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Abstract: The huge advancement of Internet web facilities as well as the progress in computing 
and algorithm development, along with current innovations regarding high-throughput 
techniques enables the scientific community to gain access to biological datasets, clinical data, and 
several databases containing billions of information concerning scientific knowledge. 
Consequently, during the last decade the system for managing, analyzing, processing and 
extrapolating information from scientific data has been considerably modified in several fields 
including the medical one. As a consequence of the mentioned scenario, scientific vocabulary was 
enriched by novel lexicons such as Machine Learning (ML)/Deep Learning (DL) and overall 
Artificial Intelligence (AI). Beyond the terminology, these computational techniques are 
revolutionizing the scientific research in drug discovery pitch, from the preclinical studies to 
clinical investigation. Interestingly, between preclinical and clinical research, the translational 
research is benefitting from computer-based approaches, transforming the design and execution of 
the translational research, resulting in breakthroughs for advancing human health. Accordingly, in 
this review article, we analyze the most advanced applications of AI in translational medicine, 
providing an up-to-date outlook regarding this emerging field. 
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1. Introduction 
Nowadays, Artificial Intelligence (AI) as well as the related specialties of Machine 

Learning (ML) and Deep Learning (DL) are rapidly gaining traction in many sectors, 
including scientific ones (e.g., healthcare), with the potential to transform lives and 
improve patient outcomes in various fields of medicine. Accordingly, AI companies 
attracted approximately $40 billion worldwide in unveiled investment in 2019 alone [1], 
reaching $232 billion by 2025 [2]. Regarding the scientific areas, these revolutionary 
computer-based approaches have the potential to revolutionize how clinicians assist 
patients in clinical practice (precision medicine, virtual diagnosis, and patient 
monitoring) as well as how scientists discover and deliver new drugs and diagnostic 
tools [3-5]. These pieces of evidence are also supported by published papers during the 
years. In fact, by searching in PubMed the term “artificial intelligence”, we obtained 
over 140,000 published papers in the fields, with a significant increment starting from 
2018, testifying that the discipline is of particular interest worldwide (Figure1, panel A). 
Furthermore, by adding the term “translational medicine” to “artificial intelligence”, we 
obtained almost 2,000 publications with a marked increase from 2019 (Figure 1, panel B). 
This basic research highlighted the growing interest in AI-based techniques in scientific 
fields, particularly in translational medicine.  
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Figure 1. (A) Output of searching the term “artificial intelligence” on PubMed; (B) Output of 
searching the term “artificial intelligence” and “translational medicine on PubMed. The search 
was performed on 14th October 2021 (source PubMed https://pubmed.ncbi.nlm.nih.gov/). 

Currently, high-throughput procedures like parallelized sequencing, microscope 
imaging, and compound screening are now widely used by academic and 
biotech/pharmaceutical researchers, and the number and quality of laboratory data 
collected has increased dramatically. These "big data" are used for producing biological 
insight applying ML techniques, granting a better understanding of disease causes, 
uncover new therapy options, and improving diagnostic tools for clinical use [6]. 

In fact, AI term is defined from US Food and Drug Administration (FDA) as “the 
science and engineering of making intelligent machines”, whereas ML means “an AI 
technique that can be used to design and train software algorithms to learn from and act 
on data” [7]. 

Accordingly, the main goal of these advanced technologies is to analyze the big 
data employing computer-based algorithms for extracting valuable information for 
supporting decision-making [8]. So, the application of AI methods enable scientists to 
manage and conduct a broad assortment of tasks including diagnosis generation and 
appropriate therapy selection, risk prediction and illness stratification, medical mistake 
reduction, and productivity improvement, among other things [5,9]. In particular, 
regarding the translational research, a number of high-throughput assays generate data 
from many patient samples are acquired into datasets that are into machine-readable 
format and hypothetically critical variables are discovered employing an ML-based 
algorithm. The algorithm will learn relationships between the variables and may 
perform intelligent tasks, including grouping patients or predicting their outcomes [6]. 
The role of AI in medicine is summarized in Figure 2. 

 
Figure 2. Schematic representation of the application of AI/ML in translational medicine.  

According to one description, ML is “the fundamental technology required to 
meaningfully process data that exceed the capacity of the human brain to comprehend” 
[10]. A large number of data points is used to train ML computer-based models. Existing 
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information about specific data items and relationships between data elements is learned 
via repeated cycles of mapping between inputs and outputs rather than being explicitly 
coded into the model. Therefore, cooperation between ML and clinical specialists is 
critical, and there are a variety of modelling approaches that include various degrees of 
clinical experience into model parameters [11]. Currently, the generation of ML models 
is mainly grouped into four categories: supervised learning, unsupervised learning, 
semi-supervised learning, and reinforcement learning. Briefly, the output labels, such as 
a disorder, are known in advance in supervised ML models. In fact, the objective is to 
generate a computational tool for predicting an output from a set of input data (i.e., 
output is usually termed a target value, response variable, or label, while inputs 
predictors or features). The method "learns" the best model by analyzing data contained 
in the training set, that include many observations, each of which holds values for its 
characteristics as well as its label. In addition, there are two kinds of supervised ML: 
classification and regression. In the classification, the output variable is divided into 
categories like "present" or "absent," "disorder" or "no-disorder," or "grading" (Grade1, 
Grade2, etc), while in regression the output variable is an actual value such as “weight”, 
“dose” or “concentration” (IC50, EC50, TC50 etc) for performing predictions on novel 
samples. Such ML may be employed in medical imaging in a variety of areas, including 
radiology, pathology, and other imaging fields as well as in epidemiology. Very 
recently. with the outbreak of CoVid-19 pandemic some ML approaches have been 
applied for predicting the infection fate starting from an epidemiology dataset [12], as 
well as from environmental conditions [13]. Furthermore, in the last years supervised 
ML has also been used in drug discovery and development [14-16]. These approaches 
employing supervised ML are valuable, but they must be approached with prudence 
because they need huge and reliable data sets containing high-quality data to become 
accurate, and the data must be correctly categorized [17].  

On the other hand, unsupervised ML models aimed at identifying relationships in 
data that we would not see otherwise. In particular, there are no labels on the data sets, 
but they do contain features. As a result, the unsupervised ML algorithm must produce 
groups and classes based on data set similarities. Unsupervised ML, in contrast to 
supervised ML, predicts unknown outcomes, uncovering previously undiscovered 
patterns. 

Unsupervised ML is exemplified through clustering. This latter is the process of 
dividing data into various groups or clusters. Accordingly, when the exact information 
about the clusters is unknown, we can utilize unsupervised ML to cluster them 
unsupervised ML can be used [18]. Various scientific fields benefit from the application 
of unsupervised ML. For instance, in a recent report, unsupervised ML technique was 
applied for identifying subjects showing a high likelihood of dementia in population-
based surveys wit no needing of a medical diagnosis of dementia in a subsample [19]. 
Another study investigates healthcare professionals’ feelings toward a digital simulator, 
technology, and mentality for elucidating their effects on neonatal resuscitation 
performance in simulation-based assessments [20]. In general pathology, unsupervised 
ML is becoming a crucial tool for accelerating the transition to autonomous pathological 
tissue analysis [21]. In another research an unsupervised ML approach was used to 
discover patient clusters established on genetic signatures [22]. Also in this case in drug 
discovery and development, unsupervised ML has been successfully applied in 
atomistic simulations or to understand the comportment of chemicals (e.g, drugs) as 
well as materials [23]. Recently, a in a randomized clinical study unsupervised ML was 
applied to clustering septic patients to determine optimal treatment (NCT03752489). For 
better understanding the difference between supervised and unsupervised ML models, 
for example a supervised ML model can be used to identify which patients will develop 
a given disorder, a known entity, while an unsupervised ML model will be able to 
identify unknown subgroups of patients suffering from a given pathology since 
unsupervised models assume that the output labels are unknown. Most computer-based 
models incorporated into clinical workflows, as clinical decision support, are supervised 
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ML models. For improving the performances of ML models unsupervised and 
supervised ML can be combined in supervised ML (Figure 3). Ma and colleagues 
successfully reported a combination of the two strategies for phenotyping complex 
diseases. They applied this technique to obstructive sleep apnea, highlighting that the 
phenotyping framework constructed by combining unsupervised and supervised ML 
techniques can be employed for other heterogeneous, complex diseases to phenotype 
patients, distinguishing significant features for high-risk phenotypes [24]. Omta and co-
workers by combining unsupervised and supervised ML-based tools showed that has 
great capacity to increase the capability to detect new knowledge in functional genomics 
screening. Firstly, they applied unsupervised exploratory ML models should to the 
dataset for gaining a better insight into the quality of the data. This latter enhances the 
selection and labeling of data for establishing reliable training sets prior to applying ML. 
For demonstrating the validity of the approach, they used a high-content genome-wide 
small interfering RNA (siRNA) screen. By applying unsupervised ML models, they 
easily identified four robust phenotypes that were consequently used as a training set 
for developing a high-quality random forest (RF) ML tool for differentiating four 
phenotypes (accuracy = 91.1%; kappa = 0.85). The reported approach significantly 
improved the ability to obtain novel information from a screening compared with the 
usage of unsupervised ML techniques alone [25]. 

However, it is important to highlight that the accuracy of these analyses is terribly 
dependent on the quality of the training sets employed to generate ML models. 

Finally, the reinforcement ML method allow the computational tool to learn from 
its failures, generating an algorithm based on what it has learned. Thus, this learning is 
constructed upon the trial-and-error process [26]. In the scientific field, for example, 
different tasks can include training an algorithm such as to understand the treatment 
regimens on medical registry data and to find the optimal strategy for trating patients 
with chemotherapy. In a recent study has been successfully reported the use of a 
reinforcement ML model for establishing an effective formulation of clinical trial dosing 
the algorithm trained proper dosing regimens for reducing tumor diameters in patients 
treated by chemotherapy and radiation [27]. In Figure 3 is reported a schematic 
illustration of the mentioned ML approaches is reported.  

 
Figure 3. ML is mainly classified into four classes: supervised learning, unsupervised learning, 
and reinforcement learning.  

This briefly excursus about the different ML techniques and how they can be 
applied to scientific fields for improving and enhancing the understanding of complex-
systems, highlighted the potential of ML methods. To this end, there is a growing 
attention about the application of these methodologies in the framework of translational 
medicine, enhancing the ability of translational scientists to provide novel effective 
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treatments and diagnostics for healthcare. In this paper, we analyze the most advanced 
AI/ML methods applied to translational medicine that can learn from a range of big data 
sets produced in the lab and utilized for accomplishing clever jobs that are tough for 
human scientists. In particular, we reported AI/ML the most relevant and innovative 
approaches in different areas of medicine with a particular focus in a) drug discovery 
and development and b) imaging, biomarkers, diagnosis, and diseases-progression. 

2. Artificial Intelligent (AI) and Machine Learning (ML) in translational medicine 

2.1. Drug discovery and development, and drug targets prediction  

2.1.1. Drug discovery and development 
Beyond the classical computational approaches in drug discovery, such as ligand- 

(mainly QSAR methods and pharmacophore modelling) [28-31] and structure-based 
strategies (mainly based on molecular docking and molecular dynamics) [32-35] or a 
combination of them [36-39], currently these computational methods are integrated with 
ML technologies for improving the reliability of the calculation, avoiding false positive 
outcomes and enhancing the success ratio in identifying safer hit compounds. Some 
examples are represented by QSAR-ML models [40-43], multi- and combi-QSAR 
approaches [44-50]. Furthermore, in drug discovery field, advanced computational 
models, based on ML technology, hve demonstrated strong potential in selecting 
effective hit compounds [51-58]. Moreover, ML-based approaches represent a valuable 
resource also in drug repurposing field [59,60]. Interestingly, these approaches have 
provided potential drugs for treating CoVid-19 in a short time [61,62]. Currently, protein 
structural modeling and design as well as protein structure prediction, that can increase 
the proficiency in the drug discovery pipeline, are emerging areas of application of ML 
models [63-66]. In fact, ML methods offer a theoretical framework for identifying and 
prioritizing bioactive molecules possessing suitable pharmacological profile, as well as 
optimizing them as drug-like lead compounds before clinical investigation [58]. 
Generally, three steps allow the development of a computational protocol enabling ML-
based models: a) selection of appropriate descriptors for capturing crucial features of 
compounds involved in the study; b) selection of a suitable metric or scoring system for 
comparing the set of molecules; c) a proper ML-based technique is used for determining 
the characteristics traits the features that help to qualitatively or quantitatively 
discriminate active molecules from inactive ones [67,68]. ML/DL approaches suitable in 
the drug discovery field include RF, Artificial Neural Networks (ANN), Deep Neural 
Network (DNN), Graph Convolutional Neural Networks (GCNN), Convolutional 
Neural Networks (CNN), Naive Bayesian technique, Multiple Linear Regression (MLR), 
natural language processing (NLP), decision trees (DT), Logistic Regression (LR), Linear 
Discriminant Analysis (LDA), Multi-Layer Perceptron (MLP), Probabilistic Neural 
Networks (PNN), k-nearest neighbors (k-NN), and Support Vector Machine (SVM) only 
for considering someone of them in the context of ML [67,69,70].  

