503 

their robustness in terms of statistical significance and predictive power. In order to try to 504 

lower this negative impact linked to sea truth calibration incompleteness, we used both 505 

advanced machine learning algorithms, possibly robust against this unfavorable aspect, 506 

coupled with the partial expansion of the calibration data based on the radiometric varia- 507 

bility in the area of the sampling stations, as explained in the following. For each station, 508 

the sea truth data of PO biophysical parameter variables was derived from in situ and 509 

laboratory measurement protocols as averages of plot systematic point sampling in a 50 x 510 

50 m area around the station center coordinates (Figure 4), while their resulting standard 511 

deviation was assumed as station measurement error. Therefore, an area of equivalent 512 

dimensions compatible with that seen by the S2 MSI satellite sensor, approximately equal 513 

to 5x5 pixels (window), centered on the single station, was used for the extraction of the 514 

corresponding point spectral signatures at pixel level. These different spectral signatures 515 

of the pixels crossing the areas of every measurement station were singularly used to suit- 516 

ably support the calibration/validation steps in the selected regression modelling ap- 517 

proaches. In addition, considering the low number of stations sampled, a virtual station 518 

(station 0) was introduced in the vicinity of others where the bathymetry is incompatible 519 

with the presence of PO, in order to better constrain the models. 520 

Preliminarily, various S2 MSI frames, including the area of interest (AOI), were se- 521 

lected on the basis of cloud coverage and other noise (sun glint and current turbidity pat- 522 

terns) minimization. Then, the sea truth data with the corresponding spectral signatures 523 

extracted from station areas on the atmospherically pre-processed AOI images in the se- 524 

lected frames, were preliminarily tested using the MLRA approaches, available within the 525 

ENMAP toolbox running in the QGIS environment [30].  526 
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During the preliminary phase, in addition to the usual linear regression, the machine 527 

learning regression algorithms tested were: Gaussian Process regressor (GP), Kernel 528 

Ridge (KR), Linear Support Vector machine regressor (LSVR), Partial Least Square (PLS), 529 

Random Forest tree (RF), Support Vector Machine (SVR). Most of these approaches can 530 

provide effective and efficient solutions for regression and classification supervised tasks 531 

in EO data applications [29, 32, 33], using the preventive and effective transformation of 532 

the raw variables into higher dimensional representations of feature space, via different 533 

kernel functions, with the capability to suitably handle non-linearity of models with col- 534 

linearity and other weaknesses in calibration/training data. The Support Vector Machine 535 

algorithms (LSVR, SVR) are based on the non-parametric supervised statistical learning 536 

technique, with robustness against outliers and limited training. They are able to estimate 537 

a hyperplane in the feature space that minimizes misclassifications. The RF consists of a 538 

group of decision trees induced by different sub-sets of the training data. Each tree in the 539 

forest casts a vote for the class with which a given analysis unit (in this case, a given seg- 540 

ment) should be associated. The class with the most votes is the one associated with the 541 

segment [33]. Various statistical performance indicators were considered, starting from 542 

those of different error metrics coming from the difference between modelled/measured 543 

values under the form of Mean Error (ME), Mean Absolute Error (MAE), Root Mean 544 

Square Error (RMSE), Mean Square Error (MSE), Median Absolute Error (MedAE). In ad- 545 

dition, others, linked to correlation between variables, such as Ratio of Performance to 546 

Deviation (RPD), Squared Pearson’s (r2), Explained variance score and Coefficient of de- 547 

termination (R2) were also included. For the parameters of the first group based on differ- 548 

ent error metrics, minimization of their absolute values is required, while for others, 549 

linked to the correlation between calibration measurements, absolute maximum values 550 

are the best ones when superior to one for RPD and close to 1 for the absolute values of 551 

the others. 552 

The supervised classification of the PO meadows and seabed covers in the coastal 553 

shallow waters of Lampedusa was implemented using the GP, LSVC, RF, and SVR MLCA, 554 

above introduced [25, 26]. The training/validation set was obtained from point samples 555 

randomly extracted (stratified scheme) from various areas of the side scan sonar map, 556 

previously verified on available historical maps and georeferenced in order to guarantee 557 

its satisfying overlay with the PRISMA and S2 frames (RMS 1.5 pix). The relative perfor- 558 

mance of classifiers was evaluated via different accuracy metrics based on overall accu- 559 

racy (OA), K-statistics (k) and Mean-F1 accuracy parameters, derived from the related 560 

confusion matrices [26], with the best results linked to the maximization of values. 561 

