

1 **Spectrum of clinical research in Juvenile Idiopathic Arthritis: a cross-**
2 **sectional analysis of registered studies in clinicaltrials.gov and**
3 **clinicaltrialsregister.eu**

4

5

6

7 Ronny Lehmann, MD, MME¹

8 Markus Ries, MD, PhD, MHSc, FCP^{2,3,4*}

9

10 ¹Center for Pediatric and Adolescent Medicine, Department of General Pediatrics I, Im
11 Neuenheimer Feld 430, 69120 Heidelberg, Germany

12 ²Center for Pediatric and Adolescent Medicine, Department of Pediatric Neurology and
13 Metabolic Medicine, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany

14 ³Center for Rare Disorders, Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120
15 Heidelberg, Germany

16 ⁴Center for Virtual Patients, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld
17 430, 69120 Heidelberg, Germany

18

19 * corresponding author:

20 Markus Ries, MD, PhD, MHSc, FCP

21 markus.ries@uni-heidelberg.de

22

23 **Abstract**

24 Management of Juvenile idiopathic arthritis (JIA) has improved tremendously in recent years
25 due to the introduction of new drug therapies but remains complex also in terms of non-
26 pharmaceutical issues. In order to determine the direction of scientific progress by
27 characterizing the current spectrum of ongoing clinical research in JIA, we analyzed all
28 ongoing studies in the field of JIA registered in clinicaltrials.gov and clinicaltrialsregister.eu
29 concerning sponsoring, enrollment, duration, localization, and particularly objectives. Close
30 of database was 7 January 2021. After identifying doubled-registered studies, N=72 went
31 into further analysis. Of these, 61.1% were academia-sponsored and 37.5% by pharma
32 industry. The majority of studies was of interventional type (77.8%), while others (22.2%)
33 were observational. Median planned enrollments were 100 participants (interventional
34 studies) and 175 participants (observational studies), respectively. Duration differed
35 remarkably from one month to more than 15 years with a median of 42.5 months. 61.1% of
36 studies were located in a single country, 38.9% were in several. Europe and North America
37 clearly dominated study localizations. Study objectives were DMARDs (56.9%), followed by
38 diagnostics and disease activity measurement (18.1%), and medication other than DMARD
39 (12.5%), besides others. Studies on DMARDs were mainly sponsored by industry,
40 predominantly interventional studies on established and novel biologics, with several on
41 specific issues like systemic JIA and others. The spectrum of registered studies is currently
42 centered on drug therapy and diagnostics, while other issues in JIA play a subordinated role.

43

44

45 **Keywords:** juvenile idiopathic arthritis, research registry, clinical trial, DMARD

46

47 *Abbreviations:*

48	ABA	abatacept
49	ADA	adalimumab
50	ANA	anakinra
51	BAR	baricitinib
52	CAN	canakinumab
53	CER	certolizumab
54	DMARD	disease modifying anti-rheumatic drug
55	ETA	etanercept
56	GOL	golimumab
57	HCQ	hydroxychloroquin
58	IFN	interferone
59	IL	interleukine
60	IXE	ixekizumab
61	JAK	janus kinase
62	JIA	juvenile idiopathic arthritis
63	MTX	methotrexate
64	n/a	not available
65	RA	rheumatoid arthritis
66	SAR	sarilumab
67	SEC	secukinumab
68	SUL	sulfasalazine
69	TNF	tumor necrosis factor
70	TOC	tocilizumab
71	TOF	tofacitinib
72	UPA	upadacitinib
73		

74 Introduction

75 Juvenile idiopathic arthritis (JIA) is one of the most prevalent chronic diseases in childhood
76 with 16-150 cases per 100,000 population in developed countries [1]. The commonly used
77 classification by the International League of Associations for Rheumatology divides JIA into
78 seven subgroups [2]. Besides many similarities in clinical presentation and pathophysiology
79 among different subgroups, JIA may also be seen as a collective term for separated disease
80 entities, namely when regarding systemic JIA, psoriatic arthritis, and enthesitis-related
81 arthritis in contrast to oligo-/polyarthritis [1-3]. Sometimes even in absence of any joint
82 involvement, JIA can be diagnosed or suspected (in case of a probable systemic JIA [4]).
83 Especially JIA associated uveitis and temporomandibular joint involvement are prevalent
84 challenging treatment issues [3,5].