Briefly, we report some successfully and representative examples in which ML-
based methods enable the discovery of interesting hit compounds against different 
targets. Vignaux and colleagues used data in ChEMBL (https://www.ebi.ac.uk/chembl/) 
[71], publicly available, for building and validating Bayesian ML models for Alzheimer 
disease (AD) drug targets. The first selected target was glycogen synthase kinase 3 beta 
(GSK-3β) a well-established protein for design anti-AD drugs. GSK-3β is a proline-
directed serine–threonine kinase able to phosphorylate the microtubule-stabilizing tau 
protein. The process causes a dissociation of the microtubule, forming insoluble 
oligomers that are the constituents of neurofibrillary tangles detected in AD brains. The 
authors developed and validated a Bayesian ML (supervised ML) model for GSK-3β 
considering 2,368 compounds (cross validation, receiver operating characteristic (ROC) 
curve = 0.905). So, the developed computational tool was used for virtually screening a 
chemical library containing FDA-approved and investigational drugs. Experimental 
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validation showed that following this protocol, the authors selected a series of 
structurally different GSK-3β inhibitors. Among the retrieved active compounds, a 
selective small-molecule inhibitor (ruboxistaurin, CHEMBL91829) with activity against 
GSK-3β (IC50 = 97.3 nM) and GSK-3α (IC50 = 695.9 nM) deserves particular attention. This 
interesting approach highlights the valuable help of ML for accelerating the drug 
discovery process for finding effective AD therapeutic agents [53]. Fang and coworkers 
combined Bayesian ML and recursive partitioning (RP) algorithms for building 
classifiers to envisage the activity of molecules on 25 crucial cellular targets in AD 
applying a multitarget-quantitative structure-activity relationships (multi-QSAR) 
approach. The authors started to describe the selected molecules with two types of 
fingerprint descriptors, namely, ECFP6 and MACCS; after that they built one hundred 
classifiers. The performance was assessed by internal and external validation (area 
under the ROC curve for the test 0.741 - 1.0, average 0.965). The values are indicative of a 
robust models. for the test sets was from 0.741 to 1.0, with an average of 0.965. The 
validated computational tools were used for predicting the possible targets for six 
approved anti-AD drugs and 19 known active molecules within AD framework. The 
experimental validation confirmed the prediction outcomes, with the identification of 
various multitarget-directed ligands (MTDLs) against AD (seven acetylcholinesterase 
(AChE) inhibitors (IC50 = 0.442 - 72.26 μM); four histamine receptor 3 (H3R) antagonists 
(IC50 = 0.308 - 58.6 μM)). Among the retrieved active compounds, the best MTDL, 
namely DL0410, showed a dual cholinesterase inhibitor behavior (IC50 AChE = 0.442 μM; 
IC50 BuChE = 3.57 μM). Moreover, DL0410 behaved as a H3R antagonist showing an IC50 
of 0.308 μM. Remarkably, the selected work could have implications in MTDLs research 
against other disorders [72]. Remaining in the AD context, Rodriguez and colleagues 
reported the development of DRIAD (Drug Repurposing In AD), a ML-based strategy 
for quantifying possible relationships between the pathology of AD severity (the Braak 
stage) and molecular mechanisms as determined in records of gene names. Authors 
applied DRIAD to lists of genes arise from perturbations in differentiated human neural 
cells by using 80 FDA-approved and investigational drugs, identifying potential drugs 
for repurposing. Top-ranked drugs were experimentally evaluated against their targets. 
Interestingly, results showed that 33 FDA-approved drugs can be used for repurposing 
immediately. Notably, these selected drugs, after supplementary validation and 
identification of significant pharmacodynamic biomarkers, could be immediately 
investigated in human clinical trials [59]. Considering another neurodegenerative 
disorder, such as Parkinson’s disease (PD), Shao and collaborators described an 
integrated computational platform based on two in silico methods. The ML-approach 
was represented by SVM models coupled with Tanimoto similarity-based clustering 
analysis. Following this strategy, the authors investigated the possibility to identify 
molecules, possessing indole-piperazine-pyrimidine scaffold, able to modulate human 
adenosine receptor A2A and human dopamine receptor D2 subtypes. They identify two 
compounds that behaved as multifunctional ligands against human A2A (Ki = 8.7 and 
11.2 μM) and D2 receptors (EC50 = 22.5 and 40.2 μM). Furthermore, the retrieved hit 
compounds were devoid of any mutagenicity (up to 100 μM), cardiotoxicity or 
hepatotoxicity (up to 30 μM) issues, and one molecule improved the movement and 
mitigation concerning the loss of dopaminergic neurons in Drosophila models of PD [73]. 
In the same field, Michielan and coworkers reported a different application of the SVM 
and Support Vector Regression (SVR) methods for describing A2A versus A3 receptor 
subtypes selectivity profile as well as the related binding affinities. The authors 
implemented an integrated application of SVM–SVR method, constructed on the usage 
of molecular descriptors encoding for the Molecular Electrostatic Potential (autoMEP). In 
this way, the computational tool can simultaneously distinguish A2A versus A3 receptor 
antagonists predicting their binding affinity to the corresponding receptor subtype of a 
huge dataset composed by pyrazolo-triazolo-pyrimidine derivatives. The in silico 
approach was experimentally validated by synthesizing 51 novel pyrazolo-triazolo-
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pyrimidine containing compounds that confirmed the predicted receptor subtype 
selectivity and the related binding affinity profiles [74]. 

Regarding the anticancer research, Deshmukh and colleagues employed two ML 
algorithms (SVM and RF) for generating four classification models considering a large 
amount of PubChem bioassay data probable human Flap endonuclease1 (FEN1) 
inhibitors and non-inhibitors. FEN1 is a crucial protein concerning DNA replication and 
repair processes. Accordingly, the inhibition of Flap cleavage action results in increased 
cellular sensitivity to DNA-damaging agents (e.g., cisplatin, temozolomide), with the 
possibility to improve cancer prognosis. Since FEN1 is overexpressed in several kinds of 
tumors, FEN1 inhibitors could represent efficacious anticancer agents. For developing 
the mentioned ML models, the authors used huge freely accessible, high-throughput 
screening data of small molecules targeting FEN1. The findings showed that SVM model 
with inactive molecules was superior to RF with Matthews's correlation coefficient 
(MCC) of 0.67 for the test set. The computational tool was subsequently used in a virtual 
screening employing the Maybridge database (53,000 molecules). Five top-ranked 
compounds were experimentally validated. In fact, the selected hit compounds were 
tested against the enzyme and in cell-based system. The molecule JFD00950 behaved as 
FEN1 inhibitor in the micromolar range, inhibiting Flap cleavage activity, Moreover, 
JFD00950 showed a cytotoxic activity against a colon cancer cells (DLD-1, IC50 = 16.7 μM) 
[75]. The exploration of another drug target for developing anticancer drugs was 
performed by Zhang and colleagues. They investigated a promising target for cancer 
immunotherapy, the indoleamine 2,3-dioxygenase (IDO). The authors generated ML 
models using naive Bayesian and RP techniques considering a library of established IDO 
inhibitors. For building the models they used descriptors employing 13 molecular 
fingerprints for predicting IDO inhibitors. The best-performing ML computational tool 
was utilized in a virtual screening campaign using a proprietary chemical library. This 
step provided 50 potential IDO inhibitors that were experimentally validated. In vitro 
tests confirmed the prediction done by ML model since three new IDO inhibitors, 
belonging to the tanshinone family, were identified (IC50s = 1.30, 4.10, and 4.68 μM) [76]. 
Kang and coworkers attempted to target VEGFR-2, a well-established target for 
developing anticancer compounds with anti-angiogenic activity. The authors develop a 
ML model using naive Bayesian technique coupled to a molecular docking calculation, 
obtaining a virtual screening protocol that was used to identify VEGFR-2 inhibitors 
using a chemical library containing FDA-approved drugs. The most promising naive 
Bayesian model showed Matthews correlation coefficients of 0.966 and 0.951 considering 
the test set and external validation set, respectively. Accordingly, using the developed 
computational model 1841 FDA-approved drugs were screened and subsequently 
submitted to molecular docking calculation employing LibDock. The outcome of virtual 
screening provided 9 top-ranked drugs showing EstPGood value ≥ 0.6 and LibDock 
Score ≥ 120, were submitted to a biological evaluation. VEGFR-2 kinase test results 
showed that papaverine, rilpivirine, and flubendazole were able to inhibit VEGFR-2 
(IC50s = 0.47 - 6.29 μM). Notably, the integrated screening platform provided 3 FDA-
approved drugs as new VEGFR-2 inhibitors, that can be rapidly translated into clinical 
studies [77]. Montanari and coworkers applied four distinct ML algorithms to train the 
model (LR, naive Bayesian, SVM, and RF) for identifying novel agents acting as breast 
cancer resistance protein (BCRP) inhibitors. BCRP is involved in multidrug resistance 
(MDR) event, thus emerging BCRP inhibitors for increasing the concentration of 
antitumor agents into resistant cancer cells has been proposed as a valuable tactic for 
overcoming MDR. The developed model was validated showing good predictivity in 
cross-validation (area under ROC curve = 0.9) and satisfactory predictivity in 
prospective validation (area under ROC curve = 0.7). Subsequently, the computational 
tool was employed in a virtual screening approach using the drug library (1702 
compounds). Following this strategy, the authors identified 10 drugs as potential BCRP 
inhibitors to submit to biological evaluation (inhibition of mitoxantrone efflux in BCRP-
expressing PLB985 cells). Among the drugs tested two of them behaved as BCRP 
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inhibitors (cisapride and roflumilast, IC50 = 0.4 μM and 0.9 μM, respectively) [78]. Allen 
and collaborators used a ML model, based on Laplacien-modified naive Bayesian 
classifiers developed considering topological fingerprints, in a virtual screening 
campaign employing a large database (eMolecules > 6 million compounds) for selecting 
dual kinase/bromodomain (EGFR/BRD4) inhibitors. Two ML models for EGFR were 
developed considering extended connectivity fingerprints (ECFP4) based on a total of 
591,744 unique kinase compounds: one with 3,058 active molecules characterized by a 
pIC50/pKi ≥  7, and another with 4,785 active compounds with pIC50/pKi  ≥  6. The two 
developed models showed exceptional area under the ROC curve values of 0.98 to 0.99 
based on 50/50 training/test set and assessed employing leave-one-out cross-validations. 
The enrichment factors considering 1% of the dataset are 78 and 66, respectively. The ML 
model for kinase was coupled to a structure-based techniques regarding the 
bromodomain. This computational protocol allowed the identification of various BRD4 
inhibitors. Among them, a first-in-class dual EGFR-BRD4 inhibitor (compound 2870) 
was found (EGFR IC50 = 44 nM; ERBB2, ERBB4, and BRD4 IC50 = 8.73, 24.2, and 9.02 μM, 
respectively) [79]. 

In the field of parasitic and neglected tropical diseases ML-based approaches can be 
useful for identifying novel effective therapeutic agents as recently reported [80]. Here 
we only highlighted the representative works explicative of the mentioned technology. 
Keshavarzi Arshadi and colleagues developed a ML model based on a GCNN 
algorithm. GCNN has been demonstrated strong accuracy for the prediction concerning 
chemical properties of molecules. These ML-based computational models transform the 
molecules into graphs and learn higher-level abstract representations of the input solely 
based on the data [81]. In the above-mentioned research, GCNN represent the core of a 
new AI platform called DeepMalaria, with the aim to speed up the antimalarial drug 
discovery. The characteristic capacities of GCNNs are employed for implementing a 
virtual screening pipeline. A graph-based model was trained on 13,446 potential 
antimalarials contained in GlaxoSmithKline database. The developed model was 
validated by predicting hit molecules from an additional chemical collection and a FDA-
approved drug database. The molecules are also tested employing in vitro tests for 
validating the ML-based model. DeepMalaria identified all molecules showing 
nanomolar activity and 87.5% of the chemicals with greater percentage of inhibition (> 
50%). Additional tests, to uncover the mechanism of action of compounds, showed that 
not only one of the hit molecules, DC-9237, inhibits all asexual stages of Plasmodium 
falciparum, but is a fast-acting molecule, making it a robust drug candidate to be 
optimizated [82]. Furthermore, a very interesting ML-based approach was reported by 
Stokes and collaborators regarding the application of DL method for discovery novel 
antibiotic agents. Due to the tremendous impact of antibiotic resistance in clinical 
practice, there is an urgent need for novel chemicals able to inhibit the multidrug 
resistance bacteria [83]. In the mentioned work, the scientists trained a DNN model, 
using a dataset of 2,335 molecules, for identifying compounds possessing a broad-
spectrum antibacterial profile. The obtained computational tool exhibited an area under 
ROC curve of 0.896 considering the test data. As a result, the authors employed the 
model for screening various chemical libraries. From this screening step, they identify an 
existing drug, namely, halicin (SU-3327, developed for inhibiting c-Jun N-terminal 
kinase (JNK)). Remarkably, the structure of this compound is totally different from 
classical antibiotic agents. Moreover, halicin was demonstrated to possess interesting 
bactericidal activity in vitro as well as in vivo. The characterization of the mechanism of 
action as antibiotic revealed that halicin can dissipate the transmembrane ΔpH potential 
in bacteria, and it was found very efficacious against M. tuberculosis. Moreover, the 
developed ML model was used to screen over 100 million compounds belonging to the 
ZINC15 database. This additional screening provided further eight antibacterial agents, 
chemically unrelated to well-known antibiotics. Among them, two compounds 
(ZINC000100032716 and ZINC000225434673), showed strong broad-spectrum activity 
and overcame a range of frequent resistance factors. This approach was the first effective 
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experiment regarding the application of DNN for drug repurposing and for discovering 
new drug lead compounds. The findings indicated that ML approaches can be relevant 
for identifying novel antibiotic agents counteracting the dissemination of resistance, 
decreasing the assets required for discovering these compounds, and associated costs 
[84]. In another investigation, Li and colleagues generated ML models, employing naïve 
Bayesian and RP techniques, based on physicochemical descriptors and structural 
fingerprints, aimed at identifying novel DNA gyrase inhibitors to develop broad-
spectrum antibacterial agents, being bacterial DNA gyrase not expressed in eukaryotic 
cells. The overall predictive accuracies, considering the training and test sets, was 
greater than 80%. The authors used eleven promising ML models for the virtual 
screening of a chemical library. The potential hits, selected by virtual screening were 
experimentally validated against Escherichia coli, methicillin-resistant Staphylococcus 
aureus and other bacteria, and DNA gyrase. For compounds able to inhibit DNA gyrase, 
MIC values range between 1 and 32 μg/mL and, the relative inhibition rates of inhibitors 
ranging from 42% to 75% at 1 μM [85]. 

In the context of antiviral research, Ekins and collaborators developed a Bayesian 
ML model considering viral pseudotype entry assay and the Ebola virus replication 
assay data. The developed model was submitted to an internal and external validation 
step. The scientists employed this model in a virtual screening campaign using the 
MicroSource library of drugs, for selecting possible antiviral compounds. Among the 
retrieved potential hit compounds, three promising antiviral candidates were found 
(quinacrine, pyronaridine and tilorone, were experimentally validated with an EC50 = 
350, 420, and 230 nM, respectively, against Ebola virus replication). Notably, 
pyronaridine is an element of a combination therapy for malaria recently approved by 
the European Medicines Agency (EMA), consequently it could be immediately used for 
clinical testing. Also, this study highlighted how ML models can be used for speeding 
up the preclinical step of drug discovery trajectory, providing drugs for translational 
research [86]. 

Remarkably, ML approaches, especially based on reinforcement learning, can be 
useful for developing models that can also be applied for de novo design of small 
molecules possessing desired pharmacological profiles [87-89]. Briefly, we report some 
representative attempts to apply this methodology to this task. Recently, Zhavoronkov 
and coworkers reported the development of a deep generative model, namely, 
generative tensorial reinforcement learning (GENTRL), very useful for de novo small 
molecule design acting as inhibitors of discoidin domain receptor 1 (DDR1) kinase, that 
is involved in fibrosis and further disorders. To develop GENTRL, the authors combined 
reinforcement learning, variational inference, and tensor decompositions into a 
generative two-step ML algorithm. In the first step, the scientists learned a mapping of 
chemical space, a set of discrete molecular graphs, to a continuous space of 50 
dimensions, parameterizing the structure of the learned manifold in the tensor train 
format to utilize partly well-known features. The computational model was generated 
using six data sets: (i) a big set of compounds from a ZINC database; (ii) known 
inhibitors of DDR1 kinase; (iii) common kinase inhibitors (positive set); (iv) compounds 
active against non-kinase target proteins (negative set); (v) patent data of pharmaceutical 
companies regarding biologically active compounds; (vi) 3D structures for DDR1 
inhibitors. In the second step, they explored the mapped chemical space with 
reinforcement learning for discovery novel molecules against a selected target. Results 
showed that GENTRL is capable of optimizing synthetic accessibility, novelty, and 
bioactivity. In the reported paper, GENTRL allowed to indicate several compounds for 
the synthesis, authors synthesized six lead compounds. These latter were experimentally 
evaluated for their inhibitory potential against DDR1. Notably, two molecules strongly 
inhibited DDR1 activity (IC50 = 10 - 21 nM), the other two compounds showed moderate 
potency (IC50 = 0.278  - 1 μM), while the remaining two molecules were found inactive. 
Moreover, the best performing compounds demonstrated good selectivity against DDR1 
over DDR2 and one of was highly selective against a panel of 44 diverse kinases. 
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Interestingly, these two compounds inhibited the induction of fibrotic markers (α-actin 
and CCN2) in MRC-5 lung fibroblasts. These chemical entities were able to inhibit the 
expression of collagen (a hallmark of fibrosis) in LX-2 hepatic stellate cells [90]. 
McCloskey and coworkers, in an interesting approach, described an effective ML 
platform aimed at accelerating the drug discovery pipeline considering a DNA-encoded 
small molecule library (DEL) selection data. Two types of ML models were trained on 
the DEL selection data for classifying molecules (over 2,000): RF and GCNN. ML models 
were trained on the aggregated selection data (using no prior off-DNA activity 
measurements). The computational tool was applied to three drug targets (sEH (a 
hydrolase), ERα (a nuclear receptor), and c-KIT (a kinase)) and used in virtual screening 
of large chemical databases (∼88 million compounds). The outcomes revealed that the 
technique is efficient, with a global hit rate of ∼30% at 30 μM, discoverying powerful 
compounds (IC50 < 10 nM) for each drug target [91]. Lastly, a novel ML approach based 
on DL and reinforcement learning for de novo design of small molecules with desired 
profile was presented by Popova and coworkers. This computational tool named 
ReLeaSE (Reinforcement Learning for Structural Evolution) combines two DNNs 
(generative and predictive) that are trained independently although are employed 
together for generating new focused chemical libraries. The methodology was separated 
in two phases, in the first one, a supervised learning algorithm was employed for a 
separate training of generative and predictive models. The second phase consisted of a 
joint training of both models with the reinforcement learning methodology to bias the 
generation of new chemicals showing desired physical and biological profile. In the 
work, the authors applied ReLeaSE for generating a series of libraries containing 
chemical entities with a precise profile: (a) satisfactory drug-likeness, regarding 
physchem properties, the authors chosen Tm and n-octanol/water partition coefficient 
(logP); (b) desired biological activity, the authors selected Janus protein kinase 2 (JAK2) 
as the target protein; (c) novel chemotypes with significant chemical complexity, that 
should guarantee a higher selectivity against the selected target. In particular, the 
number of benzene rings and substituents were employed as structural rewards for 
designing focused libraries enclosing chemically complex molecules [87].  

