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Abstract: The Mediterranean basin is a hot spot of climate change where the Posidonia oceanica (L.)
Delile (PO) and other seagrass are under stress due to its effect on marine coastal habitats and the
rising influence of anthropogenic activities (i.e. tourism, fishery). The PO and seabed ecosystems, in
the coastal environments of Pantelleria and Lampedusa, suffer additional growing impacts from
tourism in synergy with specific stress factors due to increasing vessel traffic for supplying potable
water and fossil fuels for electrical power generation. Earth Observation (EO) data, provided by
high resolution (HR) multi/hyperspectral operative satellite sensors of the last generation (i.e. Sen-
tinel 2 MSI and PRISMA) have been successfully tested, using innovative calibration and sea truth
collecting methods, for monitoring and mapping of PO meadows under stress, in the coastal waters
of these islands, located in the Sicily Channel, to better support the sustainable management of these
vulnerable ecosystems. The area of interest in Pantelleria was where the first prototype of the Italian
Inertial Sea Wave Energy Converter (ISWEC) for renewable energy production was installed in
2015, and sea truth campaigns on the PO meadows were conducted. The PO of Lampedusa coastal
areas, impacted by ship traffic linked to the previous factors and tropicalization effects of Italy
southernmost climate change transitional zone, was mapped through a multi/hyper spectral EO-
based approach, using training/testing data provided by side scan sonar data, previously acquired.
Some advanced machine learning algorithms (MLA) were successfully evaluated with different su-
pervised regression/classification models to map seabed and PO meadow classes and related Leaf
Area Index (LAI) distributions in the areas of interest, using multi/hyperspectral data atmospheri-
cally corrected via different advanced approaches.

Keywords: Posidonia oceanica (PO), LAI & density; PO health & Pergent model; sea truth collec-
tion; Earth Observation; HR satellite multispectral/hyperspectral sensors; atmospheric correction;
coastal monitoring; mapping shallow waters habitat seabed; Calibration/validation & training/test;
Classification & regression Machine Learning; Model Performance & thematic Accuracy; Sentinel
2 MSI multispectral & PRISMA hyperspectral; ISWEC(Inertial Sea Wave Energy Converter)

1. Introduction

In the Mediterranean, Posidonia oceanica (PO) is one of the most important seagrass
carbon sink species for the variety and extension of its meadows, but it is increasingly at
risk and sometimes in decline, with the frequent reduction of its extent and an increase in
meadow fragmentation [1, 2, 3]. This arises from the variations in sea water parameters
(i.e. turbidity, temperature, acidity, salinity) linked to climate change and impacts from
anthropogenic activities (fishing, traffic of ships and oil tankers, new coastal
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infrastructures) with coastal habitat modifications even favorable to tropical alien species
invasion [4, 5, 6, 7]. Like other seagrasses, PO plays a role of paramount importance in
coastal habitats worldwide, providing ecological goods and ecosystem services that con-
tribute to human welfare and shoreline protection [8]. To evaluate the ecological status of
PO meadows, different approaches have been developed using also the relationship be-
tween their genetic/genotypic diversity [9,10] and the main biophysical parameters (i.e.
shoots density, LAI) that today can be effectively monitored and mapped using integrated
approaches based on remote sensing techniques [11].

The recent advances in Earth Observation (EO) applications, based on satellite and
airborne platforms [12], provide operative tools for supporting extensive monitoring
needs for sustainable management of sea/inland waters [13, 14] and agri-ecosystems, nat-
ural and managed [15, 16], in various environments of the Earth's surface [17, 18]. How-
ever, EO based monitoring of shallow waters and seabed of the coastal environment char-
acterized by anthropogenic impacts, still represent a challenge, due to coastal water tur-
bidity often associated with various atmospheric effects and noises, joined with the diffi-
culties of in situ sampling for collecting sea truth calibration data of submerged plants on
seabed by means of scuba diving. These are important limiting factors to useful exploita-
tion of EO High Resolution (HR) data for extensive mapping of PO and coastal seabed
and water quality parameters [14, 19], especially where the coastal sea currents are signif-
icant like in the Southern Mediterranean islands, with consequent additional signal deg-
radations from increased water turbidity from sediment resuspension and sun glint pres-
ence [19, 20, 21, 22].

The Italian islands of the southern Mediterranean, like Pantelleria and Lampedusa,
generally present transparent coastal waters and PO meadows, with seabed habitats that
still exhibit significant levels of biodiversity and specific adaptation to the accentuated
energy levels of sea waves that characterize this area of the Sicily Channel [2, 20]. This
aspect favored the installation of the first Italian Inertial Sea Wave Energy Converter
(ISWEC) there, choosing Pantelleria as a representative of many small-islands in the Med-
iterranean Sea, whose energetic independence through eco-compatible innovative solu-
tions can improve the lives of the isolated coastal communities while safeguarding their
coastal fragile ecosystems from the perspective of global sustainability [23].

Despite their shallow water wealth and natural heritage, often safeguarded in pro-
tected areas, the actual increase in anthropogenic activities, linked to tourism and fishing,
negatively impacts on these natural ecosystems, with consequent potential damage and a
need for more effective monitoring to support their sustainable management. Other
threats derive from the difficulties of supplying potable water and electrical power to
many islands not connected to the national electricity grid, where additional factors of
environmental impacts come from the traffic of boats carrying fossil fuels for local elec-
tricity production, also used for desalinization of sea water [24].

In order to provide eco-compliant electric power from renewable resources, in 2015,
the ISWEC prototype was installed for testing purposes in the coastal area offshore of
Pantelleria. Even designed to minimize the impacts, the prototype installation and opera-
tion involved interactions with local PO and seagrass meadows, with possible plant dam-
age and water transparency decreasing due to seabed sediment resuspension [25, 24].

Thus, the effective monitoring of the local PO ecosystems in the two islands is rec-
ommended in order to allow the detection of potential stress and damage linked to the in-
crease in anthropogenic activities mentioned above and/or other natural factors. In 2015
and 2016, two measurement campaigns were carried out in the vicinity of the ISWEC pro-
to-type for collecting sea truth data on PO meadows [24, 26].

Satellite EO-based approaches for PO and seagrass monitoring can be very effective,
but they must be based on suitable HR sensors, as well as effective atmospheric prepro-
cessing and calibration based on appropriate in situ measurements. Once suitably cor-
rected for atmospheric noise, the satellite HR EO techniques can provide effective mul-
tiscale tools for monitoring marine ecosystems on shallow water seabed. However, the
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basic requirements for characterizing the PO meadow and sub-merged habitats of shallow
waters and their distribution patches at the "land-sea" inter-face area, in optically complex
coastal waters, first focus mainly on remote HR sensors within the 30-10 m a.g.r. (above
ground resolution) and suitable radiometry, sensible to weak signals coming from the
coastal seabed [21, 20]. In recent years, various satellite sensors have started to provide
EO data with these features for EO applications, like multispectral Landsat 8 OLI by
NASA and Sentinel 2 MSI (of the Copernicus ESA EU program), or the most recent hyper-
spectral PRISMA, implemented by ASI (Italian space agency), having different additional
capabilities based on its 240 acquisition bands, to be checked for these specific coastal
monitoring applications. These sensors, compared to previous ones of the same family, in
addition to the increase in the acquisition bands in the visible and TIR, present improve-
ment in their radiometry that offer greater capacity for operational monitoring of coastal
ecosystems previously unavailable [19]. In particular, the PRISMA sensor makes available
the opportunity to test this satellite EO hyperspectral technique in this specific sector,
where airborne remote sensing techniques have been mostly used.