85 Under-treated JIA results in joint corrosion, reduced quality of life and participation, and
86 may cause persistent disabilities [3,6,7]. While many of these complications can also be found
87 in adult patients with rheumatoid arthritis (RA), pediatric patients furthermore are at risk for
88 local growth disturbances, (general) growth failure, and pubertal disorders [1,8]. JIA
89 associated uveitis can result in irreversible visual loss, and the most frequent subgroup of JIA
90 is the most vulnerable for developing uveitis [1,9].

91 From the young patients' view, an early diagnose and prompt start of a sufficient treatment
92 is essential not only to improve current complaints, but also to improve long-term outcome.
93 I.e., early treatment with disease-modifying antirheumatic drugs (DMARDs) is associated
94 with better disease control and drug-free remission in young adulthood [10]. Early response
95 to treatment is associated with better long-term outcome [11,12].

96 The last decades tremendously improved management of JIA [13]. Molecular-immunology
97 studies on disbalances between immune tolerance and inflammation, genetic susceptibility
98 and gene expression lead to better understanding of etiologies and pathogeneses [14].
99 Introduction of biologic DMARDs revolutionized treatment and outcome of JIA patients and
100 will likely be applied in personalized treatment strategies [3,15]. From the care providers'
101 view – the pediatric rheumatologist – scientific research and drug development are brought
102 into practice through structural establishment of pediatric rheumatology networks and
103 disease registers, and emerging guidelines for JIA [1,3,4,16-19].

104 Despite these considerable advancements, treatment of JIA remains complex and
105 improvable, and still a relevant part of patients is refractory to treatment. Better definition
106 of disease entities and their pathogeneses are needed for improved classification and
107 treatment strategies [1,16], as well as specific biomarkers for personalized treatment tuning
108 [3,16,20,21]. Pediatric-approved DMARDs require long-term observation through registry
109 studies [22] and recently approved DMARDs from adult medicine – i.e. in the treatment of
110 rheumatoid arthritis – need to be explored for their potentials and risks in pediatric patients
111 with JIA [23]. Novel drugs targeting selectively molecules or pathways involved in

112 inflammation are needed to offer new treatment perspectives in refractory cases, therefore
113 prospective clinical studies are inevitable [3,16].

114 But improving pediatric rheumatologic care is more than improving pediatric
115 pharmacological care. Besides all available possibilities of modern treatment, a nontrivial
116 question is how to provide individual access to pediatric rheumatologic care for children
117 with such diseases [24,25]. And, as pediatricians are not treating small adults, improving
118 pediatric-specific issues must be addressed like family-centered care, social integration and
119 rehabilitation, as well as transition as a key issue of every chronic pediatric disease [26].

120 We therefore directed our efforts in determining the direction of progress in the field.
121 Specifically, the purpose of this study is to characterize current clinical research in the field
122 of JIA in regard to pediatric medical needs. We hypothesize that research hereon is drug-
123 driven due to its achievements in recent years and potential economic prospects.

124

125 **Materials and Methods**

126

127 **Aim of the study**

128 This study aims to characterize ongoing clinical studies in the field of JIA in terms of
129 sponsoring, enrollment, duration, localization and investigational topics, in a cross-sectional
130 analysis. STROBE criteria (Strengthening the Reporting of Observational studies in
131 Epidemiology) were applied for design, conduction and reporting of this study [27]. The term
132 'ongoing' refers to not yet finally completed studies at time of analysis.

133

134 **Search for clinical studies**

135 Web-based databases of the U.S. National Library of Medicine (clinicaltrials.gov) and the
136 European Union Clinical Trials Register (clinicaltrialsregister.eu) were assessed for ongoing
137 clinical studies with the search keywords 'juvenile idiopathic arthritis', synonyms 'JIA' and
138 'juvenile chronic arthritis'. Filters were applied for age range (all age groups under 18 years)
139 and study status ('Recruiting', 'Not yet recruiting', 'Active / not recruiting', 'Enrolling by
140 invitation', 'Suspended', and 'Ongoing', 'Restarted', 'Temporarily halted', respectively).
141 Databases were closed for search 7 January 2021 and data were downloaded for further
142 analysis.