2.1.2. Drug targets prediction and biomarkers identification 
Noteworthy, in addition to the previously discussed ML approaches to identify 

promising drug candidates, AI techinuqes are also emerging in drug targets prediction, 
with remarkable success. For instance, in the field of neurodegenerative disorders, we 
report here one of the most significant advancement in ML approaches applied to drug 
target identification in drug discovery/drug repurposing field. In fact, a computational 
model based on DL methodology, namely, deepDTnet was successfully used in a repur-
posing approach, providing interesting hints for treating multiple sclerosis [92]. 
DeepDTnet was conceived for identifying novel drug targets and drug repurposing, 
considering heterogeneous drug-gene-disease network embedding fifteen categories of 
chemical, genomic, phenotypic, and cellular network profiles. DeepDTnet was generated 
using 732 FDA-approved for training. Subsequent validation analysis showed that 
deepDTnet was accurate in identifying innovative cellular drug targets for marketed 
drugs (area under the ROC curve = 0.963). The experimental validation was performed 
considering the output of topotecan (a topoisomerase-I inhibitor), a chemotherapeutic 
agent approved to treat various forms of cancer, such as lung and ovarian cancer [93-95]. 
In fact, topotecan was predicted by deepDTnet as an inhibitor of the human retinoic-
acid-receptor-related orphan receptor-gamma t (ROR-γt), a promising drug target for 
treating different disorders including psoriasis, multiple sclerosis, and rheumatoid ar-
thritis [96,97]. According to computational output topotecan was found to inhibit ROR-
γt (IC50 = 0.43 μM) and notably showed potential therapeutic effects in multiple sclerosis, 
being efficacious in reverting the pathological phenotype in vivo in EAE mouse model at 
10 mg/kg [92]. Madhukar and colleagues, in the framework of drug target identification 
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developed a Bayesian ML algorithm, namely, BANDIT (Bayesian ANalysis to determine 
Drug Interaction Targets). This computer-based tool combines various kinds of data for 
predicting drug targets (e. g., 20 million data points derived from six diverse type of da-
ta such as drug efficacy, post-treatment transcriptional response, drug structure, de-
scribed undesirable effects, bioassay results, and well-established targets). Using over 
2,000 compounds, BANDIT showed an accuracy of ~90% in identifying correct targets. 
Next, the authors used this computational platform employing over 14,000 molecules for 
which any target was known. Results showed that the ML-based tool produced ~4,000 
undisclosed molecule-target predictions. Considering the most promising data the au-
thors validated fourteen molecules predicted as microtubule binders. Among this subset 
three compounds were highlighted for their activity against resistant tumor cells. Exper-
imental validation fully supported the BANDIT predictions. Moreover, BANDIT was 
applied to ONC201 (anticancer agents in clinical development with an unknow target). 
The development algorithm predicted ONC201 as an antagonist of dopamine receptor 2 
(DRD2). The target was validated confirming the prediction, and currently this hint de-
rived from the mentioned studies was the basis for designing an appropriate clinical tri-
al using ONC201. ONC201 will be evaluated for its efficacy in pheochromocytomas, a 
rare cancer in which was observed an overexpression of DRD2 (NCT03034200). Lastly, 
BANDIT identified linkers among distinct classes of drugs, revealing undisclosed clini-
cal observations highlighting novel possibilities for drug repurposing. According to 
these findings, BANDIT is a useful screening platform that can efficiently speed up the 
drug discovery process accelerating translational research toward clinical application 
[98]. Dezső and Ceccarelli reported the development of a ML-based approach for scoring 
proteins for generating a druggability score of novel unidentified drug targets. The au-
thors included in the ML model 70 features obtained from drug targets (e.g., features in-
dicating protein functions, features extracted from the sequence, and network features 
obtained from the protein-protein interaction network). They generated 10,000 ML 
models based on RF algorithm using a training set built considering drug targets in 
complex with marketed drugs (102 targets), and a “negative” set enclosing 102 non-drug 
targets. ML models are able to detect relevant combinations of included features 
discriminating drug targets from non-pharmacological targets. The approach was 
validated using an external test set of clinically-relevant drug targets (277 targets). 
Validation results showed a significant accuracy accounting for an area under the ROC 
curve of 0.89. the authors further validated their predictions using an independent set of 
clinical drug targets, attaining a high accuracy indicated by an area under the ROC 
curve of 0.89. The output reported in this work provided new potential drug targets for 
developing innovative anticancer drugs [99].  

2.1.3. AI/ML in quantitative systems pharmacology (QSP) 
Following the identification of prospective therapeutic drug targets, analysis must 

be performed to validate them. Computational approaches offer affordable low-cost, 
time-saving strategies to evaluate the likelihood that potential targets could provide an 
efficient way for treating a given disorder. Accordingly, a pivotal step in target 
validation is represented by the construction of confidence interval for a given potential 
therapeutic hypothesis employing quantitative systems pharmacology (QSP) models 
[100]. QSP is a stimulating and effective conjunction of biological pathways, 
pharmacology, and mathematical models for drug development. QSP possesses the 
potential for providing considerable impact to modern medicine as a result of the 
discovery and deployment of new molecular pathways and drug targets in the quest of 
innovative therapeutic agents and personalized medicine. The combination of these 
specialties is causing substantial attention in pharma companies to expand predictions 
from a pharmacodynamic (PD) and pharmacokinetics (PK) perspective and through the 
improvements in computing capacity, QSP is currently capable to improve outcomes in 
drug discovery trajectory. In fact, QSP models can combine information on PK/PD 
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properties, biological processes of interest and mechanisms of action, resulting from 
prior knowledge and available preclinical and clinical data, to quantitatively predict 
efficacy and safety responses over time and translate molecular data to clinical outcomes 
[101-104]. QSP provides a perfect quantitative framework for integrating different big 
data sources, including omics (i.e., proteomics, transcriptomics, metabolomics, and 
genomics) and imaging, the dimensionality of which can be reduced using ML methods. 
By allowing the identification of relevant association and data representations, the 
development of QSP platforms with higher granularity and enhanced predictive power 
can be further enhanced [105]. Moreover, the opportunity to implement QSP platform 
with ML techniques enhanced the capacity to handle big data can offer great 
opportunities for systems pharmacology modeling. In fact, with the high availability of 
processed and organized data for building interpretable and actionable computational 
models supporting decision making in the whole process of drug discovery and 
development, QSP can improve the reliability of predictions providing more complex 
analysis, a better understanding of biomedical systems, and ultimately lead to the design 
of optimized treatments. We reported some examples regarding this approach. 

In a recent work, Ramm and collaborators take advantage of systems biology 
methods coupled to multi-dimensional datasets and ML for identifying biomarkers to 
predict nephrotoxic molecules, for characterizing their mechanism of toxicity in vitro. 
The authors employed primary human kidney cells and used an approach based on sys-
tems biology combining multidimensional datasets and ML for identifying biomarkers 
for predicting nephrotoxic molecules along with the mechanism of toxicity. ML using RF 
technique was applied for systematically identifying genes and imaging features from 46 
different nephrotoxic compounds. From this analysis, the authors acquired information 
regarding changes in cell morphology as well as mRNA levels, finding and validating 
HMOX1 and SQSTM1 as nephrotoxic biomarkers. Furthermore, RF algorithm was 
trained and validated using clinical observations of kidney toxicity and employed for 
nephrotoxicity classification (class labels as nontoxic = 0 (10 instances, including 8 mole-
cules, DMSO, and medium controls) or toxic = 1 (38 molecules)). The developed compu-
tational model was capable of discriminating nephrotoxic from non-nephrotoxic mole-
cules and a hierarchical clustering approach, considering chemicals with an established 
mechanism of action allowed to detect potential mechanisms of toxicity of drug candi-
dates [106]. 

Notably, the individuation of appropriate and efficacious therapies for treating a 
given pathology is extremely important. Computational models can help with this issue 
also providing the responsiveness of patients for a given treatment. In an interesting 
work, Song and coworkers reported the development and validation of a large-scale bi-
directional generative adversarial network for predicting tyrosine kinase inhibitor (TKI) 
response in patients with stage IV EGFR variant–positive non-small cell lung cancer. In 
the mentioned diagnostic/prognostic study were enrolled 465 patients and the authors 
developed a DL semantic signature for predicting progression-free survival (PFS) was 
built in the training group. The computational approach was validated employing two 
external validation and two control groups and compared with the radiomics signature. 
Briefly, 342 subjects with stage IV EGFR variant-positive non-small cell lung cancer re-
ceiving EGFR-TKI therapy met the inclusion criteria. Of these, 145 patients from two 
hospitals (n = 117 and 28) were included in the training group, and the patients from two 
additional hospitals established two external validation groups (validation cohort 1: n = 
101; validation cohort 2: n = 96). 56 patients with advanced-stage EGFR variant-positive 
non-small cell lung cancer and 67 patients with advanced-stage EGFR wild-type non-
small cell lung cancer who received first-line chemotherapy were included. A total of 90 
subjects (26%) receiving EGFR-TKI therapy with a high risk of rapid disease progression 
were detected applying the DL semantic signature. When compared to other patients in 
validation groups, PFS dropped by 36% (hazard ratio, 2.13; 95 percent CI, 1.30-3.49; 
P.001). When comparing the PFS of high-risk patients receiving EGFR-TKI treatment to 
chemotherapy groups, no substantial variations were detected (median PFS, 6.9 vs 4.4 
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months; P = .08). In terms of predicting the tumor progression risk after EGFR-TKI ther-
apy, clinical decisions based on the DL semantic signature led to better survival out-
comes than those based on radiomics signature across all risk probabilities by the deci-
sion curve analysis [107]. Very recently, Lu and collaborators described a significant ML 
approach based on DL algorithm for predicting patient response time course from early 
data via neural-PK/PD modelling. Currently, analyses of patient response following dos-
es of therapeutics are conducted employing standard PK/PD methods that require rele-
vant human scientific expertise. Interestingly, the application of DL to system pharma-
cology as in the case of PK/PD models that directly learn the governing equations from 
data for predicting patient response time course and for simulating the effects of unseen 
dosing regimens. Accordingly, the authors, in this new methodology, combined crucial 
pharmacological rules with neural ordinary differential equations. This neural-PK/PD 
model was used for analyzing the drug concentration and platelet response considering 
a clinical dataset comprising over 600 patients. In particular, the computational strategy 
was applied to predict drug concentration and platelet dynamics after the treatment 
with trastuzumab emtansine (intravenous administration at 3.6 mg/kg once every three 
weeks) for treating human epidermal growth factor receptor 2 (HER2)-positive metastat-
ic breast cancer in subjects failing treatment before-hand with trastuzumab and a taxane. 
The outcomes demonstrated that the computational model is able to predict the patients’ 
responses and also simulate patients’ responses considering untested dosing regimens. 
These findings prove the potential of neural-PK/PD for automated predictive analytics 
of patient response time course, suggesting that AI/ML approach can support  clinical 
pharmacologists with a prospective, in the next future, to use neural-PK/PD as advanced 
analytics tools for understanding and predicting drug concentration and response for 
dosing recommendation [108]. 

At the end of this section, day-by-day it is evident how AI has emerged in the field 
of drug discovery and development, being able to improve affordable and effective 
therapeutic treatments for common and emerging disorders, accelerating drug 
repurposing and minimizing the translational gap in drug development. 

2.2. Imaging, biomarkers, diagnosis, and diseases-progression 

2.2.1. General consideration 
With the growing accessibility to high-quality amounts of cell imaging data, there 

are currently relevant possibilities to use ML-based methods to aid researchers in cell 
image processing. In fact, the image features that are supposed to be crucial in 
producing the prediction or diagnoses can be generally processed by using ML 
algorithms. These latter offer possibilities of predictive, descriptive, and prescriptive 
assessment to acquire relevant information that would otherwise be impossible to obtain 
by human analysis, providing accurate medical diagnoses [109,110]. Accordingly, in the 
last years various clinical investigations have enabled the use of AI in several fields 
providing general pathological classification, risk evaluation, diagnosis, prognosis, and 
prediction of appropriate therapy and possible responses to a given pharmacological 
treatment [111,112]. In particular, DL, a class of ML that employing ANN (CNN and 
recurrent neural networks (RNN)) resembling human cognitive capabilities, has proven 
undeniable superiority over conventional ML approaches owing to algorithm 
improvement, better processing hardware, and access to massive amounts of imaging 
data [113]. The successful incorporation of DL technology into normal clinical practice is 
determined that the diagnosis accuracy is comparable to that of healthcare experts. 
Furthermore, DL model integration provides additional advantages, including speed, 
efficiency, affordability, increased accessibility, and ethical behavior [110]. For these 
reasons, the FDA has approved the use of specific DL-driven diagnostic computational 
tools for clinical usage (Table1) [114-116]. The application of AI encompasses several 
medical and biomedical fields including radiology [117], gastroenterology [118,119], 
neurology [120,121], ophthalmology [122,123], cardiology [124,125], dermatology [126], 
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general pathology [127], oncology [128], healthcare [129,130] and clinical medicine 
[131,132].  

Table 1. List of some examples of FDA-approved AI/ML-based solutions [114,116,128,133-135]. 

Device/algorithm 
(Company) 

Type of 
algorithm  

Description 
FDA 

approval 
number 

Medical 
field(s) 

Date and 
reference 

Accipio Ix 
(MaxQ-Al Ltd.) 

AI 

The tool is used for an au-
tomatic, rapid, highly ac-
curate identification and 

prioritization of suspected 
intracranial hemorrhage  

K182177 
Radiology 
Neurology 

Oct 2018 
[136] 

Advanced Intelli-
gent Clear-IQ En-

gine (AiCE) 
(Canon Medical 

Systems Corpora-
tion) 

Deep CNN 

AiCE system is used for 
reducing noise boosting 
signal to quickly deliver 
sharp, clear, and distinct 

images  

K183046 Radiology 
Jun 2019 

[137] 

AI-ECG Platform 
(Shenzhen Carewell 

Electronics., Ltd.) 
AI 

AI platform for assisting 
physicians in measuring 

and interpreting ECG 
K180432 Cardiology Nov 2018 

[138] 

AI-ECG Tracker 
(Shenzhen Carewell 

Electronics., Ltd.) 
AI 

The tool is used for im-
proving the detection effi-
ciency of non-persistent 
arrhythmias (irregular 

heartbeats) 

K200036 Cardiology 
Mar 2020 

[139] 

AI-Rad Companion 
(Cardiovascular) 
(Siemens Medical 

Solutions USA, Inc.) 