Since atmospheric noise can greatly affect the useful reflectance signals exiting from
the water surfaces, the radiometric preprocessing must include an effective atmospheric
correction to remove, in particular, the significant contribution from the aerosol load and
other factors typical of the water column at the sea-land interface [20, 27, 28]. In addition,
the necessary sea truth measurements, devoted to quantitative PO characterization, are
expensive and labor-intensive due to human and instrumental resources needed to oper-
ate during diving for sample collection and subsequent laboratory analyses.

Considering these limiting factors, in this work, original EO-based monitor-ing/map-
ping methods for the useful exploitation of information extracted from the necessarily
exiguous number of available in situ measurement stations were implemented. The de-
veloped approach allowed us to exploit the radiometric variability related to EO data of
the entire sampling area (~50 m?) of Pantelleria stations, within a calibration/validation
schema for the regression models, based on some machine learning regression algorithms
(MLRA), designed to be robust against possible outliers and incomplete/limited samples
[29, 30, 31].

Recently, machine learning/artificial intelligence (AI) computer applications have in-
creasingly gained more popularity, especially in sectors where there is a need to make
effective predictions or trends calculations in case of limited/incomplete calibration/train-
ing data, statistical noise or collinearity presence, taking advantage of the so-called in-
creasing Big Data availability and robust statistical modelling advances. One of them re-
fers to re-mote sensing EO applications, where the increase in spectral/spatial capabilities
of the new sensors on board of the operative satellite platforms provides an unprece-
dented amount of EO data, continuously upgraded and made available online to the users
[18, 32]. On the other hand, in EO based monitoring and modelling applications, the fre-
quent necessity to face growing costs and resources to collect expensive in situ data re-
duces the possibility to plan a calibration as ample and complete as needed and desired.
Machine learning algorithms (MLAs) and schemas were developed to more effectively
exploit this kind of incomplete information through their self-adapting and learning ca-
pacities for useful predictive modeling with suitable assessment of mapping functions
from inputs, even limited, to outputs, optimized function approximation, or classification
[32]. In particular, they focus on two typical main usages of EO data processing, involving
the classification and regression approaches [29]. The classification aims at predicting a
discrete class of output labels from input data (typically, EO data as atmospherically cor-
rected multi/hyperspectral reflectance responses), after a learning phase termed training.
The regression is instead aimed at predicting continuous quantities on the basis of input
(the EO data) and a function model obtained from a calibration set of input/output data.
To support the development of a methodology for monitoring and mapping the PO hab-
itats in these islands, various typical MLA were preliminarily considered for regression
(MLRA) modeling and supervised classification (MLCA) of the multi/hyperspectral data,
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taking into account their different capabilities and performance in various situations of
noise, limited class samples, and outlier presence in input data that frequently occurs in
EO applications for coastal marine monitoring [26, 30, 33].

According to previous works, these satellite remote sensing HR techniques were
combined with in situ point measurements of biophysical parameter to monitor and map
the PO meadows and benthic habitats in the shallow coastal waters of the Pantelleria and
Lampedusa islands [34, 35].

Starting from the in situ measurements of the density and LAI (Leaf Area Index) of
PO, estimated for the sampling station areas in proximity of the ISWEC installation, vari-
ous distributions of these important biophysical parameters were assessed in the coastal
shallow waters of Pantelleria, using regression models based on different MLRA algo-
rithms and the original calibration/validation schema with Sentinel 2 MSI multispectral
data [36, 37].

According to Pergent [38], the developed methodology included the assessment of
the health distribution of PO located along the entire coast of Pantelleria island, using
bathymetry and the EO-derived PO density distribution.

The distribution of PO meadows and other seabed classes of the Lampedusa coast
were estimated through PRISMA hyperspectral data by means of an advanced MLCA and
supervised classification scheme, using the side scan sonar data, available for the western
part of the coastal seabed [39], as the training/validation set [40,41].

The ENMAP (Environmental Mapping and Analysis Program) software box package
was used for both regression and classification tasks, based on learning machine algo-
rithms [37]. This software is integrated into the free and open-source widely distributed
QGIS and was developed in the framework of the German hyperspectral EO HR mission,
with the launch of the satellite mission expected in the next few months and a sensor sim-
ilar to the operative PRISMA by ASI (Italian Space Agency). The PRISMA data, distrib-
uted as hdf5 format files, was decoded using the PRISMAREAD package, working in the
R statistic environment [42].

2. Materials and Methods
2.1. Methodology

In the developed methodology, the S2 and PRISMA EO data, preprocessed using dif-
ferent atmospheric correction options, available through the packages considered (ACO-
LITE, ICOR, System Pre-processors of EO Data provider), were exploited for assessing
regression/classification models, based on sea truth independent data and MLA, whose
effectiveness was assessed by means of a performance metric using various statistic pa-
rameters. In such a way, at the same time, both the atmospheric correction effectiveness
and algorithm suitability were evaluated. The most performant models were then used
for the production of the final thematic maps of seabed classes and biophysical parameter
distributions of PO on which are based the intercomparisons and considerations at differ-
ent scales, referring to the anthropogenic and natural impact factors.

2.2. Areas of interest and EO data

The EO techniques for estimating the concentrations of the various optically active
constituents of the shallows waters and monitoring submerged plant, make widely use of
the multispectral data currently provided by HR and VHR (High and Very high spatial
resolution) satellite/airborne sensors with resolutions respectively from a few tens of m
up to sub-metric (QuickBird, WorldView 2, Dedalus ATM,...). The VHR satellite systems
operate on user request and in a non-systematic way, with frame areas of about 10X10
Km, more suitable for local and not operational monitoring with limited space-time cov-
erage. Thus, to provide support for more operational monitoring needs, in the 2013 the
new polar HR sensor Landsat 8 OLI (Operational Terra Imager), started to provide sys-
tematically multispectral images (180X180 km?) of the earth's surface with 30 m of a.g.r.
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resolution, made continuously available to the users in repositories, accessible online. This
sensor, compared to previous ones of the same family, in addition to the increase in the
number of acquisition bands in the visible and TIR (Thermal Infrared), presents improve-
ments in its radiometry that offer greater capacity for operational monitoring of coastal
ecosystems previously unavailable. In addition to the usual spectral bands, a new
“coastal” acquisition channel have been introduced in the higher frequencies of blue, to
improve its coastal monitoring capabilities at the spatial resolution of 30 m. most profita-
ble in coastal and inland waters, often optically complex. In 2015, ESA (European Space
Agency) launched on board of Sentinel 2 (S2) polar satellite the MSI (MultiSpectral Instru-
ment) sensor, able to acquire data at 10 m a.g.r., and providing EO data open to scientific
user and application, with improved revisiting capability of 5 day, based on the twin plat-
form, Sentinel 2 B, that became operational shortly after the first one. In the 2019, the hy-
perspectral sensor PRISMA (240 acquisition bands) by ASI (Italian Space Agency) became
operational and with its capability of many acquisition channels in the visible range, at 30
m of a.g.r,, currently represents an unprecedented opportunity even for the applications
in the coastal monitoring sectors.

The 10-m multispectral HR data, provided by the 52 MSI satellite sensor, including
the entire coastal areas of interest, were acquired and preprocessed, with the objective to
test their improved monitoring capabilities of PO distribution with the related LAI (Leaf
Area Index) and other biophysical parameters. Furthermore, the hyperspectral data in the
VIS-NIR (Visible — Near Infrared) range (470-970 nm) at 30 m of a.g.r. (above ground res-
olution) provided by PRISMA, have been tested for mapping the PO meadows and seabed
in the coastal shallow waters of Lampedusa.

The monitoring activities in Pantelleria were primarily focused on the area of the
ISWEC installation but with the perspective to test the spatial extensibility of calibration,
carried out in the proximity of the converter (visible within the sampling station 1 borders
in the figure 1), over remaining coastal areas of the island.