143

144 **Data analysis**

145 Microsoft Excel 2019 MSO, Edmond, US-WA, was used for data analysis. Standard
146 techniques for descriptive statistics were applied. Study titles and description details were
147 analyzed concerning sponsor, enrollment, duration, localization of study centers, and study
148 type and objectives. Double-registered studies were identified, doublets were excluded.
149 Missing data were not imputed. Sponsor was categorized into either industry or academia
150 (including universities, public institutions and hospitals). Planned enrollment of participants
151 was also extracted from description details. By the start date ongoing 'duration' of studies
152 was calculated in months using the earlier date in case of doublets in both registries. For
153 localization of study centers we displayed the top five locations for single and multi-country
154 studies, respectively, for which countries were clustered to their super-ordinated medical
155 authorities (i.e., EU countries – EMA). Study details were analyzed for classification of
156 interventional or observational studies, and their clinical phases where appropriate. For
157 determination of study objectives keywords were generated from study descriptions, and
158 content analysis was used to determine answer categories [28].

159

160 **Results**

161

162 **Registered studies**

163 Overall, n=56 studies registered on clinicaltrials.gov and n=34 studies on
164 clincialtrialsregister.eu met the search criteria. Of these, n=18 studies were identified being
165 double-registered. Contents of n=72 studies were further analyzed. In the following passage
166 we present the main results, for more details see Supplement 1.

167

168 **General findings**169 *Sponsor*

170 Academia sponsored 44/72 (61.1%) of found studies, industry 27/72 (37.5%), one study was
171 mixed sponsored. Of academia-sponsored studies, 3/44 (6.8%) were doubled-registered in
172 both registers as well as 15/27 (55.6%) of industry-sponsored studies.

173

174 *Planned Enrollment*

175 For interventional studies, the planned enrollment was median 100, with a minimum of 6
176 and a maximum of 340 participants. Planned enrollment for observational studies was
177 median 175, with a minimum of 10 and a maximum of 9,000 participants.

178

179 *Duration of studies*

180 Start dates of n=2 studies were given in the future at time of assessment and therefore not
181 used for calculation of duration. Duration of ongoing studies was calculated from n=70
182 studies with a median of 42.5 months, a minimum of 1 month and a maximum of 183
183 months (more than 15 years).

184

185 *Locations*

186 Of analyzed studies, 44/72 (61.1%) were located in a single country and 28/72 (38.9%) in
187 multiple countries. Most frequent countries for single location were: France (9/44),
188 Netherlands (6/44), United States of America (6/44), Canada (5/44), China (3/44), and Italy
189 (3/44). When multiple countries were involved, most frequent countries were: EU countries
190 (24/28), United Kingdom (17/28), Russian Federation (14/28), Mexico (13/28), and the
191 United States of America (13/28). Geographically, European countries were involved in

192 54/72 studies (75.0%), North American countries in 30/72 studies (41.7%), South American
193 as well as Asian countries in 14/72 studies (19.4%) each, African countries in 8/72 studies
194 (11.1%), and Australia and Oceania in 6/72 studies (8.3%).

195

196 **Study types**

197 The found study type was interventional in 56/72 (77.8%), and observational in 16/72
198 (22.2%) studies. A clinical phase was given in N=44/56 of interventional studies:

199 - Phase I: 5 studies,
200 - Phase II: 4 studies,
201 - Phases I+II: 3 studies,
202 - Phase III: 22 studies,
203 - Phase IV: 10 studies.

204

205 **Study objectives**

206 For proportions of study objectives see also Figure 1.

207

208 **DMARDs**

209 41/72 (56.9%) studies were related to DMARDs in the fields of JIA including JIA associated
210 uveitis; industry sponsors were involved in 27/41 studies; 14/41 studies were sponsored by
211 academia only. Studies addressed conventional, non-biological (hydroxychloroquine,
212 methotrexate, sulfasalazine; 10/41 studies) and/or biological DMARDs (37/41 studies). Vice
213 versa, 31/41 studies did not involve any non-biological DMARD as a variable or control, and
214 4/41 studies did not involve any biological DMARD, see also Figure 2.