DL 
The software is used for 
detecting cardiovascular 

risks from CT images 
K183268 Radiology 

Oct 2019 
[140,141] 

AI-Rad Companion 
(Pulmonary) 

(Siemens Medical 
Solutions USA, Inc.) 

DL 
The software is used for 
detecting lung nodules 

from CT images 
K183271 Radiology 

Jul 2019 
[140,141] 

AI Segmentation 
(Varian Medical 

Systems, Inc.) 
AI 

The software is used for 
providing a fast, accurate, 
and intelligent contouring 
for improving the repro-
ducibility of structure de-
lineation in radiation on-

cology 

K203469 Radiology 
Oncology 

Apr 2021 
[142] 

Altoida 
(Altoida, Inc.) ML 

The software is used for 
detecting AD up to 10 

years prior to the onset. 
ML is used for classifying 
patients’ risk of MCI due 

to AD (NCT02843529) 

FDA-ClassII Neurology 
Aug 2021 
[143,144] 

AmCAD-UO 
(AmCad BioMed 

Corporation) 
AI 

The tool is used for detect-
ing OSA in awake pa-

tients, it can precisely scan 
upper airway and analyze 
the gap between normal 

breathing and Müller Ma-
neuver models 

K180867 Radiology 
Dec 2018 

[145] 

AmCAD-US 
(AmCad BioMed 

Corporation) 
AI 

The tool is used to view 
and quantify ultrasound 
image data of backscat-

K162574 Radiology May 2017 
[146] 
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tered signals acquired 
from ultrasound data 

AmCAD-UT Detec-
tion 2.2 

(AmCad BioMed 
Corporation) 

AI 

The software is used for 
facilitating the detection, 
visualization, and charac-
terization of thyroid nod-

ule features on so-
nographic images 

K180006 Radiology 
Aug 2018 
[147,148] 

AmCAD-UV 
(AmCad BioMed 

Corporation) 
AI 

The tool is used for classi-
fying the ultrasonic color 

intensity data from signals 
of flow Doppler  

ultrasound images 

K170069 Radiology Apr 2017 
[149] 

APAS Independ-
ence 

(Clever Culture Sys-
tems AG) 

AI/ML 

The tool is used to auto-
mate culture plate imag-
ing, analysis, and inter-

pretation 

K183648 Microbiology 
Sep 2019 
[150,151] 

Arterys Cardio DL 
(Arterys Inc.) DL  

The software is used for 
the analysis of cardiac 

MRI images 
K163253 

Radiology 
Cardiology 

Jan 2017 
[152] 

Arterys Oncology 
DL 

(Arterys Inc.) 
DL 

The software is used for 
measuring and tracking 

lesions and nodules from 
MRI and CT images 

K173542 Radiology 
Oncology 

Jan 2018 
[153] 

Arterys MICA 
(Arterys Inc.) 

AI 
AI platform used for liver 
and lung cancer diagnosis 
from MRI and CT images 

K182034 Radiology 
Oncology 

Oct 2018 
[154] 

BioFlux Device 
(Biotricity Inc.) 

AI 
The tool is used for 

detecting arrhythmias  
K172311 Cardiology 

Dec 2017 
[155] 

BladderScan Prime 
PLUS System 

(Verathon Inc.) 
DL 

The tool provides 
improved bladder volume 

measurement accuracy 
K172356 Radiology 

Sep 2017 
[156] 

Bone VCAR 
(BVCAR) 

(GE Medical 
Systems SCS) 

DL 

The tool is used for 
automated spine labeling 
(segments or whole spine) 

from CT images 

K183204 Radiology 
Apr 2019 

[157] 

Brainomix 360° e-
CTA 

AI 
The tool is used for 

automatically detecting 
LVO on CT angiography 

K192692 Radiology 
May 2020 
[158,159] 

BrainScope Ahead 
100 

(Brainscope 
Company, Inc.) 

AI 

The software is used for 
interpreting the structural 
condition of the patient’s 

brain after head injury 
from EEG data 

DEN140025 Neurology 
Nov 2014 

[160] 

BriefCase 
(Aidoc Medical, 

Ltd.) 
DL 

The tool is used for 
detecting acute 

abnormalities across the 
body, helping radiologists 

to prioritize life-
threatening cases 

expediting patient care 

K180647 
Radiology  
Emergency 
Medicine 

Aug 2018 
[161] 

cvi42 for cardiac 
CT/MRI 
(Circle 

Cardiovascular 
Imaging Inc.) 

ML/DL 

The software is used for 
assessing heart function, 
flow and tissue attributes 

from CT/MRI images 

K141480 Radiology 
Cardiology 

Aug 2014 
[162,163] 

ClariCT.AI 
(ClariPI Inc.) 

DL The tool is used for 
processing and enhancing 

K183460 Radiology Jun2019 
[164] 
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CT images reducing noise 

Clarus 700 
(Carl Zeiss Meditec 

Inc.) 
DL 

The algorithm is applied 
to diagnosis and 

monitoring retina 
disorders  

K191194 Ophtalmology May 2019 
[165] 

ClearRead CT 
(Riverain 

Technologies, LLC) 
DL 

The software is used to 
detect pulmonary nodules 
and abnormalities in CT 

K161201 Radiology 
Oncology 

Sep 2016 
[166,167] 

cmTriage 
(CureMetrix, Inc.) AI 

cmTriage is a tool 
enabling radiologists to 

triage, sort and prioritize 
mammography 

K183285 
Radiology 
Oncology 

Mar 2019 
[168] 

Cognoa ASD 
Diagnosis Aid ML 

The software is used for 
evaluating patients at risk 

of ASD 
DEN200069 Neurology 

Jun 2021 
[169] 

complete control 
system gen2 
(Coapt, LLC) 

AI/ML 

The platform provides a 
human-bionic interface 

that learns and adapts to 
users, giving them 

unrivaled control of their 
prosthetic arms 

K191083 Neurology Apr 2019 
[170] 

ContaCT 
(Viz.AI.) 

AI 

The software is used for 
detecting stroke from CT 
angiogram images of the 

brain 

DEN170073 Radiology 
Neurology 

Feb 2018 
[171] 

Critical Care Suite 
(GE Medical 

Systems, LLC.) 
AI 

The platform is used for 
automatically detecting 
PNX from X-ray system 

triaging critical cases  

K183182 
Radiology 
Emergency 
Medicine 

Aug 2019 
[172] 

CuraRad-ICH 
(CuraCloud Corp.) 

DL 
The tool is used for 
triaging suspected 

intracranial hemorrhage 
K192167 Radiology 

Apr 2020 
[173] 

Deep Learning 
Image 

Reconstruction 
(GE Medical 

Systems, LLC.) 

DL 

The application is used for 
CT images reconstruction 
Follow-up - K201745 DL 
Image Reconstruction for 

Gemstone Spectral 
Imaging (Dec 2020) 

K183202 Radiology 
Apr 2019 

[174] 

DreaMed Advisor 
Pro  

(DreaMed Diabetes, 
Ltd.) 

AI 

The application is used for 
automatically determining

the optimal therapy to 
maintain balanced glucose 

levels 

DEN170043 Endocrinology 
Jun 2018 

[175] 

DV.Target 
(Deepvoxel Inc.) 

DL 

The algorithm is used to 
automatically delineate 

OARs. Contours 
generated by DV.Target 
may be used as an input 
to clinical workflows in 

radiation therapy. 

K202928 Radiology 
Apr 2021 

[176] 

EchoGo Core 
(Ultromics Ltd.) 

ML 

The application is used to 
automatically evaluate 
cardiac functions from 

echocardiography, 
enabling physicians to 

diagnose heart failure and 
coronary artery disease  

K191171 Cardiology 
Nov 2019 

[177] 
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EchoMD 
Automated Ejection 

Fraction Software 
(Bay Labs, Inc.) 

ML This software is used for 
automated ECG analysis 

K173780 Radiology 
Cardiology 

Jun 2018 
[178] 

Eko Analysis 
Software 

(Eko Devices Inc.) 
ANN 

The software is used for 
detecting the presence of 

suspected murmurs in the 
heart sounds and atrial 

fibrillation from ECG data 

K192004 Cardiology 
Jan 2020 

[179] 

eMurmur ID 
(CSD Labs GmbH) 

ML 
The software is used to 

understand, identify, and 
detect heart murmurs 

K181988 Cardiology Apr 2019 
[180] 

EnsoSleep  
 (EnsoData, Inc.) 

 

AI 
The application assists 

clinicians for the diagnosis 
regarding sleep disorders 

K162627 Neurology 
Mar 2017 

[181] 

EyeArt 
(EyeNuk) 

AI 

The software is used as a 
screening tool for 
detecting diabetic 

retinopathy 

K200667 Ophtalmology 
Mar 2020 
[182,183] 

FerriSmart Analysis 
System 

(Resonance Health 
Analysis Service Pty 

Ltd.) 

ML/CNN 

The software is used for 
measuring liver iron 

concentration from R2-
MRI images. The system 
is based on previously 

approved (K043271, 
Jan2005) R2-MRI Analysis 

System 

K182218 
Radiology 

Internal 
Medicine 

Nov 2018 
[184-186] 

Guardian Connect 
System 

(Medtronic) 
AI 

The application is used 
from diabetic patients for 
monitoring blood glucose 

contents predicting 
changes 

P160007 Endocrinology 
Mar 2018 

[187] 

HealthCXR 
(Zebra Medical Vi-

sion Ltd.) 
AI 

The software is used for 
identifying and triaging 
pleural effusion in Chest 

X-rays 

K192320 
Radiology 
Emergency 
Medicine 

Nov 2019 
[188] 

HealthMammo 
(Zebra Medical Vi-

sion Ltd.) 
DL 

The tool is used for 
supporting identifying 

and prioritizing 
suspicious mammograms 

K200905 
Radiology 
Oncology 

Jun 2020 
[189] 

HealthPNX 
(Zebra Medical Vi-

sion Ltd.) 
AI 

The tool increases the 
radiologist's confidence in 

making PNX diagnosis 
from Chest X-rays 

imaging output 

K190362 
Radiology 
Emergency 
Medicine 

May 2019 
[189] 

icobrain 
(icometrix NV) 

ML and DL 

The software is used for 
interpreting MRI images 

from the brain for 
detecting neurological 

disorders 

K181939 Radiology 
Neurology 

Nov 2018 
[190,191] 

IDx 
(Digital Diagnostics 

Inc. -IDx LLC.) 
AI 

The software is used for 
detecting diabetic 

retinopathy 
DEN180001 Ophtalmology 

Jan 2018 
[192,193] 

Illumeo System 
(Philips Medical 

Systems 
Technologies, Ltd.) 

AI 

The tool is used for 
acquiring, storing, 

distributing,  
processing, and 

displaying images 

K173588 Radiology 
Jan 2018 

[194] 
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lnferRead Lung CT 
(Beijing Infervision 

Technology Co. 
Ltd.) 

AI 

The tool is used for 
assisting radiologists for 

detecting pulmonary 
nodules from CT 
(NCT04119960) 

K192880 Radiology  
Oncology 

Jun 2020 
[195,196] 

Infinitt PACS 7.0 AI 

The software is used to 
analyze incoming tasks, 
identifying high priority 

cases 

K172803 Radiology Sep 2017 
[197] 

KardiaAI 
(AliveCor, Inc.) 

AI 

The tool is used for 
enhancing cardiac MRI to 

improve diagnosis of 
heart disorders 

K181823 Cardiology 
Nov 2019 

[198] 

KOALA 
(IB Lab GmbH) 

DL 
The algorithm is used to 
detect radiographic signs 

of knee osteoarthritis 
K192109 Radiology 

Nov 2019 
[199] 

Koios DS for Breast 
(Koios Medical, Inc.) 

AI 

The software is used for 
analysing ultrasound 
images for providing 

improved accuracy and 
efficiency in cancer 

diagnosis 

K190442 Radiology 
Oncology 

Jul 2019 
[200] 

KOSMOS 
(EchoNous Inc.) 

DL 

This tool combining 
ultrasound with DL is 

used for clinical 
assessment of the heart, 

lungs and abdomen 

K193518 Cardiology 
Mar 2020 

[201] 

LiverMultiScan 
(Perspectum 

Diagnostics Ltd) 
ML 

This platform is used to 
assess liver tissue to 

enable diagnostic and 
patient management 

decisions. 

K190017 Radiology 
Jun 2019 

[202] 

LVivo Software 
Application 

(DiA Imaging 
Analysis Ltd) 

AI 

The software provides an 
automated AI-based 

ejection fraction analysis, 
allowing a fast assessment 

of cardiac functions 

K210053 Radiology 
Jan 2021 

[203] 

LungQ 
(Thirona Corp.) 

AI 

The software is used for 
automatically identifying 
lung abnormalities from 

CT images 

K173821 Radiology 
Jun 2018 

[204] 

MRCP+ V1.0 
(Perspectum 

Diagnostics Ltd) 
AI 

The software is used for 
quantitatively analyzing 

the biliary tree and 
pancreatic duct from 

MRCP images 

K183133 Radiology Jan 2019 
[205] 

MRCAT brain 
(Philips Medical 

Systems MR 
Finland) 

AI 

The tool is used for 
radiotherapy planning of 
primary and metastatic 

tumors using MRI  

K193109 Radiology 
Jan 2020 

[206] 

NightOwl 
(Ectosense nv) AI 

The algorithm is used for 
analyzing biophysical 

parameters for evaluating 
sleep-related breathing 

disorders of patients 
suspected of sleep apnea 

(NCT03774199; 
NCT04194073) 

K191031 Anesthesiology Mar 2020 
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NuVasive Pulse 
System 

(NuVasive, 
Incorporated) 

AI 

The tool is used during 
spinal surgery, neck 
dissection, thoracic 

surgeries improving 
surgical procedures 

K180038 Surgery 
Jun 2018 

[207] 

OsteoDetect 
(Imagen 

Technologies, Inc.) 
DL 

The software is used for 
detecting signs of distal 

radius fracture from X-ray 
DEN180005 

Radiology  
Emergency 
Medicine 

May 2018 
[208] 

PixelShine 
(ALGOMEDICA) DL 

The software is used for 
improving the quality of 
scans obtained from any 

CT images, reducing noise 

K161625 Radiology 
Sep 2016 

[209] 

PowerLook Density 
Assessment 

Software 
(iCAD, Inc.) 

ML 

The algorithm is used for 
assessing breast density in 

2D and 3D 
mammography 

K180125 Radiology 
Apr 2018 

[210] 

ProFound™ AI 
Software  

(iCAD, Inc.) 
DL 

The software is used for 
detecting both malignant 
soft tissue densities and 
calcifications from DBT 

images  

K191994 
Radiology 
Oncology 

Apr 2019 
[211] 

QuantX 
(Qlarity Imaging) AI 

The software is used for 
assessing and 

characterizing breast 
abnormalities from MRI  

data 

DEN170022 Radiology 
Oncology 

Jul 2017 
[212] 

QbTest/QbCheck 
(QbTech AB) AI/ML 

The tools are used for 
braingazing using eye-
tracking technology to 

capture eye vergence and 
AI-algorithms for 

classifying patients 
ADHD vs non-ADHD 

K040894 
K143468 

Neurology 
Psychiatry 

Jun2004 
Mar 2016 
[213,214] 

qp-Prostate 
(Quibim S.L.) AI 

The tool is used for 
analyzing prostate MRI 

images 
K203582 

Radiology 
Oncology 

Dec 2020 
[215] 

Rapid ASPECTS 
(iSchemaView, Inc.) AI 

The tool is used as 
assisted diagnostic 
software for lesions 
suspicious of cancer 

K200760 Radiology 
May2020 

[216] 

RAPID-ICH 
(iSchemaView, Inc.) 