The figure 1 shows the Pantelleria island image in true color acquired by S2 on 20-
08-2015 (upper part), with the detailed area of interest (lower part) including the sampling
station areas indication and global localization map (lower right corner). The ISWEC pro-
totype is visible in the area of sampling station n. 1. The detailed image shows also the sea
waves perturbing the water surface with sun glint and sediment suspension that intro-
duce noises to the useful EO reflectance signals from seabed and shallow water.

Considering also the lower size of Lampedusa (Figure 2), the EO derived map of its
PO meadows and other seabed main classes, has been produced for the coasts of the entire
island, using the partial distribution obtained through side-scan sonar as training/valida-
tion.
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Figure 1 — Pantelleria island in the S2 frame acquired on 20-08-2015, reported in true color (R:665
nm, G:560 nm, B:490 nm). In the upper image of the entire island, the area of interest including the
ISWEC location with the four sampling station of 2016 sea truth campaign, is indicated by the box
de-limited by red lines. The image at lower half shows the detail of the area of interest with the
three sampling stations of the 2015 campaign and the location of ISWEC converter (in the red cir-
cle) enclosed in the station n. 1 area. The synoptic map, with location of the islands of interest in
the Sicily channel of Mediterranean, is also provided (lower right corner).

The position of the converter was chosen on the basis of the energy distribution of
wave motion along the coasts of the island, evaluated through oceanographic modeling
and multi-temporal data appropriately acquired at adequate resolution, it is located
within areas where there are sparse PO meadows that need to be monitored to highlight
any consequent potential threats.
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Figure 2 — Lampedusa island (True color RGB) as seen by S2 MSI (10 m a.g.r.) multispectral sensor
(upper) on the 17-08-2015 and by PRISMA hyperspectral sensor on 11-08-2020 (panchromatic
channel at5ma.g.r.).

2.3. Sea truth

In general, the sea truth surveys for the assessment of PO focus mainly on the char-
acterization of meadows with continuous distributions (cover > 60-80%), without any op-
timization aimed at providing an area-based effective calibration for modelling based on
EO data. In case of discontinuous, fragmented, and patchy distributions of PO meadows,
the in situ calibration for the extensive distribution estimate of their biophysical parame-
ters through EO data, should require the assessment of the entire local area of interest,
including the sub-areas lacking plants, with a mean cover percentage lower than 20% that
must be accounted for. To address this limiting factor, an original methodology has been
exploited here for the sea truth acquisition of calibration measurements on the fragmented
PO meadows near the ISWEC installation in Pantelleria based on a systematic sampling
scheme. To better deal with PO patchy distribution, an on-purpose implemented sam-
pling method was exploited that allowed the estimation of a percent cover parameter us-
ing a semiautomatic digital procedure, from digital images of measurement plots ac-
quired by scuba. The estimated cover parameter was then exploited for refining the in situ
LAI distribution assessment, more area than meadow oriented, with the specific objective
of improving EO calibration [24, 26].

The ISWEC prototype was installed in late July-early August 2015, and the first sea
truth campaign was carried out in the second half of August, while the second one started
in the middle of October of the following year. During the campaigns, various measure-
ments of several biophysical parameters related to PO phenology have been acquired, in


https://doi.org/10.20944/preprints202110.0248.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 October 2021 d0i:10.20944/preprints202110.0248.v1

8 of 26

correspondence with sampling stations distributed along the bathymetric negative gradi-
ent, starting from the converter prototype location, at 31 m. of depth (fig 3). Three meas-
urement stations in 2016 were located at the same coordinates as those exploited in 2015,
while the fourth was positioned between the last two, at about 30 m. of bathymetry. Some
GPS techniques and other auxiliary instrumentation (i.e. compass, underwater digital
photo camera, containers for plant samples), used in diving supported information col-
lection of in situ biometric measurements completed with the subsequent laboratory anal-
yses for the assessment of the biophysical parameters of interest (biomass, shoot density,
cover, LAI). The work in the field, consisting mainly of the underwater activities using the
1 m?sampling frame (Figure 6) and auxiliary instrumentation, took place respectively in
the second half of last August and in the middle of October, according to logistic and
organization constraints and weather/sea conditions. In the perspective of EO based re-
gression model calibration and in accordance with the most popular protocols, for each
measurement station, a systematic sampling scheme based on 1 m? plots was exploited
(Fig. 3). The measurement stations are identified by their respective GPS center coordi-
nates on the surface and are associated with the related plots, each of 1 m? where the
biophysical measurements and samples were collected using an oriented frame with the
objective of allowing the characterization of an area compatible with the a.g.r resolution
of satellite images. The station coordinates coincide with those of plot n. 1 center, while
the d parameter of the plot scheme was set at 25 m, in order to cover a square area of about
50 m?, corresponding to the 5x5 pixel of the S2 MSI sensor. In addition, RGB digital images
of plots, taken with a special underwater camera, including approximately the frame with
a defined orientation, were acquired to support the development of a robust, innovative
and semi-automatic procedure for estimation of more reliable coverage/density values
(see below). Various phenology parameters of PO were visually assessed within each plot
identified by a North-oriented white frame (Fig 3), whose photograph image was taken
preliminary to other diving measurement activities. The density was appraised by visu-
ally counting the number of shoots (shoot/m?) in the North-West quadrant of the sampling
frame. Some PO plant samples (3-5 shoots) were then collected from the North-West
quadrant of the frame and properly stored for the successive laboratory analyses. Conse-
quently, by applying the conventional protocol, the average density was calculated and
expressed in the number of shoots/m? for the whole station area. The laboratory analyses
provided the characterization of phenology (i.e. LAI) and physiological parameters of PO
samples, such as biomass (fresh and dry weight) and biometry, together with genetic pol-
ymorphism for the determination of the genetic structure of the meadows (These genetic
and others aspects will be widely discussed within another paper in preparation). The
most common protocols for estimating the coverage of the PO meadows in diving are
based on the visual evaluation of the percentage coverage of PO within a plot sample area.
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st. 1: Lat: 36° 49' 23"N, Long :11° 55' 13" E { ISWEC) Sampling schema
st. 2: Lat: 36° 49" 21”N, Long: 11° 55’ 25" E
st. 3: Lat: 36° 49’ 20”'N, Long: 11° 55’ 35”E -
plot 2 plot 3 plot 4 }
N
N
plot5 plot 1 plot 6 |
1
plot 7 plot 8 plot 9

Figure 3- Location of the 3 stations and sampling scheme used for the survey campaign on the PO
meadows at the installation site of the ISWEC prototype (left part). Sampling schema for sea truth
collection (right part).

This estimate is likely always affected by approximations due to the subjectivity of
the operator, further worsened by uneven lighting situations and various limitations re-
lated to underwater operating modes. The use of digital images of the area of interest at
adequate resolution, duly oriented and pre-processed, allows areal assessment through
semi-automatic operating procedures aimed at increasing repetitiveness and the reliabil-
ity of the assessed cover values. Some digital pre-processing procedures, on purpose de-
veloped for both radiometric (normalization for illumination unevenness) and geometric
(perspective and frame rectification/overlay) corrections of the acquired image of the sta-
tion plots (fig 4), were applied before we proceeded with a supervised segmentation/clas-
sification algorithm. The classification output, without subjective photointerpretation, al-
lowed us to appropriately segment the pre-processed image into three classes consisting
of PO (green), sea bottom (blue) and frame (Fig. 4 bottom right), from which it is possible
to easily derive the coverage percentage of the PO. The procedure developed was then
applied to the entire set of plot images acquired for each sampling station.