All the EO multi/hyperspectral data, extracted from images (previously selected by 562 

visual inspection of quick look) and subsequently corrected atmospherically using the 563 

available preprocessing options, was used for modeling through MLA in the regression 564 

and classification procedures. The selection of the best combination of frames, prepro- 565 

cessing option and MLA, in terms of global performance was accomplished based on re- 566 

sults obtained in the validation step implemented through a 3-fold cross-validation 567 

method. This latter includes a random selection into three groups of the available sea truth 568 

data and related spectral signatures, and then one of them is used for calibration/training 569 

and the remaining two for validation/accuracy assessment. This step is repeated twice 570 

using the other two group combinations, and then the final values of the performance 571 

indicators are obtained as averages of the three partial outputs. Consequently, the final 572 

output choice was then performed, based on the performance parameters obtained in the 573 

modeling phase, for each frame and related atmospheric preprocessing option and spe- 574 

cific MLA algorithm used. The thematic maps of the LAI-c and density continuous distri- 575 

butions of Pantelleria PO meadows and the seabed classes, including PO, of Lampedusa 576 

were produced using the best combination previously found.  577 

The PO density distribution so obtained, coupled with the related bathymetry, al- 578 

lowed us to assess a four-class map of the health of PO meadows along the entire coast of 579 

Pantelleria island on the basis of the model first proposed by Pergent [38] and here 580 
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suitably coded in the ERDAS-Imagine spatial modeler software environment. The model 581 

was developed several years ago with the support of an ample data set of sea truth obser- 582 

vations and on the basis of the standard PO density distributions within a bathymetric 583 

range of 20 to 30 m. It includes 4 PO health classes, where the first two are disturbed 584 

meadows with a decreasing level of degradation and the last two healthy ones.  585 

3. Results 586 

The Tab. 1 includes LAI, shoot density (Den) and related cover (c) data, assessed from 587 

laboratory and in situ measurements collected on PO meadows during the 2015 and 2016 588 

campaigns. The calculated uncertainties of each biophysical parameter were indicated in 589 

the right columns of the main values with the same label, starting with a capital D. The 590 

cover values, produced by the on-purpose developed semiautomatic procedure using the 591 

digital underwater imagery of PO plots, were exploited to obtain refined values of the LAI 592 

(LAI-c). These refined values are lower compared to uncorrected ones and could be con- 593 

sidered as the spatial density of LAI, [(m2/m2)], more oriented to EO data calibration, than 594 

usual LAI evaluations at meadow level. In fact, they showed a better correlation with EO 595 

spectral reflectance responses of the reference area. The graph in Fig. 6, displays the cor- 596 

rected (using % cover) and uncorrected LAI values, obtained from the data collected dur- 597 

ing the two sea truth campaigns. 598 

Due to patchy and fragmented distributions, the LAI-c data is all lower than the cor- 599 

responding uncorrected ones, while the values measured in 2016 are significantly less 600 

than those acquired in 2015 at the same station. The sea truth campaigns were carried out 601 

respectively in the early/middle of August 2015 and in late October 2016..   602 

 603 

Table 1- Biophysical parameters estimates derived from sea truth data collected in the 2015 and 604 
2016 campaigns, and laboratory biometric measurements for all the stations. The station n. 4 was 605 
introduced in 2016 606 

 607 

Figure 6- LAI assessment with LAI-c related values, corrected using  cover estimates provided by 608 
the semiautomatic segmentation procedure, for the 2015 and 2016 sea truth campaigns.  The sta- 609 
tion values were reported according their growing bathymetry.   610 
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  2015 2016 

 Bath. LAI DLAI Den. Dden Cov LAI-c DLAI-c LAI DLAI Den. Dden Cov LAI-c DLAI-c 

st.  (m) m2/m2 m2/m2 sh/m2 sh/m2 % m2/m2 m2/m2 m2/m2 m2/m2 sh/m2 sh/m2 % m2/m2 m2/m2 