AI 

The tool is used to triage 
non-contrast CT (NCCT) 

cases for rapidly detecting 
suspicious intracranial 

haemorrhage  

K193087 Radiology 
Mar 2020 

[217] 

RayCare 3.1 
(RaySearch 

Laboratories AB) 
ML/DL 

The software is used for 
improving workflow 

efficiency across different 
treatments in medical-, 
radiation, and surgical-

oncology to support 
decisions in the clinic 

K200487 Radiology 
Oncology 

Jun 2020 
[218] 

RayStation 10.1 
(RaySearch 

Laboratories AB) 
ML 

The platform is used to 
automatically generate 

treatment plans  
K210645 Radiology 

Oncology 
Jun 2021 

[219] 

RBknee 
(Radiobotics ApS) ML 

The software is used for 
automatically identifying 
osteoarthritis in the knees 

K203696 Radiology 
Aug 2021 

[220] 
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based on X-ray images 
Red DotTM 

(Behold.AI 
Technologies Ltd.) 

AI 
The software is used for 

assessing PNX from chest 
X-ray images  

K191556 Radiology 
Jan 2020 

[221] 

Sight OLO 
(Sight Diagnostics 

Ltd.) 
AI 

The algorithm is used for 
inspecting blood samples 

(NCT03595501) 
K190898 Hematology Nov 2019 

[222,223] 

SOZO 
(ImpediMed Ltd.) 

AI 

The tool is use for the 
clinical assessment of 

unilateral lymphedema, 
combining BIS with AI to 

create a rapid, non-
invasive scan of a person’s 

body 

K190529 
Gastroenterol-

ogy 
Urology 

Nov 2019 
[224] 

StoneChecker 
(Imaging 

Biometrics, LLC) 
AI 

The software is used with 
standard CT scans in 

people with kidney stones 
for measuring stone 

parameters and to inform 
clinical decision 

K191530 Radiology 
Jun 2019 

[225] 

StrokeViewer 
(NiCo-Lab B.V.) AI 

This tool is used for the 
localization and 

quantification of stroke 
biomarkers from CT scans 

K200873 Radiology 
Oct 2020 

[226] 

SubtleMR 
(Subtle Medical, 

Inc.) 
CNN 

The application is used for 
improving the quality of 
MRI images increasing 

resolution and reducing 
noise 

K191688 Radiology Sep 2019 
[227] 

SubtlePET 
(Subtle Medical, 

Inc.) 
DNN 

The application is used for 
processing PET images 

K182336 Radiology 
Nov 2018 

[228] 

syngo.CT Cardiac 
Planning 

(Siemens Medical 
Soultions USA, Inc.) 

AI 

The software is used for  
enhancing CT images; 

analysis of morphology 
and pathology of vascular 

and cardiac structures 

K200515 Radiology 
Mar 2020 

[229] 

TransparaTM 
(Screenpoint 
Medical B.V.) 

ML 

The software provides a 
support solution for 

mammography, 
identifying suspicious 

areas in 2D and 3D 
mammograms 

K192287 Radiology 
Oncology 

Dec 2019 
[230,231] 

Ventripoint Medical 
System Plus (VMS+) 

3.0 
(Ventripoint 

Diagnostics Ltd.) 

AI 

The tool is used for 
measuring whole heart 

function using 
conventional ultrasound 

(NCT01557582) 

K191493 Cardiology 
Oct 2019 

[232] 

Veolity 
(MeVis Medical 
Solutions AG) 

ML 

The software is used to 
recognize even the 

subtlest potential signs of 
lung cancer 

K201501 Radiology Feb 2021 
[233] 

Workflow Box 
including 

DCLExpertTM 
(Mirada Medical 

Ltd.) 

AI 
The software is used for 

autocontouring organs for 
cancer treatment planning 

K181572 Radiology 
Jul 2018 

[234] 

wheezo ML The tool is used for K202062 Pneumology Mar 2021 
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WheezeRate 
Detector 

(Respiri Limited) 

asthma management and 
remote monitoring tool 

[235] 

Abbreviation: AD – Alzheimer disease; ADHD - attention deficit hyperactivity disorder; AI – 
artificial intelligence; ANN – artificial neural network; ASD - autism spectrum disorder; BIS - 
bioimpedance spectroscopy; DL – deep learning; CNN - convolutional neural network; CT - com-
puted tomography; DBT - digital breast tomosynthesis; EEG - electroencephalogram; ECG – elec-
trocardiogram; LVO - large vessel occlusion; MCI – mild cognitive impairment: ML – machine 
learning; MRCP - magnetic resonance cholangiopancreatography; MRI - magnetic resonance 
imaging; OARs - organs-at-risk; OSA - obstructive sleep apnea; PET - positron emission tomogra-
phy; PNX – pneumothorax. 

2.2.2. Basic research 
In this section, we illustrate some relevant and representative examples on how AI 

can be an added value in translational medicine, starting from research laboratories to 
clinical practice, speeding up the understanding of disorders (targets involved, 
phatophysiological mechanism, etc) and the translation of acquired knowledge in 
clinical medicine. For example, in medical/cellular imaging ML-based methods hold 
great promises. Considering cell microscopy and histopathology, observation of the 
slides is often complicated, so pathologists' interpretation might be inconsistent, making 
histopathological diagnoses problematic [236]. Conventional approaches (e.g., 
microscopic/biological inspection of a sample) have limitations, reducing the possibility 
to discover particular biomarkers, genomic driver mutations, and patterns within a cell's 
subcellular apparatus [237]. Accordingly, with the aid of ML, unravelling disease 
heterogeneity through enhancing cellular profiling of specific morphological features is 
becoming progressively possible. ML approaches able to improve sample categorization 
allow the acquisition of undisclosed disease characteristics that cannot be identified by 
humans alone. To this end, Simm and collaborators described a fascinating approach in 
which a ML-based method was employed for predicting the activity of a given 
compound from images. The interesting idea starts with the evidence that large-scale 
assays (e.g., high throughput screening) for the drug discovery pipeline are costly, time-
consuming, and frequently unfeasible, mainly for the growing number of relevant 
physiological systems needing primary cells, organoids, entire organisms, as well as 
pricey or rare reagents. The authors assumed that data from only high-throughput 
imaging (HTI) assay can be repurposed for predicting bioactivities of molecules in other 
assays, similar to those that target different biological processes or pathways. For that 
purpose, they developed a protocol for predicting the activity of compounds in several 
orthogonal tests. In the first step the researchers extracted a large set of image-based 
fingerprint of morphological descriptions for each molecule (considering the three-
channel glucocorticoid receptor (GCR) as target for HTI assay employed in the 
valuation, the authors obtained 842-dimensional feature vector per cell). The second step 
consisted of introducing known activity data for orthogonal assays of interest on the 
considered molecules. Finally, by using supervised ML approach they trained models, 
selecting the one that showed higher predictivity. The resulting ML model was 
successfully used for selecting novel chemical entities for a biological evaluation [238]. 
Another interesting work was performed by Nassar and colleagues. They reported a 
ML-based method (evaluating six ML algorithms: AdaBoost, Gradient Boosting (GB), k-
NN, RF, and SVM) for classifying white blood cell (WBC). Currently, WBC count, a 
method for assessing the immune system status of a person, needs a flow cytometer and 
fluorescent markers. Obviously for accomplishing this process various steps for sample 
preparation are required. By using the proposed label-free approach only employing 
imaging flow cytometer combined with ML methods unstained WBCs were classified. 
The developed model showed good scores, being also able to discriminate B and T 
lymphocytes. The approach was validated performing WBC analyses from unstained 
samples collected from 85 donors. Notably, the described approach allows an extremely 
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precise classification of WBCs while avoiding cell disruption and leaving marker 
channels open to address further biological issues. In the end, the proposed method 
enables the use of ML for liquid biopsy, applying the powerful info in cell morphology 
for several diagnostics of primary blood such as for example the detection of tumor 
products or circulating tumor cells in the blood [239]. Coudray and colleagues applied 
ML algorithms for classifying and predicting mutations from histopathological images 
belonging to non-small cell lung cancer. In fact, the visual inspection represents the 
elected methodology for assessing stage, type, and subtype of lung cancers. Expert 
pathologists are able to distinguish adenocarcinoma (LUAD) and squamous cell 
carcinoma (LUSC) by visual inspection. The authors presented a ML approach based on 
deep CNN trained on whole-slide images acquired from The Cancer Genome Atlas for 
accurately and automatically classifying them into LUAD, LUSC or normal lung tissue. 
The performance of the methodology is equivalent to that of pathologists, showing an 
average area under the ROC curve of 0.97. The in silico model was validated on 
independent datasets of frozen tissues, formalin-fixed paraffin-embedded tissues and 
biopsies. Additionally, the network was also trained for predicting ten most frequently 
mutated genes in LUAD. Six of them (STK11, EGFR, FAT1, SETBP1, KRAS, and TP53) 
can be predicted from pathology images, with a significant area under the ROC curve 
(0.733 - 0.856) as determined on a held-out population. Remarkably, a similar approach 
based on ML models could aid pathologists in detecting gene mutations related to 
cancer subtypes [240]. Moreover, ML-based approaches can assist to identify specific 
biomarkers involved in a given diseasease. The most fruitful computer-based 
approaches were recently nicely reviewed [6,241]. To understand the task, we report 
some examples highlighting ML approaches in this field. Kang and collaborators used 
the python package sklearn for building a ML-based computational model, employing 
SVM technique, that executed 10-fold cross-validation to implement a diagnostic tool for 
identifying lung cancer risk of suspected cases. The authors performed an inclusive as-
sessment of results from genetic analysis and critical clinical data regarding patients af-
fected by lung cancer to carry out a model able to diagnose early lung cancer also indi-
cating tumor risks. They considered tissues from samples of patients with lung cancer 
and tissue from healthful persons for a total of 70 pairs. The authors evaluated the 
methylation rates of six genes (FHIT, p16, MGMT, RASSF1A, APC, DAPK) in lung can-
cer patients, the critical clinical data, and tumor marker concentrations of these patients. 
The SVM model was validated calculating the area under the ROC curve and other sta-
tistical parameters. Based on these validation data (area under the ROC curve of 0.963 
sensitivity of 0.900, specificity of 0.971, and accuracy of 0.936), the scientists proved the 
validity of the developed method, highlighting the crucial role of ML models as diagnos-
tic tools for an early diagnosis of cancers that can contribute to increasing the survival 
rate of patients [242].  

2.2.3. AI, imaging and ophthalmology 
In the context of imaging in diagnosis and disease-progression applying ML-based 

techniques, ophthalmology is one of the medical fields in which these computational 
approaches have been successfully employed [123]. In fact, AI principally based on DL 
methods has been used to detect several ocular disorders including retinopathy of 
prematurity [243], diabetic retinopathy [244,245], macular oedema [246,247], age-related 
macular degeneration [248,249], and glaucoma [250-252] using fundus images, optical 
coherence tomography (OCT), and visual fields. Screening, diagnosis, and monitoring of 
major eye disorders for patients in primary care might be achievable using DL in ocular 
imaging combined with telemedicine. Briefly, we report here some representative ex-
amples on how ML can revolutionize the diagnostic, improving the quality of diagnosis, 
reducing potential medical errors and the workload of medical staff, also save the time 
of patients examined. Very recently, Dai and coworkers reported the development of an 
intriguing screening platform for detecting diabetic retinopathy. It is well established 
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that retinal screening has a tremendous impact on early diagnosis of retinopathy to start 
effective treatments to avoid vision loss, slowing down the progression of the disorder. 
For facilitating the screening procedure, they use a ML approach based on DL algo-
rithms for developing a computational tool, namely, DeepDR (DL Diabetic Retinopa-
thy). DeepDR is a transfer-learning aided multi-task network for evaluating retinal im-
ages feature, retinal lesions, and diabetic retinopathy grades. This evaluation allows the 
detection of early-to-late stages of diabetic retinopathy. DeepDR was generated taking 
into account 666,383 fundus images from 173,346 patients, and it is trained for real-time 
image quality valuation, lesion detection and grading by means of 466,247 fundus imag-
es from 121,342 patients (70%) affected by diabetes were randomly included in the train-
ing set, while the evaluation is conducted considering 52,004 patients (30%) for a local 
validation set consisting of 200,136 fundus images and three external datasets containing 
209,322 images. Results showed an area under ROC curves of 0.901, 0.941, 0.954 and 
0.967 regarding the detection of microaneurysms, cotton-wool spots, hard exudates, and 
hemorrhages, respectively, while the grading of diabetic retinopathy as mild, moderate, 
severe, and proliferative accomplishes significant area under the ROC curves (0.943, 
0.955, 0.960, and 0.972, respectively). Finally, the statistical parameters, considering the 
external validation, ranging from 0.916 to 0.970 (area under the ROC curves). In sum-
mary, DeepDR showed significant accuracy and high sensitivity in detecting diabetic 
retinopathy from early- to late-stages [244]. Asaoka and colleagues reported a ML ap-
proach based on deep and transfer learning for an accurate diagnosis regarding the ear-
ly-onset glaucoma using OCT images [252]. DL model was built starting from 4316 OCT 
images from 1565 eyes from patients suffering from glaucoma and 193 normal eyes, 
used as a pre-training dataset. A smaller set of OCT images was used to train the model 
(94 eyes from patient with early glaucoma and 84 healthy eyes). The independent da-
taset employed as test set for assessing the diagnostic performance of the developed 
model comprised 114 eyes from 114 patients at early stages of glaucoma and 82 eyes 
from 82 healthy people. In particular, a DL classifier based on CNN was employed in the 
reported study, and the input features were 8 x 8 grid macular retinal nerve fiber layer 
thickness and ganglion cell complex layer thickness from OCT images. Diagnostic per-
formances were assessed using the test set and applying RF and SVM algorithm. Results 
showed that the DL model displayed an area under the ROC curve of 93.7%, considera-
bly decreasing (to 76.6 and 78.8%) with no pre-training procedure, suggesting a relevant 
sensitivity and specificity of the DL model to diagnose glaucoma, highlighting the ro-
bustness of the proposed approach. Accordingly, also in the reported case is underlined 
that the use of ML approaches can offer a significant increase in diagnostic performanc-
es, assisting clinicians in making a decision [252]. Finally, another interesting approach 
was conducted by Zhang and collaborators. They used OCT images of the fundus retina 
for generating and validating a ML-based model as a diagnostic model for diabetic mac-
ular edema (DME). Concisely, the authors used 38,057 OCT images (drusen, choroidal 
neovascularization (CNV), DME, and healthy) in multiscale transfer-learning algorithm 
model by using CNN technique. This computational-based tool consisted of two steps 
(self-enhancement and disease detection). The self-enhancement model is built using a 
multiscale feature learning method for detecting and extracting the frame of the diag-
nostic target. Next, the enhanced data are employed to generate a disease diagnostic 
model that combines transfer-learning knowledge. The data are initially processed by 
convolutional and pooling layers for extracting characteristics hidden in the original da-
ta. Lastly, these features were used in a classification step for automatically determining 
the type of disorder. In the training set was enclosed 37,457 samples (9,891 cases 
(26.41%) of CNV, 9,633 cases (25.72%) of DME, 7,975 cases (21.29%) of drusen, and 9,958 
cases (26.58%) of healthy), while 600 samples (150 cases (25%) of CNV, 150 cases (25%) of 
DME, 150 cases (25%) of drusen and 150 cases (25%) of healthy) composed the validation 
set. Statistical parameters (accuracy, precision, sensitivity, and specificity) of the model 
were evaluated as well as the parameters for assessing the performance of the ML-based 
model from the perspective of clinical application. The developed computational tool 
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showed 94.5% accuracy, 97.2% precision, 97.7% sensitivity, and 97% specificity in the in-
dependent testing dataset. Notably, the developed model based on a multiscale transfer-
learning algorithm is able to accurately employ OCT images for assessing the health of 
patients, automatically and accurately diagnosing several eye health conditions. Such an 
approach could help clinicians for improving the effectiveness of therapies, reducing the 
disability ratio of severe disorders [247].  