At the ENEA Casaccia laboratory, Biomass and Biotechnology for Energy, the biom-
etry of each plant (number, length, and width of the collected leaves) was also estimated,
and the biomass was calculated in both fresh and dry weight after drying at 70 ° C for 72
hours, both in the epigeal (foliar) and rhizome. Once removed from the plants, the young
leaves were previously washed in distilled water, removing the epiphytes, placed in lig-
uid nitrogen and stored at-80 ° for the subsequent analyses. The density distribution of
the PO (shoots/m?2) at station level was derived by averaging the values assessed in diving
on its plots.

Following the well established methods, the LAI and other parameters, at the level
of the single stations, were calculated by averaging the laboratory biometric measure-
ments of samples collected at plot level (i.e. PO leave areas and number of leaves per
shoot, wet/dry specific weight) and related density values, with final normalization ac-
counting for plot surface.
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Figure 4 Use of the sampling frame on the PO meadows. Original image (top left) and after digital
corrections to minimize the effects of uneven lighting (top right). Corrected image for perspective
geometric distortion effects (bottom left) and classified using a semi-automatic procedure for iden-
tifying the PO coverage (bottom right)

The percent cover, obtained from digital processing of frame imagery taken while
diving, was then introduced as a multiplying correction factor aimed at the optimization
of the calibration of the regression modelling approaches based on EO data (see next chap-
ter).

In 2016, the PO meadows of Lampedusa (western part) were preliminarily mapped
using side-scan sonar on board a ship [39]. In addition to seabed classes of PO, some others
related to differently grained sand and rock were also discriminated (Fig. 5). Given the
scarce sonar detection capability of low density seabed vegetation, in addition to suitably
detected PO, a sparse (potential) PO class was introduced too. The three classes of differ-
ently grained sand and dunes, discriminated by sonar acoustic waves due to their textures
not easily detectable in EO data, were grouped into just two. According to the historical
maps, the most reliable part of this achieved data was used for training/validation of
MLCA (see next chapter), in the form of stratified randomly selected points extracted for
the seven seabed classes.

S.S.s0nar map 2016

PRISMA 110820

system BOA

B Band 35: 679.472778 nm
B Band 22: 562.736572 nm
I Band 12: 485.409607nm 368
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Figure 5- Side scan sonar map used for training /validation of machine learning classification mod-
els. The map is in overlay to true color hyperspectral PRISMA, frame acquired on the 11-08-2020
and atmospherically corrected (BOA).

2.4. EO data processing and calibration

The available EO frames, compatible with the sea truth data, were first selected on
the basis of visual inspection, checking the presence of cloud cover and water turbidity
patterns in the areas of interest. The selected data, atmospherically corrected using the
different options, was then exploited in the MLRA and MLCA modelling approaches
based on the sea truth calibration/training sets and using the various MLA algorithms. In
the end, the final choice in terms of frame, pre-processing options, and MLA combina-
tions, was accomplished on the basis of the performance parameters assessed in the model
validation/accuracy assessment steps.

2.3.1. Atmospheric pre-processing

The general approach to water applications, based on the near infrared (NIR) reflec-
tance channels for characterizing atmospheric aerosol parameters (i.e. aerosol optical
depth as AOD) distributions, in case of shallow water, typical of oligotrophic open oceans,
has proven to be less effective for monitoring shallow-water environments and seabed,
including seagrass and PO coastal ecosystems [43]. In fact, coastal waters are rarely oligo-
trophic due to their frequent optical complexity, with high concentrations of various op-
tically active substances (case II waters), which is often accentuated by sediment suspen-
sion dispersed in the water column, in the form of total suspended matter (TSM) concen-
tration, which is increased by sea waves and currents. To properly address these difficul-
ties in coastal water remote sensing, our approach includes atmospheric correction mainly
accomplished using the current version of the ACOLITE package, specifically designed
for atmospheric correction of multispectral remote sensing data at decametre resolution,
for monitoring applications in coastal or inland waters, even with non-negligible turbidity
[43]. It preliminarily starts with aerosol DSF fitting and system correction to produce a
BOA (Bottom Of Atmosphere) reflectance distribution (without taking into account the
detailed distribution of aerosol effects), then the corresponding WLR (Water Leaving Ra-
diance/Reflectance) is assessed (taking into account the detailed aerosol effect distribu-
tion), if the retrieved aerosol distribution (AOD) reaches a sufficient noise level to degrade
the water reflectance responses [45]. The package also provides the subset function of area
of interest, automatic selection of water surfaces (WLR option) and the sun-glint removal
from the processed multispectral data. This capability is remarkably favourable if we con-
sider also the turbidity of the waters due to the accentuated hydrodynamics of the marine
area of Pantelleria, caused both by the morphology of its coastal seabed and by the rele-
vant intensity of the sea current field, which, especially in summer, characterizes this area
of the Strait of Sicily. This aspect constitutes a limiting factor in the selection of exploitable
satellite acquisition frames for the monitoring of its shallow waters, which, in summer,
are considerably few, due to the presence of excessive diffuse turbidity and significant
sun-glint effects (figure 1).

The radiometric correction for quantitative monitoring of the coastal seabed where
the PO plants grow, in addition to atmospheric AOD, must take into account additional
noise contributions from other factors, like water column and adjacency effects [46, 47].
Given the normal situation of water limpidity along these islands’ coasts in case of current
minima, the selection of the few frames without visible turbidity pattern affecting the ar-
eas of interest is assumed to guarantee negligible water column attenuation noises. Adja-
cency effects result from contamination of water reflectance signals of interface pixels (fre-
quently including useful signals from PO plants) from contiguous land areas, depending
on atmospheric scattering and AOD [47]. Thus, for intercomparison purposes, another
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atmospheric correction package, named ICOR [48], not specifically devoted to water ap-
plications, is also exploited. The code is able to produce BOA distribution, including this
radiometric correction, not performed by ACOLITE (i.e. adjacency). The ACOLITE code
is based on the Dark Spectrum Fitting (DSF) algorithm for the optimized estimation of the
reflectance of coastal and inland waters, even with non-negligible turbidity, with optional
correction for sun-glint effects. In essence, DSF, instead of assuming a negligible signal
over water in predefined NIR or SWIR bands, and some spatial extent of aerosol type and
concentration, aims to achieve spatial-spectral modelling by choosing the optimal bands
for a given image or subset of images. Recent studies have found good performance of the
DSF algorithm in optically complex coastal or estuarine waters [44].

To test the capabilities of the 52 MSI satellite sensor for mapping the PO meadows in
the shallow waters of the island of Pantelleria, various multispectral frames taken in 2015
and 2016, at different levels of pre-processing, referring to different seasonal periods, have
been first selected on the basis of both cloud coverage and turbidity patterns from sea
current intensity.

For the atmospheric correction, the used approach was the so-called "image-based"
that exploits the specific information contained in the same multispectral image to be cor-
rected and does not require further in situ measurements in the field simultaneous with
the satellite passage. Moreover, being easy to apply, it is suitable for our operational use.

In general, the S2 frames are available at two atmospheric basic pre-processing levels,
termed TOA (Top Of Atmosphere) and standard atmospheric correction (performed
through the Sen2Cor default processor), used for retrieving bottom atmosphere surface
reflectance (BOA), without any refinement specifically devoted to suitably retrieving
WLR. The latter includes both the contribution of optically active components in the water
column, mainly including sediments (ITSM) and CDOM (Coloured Dissolved Organic
Matter) in addition to phytoplankton, as well as that relating to the coverage of the shal-
low seabed, coming from seagrass, macro-algae and various benthic substrates. To pro-
vide WLR distribution, more appropriate for our application, the ACOLITE package, re-
cently made available in its last version among the open-source scientific codes, was in-
troduced. ACOLITE code was designed to be specifically applied for atmospheric correc-
tion in coastal and inland water EO monitoring applications and provides corrections for
sun-glint with the production of both BOA and WLR corrected reflectance distributions
(only in case of aerosol presence), with automatic detection of water surface, but it doesn’t
include the adjacency effect removal.