1 10 3,37 0,86 112,80 37,48 69,20 2,33 0,59 1,57 0,51 61,60 10,807 43,65 0,69 0,22 
2 20 2,19 0,73 139,20 10,33 65,70 1,44 0,48 1,13 0,36 65,60 19,308 47,15 0,53 0,17 
4 30          1,83 0,40 54,40 17,573 23,15 0,42 0,09 
3 31 2,62 1,21 121,60 33,57 48,90 1,28 0,59 1,05 0,51 80,80 15,849 33,80 0,35 0,17 
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At the beginning of autumn, the PO, like terrestrial photosynthetic plants, loses both 611 

the old leaves and the ends of the younger ones damaged by the first storms, which we 612 

find on the beaches as biodegradable waste material. Therefore, the decrease in LAI and 613 

biomass observed in the measurements relating to the two campaigns may likely be due 614 

to the different seasonal vegetative stage linked to the dates on which they were con- 615 

ducted. According to the light attenuation with bathymetry, the LAI parameters both de- 616 

crease as depth increases from sampling station 1 to 4 (Fig. 5).The PO density trend (Fig. 617 

7), doesn’t show an inverse dependence on the bathymetry, but it evidences the decreases 618 

linked to the different seasonal stage of PO plants in the two campaigns.  619 

 620 

 621 

 622 

 623 

 624 

 625 

Table 2- Biomass estimates as fresh and dry specific weights( per shoot, derived from samples data 626 
collected in the 2015 and 2016 sea truth campaigns, and laboratory biometric measurements for all 627 
the stations. The station n. 4 was introduced in 2016.  628 

The measured biomass shows a decrease in the middle stations in 2015, while in 2016 629 

the measurements consistently rise with the bathymetry, but both with the related uncer- 630 

tainties that reduce their reliability (tab. 2).  631 

On the EO data side, the visual selection of the potentially exploitable imagery was 632 

carried out by discharging those affected by clouds over the interest area and water tur- 633 

bidity patterns from sea currents on the water surfaces to be monitored. The removal of 634 

atmospheric noise (mainly from aerosol variable distribution over the water surfaces of 635 

interest) from the multispectral frames acquired by the S2 MSI sensor was first accom- 636 

plished through the above mentioned ACOLITE operational tool. The S2 multispectral 637 

images for Pantelleria were acquired on 30-08-2015 and 21-11-2016, based on the previ- 638 

ously described criteria, including regression performance parameters metric obtained for 639 

the various MLCA (see fig. 9, table 3). Similarly, the frames of PRISMA and S2 sensors 640 

exploited for the Lampedusa MLCA application were indicated in table 3.  641 

Fig. 8 shows the results of the ACOLITE DSF modelling for the S2 frames acquired 642 

on 30-08-2015 (a) and 14-08-2016 (b), while Fig. 9 displays the results of atmospheric 643 

  2015 2016 

 Bath. 
Bio  

(F.W.) 
DBio 
(F.W) 

Biod 
(D.W.) 

DBiod 
(F.W) 

Bio 
(F.W.) 

DBio 
(F.W) 

Biod 
(D.W.) 

DBiod 
(F.W) 

st.  (m) g/sh g/sh g/sh g/sh g/sh g/sh g/sh g/sh 

1 10 8,190 1,644 1,280 0,198 3,383 2,316 0,675 0,359 
2 20 4,840 1,800 0,900 0,248 4,099 2,450 0,863 0,398 
4 30     4,307 2,732 0,804 0,387 
3 31 7,37 1,88 1,24 0,29 6,267 2,386 1,005 0,396 

Figure 8 – ACOLITE Dark Spectrum modelling Fit (DSF) for the S2 MSI multispectral images 

acquired on 30-08-2015 (a) and 14-08-2016 (b). The sensor zenithal angle and AOD retrieved at 

550 nm were also reported.  