215 Only 5/41 studies were of observational type, all others were interventional. The following
216 DMARDs were specifically studied in these studies, in descending order (partly multiple
217 agents involved per study):

218 - Methotrexate (MTX; 10/41 studies, hereof three observational studies),
219 - Abatacept (ABA; 6/41 studies, hereof one observational study),
220 - Etanercept (ETA; 6/41 studies),
221 - Tocilizumab (TOC; 6/41 studies),
222 - Adalimumab (ADA; 4/41 studies, hereof one observational study),
223 - Baricitinib (BAR; 4/41 studies),
224 - Tofacitinib (TOF; 3/41 studies),
225 - Canakinumab (CAN; 2/41 studies),
226 - Golimumab (GOL; 2/41 studies, hereof one observational study),

227 - Sarilumab (SAR; 2/41 studies),
228 - Secukinumab (SEC; 2/41 studies),
229 - Anakinra (ANA; 1/41 study),
230 - Certolizumab (CER; 1/41 study),
231 - Hydroxychloroquine (HCQ; 1/41 study),
232 - Ixekizumab (IXE; 1/41 study),
233 - Sulfasalazine (SUL; 1/41 study),
234 - Upadacitinib (UPA; 1/41 study).

235 Of studied biological agents, corresponding biological targets are shown in Figure 3
236 (interventional and observational studies). Of all studies on DMARDs, 10/41 studies
237 specifically addressed treatment of systemic JIA (DMARDs: ANA, BAR, CAN, MTX, SAR, TOC,
238 and TOF), 4/41 studies specifically addressed enthesitis-related and psoriatic JIA (DMARDs:
239 ETA, IXE, SEC), and 3/41 studies specifically addressed JIA associated uveitis (DMARDs: ADA,
240 BAR, GOL). Withdrawal strategy was an explicit issue in 6/41 studies (DMARDs: ABA, ADA,
241 ANA, ETA, MTX, TOC).

242 Enrollment of observational studies was median 833, with a minimum of 10 and a maximum
243 of 9,000. For clinical phases and planned enrollments in interventional studies on biological
244 DMARD agents see Table 1. All industry-sponsored studies were located in multiple
245 countries; whereas only two of the academia-sponsored studies had locations in more than
246 one country (USA + UK and several EU countries, respectively).

247

248 *Diagnostics and measurement of disease activity*

249 13/72 (18.1%) studies were related to diagnostics and disease activity in JIA in a broader
250 sense. All these studies were academia-sponsored and located in a single country. Five of
251 these studies concerned musculoskeletal and bone involvement (three interventional, two
252 observational studies), two studies each concerned differential diagnose to septic arthritis
253 (both observational), imaging of arthritis (both observational, MRI and ultrasound,
254 respectively), and temporomandibular involvement (both observational), as well as one
255 study each on etiology and pathogenesis of systemic JIA (observational), disease activity
256 biomarker (interventional), and a national disease registry (observational). Enrollment of
257 these studies was median 90, with a minimum of 30 and a maximum of 1,000.

258

259 *Medication other than DMARD*

260 9/72 studies (12.5%) were related to medications other than DMARD and all of them of
261 interventional type, concerning the following medications: anti-IFN-gamma in systemic JIA
262 (phase II), dexmedetomidine (phase IV; as sedative during joint-injections), mesenchymal
263 stromal cells (phases I and II), genicular nerve block (phase IV), high-dose nicotinamide

264 (phases I and II), ondansetron (phase n/a; as pre-medication), probiotics (phase n/a),
265 recombinant interleukine 2 (phase n/a), triamcinolone hexacetonid (phase IV). Except for the
266 study on anti-IFN-gamma, studies were academia-sponsored and located in a single country.
267 Enrollment of studies was median 104, with a minimum of 6 and a maximum of 202.

268

269 *Non-medication treatment*

270 6/72 studies (8.3%) were related to non-medication treatment of JIA and of interventional
271 type: three studies concerned sleep self-management of JIA patients, as well as one study
272 each on yoga and aerobic dance for pain management, a dietary intervention with specific
273 carbohydrates, and a peer mentoring program for adolescents with JIA. All these studies
274 were academia-sponsored and located in a single country. Enrollment was median 30, with a
275 minimum of 18 and a maximum of 262.