Therefore, the radiometric correction of the selected frames for atmospheric effects
was carried out also through the ICOR code integrated into the SNAP ESA (European
Space Agency) package, which is not specifically conceived for pre-processing water sur-
face imagery but is able to correct reflectance signals for adjacency effects. This last cor-
rection could be very important for the effective monitoring of the coastal shallow waters
at the land-sea interface, due to the possible contamination of the upper reflection values
by the contiguous earth zones. In this context, given the unavailability of processing tools
able to do all the radiometric corrections above cited, it was introduced to allow a com-
parison of the relative weights of the different noise effects.

Considering the spectral ranges useful for water penetration and land-water dis-
crimination, the PRISMA hyperspectral data in the 411-708 nm range (38 bands) has been
selected preliminarily from its VIS-NIR dataset (66 bands) for the modelling step. Then
they were used as they had been provided, directly under the form of BOA, without any
water surface optimization and adjacency/sun glint effects removal, due to the unavaila-
bility of devoted processing packages. The classification carried out using the MLCA and
the information from the multiple PRISMA bands, in addition to the distribution of the
seabed classes, allowed a reliable estimate of the relative probabilities and levels of confi-
dence of the result, with the possibility of using a threshold for the effective selection of
the unclassified areas.
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2.3.2. Modelling and classification

The pre-processed 52 multispectral images were first exploited for assessing the dis-
tribution of PO biophysical parameters near the ISWEC converter of Pantelleria, using
different MLRA and sea truth calibration data collected in correspondence with the meas-
urement stations.

The objective of regression is to forecast a target value based on independent predic-
tors under the hypothesis of a cause/effect relationship function model between variables,
to be estimated using suitable known input-output values as a calibration data set. Re-
gression techniques mostly differ based on the number of independent variables and the
type of relationship between the independent and dependent variables. The widely dif-
fused linear regression works well in the case of linear relationships and an optimal cali-
bration set, but in the case of model functions not known and different from linear de-
pendence with a lacking calibration set, the results can be unsatisfactory. This situation is
typical of EO based monitoring applications, especially in shallow waters and coastal sea-
bed habitats, where the non-linearity of model functions and non-optimal and lacking
calibration sets deriving from sea truth collection difficulties often occur. This is mainly
linked to the complexity of radiative light interactions involved, coupled with the expen-
siveness in terms of cost and resources needed for sampling and measurements in scuba
diving activities.

In general, regression models, based on field measurements (independent variables,
responses), are usually implemented through a well-established calibration and valida-
tion (CV) schema, in order to provide better predictive power. The calibration delivers the
function model parameters by optimal fitting the responses of interest (i.e. LAI) using
physically or statistically based functions models of independent variables (the spectral
reflectance EO data) for a subset of the available measurements. In validation, the remain-
ing measurements, different from those of calibration, provide a realistic predictive capa-
bility of the estimated model using independent data. In such a way, a more realistic eval-
uation of performance and expected errors may be available for the successive running of
the calibrated model. In this framework, a sufficient number of measurements, likely
greater than the few available at the station level, is required to apply such a scheme to
suitably calibrate and validate models assessed, while also providing reliable insights into
their robustness in terms of statistical significance and predictive power. In order to try to
lower this negative impact linked to sea truth calibration incompleteness, we used both
advanced machine learning algorithms, possibly robust against this unfavorable aspect,
coupled with the partial expansion of the calibration data based on the radiometric varia-
bility in the area of the sampling stations, as explained in the following. For each station,
the sea truth data of PO biophysical parameter variables was derived from in situ and
laboratory measurement protocols as averages of plot systematic point sampling in a 50 x
50 m area around the station center coordinates (Figure 4), while their resulting standard
deviation was assumed as station measurement error. Therefore, an area of equivalent
dimensions compatible with that seen by the S2 MSI satellite sensor, approximately equal
to 5x5 pixels (window), centered on the single station, was used for the extraction of the
corresponding point spectral signatures at pixel level. These different spectral signatures
of the pixels crossing the areas of every measurement station were singularly used to suit-
ably support the calibration/validation steps in the selected regression modelling ap-
proaches. In addition, considering the low number of stations sampled, a virtual station
(station 0) was introduced in the vicinity of others where the bathymetry is incompatible
with the presence of PO, in order to better constrain the models.

Preliminarily, various S2 MSI frames, including the area of interest (AOI), were se-
lected on the basis of cloud coverage and other noise (sun glint and current turbidity pat-
terns) minimization. Then, the sea truth data with the corresponding spectral signatures
extracted from station areas on the atmospherically pre-processed AOI images in the se-
lected frames, were preliminarily tested using the MLRA approaches, available within the
ENMAP toolbox running in the QGIS environment [30].
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During the preliminary phase, in addition to the usual linear regression, the machine
learning regression algorithms tested were: Gaussian Process regressor (GP), Kernel
Ridge (KR), Linear Support Vector machine regressor (LSVR), Partial Least Square (PLS),
Random Forest tree (RF), Support Vector Machine (SVR). Most of these approaches can
provide effective and efficient solutions for regression and classification supervised tasks
in EO data applications [29, 32, 33], using the preventive and effective transformation of
the raw variables into higher dimensional representations of feature space, via different
kernel functions, with the capability to suitably handle non-linearity of models with col-
linearity and other weaknesses in calibration/training data. The Support Vector Machine
algorithms (LSVR, SVR) are based on the non-parametric supervised statistical learning
technique, with robustness against outliers and limited training. They are able to estimate
a hyperplane in the feature space that minimizes misclassifications. The RF consists of a
group of decision trees induced by different sub-sets of the training data. Each tree in the
forest casts a vote for the class with which a given analysis unit (in this case, a given seg-
ment) should be associated. The class with the most votes is the one associated with the
segment [33]. Various statistical performance indicators were considered, starting from
those of different error metrics coming from the difference between modelled/measured
values under the form of Mean Error (ME), Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), Mean Square Error (MSE), Median Absolute Error (MedAE). In ad-
dition, others, linked to correlation between variables, such as Ratio of Performance to
Deviation (RPD), Squared Pearson’s (r?), Explained variance score and Coefficient of de-
termination (R?) were also included. For the parameters of the first group based on differ-
ent error metrics, minimization of their absolute values is required, while for others,
linked to the correlation between calibration measurements, absolute maximum values
are the best ones when superior to one for RPD and close to 1 for the absolute values of
the others.

The supervised classification of the PO meadows and seabed covers in the coastal
shallow waters of Lampedusa was implemented using the GP, LSVC, RF, and SVR MLCA,
above introduced [25, 26]. The training/validation set was obtained from point samples
randomly extracted (stratified scheme) from various areas of the side scan sonar map,
previously verified on available historical maps and georeferenced in order to guarantee
its satisfying overlay with the PRISMA and S2 frames (RMS 1.5 pix). The relative perfor-
mance of classifiers was evaluated via different accuracy metrics based on overall accu-
racy (OA), K-statistics (k) and Mean-F1 accuracy parameters, derived from the related
confusion matrices [26], with the best results linked to the maximization of values.

All the EO multi/hyperspectral data, extracted from images (previously selected by
visual inspection of quick look) and subsequently corrected atmospherically using the
available preprocessing options, was used for modeling through MLA in the regression
and classification procedures. The selection of the best combination of frames, prepro-
cessing option and MLA, in terms of global performance was accomplished based on re-
sults obtained in the validation step implemented through a 3-fold cross-validation
method. This latter includes a random selection into three groups of the available sea truth
data and related spectral signatures, and then one of them is used for calibration/training
and the remaining two for validation/accuracy assessment. This step is repeated twice
using the other two group combinations, and then the final values of the performance
indicators are obtained as averages of the three partial outputs. Consequently, the final
output choice was then performed, based on the performance parameters obtained in the
modeling phase, for each frame and related atmospheric preprocessing option and spe-
cific MLA algorithm used. The thematic maps of the LAI-c and density continuous distri-
butions of Pantelleria PO meadows and the seabed classes, including PO, of Lampedusa
were produced using the best combination previously found.