(a) (b) 
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correction steps performed using the different tools/options available, including those 644 

provided by the ICOR code for adjacency effects removal.  645 

 646 

 647 

In 648 

Fig. 5, a combination of system corrected (BOA) PRISMA VIS channels is displayed as the 649 

background of the distribution of seabed training classes derived from the s. s. sonar map. 650 

In Fig. 10, a different false color image of atmospherically corrected (BOA) hyper-spectral 651 

PRISMA components, in the blue-green range, is reported. Given the high water penetra- 652 

tion of the blue-green light made exploitable through the various PRISMA bands, many 653 

costal seabed features can be better 654 

 Figure 10 – Atmospherically corrected (BOA) PRISMA hyperspectral image of Lampedusa, ac- 655 
quired on 11-08-2020.  Some sensor artifacts as colored lines cross the right part of the image.  656 

identified as the bluish areas on the left-lower coast of the island, corresponding to 657 

thin sand cover.  658 

The point-pixel spectral signatures, extracted from the atmospherically preprocessed 659 

images of the areas of sampling stations of Pantelleria, were coupled with the related LAI- 660 

c values in order to assess the regression models using the different MLRA algorithms. 661 

The graphs in figure 11 show the regression models assessed from the 30-08-2015 and 22- 662 

Figure 9 – Results from the different atmospheric corrections applied to the S2 MSI TOA multispec-

tral data of Pantelleria island: ACOLITE BOA (Bottom of Atmosphere) system corrected (a); ACO-

LITE WLR (Water leaving Radiance/reflectance) (b); ICOR BOA radiance/reflectance (c).    

(a) (b) (c) 
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11-2016 S2 WLR distributions provided by the ACOLITE code. The best models were es- 663 

timated using the KR and LSVR MLRA.  664 

 In the graphs, each dot represents a different pixel-point spectral signature extracted 665 

from the preprocessed multispectral data of the corresponding sampling station areas. 666 

 667 

The station 0 (st. 0), with the corresponding null value for LAI-c, in the left graph cor- 668 

responds to bathymetry of 40 m and consequent PO absence. 669 

Table 3 includes the list of the best combinations found at the level of S2 frames, pre- 670 

processing options, and MLRA, with the related performance parameters for the models 671 

of PO LAI-c distribution on the Pantelleria coasts for the 2015 and 2016 years. The ATM 672 

column of Tab. 3 embraces different radiometric preprocessing options. In particular, 673 

ACO + the suffixes HW and HS refer respectively to WLR and BOA (with sun glint re- 674 

moval and without adjacency correction), while ICOR indicates BOA with adjacency cor- 675 

rection and without sun glint removal. 676 

 677 

Table 3 - Best combinations found for regression models of PO LAI-c distribution of Pantelleria 678 
coast, using preprocessed S2 frames and sea truth data of 2015 and 2016 with different MLRA  679 

A subset of values obtained for the most relevant regression performance parameters 680 

were also reported with the indication of the exploited MLRA. The best results for the 681 

years 2015 and 2016 were obtained using the frames of 30/08 and 22/11, preprocessed with 682 

ACOLITE for WLR retrieval. For these frames, the regression models with the highest 683 

performance were those provided by KR and LSVR MLRA, with R2 values of 0.81 and 684 

0.84. The inferior results for both years, in terms of error and correlation performance pa- 685 

rameters, of the BOA distribution provided by ACOLITE and ICOR, preliminarily suggest 686 

that the WLR retrieved by ACOLITE is the most effective atmospheric preprocessing 687 

method to allow seagrass mapping. The most effective MLRA with the 2015 frames fol- 688 

lowing the KR were SVR and RF, while for 2016 the best are LSVR and PLS. The differ- 689 

ences between the ranges of absolute values of calibration measurements acquired in the 690 

Date  ATM MAE  RMSE MSE r2 R2 MLRA 

30/08/2015 ACO-HW 0.2912 0.3702 0.1371 0.8173 0.8168 KR 

30/08/2015 ICOR 0.3084 0.4473 0.2001 0.7552 0.7359 RF 

30/08/2015 ACO-HW 0.281 0.4568 0.2087 0.7755 0.7211 RF 

30/08/2015 ACO-HS 0.3039 0.4231 0.179 0.7815 0.7609 SVR 

08/12/2015 ACO-HW 0.3765 0.4588 0.2105 0.7449 0.7156 KR 

22/11/2016 ACO-HW 0.0436 0.0495 0.0024 0.8438 0.8431 LSVR 

14/08/2016 ACO-HS 0.1028 0.1217 0.0148 0.7182 0.7147 PLS 

Figure 11 -  LAI-c models estimated from the 30-08-2015 (a) and 22-11-2016 (b) S2 

preprocessed (WLR) frames, using respectively KR and LSVR MLRA algorithms  

(a) (b) 