276

277 *Vaccination*

278 2/72 studies (2.8%) were related to JIA and vaccination: one observational study concerned
279 frequency of human papilloma virus vaccination among JIA patients, and one interventional
280 study concerned safety and efficacy of live attenuated measles, mumps, rubella vaccine in
281 JIA patients. Both studies were academia-sponsored and located in France and Netherlands,
282 respectively. Enrollment was 150 and 280, respectively.

283

284 *COVID-19 pandemic*

285 One observational, academia-sponsored study (1.4%) was related to the COVID-19 sanitary
286 crisis and observed the impact on therapeutically management of JIA patients. Localized in
287 France, its enrollment was 150.

288

289 **Discussion**

290

291 Current clinical research in JIA was mainly focused on drug therapy –which predominantly
292 means DMARD agents and sponsoring by pharmaceutical industry–, followed by studies on
293 diagnostics and measurement of disease activity. Non-medication therapy and other issues
294 were clearly secondary. In general, the size of interventional clinical studies was relatively
295 small with a maximum enrollment of 340 participants. The two main study locations were
296 Europe and North America, followed by South America and Asia.

297

298 *Role of sponsor in clinical studies*

299 Ongoing registered clinical studies were sponsored by academia in about 60%, and by
300 (pharma) industry in about 40%. Industry-sponsored studies were doubled-registered in
301 both registries in slightly more than half of the cases, which is not common for academia-
302 sponsored studies.

303 Industry-sponsored studies almost exclusively studied DMARDs, except for one study that
304 concerned treatment with anti-IFN gamma in systemic JIA. Only two of the industry-
305 sponsored studies were observational (pharmacovigilance on MTX, ABA, ADA) while most
306 others interventional tested DMARDs namely BAR, CER, IXE, SAR, SEC, TOF, and UPA for
307 introduction into treatment of JIA. Usually drugs had recently been labeled for rheumatic or
308 chronic inflammatory bowel diseases in adults first, and now been exploratory used for JIA
309 patients [23]. Only few interventional studies sponsored by the industry concerned longer
310 established DMARDs in JIA, TOC above all. All industry-sponsored studies had localizations in
311 more than one country; we assume that this might be due to greater access to potential
312 participants as well as potential pharma markets.

313 Academia-sponsored studies did have much more various objectives. Most of the
314 observational studies (14/16) were done by academia, especially in the fields of diagnostics
315 and disease activity measurement. At least one-third of research in DMARDs is performed by
316 academia, in fact on longer established drugs including non-biological DMARDs.
317 Interestingly, withdrawal strategies in DMARD-treated patients play a significant role.
318 Besides treatment with DMARDs, academia explores others possibilities of JIA treatment
319 including non-DMARD medications and non-medication (behavioral) treatment strategies.
320 Multi-lateral localizations were an exceptional condition here; we assume that barriers
321 between heterogenous legal areas increase necessary effort for realization of multilateral
322 collaboration beyond feasibility for academia in many cases.

323

324 *Role of (novel) DMARDs in clinical studies*

325 In clinical studies in the field of JIA – not surprising – DMARDs are the big player.
326 Introduction of first conventional, non-biological agents, and later of biological DMARDs
327 tremendously changed the game up to today [3,13,15]. Not only improvement of complaints
328 and disabilities is longer goal of treatment, but complete disease control for best long-term
329 outcome. Most frequent targets in DMARD treatment (in count of registered studies and
330 enrollments) are TNF, JAK, IL-6, and T cell. Regarding novel DMARDs in JIA, especially
331 Baricitinib and Tofacitinib seem to be the most promising agents regarding the size of
332 enrollments in phase III studies. In contrast, IL-17 agents (IXE, SEC) did have distinctly fewer
333 phase III studies and smaller enrollments. In addition, new agents were also tested for
334 targets with longer available DMARDs, namely on TNF (Certolizumab, phase III) and IL-6
335 (Sarilumab, phase II). Furthermore, studies on IL-1 antagonist agents had a smaller part in
336 DMARD studies.