The PO density distribution so obtained, coupled with the related bathymetry, al-
lowed us to assess a four-class map of the health of PO meadows along the entire coast of
Pantelleria island on the basis of the model first proposed by Pergent [38] and here
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suitably coded in the ERDAS-Imagine spatial modeler software environment. The model
was developed several years ago with the support of an ample data set of sea truth obser-
vations and on the basis of the standard PO density distributions within a bathymetric
range of 20 to 30 m. It includes 4 PO health classes, where the first two are disturbed
meadows with a decreasing level of degradation and the last two healthy ones.

3. Results

The Tab. 1 includes LAI shoot density (Den) and related cover (c) data, assessed from
laboratory and in situ measurements collected on PO meadows during the 2015 and 2016
campaigns. The calculated uncertainties of each biophysical parameter were indicated in
the right columns of the main values with the same label, starting with a capital D. The
cover values, produced by the on-purpose developed semiautomatic procedure using the
digital underwater imagery of PO plots, were exploited to obtain refined values of the LAI
(LAI-c). These refined values are lower compared to uncorrected ones and could be con-
sidered as the spatial density of LAl [(m?/m?)], more oriented to EO data calibration, than
usual LAI evaluations at meadow level. In fact, they showed a better correlation with EO
spectral reflectance responses of the reference area. The graph in Fig. 6, displays the cor-
rected (using % cover) and uncorrected LAI values, obtained from the data collected dur-
ing the two sea truth campaigns.

Due to patchy and fragmented distributions, the LAI-c data is all lower than the cor-
responding uncorrected ones, while the values measured in 2016 are significantly less
than those acquired in 2015 at the same station. The sea truth campaigns were carried out
respectively in the early/middle of August 2015 and in late October 2016..

2015 2016
Bath. LAl DLAI Den. Dden Cov LAl-c pLalc LAl DLAI Den. Dden Cov LAl-c DLAIc
st. (M) m%m?z m2/m?2 sh/m? sh/m? % m2/m?2 m2/m? m?/m2 m?/m?2 sh/m? sh/m? % m2/m?2 m2/m?

10 3,37 0,86 112,80 37,48 69,20 2,33 0,59 1,57 0,51 61,60 10,807 43,65 0,69 0,22
20 2,19 0,73 139,20 10,33 65,70 1,44 048 1,13 0,36 6560 19,308 47,15 0,53 0,17
30 1,83 0,40 54,40 17,573 23,15 0,42 0,09
31 262 1,21 121,60 33,57 4890 1,28 0,59 1,05 0,51 80,80 15,849 33,80 0,35 0,17

w AN R

Table 1- Biophysical parameters estimates derived from sea truth data collected in the 2015 and
2016 campaigns, and laboratory biometric measurements for all the stations. The station n. 4 was

introduced in 2016
LAl 2015-2016 W LAl-c-2015
e m LAI-c-2016
W LAI -2015
" LAl -2016
E 3.00
~
£
g 2.00 I I
1.00 I I
0.00 i ﬁ
! 2 . 4 3
station

Figure 6- LAI assessment with LAI-c related values, corrected using cover estimates provided by
the semiautomatic segmentation procedure, for the 2015 and 2016 sea truth campaigns. The sta-
tion values were reported according their growing bathymetry.
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Bath.

At the beginning of autumn, the PO, like terrestrial photosynthetic plants, loses both
the old leaves and the ends of the younger ones damaged by the first storms, which we
find on the beaches as biodegradable waste material. Therefore, the decrease in LAI and
biomass observed in the measurements relating to the two campaigns may likely be due
to the different seasonal vegetative stage linked to the dates on which they were con-
ducted. According to the light attenuation with bathymetry, the LAI parameters both de-
crease as depth increases from sampling station 1 to 4 (Fig. 5).The PO density trend (Fig.
7), doesn’t show an inverse dependence on the bathymetry, but it evidences the decreases
linked to the different seasonal stage of PO plants in the two campaigns.

2015 2016

Bio
(F.W.)

DBio
(F.W)

Biod
(D.W.)

DBiod
(F.W)

Bio
(F.W.)

DBio
(F.W)

Biod
(D.W.)

DBiod
(F.w)

(m)

10
20
30
31

g/sh
8,190
4,840

7,37

g/sh
1,644
1,800

g/sh
1,280
0,900

g/sh
0,198
0,248

g/sh
3,383
4,099
4,307
6,267

g/sh
2,316
2,450
2,732
2,386

g/sh
0,675
0,863
0,804
1,005

g/sh
0,359
0,398
0,387

1,88 0,396

1,24 0,29

6:=30.9 7,550=0.100 (mod2, 8A/8)

Table 2- Biomass estimates as fresh and dry specific weights( per shoot, derived from samples data
collected in the 2015 and 2016 sea truth campaigns, and laboratory biometric measurements for all
the stations. The station n. 4 was introduced in 2016.

The measured biomass shows a decrease in the middle stations in 2015, while in 2016
the measurements consistently rise with the bathymetry, but both with the related uncer-
tainties that reduce their reliability (tab. 2).

On the EO data side, the visual selection of the potentially exploitable imagery was
carried out by discharging those affected by clouds over the interest area and water tur-
bidity patterns from sea currents on the water surfaces to be monitored. The removal of
atmospheric noise (mainly from aerosol variable distribution over the water surfaces of
interest) from the multispectral frames acquired by the 52 MSI sensor was first accom-
plished through the above mentioned ACOLITE operational tool. The 52 multispectral
images for Pantelleria were acquired on 30-08-2015 and 21-11-2016, based on the previ-
ously described criteria, including regression performance parameters metric obtained for
the various MLCA (see fig. 9, table 3). Similarly, the frames of PRISMA and S2 sensors
exploited for the Lampedusa MLCA application were indicated in table 3.

Fig. 8 shows the results of the ACOLITE DSF modelling for the 52 frames acquired
on 30-08-2015 (a) and 14-08-2016 (b), while Fig. 9 displays the results of atmospheric

S2A/MSI| 2015-08-30 (10:00 UTC) S2A/MSI 2016-08-14 (10:00 UTC)

65=26.6 T,550=0.135

~@® = Pdark
-~
7=

Prayleigh
Ppath
Psky

1250 1500

1250 1500
Wavelength (nm)

Wavelength (nm)

1750 2000 2250

Figure 8 - ACOLITE Dark Spectrum modelling Fit (BJSF) for the S2 MSI multispectral images

acquired on 30-08-2015 (a) and 14-08-2016 (b). The sensor zenithal angle and AOD retrieved at
550 nm were also reported.
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correction steps performed using the different tools/options available, including those
provided by the ICOR code for adjacency effects removal.

ACOLITE- WIR

(@) (b) (©)
Figure 9 — Results from the different atmospheric corrections applied to the S2 MSI TOA multispec-

tral data of Pantelleria island: ACOLITE BOA (Bottom of Atmosphere) system corrected (a); ACO-
LITE WLR (Water leaving Radiance/reflectance) (b); ICOR BOA radiance/reflectance (c).