(a) (b) 
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two campaigns and the internal variation within each dataset may involve the diverse 691 

capacity of a specific MLRA to better model the required trends. 692 

As stressed before, due to different campaign dates, the 2015 LAI calibration values 693 

are significantly higher than the related values measured in 2016, with less discriminabil- 694 

ity of measurement stations and consequently different MLRA effectiveness in distribu- 695 

tion modelling. In any case, the regression global performance, in terms of both error and 696 

correlation parameters, achieved the best result using the preprocessed frame of 22-11- 697 

2016 with the LSVR model, followed by that of 2015 provided by the KR MLRA (Tab. 3). 698 

The local distributions, assessed using the best 215 and 2016 models, are reported in Fig. 699 

12. Their PO patch distributions were also in satisfactory accordance with the preexisting 700 

information and maps available, even though they were not updated (i.e. M.A.T.T.M.- 701 

SiDiMar. GIS-Geodatabase, 2008). Since the latter are mainly based on observations of the 702 

summer period, the agreement of the 2016 autumn distribution (more affected by thin 703 

cloud presence at the upper corner of the area of interest) is less strong. Furthermore, from 704 

a qualitative comparison with this auxiliary GIS information (SidiMar), it happens that 705 

the model estimated for PO distribution in 2015 through the KR MLRA is less stable spa- 706 

tially at global level and less effective for the correct mapping of the PO of the entire island 707 

than that derived from the RF (Tab. 3, fig. 13), although the latter is less performant with 708 

sea truth point data.  709 

Due to different seasonal development periods of PO in the sea truth campaign dates, 710 

a direct comparison between the LAI-c distributions is useless for assessing the potential 711 

impact of the ISWEC prototype, but in any case, the LAI-c map of 2016 doesn’t show a 712 

significant discontinuity and reduction in the proximity of the converter plant. This sug- 713 

gests that the installation of the prototype, thanks to its technical solution to minimize the 714 

in- 715 

ter- 716 

ac- 717 

tion 718 

with 719 

the seabed beneath (i.e., floating mooring), did not significantly impact the nearby PO 720 

meadows. 721 

The PO density (shoots/m2) distribution was assessed using the WLR derived from 722 

the 30-08-2015 S2 frame through SVR, which has been found to be the most performant 723 

MLRA, although with poor parameter values (r2=0.401, R2=0.316). The PO health map 724 

based on the Pergent model, obtained from these EO derived density and bathymetry 725 

distributions, is shown in Fig. 14. In general, from the health map you can see that most 726 

of the PO meadows on the Pantelleria coast are in equilibrium with normal or high density 727 

and there aren’t areas of abnormal density, with highly disturbed meadows. Small areas 728 

Figure 12 – PO LAI-c distribution assessed from the S2 WLR preprocessed images using different MLRA calibrated by means of 

2015 (a) and 2016 (b) sea truth data. Some values in the upper left corner of the of the 2016 map were masked out due to the pres-

ence of thin clouds. 

(a) (b) 
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of stressed PO (disturbed – low dens.) meadows were detected in proximity to the harbor, 729 

probably linked to the concentration of anthropogenic activities and ship traffic.     730 

 731 

Figure 13 – LAI-c distribution assessed for the entire coast of Pantelleria island using RF MLRA.  732 

Tab. 4 includes the performance parameters evaluated for classification maps ob- 733 

tained through different MLCA using the BOA hyperspectral data of Lampedusa, ac- 734 

quired by the PRISMA sensor on 11-08-2020. The results obtained through SVC and LSVC 735 

were the two best (evaluated O.A. respectively, 82.64 and 78.46) while those related to RF 736 

and GP ranked correspondingly at intermediate and worst levels. 737 

 738 

Figure 14 – Four density derived classes of PO health within 20-30 m bathymetry range, according 739 
to Pergent model. 740 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 October 2021                   doi:10.20944/preprints202110.0248.v1

https://doi.org/10.20944/preprints202110.0248.v1


Sustainability 2021, 13, x FOR PEER REVIEW 21 of 26 
 

The Tab. 5, in addition to listing the best of these accuracy parameters for classifica- 741 

tion of PRISMA hyperspectral data, also shows those evaluated for thematic maps from 742 