 

2.2.4. AI/ML in central nervous system (CNS)-related disorders 
Another interesting area, in which AI/ML and DL have also been widely employed 

for brain image assessment to develop imaging-based diagnostic and classification 
systems, is the neurology and central nervous system (CNS)-related disorders such as 
psychiatric disorders, demyelinating diseases, neurodegenerative disorders, epilepsy, 
and strokes [121,253-258]. Together with extensive usage in image recognition, language 
processing, and data mining, ML approaches have obtained growing interest also in 
neurological-related applications, ranging from automated imaging assessment to dis-
order prediction. In epilepsy, ML approaches are currently applied for automatically de-
tecting seizure using electroencephalography (EEG), video, and kinetic data, automated 
imaging analysis and pre-surgical planning, prediction of medication response, and 
prediction of medical and surgical outcomes using several data sources. This has been 
accomplished by different ML techniques including ANN, SVM, decision tree, RF, and 
decision forest [258]. For example, in a recent work Abdelhameed and Bayoumi used 
EEG data for developing a ML model based on a DL approach for identifying seizures in 
pediatric patients based on the classification of raw multichannel EEG signal recordings 
after a limited pre-processing step. The developed ML model based on the CNN tech-
nique takes advantage of the automatic feature learning abilities of a two-dimensional 
deep convolution autoencoder (2D-DCAE) associated to a neural network-based classifi-
er to generate a unified system that is trained in a supervised way to attain the best clas-
sification accuracy between the ictal and interictal brain state signals. Generally, two 
subsequently steps are required for accomplishing the automatically detection of seizure 
after acquisition and pre-processing steps of EEG raw signals. The first step involves the 
extraction and selection of specific characteristics of the EEG signals. In the second stage 
is required to build and train a classification system to use the extracted features for de-
tecting epileptic events. Notably, the step regarding features extraction directly influ-
ences the accuracy/precision of the developed automatic seizure detection model. In the 
mentioned study, the used dataset was recorded at Boston Children’s Hospital and con-
sists of long-term EEG scalp recordings of 23 pediatric patients with intractable seizures, 
while a DL-based system using a supervised 2D-DCAE) approach is used for retrieving 
epileptic seizures in that multichannel EEG signals recording. In order to test and assess 
the strategy, two models were developed and evaluated employing three different EEG 
data segment lengths and a 10-fold cross-validation scheme. Considering five evaluation 
metrics, the best performing ML-based tool was a supervised DCAE. In particular, this 
model showed 98.79% accuracy, 98.72% sensitivity, 98.86% specificity, 98.86% precision, 
and an F1-score of 98.79%, respectively [257]. According to this study and other similar 
research works in the field, the use of ML-based models can be useful in detecting sei-
zure in epilepsy. Furthermore, the improvement in processing capabilities, the availabil-
ity of efficient and more sophisticated ML methods, and the collection of larger datasets, 
scientists will benefit from these computational approaches along with considerable 
progress acquired in their use in epilepsy [257,258].  

Regarding CNS-related disorders, AI/ML approaches have been used for classifying 
and performing diagnosis for patients with ADHD (attention deficit hyperactivity dis-
order). Tenev and colleagues used a ML algorithm based on SVM technique for classify-
ing adult ADHD using EEG data. The model was trained enclosing 117 adults (67 
ADHD, 50 healthy). Four conditions were considered during measurements: two resting 
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conditions (eyes open and eyes closed) and two neuropsychological tasks (visual con-
tinuous performance test and emotional continuous performance test). The authors con-
sidered four datasets (one for each condition), that independently trained diverse SVM 
classifier. The output was combined employing a logical expression obtained from the 
Karnaugh map. The evaluation of the developed computational protocol indicated that 
following this strategy is possible to discriminate ADHD patients from healthy subjects, 
differentiating ADHD subtypes [259]. Slobodin and coworkers applied a ML-based 
model for predicting ADHD by employing continuous performance test (CPT) indices. 
These data from 458 children were used for training, cross-validating, and testing ML 
models (age 6–12 years, 213ADHD patients and 245 healthy). Authors used the CPT to-
tal score containing four indices (timeliness, attention, impulsiveness, and hyperactivity) 
and four variables (gender, age, day of the week, and time of day), to get relevant data 
capable of discriminating patients with ADHD. The developed model showed signifi-
cant predictivity displaying accuracy, sensitivity, and specificity of 87%, 89%, and 84%. 
Interestingly, ML models can accurately classify ADHD using CPT data [260]. In another 
impressive work, Kautzky and collaborators described the development of a ML model 
for discriminating ADHD patients form healthy subjects using multivariate, genetic and 
positron emission tomography (PET) imaging data. They selected 16 ADHD patients 
and 22 healthy subjects. These groups were scanned and scanned via PET for measuring 
the serotonin transporter (SERT) binding potential employing the radioligand [11C]DASB 
(3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile). The considered sub-
jects were analyzed based on 30 possible single-nucleotide polymorphisms (SNPs) in-
volving HTR1A, HTR1B, HTR2A, and TPH2 genes. Accordingly, authors defined cortical 
and subcortical regions of interest (ROI), and a ML model based on RF technique was 
employed for selecting and classifying relevant features in a 5-fold cross-validation 
model (10 repeats). The results regarding the model performances revealed an accuracy, 
sensitivity, and specificity of 0.82, 0.75, and 0.86, respectively, indicating a significant 
predictivity of the model. Furthermore, the outcomes highlighted the relevance of SERT 
along with HTR1B and HTR2A genes in ADHD indicating disease-specific effects and 
suggesting that a diagnostic tool based on these features can be suitable for supporting 
clinical decisions [261]. In the last example Dubreuil-Vall and colleagues developed a 
ML model based on the CNN technique with a four-layer architecture combining filter-
ing and pooling employed various types of data extracted from EEG analysis for dis-
criminating ADHD patients from healthy subjects. These data obtained from 20 ADHD 
patients and 20 healthy controls were used to train the model. Based on the results pre-
sented by the authors the computational tool can correctly categorize ADHD patients, 
showing an accuracy value of 88%, outperforming other models such as RNN and other 
ML models previously reported. Although the data are interesting and promising, stud-
ies considering a more consistent number of participants is highly desirable [262]. 

A different field in which the imaging techniques can help diagnose is the area re-
garding the neurodegenerative diseases. In fact, the multifactorial and complex molecu-
lar mechanisms involved in neurodegeneration make challenging the discovery of tools 
for early diagnosis as well as the identification of effective treatments. In this scenario, 
ML-based approaches allow to reduce this gap, assisting researchers in formulating ear-
ly diagnosis, interpreting brain images and in developing potential effective therapeutic 
strategies [255]. In fact, regarding AD, a precise diagnosis, and its early-stage characteri-
zation, such as mild cognitive impairment (MCI) is essential to opportune treat and pos-
sible slow down AD progression. Accordingly, Lu and coworkers described a ML-based 
approach based on DL technique for an early diagnosis of AD. They proposed a multi-
modal and multiscale ML-based method in which information from magnetic resonance 
imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) im-
ages were combined within DNN framework for discriminating AD patients. For devel-
oping the mentioned model are required the following two steps: (I) pre-processing im-
ages form MRI and FDG-PET. This step allowed to sub-divide the gray-matter segmen-
tation into patches of a range of sizes, for extracting features from each-sized patch; (II) 
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training a DNN algorithm for learning the patterns for discriminating AD individuals. 
Next, the ML-based model can be employed for an individual classification. Data from 
1242 subject with both a T1-weighted MRI scan and FDG-PET image from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database was used for developing 
and validating the model. Subjects were clustered into 5 classes based on clinical diag-
nosis: 1) Stable Normal controls (sNC) 360 subjects; 2) Stable MCI (sMCI) 409 subjects; 3) 
Progressive NC (pNC) 18 subjects assessed to be NC at baseline visit but progressed to 
clinical diagnosis of possible AD; 4) Progressive MCI (pMCI): 217 subjects evaluated to 
be MCI at baseline visit and progressed to a clinical diagnosis of possible AD at some 
point in the future; 5) Stable AD (sAD): 238 subjects with AD. Further the classifier 
trained with the combined sample of pNC, pMCI and sAD was found to yield the high-
est overall classification accuracy of 82.4% accuracy in the identifying the individuals 
with MCI who will convert to AD at 3 years before conversion (86.4% combined accura-
cy for conversion within 1–3 years), a 94.23% sensitivity in the classification of persons 
with clinical diagnosis of probable AD, and an 86.3% specificity in in the classification of 
non-demented controls. These results suggest that DNN classifiers may be useful as a 
potential tool for providing evidence in support of the clinical diagnosis of probable AD 
[263]. Shi and colleagues highlighted the importance of combining information derived 
from different tests. To this end. they developed a DL algorithm based on deep polyno-
mial networks (DPN) to develop a computational model trained by multimodal neu-
roimaging data (MRI and PET). In the selected work, they built a multimodal stacked 
DPN (MM-SDPN) algorithm. MM-SDPN involves two SDPN stages, one dedicated to 
fuse multimodal neuroimaging data, while the other devoted for learning high-level fea-
tures from AD diagnosis. The authors used data from ADNI dataset (same MRI and PET 
images from 51 AD patients, 99 MCI patients (43 MCI converters (MCI-C), who pro-
gressed to AD, and 56 MCI non-converters (MCI-NC), who did not progress to AD in 18 
months), and 52 normal controls (NC)). The developed MM-SDPN algorithm was ap-
plied to the ADNI dataset for conducting both binary classification and multiclass classi-
fication tasks. Validation results using ROC curve showed and area under the curve of 
0.897, indicating MM-SDPN approach better performed over other multimodal ML-
based approaches in achieving a correct AD diagnosis, being able to classify all stages 
concerning AD progression [264]. Gao and collaborators by using a ML approach based 
on CNN for classifying computed tomography (CT) brain images with the aim to trans-
late images into clinical applications. This classification was done considering three 
main groups containing subjects with AD (1,000 images), lesions (e.g., cancer) (947 im-
ages), or normal aging (2,129 images). Interestingly, because of the features of CT brain 
images with higher thickness, authors considered both 2D and 3D CNN are employed in 
this research. The fusion is consequently performed considering both 2D CT images 
along the axial direction and 3D segmented blocks with accuracy rates of 88.8%, 76.7% 
and 95% for groups of AD, lesion and normal, respectively, leading to an average of 
86.8%. Accordingly, adopting ML approach based on CNN is possible to classify CT 
brain images for AD with great accuracy [265]. In another interesting approach, Liu and 
collaborators conceived a different ML approach to identify AD. In particular, the au-
thors collected a novel speech dataset, based on the spectrogram features (extracted 
based on audio data using an algorithm ad hoc), that enclosed AD patients and healthy 
subjects as control. Next, a ML-based models were employed for comparing this new 
dataset with the speech provided by Dem@Care project. Among the assessed ML-based 
models, Logistic-regressionCV (LRCV) model showed the best performance. Notably, 
the authors demonstrated that ML-based approaches, trained by extracting spectrogram 
features from speech data, can be applied for identifying AD, helping in understanding 
the development of AD at early stages for providing therapies for delaying the disorder 
progression [266]. Finally, we reported an interesting ML approach described by Grassi 
and colleagues. Their study is focused on the development of an algorithm for predict-
ing, based on a time of 3 years, a possible progression of patients with MCI and preMCI 
to AD. ML models were trained employing information from 90 patients with MCI and 
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94 subject with PreMCI with a diagnostic follow-up valuation for at least 3 years. They 
extracted several features from the data for a total of 36 predictors (e.g., diagnostic sub-
types, clinical and neuropsychological test scores, sociodemographic characteristics, car-
diovascular risk indexes, and levels of medial temporal lobe brain atrophy in the hippo-
campus (HPC), perirhinal cortex (PRC), entorhinal cortex (ERC), and assessed by a clini-
cian-rated Visual Rating Scale (VRS)). To model these data, the authors used several ML-
based techniques including Elastic Net (EN) with polynomial features, SVM, Gaussian 
processes (GP), and k-NN. The resulting models were validated using leave-pair-out-
cross-validation. The best performing ML model based on SVM technique showed an 
area under the ROC curve of 0.962 an accuracy of 0.913 [267]. The reported work further 
demonstrated how ML applications can assist translational research providing 
computational tools for readly applications in clinical practice and clinical trials. 
Similarly, similar procedures, extracting specific features from available data allowing 
the development of ML based models for Parkinson’s disease (PD). In fact, as reported 
for AD, several studies highlighted that through ML-based approaches applied to PD 
[268] is possible to predict the progression of the disorder employing serum cytokines 
[269], MRI [270], and walking tests [271], to estimate the state of PD, employing 
longitudinal data [272], to rate the main synthomps (resting tremor and bradykinesia) 
[273], to produce a correct diagnosis from EEG analysis [274,275] and from voice dataset 
[276,277], only for reporting some relevant works. 

2.2.5. AI in cardiology and cardiovascular diseases 
Due to the enormous progress in cardiovascular imaging along with the advance-