PRISMA 110820
System BOA

B Band 24: 579.351685 nm

W Band 18: 530.667114 nm
B Band 06:441.658905 nm |,
Fig. 5, a combination of system corrected (BOA) PRISMA VIS channels is displayed as the
background of the distribution of seabed training classes derived from the s. s. sonar map.
In Fig. 10, a different false color image of atmospherically corrected (BOA) hyper-spectral
PRISMA components, in the blue-green range, is reported. Given the high water penetra-
tion of the blue-green light made exploitable through the various PRISMA bands, many
costal seabed features can be better

Figure 10 — Atmospherically corrected (BOA) PRISMA hyperspectral image of Lampedusa, ac-
quired on 11-08-2020. Some sensor artifacts as colored lines cross the right part of the image.

identified as the bluish areas on the left-lower coast of the island, corresponding to
thin sand cover.

The point-pixel spectral signatures, extracted from the atmospherically preprocessed
images of the areas of sampling stations of Pantelleria, were coupled with the related LAI-
c values in order to assess the regression models using the different MLRA algorithms.
The graphs in figure 11 show the regression models assessed from the 30-08-2015 and 22-
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11-2016 S2 WLR distributions provided by the ACOLITE code. The best models were es-
timated using the KR and LSVR MLRA.
In the graphs, each dot represents a different pixel-point spectral signature extracted
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from the preprocessed multispectral data of the corresponding sampling station areas.

The station 0 (st. 0), with the corresponding null value for LAI-c, in the left graph cor-
responds to bathymetry of 40 m and consequent PO absence.

Table 3 includes the list of the best combinations found at the level of S2 frames, pre-
processing options, and MLRA, with the related performance parameters for the models
of PO LAI-c distribution on the Pantelleria coasts for the 2015 and 2016 years. The ATM
column of Tab. 3 embraces different radiometric preprocessing options. In particular,
ACO + the suffixes HW and HS refer respectively to WLR and BOA (with sun glint re-
moval and without adjacency correction), while ICOR indicates BOA with adjacency cor-
rection and without sun glint removal.

() Date ATM MAE RMSE ., MSE r’ R? MLRA
30/08(2015 ACO-HW 0.2912  0.3702 0.13Z]}) 0.8173  0.8168 KR
2n/no/ANn1c 1IrNp Nn 2NnoA N ANT7D N 2NN1 N 7CcCcH N 72%CANO RF

Figure 11 - LAI-c models estimated from the 30-08-2015 (a) and 22-11-2016 (b) S2 RF

preprocessed (WLR) frames, using respectively KR and LSVR MLRA algorithms SVR
08/12/2015 ACO-HW 0.3765 0.4588 0.2105 0.7449 0.7156 KR
22/11/2016 ACO-HW 0.0436  0.0495 0.0024 0.8438 0.8431 LSVR
14/08/2016 ACO-HS 0.1028 0.1217 0.0148 0.7182  0.7147 PLS

Table 3 - Best combinations found for regression models of PO LAl-c distribution of Pantelleria
coast, using preprocessed S2 frames and sea truth data of 2015 and 2016 with different MLRA

A subset of values obtained for the most relevant regression performance parameters
were also reported with the indication of the exploited MLRA. The best results for the
years 2015 and 2016 were obtained using the frames of 30/08 and 22/11, preprocessed with
ACOLITE for WLR retrieval. For these frames, the regression models with the highest
performance were those provided by KR and LSVR MLRA, with R? values of 0.81 and
0.84. The inferior results for both years, in terms of error and correlation performance pa-
rameters, of the BOA distribution provided by ACOLITE and ICOR, preliminarily suggest
that the WLR retrieved by ACOLITE is the most effective atmospheric preprocessing
method to allow seagrass mapping. The most effective MLRA with the 2015 frames fol-
lowing the KR were SVR and RF, while for 2016 the best are LSVR and PLS. The differ-
ences between the ranges of absolute values of calibration measurements acquired in the
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two campaigns and the internal variation within each dataset may involve the diverse
capacity of a specific MLRA to better model the required trends.

As stressed before, due to different campaign dates, the 2015 LAI calibration values
are significantly higher than the related values measured in 2016, with less discriminabil-
ity of measurement stations and consequently different MLRA effectiveness in distribu-
tion modelling. In any case, the regression global performance, in terms of both error and
correlation parameters, achieved the best result using the preprocessed frame of 22-11-
2016 with the LSVR model, followed by that of 2015 provided by the KR MLRA (Tab. 3).
The local distributions, assessed using the best 215 and 2016 models, are reported in Fig.
12. Their PO patch distributions were also in satisfactory accordance with the preexisting
information and maps available, even though they were not updated (i.e. M.A.T.T.M.-
SiDiMar. GIS-Geodatabase, 2008). Since the latter are mainly based on observations of the
summer period, the agreement of the 2016 autumn distribution (more affected by thin
cloud presence at the upper corner of the area of interest) is less strong. Furthermore, from
a qualitative comparison with this auxiliary GIS information (SidiMar), it happens that
the model estimated for PO distribution in 2015 through the KR MLRA is less stable spa-
tially at global level and less effective for the correct mapping of the PO of the entire island
than that derived from the RF (Tab. 3, fig. 13), although the latter is less performant with
sea truth point data.

Due to different seasonal development periods of PO in the sea truth campaign dates,
a direct comparison between the LAI-c distributions is useless for assessing the potential
impact of the ISWEC prototype, but in any case, the LAI-c map of 2016 doesn’t show a
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Figure 12 — PO LAl-c distribution assessed from the S2 WLR preprocessed images using different MLRA calibrated by means of tlel;_
2015 (a) and 2016 (b) sea truth data. Some values in the upper left corner of the of the 2016 map were masked out due to the pres-

ence of thin clouds. 'ac-

tion

with

the seabed beneath (i.e., floating mooring), did not significantly impact the nearby PO

meadows.

The PO density (shoots/m?) distribution was assessed using the WLR derived from
the 30-08-2015 S2 frame through SVR, which has been found to be the most performant
MLRA, although with poor parameter values (r?=0.401, R?=0.316). The PO health map
based on the Pergent model, obtained from these EO derived density and bathymetry
distributions, is shown in Fig. 14. In general, from the health map you can see that most
of the PO meadows on the Pantelleria coast are in equilibrium with normal or high density
and there aren’t areas of abnormal density, with highly disturbed meadows. Small areas
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of stressed PO (disturbed — low dens.) meadows were detected in proximity to the harbor,
probably linked to the concentration of anthropogenic activities and ship traffic.

[ st. 2015
MLRA: RF
S2-300815 HW

PO LAI-C
m / n?

i 2.33

. o
Background
S$2-200815 HS

Band 04: 665 nm

0.128085
-0.096337

Figure 13 — LAl-c distribution assessed for the entire coast of Pantelleria island using RF MLRA.

Tab. 4 includes the performance parameters evaluated for classification maps ob-
tained through different MLCA using the BOA hyperspectral data of Lampedusa, ac-
quired by the PRISMA sensor on 11-08-2020. The results obtained through SVC and LSVC
were the two best (evaluated O.A. respectively, 82.64 and 78.46) while those related to RF
and GP ranked correspondingly at intermediate and worst levels.

4 Disturbed - low density
B In equilibrium - normal density

I In equilibrium - high density
S2 20-08-2015 HS

2 Band 04: 665 nm

0.107773
-0.001024

e WY

Figure 14 — Four density derived classes of PO health within 20-30 m bathymetry range, according
to Pergent model.
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The Tab. 5, in addition to listing the best of these accuracy parameters for classifica-
tion of PRISMA hyperspectral data, also shows those evaluated for thematic maps from
52 MSI multispectral data, obtained through the different radiometric preprocessing op-
tions (BOA and WLR water-oriented atmospheric with sun-glint and adjacency effects
removal) under the ATM column. Here the accuracy metric shows that, in general, the
water oriented ACOLITE pre-processing (prefix ACO) performs better than that of ICOR
(BOA and adjacency effect re-moval). Moreover, the ACOLITE BOA, including sun-glint
(ACO-HS), is less effective than WLR ACOLITE (ACO-HW).