S2 MSI multispectral data, obtained through the different radiometric preprocessing op- 743 

tions (BOA and WLR water-oriented atmospheric with sun-glint and adjacency effects 744 

removal) under the ATM column. Here the accuracy metric shows that, in general, the 745 

water oriented ACOLITE pre-processing (prefix ACO) performs better than that of ICOR 746 

(BOA and adjacency effect re-moval). Moreover, the ACOLITE BOA, including sun-glint 747 

(ACO-HS), is less effective than WLR ACOLITE (ACO-HW). 748 

Table 4 Accuracy assessment parameters estimated for seabed and PO thematic maps obtained by 749 
supervised  classification of PRISMA (BOA) data through different MLCA 750 

The following figures display the thematic maps obtained using the SVC MLCA, 751 

with data from PRISMA hyperspectral BOA VIS (Fig. 15) and from S2 multispectral WLR 752 

(Fig. 16), acquired on the dates indicated (Tab. 5). 753 

 754 
  

ATM 
Overall 

Accuracy 
(OA) 

OA 95% confi-
dence inter-

vals(%) . 

Kappa Ac-
curacy (K) 

K 95% confi-
dence inter-

vals(%) ..  

Mean F1 
Accuracy 

MLCA 

  

  

  

Date  sensor 

21/08/2016 S2 ACO-HW 82.22 78.0 86.01 78.67 73.94 83.4 82.32 SVC 

21/08/2016 S2 ACO-HW 78.33 74.0 82.28 74.0 68.92 79.08 77.86 RF 

21/08/2016 S2 ACO-HS 80.56 77.0 84.47 76.67 71.77 81.56 80.56 SVC 

21/08/2016 S2 ACO-HS 79.17 75.0 83.1 75.0 69.99 80.01 78.88 RF 

11/08/2020 PRISMA BOA 82.64 79.0 86.54 79.09 74.03 84.14 83.39 SVC 

11/08/2020 PRISMA BOA 78.46 74.0 82.83 74.02 68.51 79.53 79.21 LSVC 

21/08/2016 S2 ICOR 77.78 74.0 81.73 73.33 68.21 78.46 77.08 SVC 

21/08/2016 S2 ICOR 76.67 73.0 80.71 72.0 66.77 77.23 76.34 RF 

Table 5 Accuracy assessment parameters metric estimated for seabed and PO thematic maps ob- 755 
tained by supervised  classification of S2 and PRISMA EO data obtained from various prepro- 756 
cessing options (ATM column) by means of different MLCA. 757 

The retrieved seabed class distribution, in addition to the high accuracy metric refer- 758 

ring to sea truth (side-scan sonar map), shows a good deal with each other and with his- 759 

torical data (SiDi MAR). As regards the PO meadows distribution. As regards the 760 

  MLCA 

 GPC LSVC RF SVC 

param-
eter 

Esti-
mate 
[%] 

95 % Confi-
dence Interval 

[%] 

Esti-
mate 
[%] 

95 % Confi-
dence Interval 

[%] 

Esti-
mate 
[%] 

95 % Confi-
dence Interval 

[%] 

Esti-
mate 
[%] 

95 % Confi-
dence Interval 

[%] 
Overall 

Accu-
racy 

24.76 22.0 27.44 78.46 74.0 82.83 76.53 72.0 80.97 82.64 79.0 86.54 

Kappa 
Accu-

racy 
7.44 -3.0 17.88 74.02 68.51 79.53 71.71 66.02 77.4 79.09 74.03 84.14 

Mean 
F1 Ac-
curacy 

13.76 -   79.21 -   77.78 -   83.39 -   
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distribution of other seabed classes, there is a slight difference in the percentage of rock 761 

coastal areas compared to those with fine sand in the two thematic EO derived products. 762 

The PRISMA thematic product shows a better capacity to detect rocks and intermediate- 763 

coarse sand areas and a poorer PO patch geometric characterization, probably due to its 764 

geometric resolution (30 m), lower than that of S2 (10 m). 765 

In both PRISMA and S2 thematic maps, the PO areas are in agreement with test data 766 

(side scan sonar) but happen overestimated respect to the older distribution (SidiMar), 767 

with a different detection of the coarse sand dunes area in the southern part of the island. 768 

Ultimately, although the PRISMA sensor with its multiple narrow bands in the visible 769 

with basic atmospheric preprocessing has demonstrated the best thematic accuracy metric 770 