ment of recording technologies have enabled the acquisition of complex and huge multi-
dimensional data, AI/ML can be applied in cardiology, particularly. ML-based tech-
niques allow cardiologists to investigate new possibilities, making findings not detected 
using classical strategies. Also considering this field ML can offer novel chances for im-
proving patient support (survival prediction, appropriate diagnoses, and pharmacologi-
cal treatments) and medical decision-making, covering the gap between the swift pro-
gress of cardiac imaging and clinical care [124,278,279]. In particular, several studies in 
cardiology and related fields employ supervised ML models as diagnostic predictors 
[280,281]. These computer-based tools are able to extract specific features obtained from 
imaging data and clinical outcomes select features derived from any imaging data sam-
ple (e.g., electrocardiograms (ECG), echocardiograms, cardiac MRI, cardiac computed 
tomography (CCT)) for providing specific diagnoses [282]. In this section, some relevant 
and innovative examples of ML applications in cardiology field are examined and dis-
cussed. Madani and colleagues developed a ML protocol based on DL approach using 
CNN algorithm for establishing an AI tool to interpret echocardiograms. They trained a 
CNN using images and video from 267 transthoracic echocardiograms depicting real-
world clinical variation (e.g., different patient variables, echocardiographic indications, 
technical qualities, and pathologies) for classifying 15 distinct standard echocardio-
graphic views. For generating the CNN model, they employed over 200,000 images (240 
studies) for arranging a training and validation set of and over 20,000 images (27 stud-
ies) composed a test set. The developed computer-based model showed an overall accu-
racy of 97.8% on videos (F-score 0.964 ) and of 100% on seven of the 12 video view, sup-
porting the robustness of the approach [283]. Another work performed by Madani and 
colleagues reported the development of ML-based approach using CNN technique em-
ploying DL classifiers for automatically interpreting echocardiographic data. Results 
from this report showed an accuracy of 94.4% considering 15 echocardiographic view 
classifications of still images and 91.2% accuracy for binary left ventricular hypertrophy 
view classification. Subsequently, the authors employed a semi-supervised generative 
adversarial network model for detecting left ventricular hypertrophy. The model 
showed excellent performances accounting for an accuracy of 80% in view classification 
and of 92.3% accuracy for left ventricular hypertrophy [284]. Zhang and colleagues re-
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ported the development of different ML models based on CNN technique for an auto-
matic classification of echocardiogram data for detecting three distinct cardiovascular 
diseases: hypertrophic cardiomyopathy, cardiac amyloid, and pulmonary arterial hyper-
tension. For training and validating the models for multiple tasks the authors used 
14,035 echocardiograms spanning a 10-year period. Results were assessed by comparing 
data from manual segmentation and measurements considering 8,666 echocardiograms 
from routinary clinical assessment. The developed CNN models were able to identify 
views, including flagging partially obscured cardiac chambers, and facilitated the seg-
mentation of individual cardiac chambers. Overall, the authors findings demonstrated 
that automated measurements can be similar or even superior to manual measurements 
considering 11 internal consistency metrics (e.g., the correlation of left atrial and ventric-
ular volumes). Furthermore, CNN models appropriately detect hypertrophic cardiomy-
opathy, cardiac amyloidosis, and pulmonary arterial hypertension showing C statistical 
parameters of 0.93, 0.87, and 0.85, respectively [285]. Interestingly, echocardiography 
outcomes were used from Samad and colleagues to develop a supervised ML model 
based on RF algorithm to predict future adverse cardiac events. In fact, the RF algorithm 
was employed for predicting survival from echocardiography data. They trained the 
model employing the information obtained from echocardiograms considering 171,510 
patients, providing three different classes of input: (I) clinical variables such as 90 cardi-
ovascular-relevant international classification of diseases (ICD)-10 codes, sex, weight, 
age, height, blood pressures, heart rate, LDL, HDL, smoking; (II) clinical variables plus 
physician-reported ejection fraction (EF); (III) clinical variables, EF, plus 57 additional 
echocardiographic measurements. The ML models based on RF algorithm showed good 
accuracy regarding the prediction with an area under the ROC curve > 0.82 greater than 
conventional clinical risk scores (area under the ROC curve ranging from 0.61 to 0.79). 
Accordingly, ML can successfully use employing combining several and distinct input 
variables for predicting survival considering echocardiography data [286]. Again, the 
CNN technique was also used from Strodthoff and coworkers for developing a ML 
model for detecting myocardial infarction directly from ECG with no preprocessing. 
They used a dataset of 549 ECG outcomes from 290 subjects available from Physikalisch 
Technische Bundesanstalt (PTB) database that enclosed a large publicly accessible ECG 
data. The developed ML model based on a DL approach showed sensitivity and specific-
ity of 93.3% and 89.7%, respectively, as assessed employing 10-fold cross-validation with 
sampling established on patients. The described model was able to detect myocardial in-
farction and it showed performances comparable with those obtained from human car-
diologists. Furthermore, another analysis showed that it is also able in discriminating 
channel-specific regions substantially contributing to the neural network's decision. 
These highlighted that the same signs indicative of myocardial infarction recognized by 
human cardiologists were underlined from the ML model. This work further demon-
strated that ML models applied to ECG evaluation can be progressed into clinical appli-
cation [287]. Hannun and coworkers developed a ML model based on DNN technique, 
employing ECG data, for detecting arrhythmias. The DNN algorithm was trained using 
91,232 single-lead ECG records from 53,549 patients who used a single-lead ambulatory 
ECG monitoring device for classifying 12 rhythm classes (10 arrhythmias as well as si-
nus rhythm and noise). The resulting model was validated using an independent test set 
(328 ECGs collected from 328 patients), showing an average area under the ROC curve 
of 0.97. Moreover, the median F1 score, that represents the harmonic mean of the positive 
predictive value and sensitivity, for the DNN (0.837) surpassed that of average cardiolo-
gists (0.780) for all rhythm classes. The results clearly indicated that the ML approach 
based on DNN can be used for correctly classifying different types of arrhythmias from 
ECG outcomes. This approach could hold tremendous potential if use in clinical settings, 
reducing misdiagnoses to prioritize urgent health status [288]. Very recently, also Elul 
and colleagues by using ECG data for developing a ML model for detecting heterogene-
ous combination of known and unknown arrhythmias and to identify underlying car-
dio-pathology considering segments marked as normal sinus rhythm documented in pa-
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tients with intermittent arrhythmia [289]. Further, asymptomatic left ventricular dys-
function (ALVD) can be predicted using a CNN algorithm employing ECG data as re-
ported by Attia and colleagues. The authors used paired 12-lead ECG and echocardio-
gram data, including the left ventricular ejection fraction (a measure of contractile func-
tion), considering 44,959 patients for training a CNN algorithm for identifying subjects 
affected by ventricular dysfunction (defined as ejection fraction ≤ 35%). The developed 
model was tested against an independent set of 52,870 subjects, showing an area under 
ROC curve, accuracy, specificity, and sensitivity of 0.93, 85.7%, 85.7%, and 86.3%, respec-
tively. Very interesting, the authors found that in patients devoid of ventricular dysfunc-
tion, those with positive outcomes, indicated by the ML model, were at 4 times the risk 
(hazard ratio, 4.1; 95% confidence interval, 3.3 to 5.0) of developing future ventricular 
dysfunction compared with those with a negative screen. Remarkably, the application of 
AI/ML to ECG data is versatile for predicting a lot of possible outputs for finding poten-
tial subjects who will develop a given disorder ad in the case of ALVD [290]. The follow-
ing example reported the use of unsupervised ML approach for assessing diastolic dys-
function. The objective of the study conducted by Pandey and collaborators was to de-
velop a ML model based on the DNN technique for integrating multidimensional echo-
cardiographic data with the aim to detect distinct patient subgroups with heart failure in 
conjunction with preserved ejection fraction (HFpEF). This study is particularly relevant 
since, currently, no algorithms to translate in clinical exist for phenotyping the severity 
of diastolic dysfunction in HFpEF. The authors established a DNN model for predicting 
high- and low-risk phenogroups in a derivation group (n = 1,242). Next, two external 
groups were considered for validating the performance of the model for identifying high 
left ventricular filling pressure (n = 84) and assessing its prognostic capacity in patients 
(n = 219) presenting different degrees of systolic and diastolic dysfunction. Notably, the 
clinical relevance of the ML model was evaluated in three HFpEF clinical trials by as-
sessing the relationships of the groups with adverse clinical consequences (TOPCAT tri-
al, NCT00094302, n = 518), cardiac biomarkers, and exercise parameters (NEAT-HFpEF 
trial, NCT02053493 and RELAX trial, n = 346). Notably, the developed unsupervised ML 
model based on DNN technique showed an area under ROC curve was higher than that 
reported by the American Society of Echocardiography guidelines for the prediction of 
high left ventricular filling pressure (0.88 vs 0.67; p = 0.01). Furthermore, the developed 
model showed high performance also considering the validation sets, including the 
three HFpEF clinical trials. In fact, DNN classifier is able to depict the severity of diastol-
ic dysfunction and identify a specific subgroup of patients with HFpEF showing high 
left ventricular filling pressure, biomarkers of myocardial injury and stress, and adverse 
events and those who are more likely to respond to spironolactone [291]. Another inter-
esting application of ML model applied to the cardiovascular system was described by 
Ma and coworkers. They started considering the relationships between carotid plaque 
echogenicity in ultrasound images and the risk of stroke in atherosclerotic patients. For 
accurately classifying carotid plaques to estimate their stability to predict cardiovascular 
events, the authors used a ML model employing CNN technique. This approach could 
automatically provide a carotid plaque echogenicity classification. For improving the re-
liability of the method, the authors redesigned the spatial pyramid pooling (SPP) and 
propose multilevel strip pooling (MSP) for the automatic and accurate classification of 
carotid plaque echogenicity in the longitudinal section. By performing this step, the re-
sulting MPS module was able to accept arbitrarily sized carotid plaques as input and 
capture a long-range informative context for improving the accuracy of classification. 
Accordingly, the scientists implemented an MSP-based CNN employing the visual ge-
ometry group (VGG) network as the backbone. They trained the mode using 1,463 carot-
id plaque images (335 echo-rich plaques, 405 intermediate plaques, and 723 echolucent 
plaques). The 5-fold cross-validation results show that the proposed MSP-based VGG-
Net achieves a sensitivity of 92.1%, specificity of 95.6%, accuracy of 92.1%, and F1-score 
of 92.1%. The findings of this work proved that this strategy is relevant for enhancing 
the applicability of CNN also using any input size of samples, leading to an improve-
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ment of the accuracy of classification, making the objective risk assessment more effec-
tive [292]. 

The rising usage of ML-based approaches in cardiology is likely to continue in the 
foreseeable future. Following a proper validation, they might enhance treatment out-
comes by facilitating daily workflow, patient satisfaction, early identification, and right 
interpretation of data. 

2.2.5. AI in gastroenterology  
In the area of gastroenterology, clinicians work with many clinical data and several 

imaging technologies including endoscopy and ultrasound. In this context, for manag-
ing and analyzing huge quantities of information AI/ML methodologies can play a piv-
otal role regarding image analysis, diagnosis, prognosis, and possible treatments. AI/ML 
based techniques can be applied to gastroenterology for improving endoscopic diagno-
sis allowing the detection of abnormalities of the gastrointestinal tract such as colorectal 
polyps as well as malignancies such as esophageal, gastric, and intestinal tumors, as well 
as inflammatory bowel disease, irritable bowel syndrome, and peptic ulcer bleeding 
[293-295]. We report here some relevant examples demonstrating the translational po-
tential of AI/ML-based approach in gastroenterology. Mori and collaborators reported 
an AI approach for detecting small (< 5 mm) adenomatous or sessile polyps, usually ex-
tremely difficult to identify for clinicians employing colonoscopy. For validating the ap-
proach in a prospective, single-group, and open-label clinical trial (UMIN000027360), 
they trained a ML-based model with data from 325 subjects presenting 466 microscopic 
polyps. In this prospective study, the model showed an accuracy of 94% (with a negative 
predictive value of 96%), including a pathologic prediction rate of 98.1% (457 of 466) 
[296]. In another approach, Wang and colleagues developed a ML-algorithm for detect-
ing polyps in clinical colonoscopy investigations. Specifically, they generated a DL algo-
rithm trained employing data derived from 1,290 patients (5,545 colonoscopy images). 
The training of the model was performed in two separate steps: 1) a training step in 
which 4,495 images were used, selecting 2,607 images containing polyps and 1,888 im-
ages with no polyps. The training data were employed for optimizing the network pa-
rameters; 2) a tuning step in which 1,050 images (1,027 with polyps and 23 without 
polyps) were considered for optimizing hyperparameters. The authors validate the ap-
proach using information obtained from (I) a novel collected set consisting of 27,113 co-
lonoscopy images taken from 1,138 patients presenting as a minimum one detected pol-
yp. The calculated statistical parameters demonstrated the validity of the approach, 
showing a sensitivity of 94.38% and a specificity of 95.92%, with an area under the ROC 
curve of 0.984; (II) a public database containing clinical images of 612 polyps (sensitivity 
of 88.24%); (III) 138 colonoscopy videos including histologically established polyps (sen-
sitivity of 91.64%; per-polyp-sensitivity of 100%); (III) a set of 54 intact full-range colon-
oscopy videos with no polyps (specificity of 95.40%). The developed a DL model has 
great potential in assisting clinicians while conducting colonoscopies, being able to cor-
rectly discriminate polyps and adenomas [297]. Byrne and coworkers developed a ML 
model based on deep CNN technique for a real-time evaluation of endoscopic video 
images of colorectal polyps. The model was trained and validated using untouched vid-
eo data derived from routinary clinical investigations not adapted for a classification 
based on AI approach. For assessing the performances of the developed computational 
tool, the authors tested the model employing an independent set of 125 videos of se-
quentially encountered diminutive polyps classified as adenomatous or hyperplastic 
polyps. The ML model showed a sensitivity of 98%, a specificity of 83%, and an accuracy 
of 94%, being able to discriminate hyperplastic from adenomatous polyps [298]. Urban 
and colleagues used a similar approach to develop a deep CNN algorithm for detecting 
polyps from colonoscopy exams. They trained a ML model employing 8,641 hand-
labeled images, with 4,088 unique polyps, from screening colonoscopies derived from 
over 2,000 subjects. The authors tested the model using 20 colonoscopy videos (5 h of 
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duration). When validated considering manually labeled images the developed model 
detected polyps with an area under the ROC curve of 0.991 and an accuracy of 96.4%. In-
terestingly, in the examination of colonoscopy videos where 28 polyps were removed, 4 
expert reviewers found 8 extra polyps with no ML-based support that had not been re-
moved and observed further 17 polyps taken an advantage from CNN support (45 total 
polyps). Notably, every one of the polyps removed and detected by experts were found 
using the ML-based model, although the computational tool showed7% of false positive. 
However, the CNN algorithm identified a number of polyps higher than those observed 
from expert clinicians. Notably, the additional polyps found by the model are little ade-
nomas with a size ranging from 1 – 3 and 4–6 mm [299]. Regarding gastrointestinal ma-
lignancies some methods, based on AI/ML, for detecting cancers in the gastrointestinal 
tract have been described. For example, Tokai and colleagues in their study, estimated 
the diagnostic capability of a ML tool based on CNN algorithm in detecting esophageal 
squamous cell carcinoma (ESCC) and in assessing its invasiveness. For a comprehensive 
assessment of the performances, they compared the acquired results with the findings 
obtained from thirteen expert endoscopists. The CNN algorithm was trained using 
white light imaging and narrow-band imaging endoscopic images including 1,751 imag-
es of ESCC. In the validation step the ML-based model identified 95.5.% of ESCC in test 
pictures (279/291) in ten seconds properly estimating the invasion depth of ESCC with a 
sensitivity of 84.1% and accuracy of 80.9% in six seconds. The diagnosis assisted by 
CNN algorithm was more accurate than diagnosis done by expert clinicians alone, indi-
cating a potential role of ML as ESCC diagnostic tool [300]. Another example of the 
AI/ML application to detect cancer and its invasive potential was carried out by Nak-
agawa and collaborators. They reported the development of a DNN approach for diag-
nosing the invasion depth of ESCC. ML-based model was built employing endoscopic 
images from subjects affected by superficial ESCC. In particular, the authors generated a 
training set collecting 8,660 non-magnified endoscopic images as well as 5,678 magnified 
images from 804 patients with superficial ESCC presenting cancer invasion; while they 
compiled a validation test set consisting of 405 non-magnified images ad 509 magnified 
images from 155 subjects. The DNN algorithm showed the following statistical parame-
ters: specificity 95.8%, sensitivity 90.1%, accuracy 91%, positive predicted value 99.2%, 
negative predictive value 63.9%. These parameters highlighted the capacity of the model 
to identify pathologic mucosal and submucosal microinvasive (SM1) cancers from sub-
mucosal deep invasive (SM2/3) cancers. Compared with the assessment performed by a 
pool of experts, employing the same validation set, the model showed a slight im-
provement of the performances, confirming the capability to detect invasion depth in 
patients with superficial ESCC [301]. Other interesting works in the field regard the pos-
sibility to assess the severity of inflammatory bowel disease (IBD) and improving its 
classification by using AI/ML approach. Ozawa and coworkers developed a ML-based 
system for evaluating the severity of ulcerative colitis. They developed a CNN algorithm 
trained on colonoscopy images (26,304 images) derived from 841 subjects affected by ul-
cerative colitis. The performance of the ML model was assessed considering an inde-
pendent test set composed by 3,981 images from 114 patients with ulcerative colitis. The 
model was examined for its capacity to distinguish normal mucosa (Mayo 0) and muco-
sal healing state (Mayo 0-1). The validation was achieved by calculating the areas under 
the ROC curve, and the results for the ML-based were 0.86 and 0.98 in identifying Mayo 
0 and 0-1, respectively. The CNN algorithm better performed for the rectum than for the 
right side and left side of the colon when identifying Mayo 0 (areas under the ROC 
curve = 0.92, 0.83, and 0.83, respectively). This work underlined the robustness of the 
method in identifying endoscopic inflammation seriousness in subjects with ulcerative 
colitis, indicating that the CNN algorithm can assist clinicians in determining severity-
based therapies as well as follow-up endoscopy waits for IBD [302]. Mossotto and col-
laborators developed a ML model for classifying pediatric IBD employing data derived 
from endoscopic and histological imaging of 287 children affected by IBD. These data 
were used for developing, training, testing, and validating a ML model for classifying 
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disorder subtypes. Unsupervised ML models displayed wide clustering of Crohn's dis-
ease/ulcerative colitis, but no apparent subtype differentiation, while hierarchical clus-
tering recognized new categories with varying levels of colonic contribution. Further-
more, endoscopic data alone, histological data alone, and a combination of endoscop-
ic/histological data were used to generate three supervised ML models, showing a classi-
fication accuracy of 71.0%, 76.9%, and 82.7%, respectively. The most promising ML 
model was assessed by considering an independent group of 48 children affected by 
IBD. The findings demonstrated that the ML-based model appropriately classified pa-
tients with an accuracy of 83.3%. This work highlighted that for a proper supervised ML 
model development is necessary to consider both endoscopic and histological data for 
performing a more accurate classification of a disease [303].  