Table 4 Accuracy assessment parameters estimated for seabed and PO thematic maps obtained by
supervised classification of PRISMA (BOA) data through different MLCA

The following figures display the thematic maps obtained using the SVC MLCA,
with data from PRISMA hyperspectral BOA VIS (Fig. 15) and from S2 multispectral WLR

MLCA
GPC LsSvC RF SVC
Esti- 95 % Confi- Esti- 95 % Confi- Esti- 95 % Confi- Esti- 95 % Confi-
param-
oter mate dence Interval mate dencelInterval mate dencelnterval mate dence Interval
[%] (%] [%] [%] [%] [%] [%] [%]
Overall
Accu- 2476 22.0 27.44 78.46 74.0 82.83 76.53 72.0 80.97 82.64 79.0 86.54
racy
Kappa
Accu- 744 -3.0 17.88 74.02 6851 79.53 7171 66.02 77.4 79.09 74.03 84.14
racy
Mean
F1Ac- 13.76 - 79.21 - 77.78 - 83.39 -
curacy
(Fig. 16), acquired on the dates indicated (Tab. 5).
Overall OA 95% confi- Kappa Ac- K 95% confi- Mean F1
ATM Accuracy dence inter- curacy (K) dence inter- Accuracy MLCA
(OA) vals(%) . vals(%) ..
Date sensor
21/08/2016 S2 ACO-HW 82.22 78.0 86.01 78.67 73.94 834 82.32 SVC
21/08/2016 S2 ACO-HW 78.33 74.0 82.28 74.0 68.92 79.08 77.86 RF
21/08/2016 S2 ACO-HS 80.56 77.0 84.47 76.67 71.77 81.56 80.56 SvC
21/08/2016 S2 ACO-HS 79.17 75.0 83.1 75.0 69.99 80.01 78.88 RF
11/08/2020 PRISMA  BOA 82.64 79.0 86.54 79.09 74.03 84.14 83.39 SvC
11/08/2020 PRISMA BOA 78.46 74.0 82.83 74.02 68.51 79.53 79.21 LSvC
21/08/2016 S2 ICOR 77.78 74.0 81.73 73.33 68.21 78.46 77.08 SvC
21/08/2016 S2 ICOR 76.67 73.0 80.71 72.0 66.77 77.23 76.34 RF

Table 5 Accuracy assessment parameters metric estimated for seabed and PO thematic maps ob-
tained by supervised classification of S2 and PRISMA EO data obtained from various prepro-
cessing options (ATM column) by means of different MLCA.

The retrieved seabed class distribution, in addition to the high accuracy metric refer-
ring to sea truth (side-scan sonar map), shows a good deal with each other and with his-
torical data (SiDi MAR). As regards the PO meadows distribution. As regards the
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distribution of other seabed classes, there is a slight difference in the percentage of rock
coastal areas compared to those with fine sand in the two thematic EO derived products.
The PRISMA thematic product shows a better capacity to detect rocks and intermediate-
coarse sand areas and a poorer PO patch geometric characterization, probably due to its
geometric resolution (30 m), lower than that of 52 (10 m).

In both PRISMA and S2 thematic maps, the PO areas are in agreement with test data
(side scan sonar) but happen overestimated respect to the older distribution (SidiMar),
with a different detection of the coarse sand dunes area in the southern part of the island.
Ultimately, although the PRISMA sensor with its multiple narrow bands in the visible
with basic atmospheric preprocessing has demonstrated the best thematic accuracy metric
(O.A.=82.64), the results of the S2 sensor, suitably preprocessed using water surface op-
tions, are slightly lower (O.A.=82.22), with a difference of less than 5%.

MLCA: SVR

PRISMA 110820
VNIR

seabed class
[ PO sparse
[ sand thin
[ PO
I rock
[ sand medium
B sca water

PRISMA
Band: PAN (5 m)

E 1
0
Figure 15 - PO and seabed distribution classes assessed through SVR MLCA using PRISMA BOA

hyperspectral data. The PRISMA panchromatic channel is used for the land island area while the
black region indicate the unclassified ( confidence level < 80%).
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MLCA: SVR
S2 210816 HW

Il seabed class
I PO sparse

| Sand thin
B PO
I Rock
] Sand medium
I Sea water

S2 210816 HS
Band 3: 560 nm

0.447307

i -0.006453

Figure 16 PO and seabed distribution classes assessed through SVR MLCA using 52 WLR multi-
spectral data. The S2 BOA green band (560 nm), is used for the land island area.

4. Conclusion

The PO meadows and sea beds of Pantelleria and Lampedusa islands were servicea-
bly monitored and mapped through the developed methodology based on the EO data
provided by the last generation of the S2 MSI and PRISMA multi/hy perspectral HR sen-
sors, with their ampler selection of suitable frames and acquisition channels coupled with
effective radiometric preprocessing for removing the different atmospheric noises from
captured frames. Various approaches for coastal atmospheric pre-processing of EO data
were integrated with different machine learning algorithms to properly support the re-
gression/classification advanced modelling, calibrated/validated through sea truth data,
collected and processed by means of original methods.

The distribution of density and LAI of PO meadows of the Pantelleria coast were
estimated through 52 EO data, focusing on the location of the ISWEC energy converter
prototype on the north-east coast, where the sea truth calibration data was collected in
2015 and 2016. The LAI (m?/m?) and density (shoots/m?) distributions of PO meadows
were effectively assessed by means of preprocessed EO multispectral data using the most
performant MLRAs (R2=0.81, R2=0.84). In this context, the S2 WLR data, atmospherically
corrected using the advanced ACOLITE package, have been found to be the most effective
for monitoring and modelling the PO and seagrass biophysical parameters distributions.

The PO health distribution map, derived from estimated density according to the
Pergent model, highlighted the satisfactory meadows condition in the vicinity of the
ISWEC and throughout the island, except in small areas near the harbor, likely more sub-
jected to anthropogenic impacts.

The preprocessed S2 and PRISMA EO data were successfully exploited for mapping
the seabed and PO of Lampedusa shallow waters using different MLA classification ap-
proaches based on supervised schemes. The accuracy metric of the classification map ob-
tained from the PRISMA hyperspectral data (BOA atmospherically corrected without sun
glint and adjacency effects removal) was the best. The results, in terms of the accuracy
metric of the classification based on S2 WLR data and the most performant MLCA, were
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a bit lower (OA=82.22), while the others corresponding to different processing options
follow.

The results above described may provide a preliminary indication of the suitability
of the last generation multispectral S2 MSI and hyperspectral PRISMA sensors for coastal
ecosystems and shallow water monitoring, specifically for PO mapping purposes,
strongly dependent on the radiometric pre-processing procedure for atmospheric noise
removal. The integration of atmospheric preprocessing packages for EO HR multi/hyper-
spectral data to couple the WLR retrieval with the removal of the sun glint and adjacency
effects is required, also for the ongoing hyperspectral missions (i.e. ENMAP), in the per-
spective of further improvement of the developed methodology. The results achieved
demonstrate that the integrated use of these recent satellite HR remote sensing multi/hy-
perspectral techniques through advanced MLA, even supported by limited on-site sur-
veys, represents an effective and extensive mapping tool for supporting the sustainable
management of island coastal environments and PO habitats in shallow waters. This is
also guaranteed in the case of island coasts with high dynamic of sea currents, where it is
of interest to assess the impact of the introduction of advanced systems for the exploitation
of sea wave renewable energy on marine ecosystems and coastal environments, charac-
terized by high biodiversity but significantly vulnerable to the pressure of anthropic ac-
tivities and to climate change effects.
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