(O.A.=82.64), the results of the S2 sensor, suitably preprocessed using water surface op- 771 

tions, are slightly lower (O.A.=82.22), with a difference of less than 5%.  772 

 773 

Figure 15 – PO and seabed distribution classes assessed through SVR MLCA using PRISMA BOA 774 
hyperspectral data. The PRISMA panchromatic channel is used for the land island area while the 775 
black region indicate the unclassified ( confidence level < 80%).    776 

 777 
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 778 

Figure 16 PO and seabed distribution classes assessed through SVR MLCA using S2 WLR multi- 779 
spectral data. The S2 BOA green band (560 nm), is used for the land island area.    780 

4. Conclusion 781 

The PO meadows and sea beds of Pantelleria and Lampedusa islands were servicea- 782 

bly monitored and mapped through the developed methodology based on the EO data 783 

provided by the last generation of the S2 MSI and PRISMA multi/hyperspectral HR sen- 784 

sors, with their ampler selection of suitable frames and acquisition channels coupled with 785 

effective radiometric preprocessing for removing the different atmospheric noises from 786 

captured frames. Various approaches for coastal atmospheric pre-processing of EO data 787 

were integrated with different machine learning algorithms to properly support the re- 788 

gression/classification advanced modelling, calibrated/validated through sea truth data, 789 

collected and processed by means of original methods. 790 

The distribution of density and LAI of PO meadows of the Pantelleria coast were 791 

estimated through S2 EO data, focusing on the location of the ISWEC energy converter 792 

prototype on the north-east coast, where the sea truth calibration data was collected in 793 

2015 and 2016. The LAI (m2/m2) and density (shoots/m2) distributions of PO meadows 794 

were effectively assessed by means of preprocessed EO multispectral data using the most 795 

performant MLRAs (R2=0.81, R2=0.84). In this context, the S2 WLR data, atmospherically 796 

corrected using the advanced ACOLITE package, have been found to be the most effective 797 

for monitoring and modelling the PO and seagrass biophysical parameters distributions. 798 

The PO health distribution map, derived from estimated density according to the 799 

Pergent model, highlighted the satisfactory meadows condition in the vicinity of the 800 

ISWEC and throughout the island, except in small areas near the harbor, likely more sub- 801 

jected to anthropogenic impacts. 802 

The preprocessed S2 and PRISMA EO data were successfully exploited for mapping 803 

the seabed and PO of Lampedusa shallow waters using different MLA classification ap- 804 

proaches based on supervised schemes. The accuracy metric of the classification map ob- 805 

tained from the PRISMA hyperspectral data (BOA atmospherically corrected without sun 806 

glint and adjacency effects removal) was the best. The results, in terms of the accuracy 807 

metric of the classification based on S2 WLR data and the most performant MLCA, were 808 
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a bit lower (OA=82.22), while the others corresponding to different processing options 809 

follow.  810 

The results above described may provide a preliminary indication of the suitability 811 

of the last generation multispectral S2 MSI and hyperspectral PRISMA sensors for coastal 812 

ecosystems and shallow water monitoring, specifically for PO mapping purposes, 813 

strongly dependent on the radiometric pre-processing procedure for atmospheric noise 814 

removal. The integration of atmospheric preprocessing packages for EO HR multi/hyper- 815 

spectral data to couple the WLR retrieval with the removal of the sun glint and adjacency 816 

effects is required, also for the ongoing hyperspectral missions (i.e. ENMAP), in the per- 817 

spective of further improvement of the developed methodology. The results achieved 818 

demonstrate that the integrated use of these recent satellite HR remote sensing multi/hy- 819 

perspectral techniques through advanced MLA, even supported by limited on-site sur- 820 

veys, represents an effective and extensive mapping tool for supporting the sustainable 821 

management of island coastal environments and PO habitats in shallow waters. This is 822 

also guaranteed in the case of island coasts with high dynamic of sea currents, where it is 823 

of interest to assess the impact of the introduction of advanced systems for the exploitation 824 

of sea wave renewable energy on marine ecosystems and coastal environments, charac- 825 

terized by high biodiversity but significantly vulnerable to the pressure of anthropic ac- 826 

tivities and to climate change effects.  827 
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