A very fascinating approach in which AI/ML-based approach can be used is in the 
field of food intolerance. In particular, starting from a decade ago, several computational 
attempts were done for detecting subjects presenting celiac disease and for classifying 
the disorder [304]. In a pioneeristic approach, Vècsei and collaborators developed a 
computer-based methodology for automatically classifying celiac severity on 612 endo-
scopic images from pediatric patients considering two-class issue: mucosa affected by 
celiac disease and unaffected duodenal tissue. Even though the classification method 
was able to discriminate celiac disease into two mentioned group (disease vs no disease), 
showing an overall accuracy of 88%, the model displayed a reduced accuracy (63.7%) in 
classifying the severity of disorders maybe due to the small set for training the model 
[305]. After that, Wimmer and collaborators theorized that AI methods can be employed 
for classifying luminal endoscopic images of celiac disease. They developed a CNN 
transfer-learning that categorized luminal endoscopic images from the duodenum gath-
ered by white light and narrow band imaging endoscopy, collecting 1661 images. The 
CNN algorithm showed an accuracy of 90.5% in the identification of celiac disease con-
sidering endoscopic images alone. The authors indicated that the gold-standard for the 
diagnosis of celiac disease remains unchanged, ML could offer a new way in diagnostic 
settings, especially where acquiring biopsies is complicated [306]. Hujoel and collabora-
tors developed a ML model for detecting undiagnosed celiac disease. To this purpose, 
they collected serum samples derived from 47,557 subjects, whit no previous diagnosis 
of celiac disease. From this set 408 undiagnosed cases were detected. To apply ML in a 
retrospective study, they developed various ML-based predictive models employing 
several approaches such as LR, EN, tree-based models with and without boosting and/or 
bagging, SVM with radial basis functions, ANN, RF, and LDA. The performances of all 
the developed models were assessed applying the calculation of the area under the ROC 
curve. Ten models were trained considering the images set including and excluding var-
iables and a predictor set including sex, age, number of symptoms, history of any auto-
immune condition, thyroid disorder, anemia, hypothyroidism, previous indication to 
test for celiac disease, dyspepsia, and recurring abdominal pain. Unfortunately, by using 
this approach the authors obtained ML-based models with limited discriminatory pow-
er, showing an area under the ROC curve ranging from 0.49 to 0.53. Two models (RF 
and bagged classification trees) showed better performance with respect to the random 
chance (likelihood > 95%), although the predictive power showed a slight improvement 
compared to the other models. Probably, the partial failure in developing effective ML-
based models can be ascribable to the subtle symptoms in atypical cases, suggesting that 
considering the mentioned variables for developing predictive models could be imprac-
tical, since they did not characterize undiagnosed celiac disease [307]. Accordingly, for 
improving diagnostic rates other approaches must be investigated for detecting celiac 
disease, and very recently, Koh and coworkers developed a new ML algorithm for an 
automated classification of duodenal biopsy images, aiding clinicians to detect celiac 
disorder and the severity of villous atrophy, taking into account the Marsh score. In the 
first step, the authors performed a pre-process procedure on biopsy images, subjecting 
images to a Steerable Pyramidal Transform (SPT) for obtaining sub band coefficients. 
Considering each sub band diverse entropy (Fuzzy entropy, Kapur entropy, Renyi en-
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tropy, Shannon entropy, Vajda entropy, Yager entropy) and nonlinear features were cal-
culated and used as input to the decision tree (DT), k-NN, SVM, Adaboost M1 for two-
classes and Adaboost M2 for multiclass classification, Bagged Trees and Discriminant 
Subspace for automatically classifying the extracted features (734 features were extracted 
from each set of data and so, 26,424 features were extracted from three diverse sets of 
data) from two classes (normal and celiac) and multiclass (diverse degree of severity of 
villous atrophy considering Marsh scores) biopsy images. Interestingly, for avoiding the 
bias determined by data imbalance, the authors employed an adaptive synthetic sam-
pling (AdaSyn) technique. Next, the authors employed a ten-fold cross-validation ap-
proach for training and testing the model. In the ten-fold scheme, the set was divided in-
to ten parts, where 9 parts were employed to train the model and 1 part for testing. Con-
sequently, a different part was utilized to test the model while the other 9 parts were 
used for training. This procedure was repeated ten times for each part. The performance 
of the developed ML model was evaluated, and results showed an accuracy, sensitivity, 
and specificity of 88.89%, 89.67%, and 86.67% in the two-class classification of 2 Set data 
(Marsh I + II and Marsh III) of Hematoxylin-Eosin-DAB (HED) biopsy images. Further-
more, 82.92% accuracy, 85.67% sensitivity and 76.67% specificity results were achieved 
in the two-class classification of 2 Set data (Marsh I + II and Marsh III) of RGB biopsy im-
ages. Considering the results of multi-class classification (3 Set data), an accuracy of 72% 
was obtained for HED biopsy images employing SVM. The suggested approach for an 
automatic classification of biopsy pictures can help with the process of evaluating vil-
lous atrophy using Marsh score, suggesting that automation of biopsy images is a feasi-
ble task. Nevertheless, more amount of data with improved quality (e.g., biopsy images 
well-orientated) are needed to appropriately train the model, enhancing its predictive 
power [308]. Remarkably, the reported results have shown great potential for AI/ML in 
automation of biopsy images for detecting celiac disease as well as other disorders. Fi-
nally, we discuss a recent article in which ML based on DL technique was adopted for 
detecting Helicobacter pylori considering gastric biopsies. Klein and colleagues reported 
used for the first time a computer-based approach for accelerating the recognition of Hel-
icobacter pylori on histological samples. They developed a DL decision support algorithm 
to be employed on conventional images of gastric biopsies for detecting H. pylori on 
H&E- and Giemsa -stained slide images. These latter were classified using a DNN algo-
rithm trained considering Giemsa and H&E slides (191 H&E- and 286 Giemsa-stained 
slides for a total of 2,629 tiles containing for Giemsa and 790 H&E. In addition, 4,241 
(Giemsa) and 1,533 (H&E) tiles without Helicobacter pylori-like bacterial structures). Sev-
eral validation approaches presented in the work showed a significant area under ROC 
curve > 0.8, indicating the ability of the model to detect Helicobacter pylori, indicating that 
AI/ML tools can assist clinicians to formulate a more accurate diagnosis regarding the 
presence of H. pylori on gastric biopsies [309]. 

2.2.5. AI in dermatology 
As discussed for different medical fields, the translational power of AI/ML in medi-

cine is great. From diagnosis to targeted therapy, ML techniques have great potential to 
increase dermatologists' practices. Current progress in computing along with the availa-
bility of huge datasets (e.g., image and -omics databases, electronic medical records), 
have spurred the development of ML-based approaches in dermatology [126,310]. Some 
relevant examples were analyzed in this paragraph. Spyridonos and coworkers de-
scribed a computational approach for discriminating actinic keratoses from healthy skin 
based on color texture examination of typical clinical photographs. It is important to ear-
ly recognized these kinds of skin lesions since they are frequent pre-malignant injuries 
that indicates the possibility to develop invasive skin squamous cell carcinoma. They 
collected non-standardized clinical photographs of 22 patients of both actinic keratoses 
and healthy skin, labelled by experienced dermatologists highlighting ROI. In this way 
the authors obtained a dataset composed by 6,010 (actinic keratoses) and 13,915 
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(healthy) ROI. Information about color texture were obtained employing local binary 
patterns (LBP) or texton frequency histograms and assessed using a classifier based on 
the SVM technique. The classification method was evaluated employing leave-one-
patient-out procedure in RGB, YIQ and CIE-Lab color spaces. The best performing con-
figuration of the SVM model was tested using 157 actinic keratoses and 216 healthy skin 
rectangular regions of arbitrary size. Actinic keratoses treatment outcome was assessed 
in a further group of eight subjects with 32 skin lesions. The excellent configuration, for 
discriminating the samples, was obtained using LBP color texture descriptors estimated 
from the Y and I components of the YIQ color space, and the SVM model achieved a 
sensitivity of 80.1% and a specificity of 81.1% at ROI level, while a sensitivity of 89.8% 
and a specificity of 91.7% at region level. The authors observed a quantitative actinic 
keratoses reduction of 83.6% considering the classifier used. Interestingly, this work that 
a combination of clinical photographs with ML algorithm for a detailed image analysis 
represents a useful non-invasive, cost-effective approach to monitor actinic keratoses for 
early therapeutic strategies against such skin lesions [311]. Intriguingly, some AI-based 
models have been established for predicting the skin sensitization. In this context, Tsu-
jita-Inoue and collaborators developed a ML approach based on ANN algorithm for as-
sessing the skin sensitization risk derived from several chemicals. The authors used sev-
eral descriptors (e.g., data from of antioxidant response element (ARE) tests and LogP, 
indicating lipid solubility and skin absorption) for implementing a previous version of a 
software able to predict the murine local lymph node assay (LLNA) test results [312]. In 
fact, LLNA is the most used in vivo method to assess the sensitizing potential of chemical 
entities. Accordingly, they developed iSENS ver.2. The authors used the data obtained 
for 62 compounds in murine LLNA tests. Among them, 53 composed the training set, 
while the others were employed for validating the developed computational tool. The 
predictivity of the ANN-based model was assessed by employing a 10-fold cross-
validation method. The accuracy, specificity, and sensitivity of the computational model 
were 84.9%, 92.3% and 82.5%, respectively [313]. According to the results, ML approach-
es for evaluating the risk estimation of compounds regarding skin sensitization can rep-
resent a valuable resource for replacing animal testing. Subsequently, Zang and collabo-
rators improved the number of selected chemicals for developing a ML model to predict 
the skin sensitization considering two datasets, one including LLNA results regarding 
120 chemicals and the other covering human skin sensitization results taking into ac-
count 87 chemicals (all these substances were included in the LLNA dataset). Moreover, 
the authors included six physicochemical features of these chemicals related to skin ex-
posure and penetration (octanol/water partition coefficient, water solubility, vapor pres-
sure, melting point, boiling point, and molecular weight). The molecules were distribut-
ed into training set (75%) and test set (25%). Different ML approaches were used for de-
veloping predictive models, including classification and regression tree, LDA, LR, and 
SVM. The validation step was performed applying the leave-one-out cross-validation 
procedure. SVM was found to be the best method in modelling LLNA output with an 
accuracy of 89% and a sensitivity of 86%, and specificity of 92% on the test set. Regard-
ing the prediction for human outcomes, SVM model demonstrated an accuracy of 81%, a 
sensitivity and specificity of 86%, and 78%, respectively [314]. Another area of dermatol-
ogy regards skin lesions and malignancies. Esteva and coworkers generated a deep 
CNN-based model for classifying skin lesions. They trained a CNN model employing a 
set of 129,450 clinical images enclosing 2,032 diverse disorders, matching the perfor-
mance of 21 dermatologists experienced across three serious diagnoses: keratinocyte 
carcinoma classification, melanoma classification and melanoma classification by means 
of dermoscopic data. Results showed an area under the ROC curve of 0.96 for carcino-
ma, and of 0.94 for melanoma [315]. Haenssle and colleagues, in an interesting experi-
ment, evaluated the accuracy of melanoma skin cancer diagnosis considering the per-
formance of 58 experts in comparison with the assessment performed by a ML-based 
model generated using CNN technique. ML model was developed, validated, and tested 
for classifying dermoscopic images of lesions of melanocytic origin (melanoma, benign 
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nevi) for diagnostic purposes. The dataset enclosed a test set composed by 300 images 
containing 20% melanomas (in situ and invasive) of all body sites and of all common his-
totypes, and 80% benign melanocytic nevi. The average of the calculated area under the 
ROC curves was 0.79, considering the results from the 58 dermatologists, and 0.86, con-
sidering the ML model, respectively, indicating an improvement concerning the diag-
nostic performance derived from the application of the computer-based tool. According-
ly, the study highlighted that ML models appropriately trained have the capability to 
perform accurate diagnostic classification of dermoscopic images of melanocytic origin 
[316,317]. Han and coworkers developed a ML model using CNN algorithm for classify-
ing clinical images from 12 skin diseases (basal cell carcinoma, squamous cell carcinoma, 
intraepithelial carcinoma, melanocytic nevus, pyogenic granuloma, seborrheic keratosis, 
actinic keratosis, wart, malignant melanoma, hemangioma, lentigo, and dermatofibro-
ma,). ML model was trained, tested, and validated employing Asan dataset, MED-
NODE dataset, and atlas site images, for a total of 19,398 images, opportunely divided in 
training set and test set. Considering Asan dataset, the area under the ROC curve con-
cerning the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial 
carcinoma, and melanoma was 0.96, 0.83, 0.82, and 0.96, respectively. Considering the 
Edinburgh dataset, the area under the ROC curve for the same disorders was 0.90, 0.91, 
0.83, and 0.88, respectively. The developed ML-based model demonstrated comparable 
performances to those obtained from 16 dermatologists. Furthermore, as indicated by 
the authors, for improving the performance of CNN algorithm, supplementary images 
representing a larger variety of ages and ethnicities should be employed [318]. Follow-
ing this trend other studies employing data from dermoscopic images sometimes com-
bined with macroscopic images for training supervised or unsupervised ML models 
based principally on CNN algorithms to detect and/or classify cutaneous malignancies 
including melanoma and basal cell carcinoma [319-326]. Notably, CNN algorithms 
showed interesting performances also in classifying and detecting other relevant derma-
tological disorders including onychomycosis, rosacea, atopic dermatitis, and psoriasis 
[327-333]  

3. Conclusion and Future Perspective 
AI/ML has reemerged in the last years as a powerful set of tools for unlocking value 

from big datasets. According to the extraordinary increase in the use of AI and ML 
techniques to nearly all fields of technology, science, and medicine clearly indicates a 
significantly greater role for these procedures in the discovery of innovative therapies in 
the near future. The above descriptive examples display how useful these 
methodologies can be in discovering novel drug candidates, biomarkers, and drug 
targets as well as for detecting and evaluating the progression of a given disease. It is 
also clear from the literature that the rate of adoption of these methods is increasing 
significantly. This is determined by the increase of the usage of high-throughput screens, 
increased power and availability of open-source ML methods, and development of new 
AI/ML algorithms, generating more accurate descriptors and model relationships. 
Remarkably, the quality of the generated ML algorithms is also principally defined by 
the quality of the input data, so a proper data acquisition and curation is a crucial step 
for developing predictive/effective ML-based models. In context of ML as a new 
diagnostic technique and for identifying appropriate therapeutic regimens, most of the 
developed models were found to outperform current clinical standards based on the 
assessment of sensitivity, specificity and accuracy employing ROC method for 
comparing ML algorithms and clinician performances. This validation, undoubtedly 
added validity to model performances, but for a real-world assessment any new 
methodology employed in clinical settings, should demonstrate superior performance in 
properly designed, randomized clinical trials. Nonetheless, advances in ML will 
provide, in the next future, effective methods for addressing the uncertainty observed in 
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translational medicine, facilitating for a more forceful, data-driven decision making for 
developing the next generation of diagnostic tools and therapeutic agents to patients. 
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