337

338 *Targeting specific issues in JIA*

339 As mentioned in the introduction of this manuscript, JIA has unique challenges that differ
340 from rheumatic diseases in adults [1,3,5,9]. Interference of JIA with the growing and
341 developing body is under investigation in a few clinical studies on diagnostics of
342 musculoskeletal impairment. Frequent prevalent issues in JIA like temporomandibular
343 involvement and JIA associated uveitis were found being specific objectives in only a few
344 clinical studies in this study. Most of the studies included several subgroups of JIA, mainly all
345 non-systemic forms or poly-/ oligoarticular course of JIA. Nevertheless, systemic JIA was
346 specifically addressed in 12/72 studies (ten concerning DMARDs). Likewise, etiological
347 differing entities like psoriatic and enthesitis-related arthritis were specifically addressed in
348 4/72 studies (all on DMARDs).

349

350 *Does clinical research meet the need for research in JIA?*

351 It is not surprising that the majority (more than three quarters) of ongoing studies
352 investigates particular treatment strategies on JIA. The value of scientific networking and
353 collaboration, that brings research results into practice through guidelines and on-site
354 rheumatologic care providers, can barely be shown by analyzing registered clinical studies.
355 Family-centered care, social integration and rehabilitation, as well as transition were not
356 found being explicit issues in ongoing studies. Especially transition in a vulnerable life stage is
357 important for long-term outcome and of relevance in chronic-diseases in pediatrics in
358 general [29], and of JIA in specific, including somatic and mental health [26,30,31]. A direct
359 relation to adolescents in specific, for instance, was only found in one of the studies,
360 although not in the context of transition but of peer-mentoring.

361

362 *Limitations of this analysis*

363 This study has several limitations. We used two registries (clinicaltrials.gov and
364 clinicaltrialsregister.eu) by which studies registered in smaller national registries will be
365 missing, as well as from central registries outside Europe and North America. Our study can
366 naturally not determine studies and research that is not registered in any registry of clinical
367 studies, which may be the case especially for non-medication and/or observational studies.
368 Our analyzes rely on the accuracy of data input to these two registries. For the purpose of
369 characterizing ongoing studies we did not consider studies that were finally closed for
370 further recruitment. Neither we searched for specific terms, i.e. uveitis, what may had
371 revealed more research in these specific fields. We consider this study a cross-sectional
372 snapshot on the ongoing research in JIA in general, not a specific in-depth exploration on
373 research in predefined subsets.

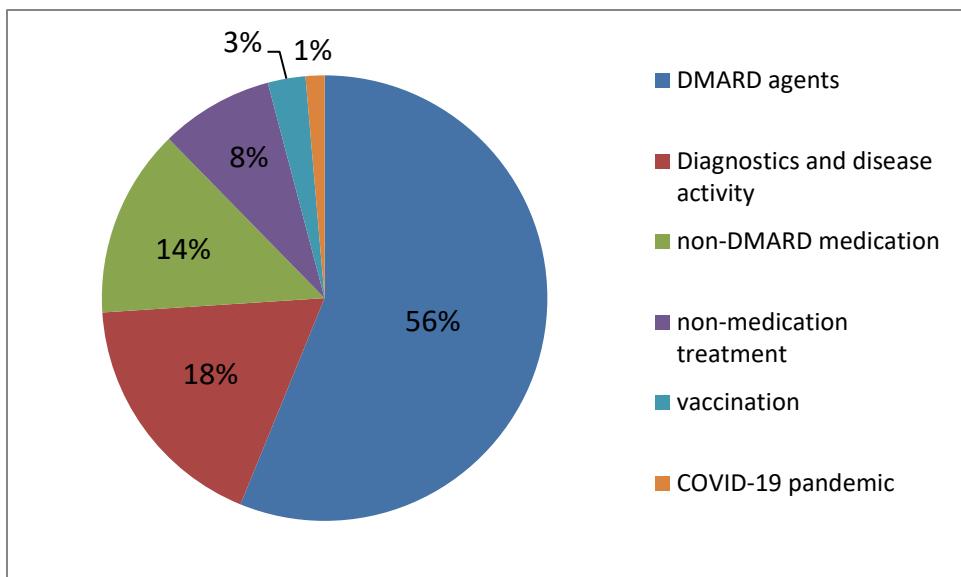
374

375 **Conclusions**

376

377 While clinical research is mainly focused on drug therapy and diagnostics, other issues in JIA
378 management are marginal topics in registered studies.

379

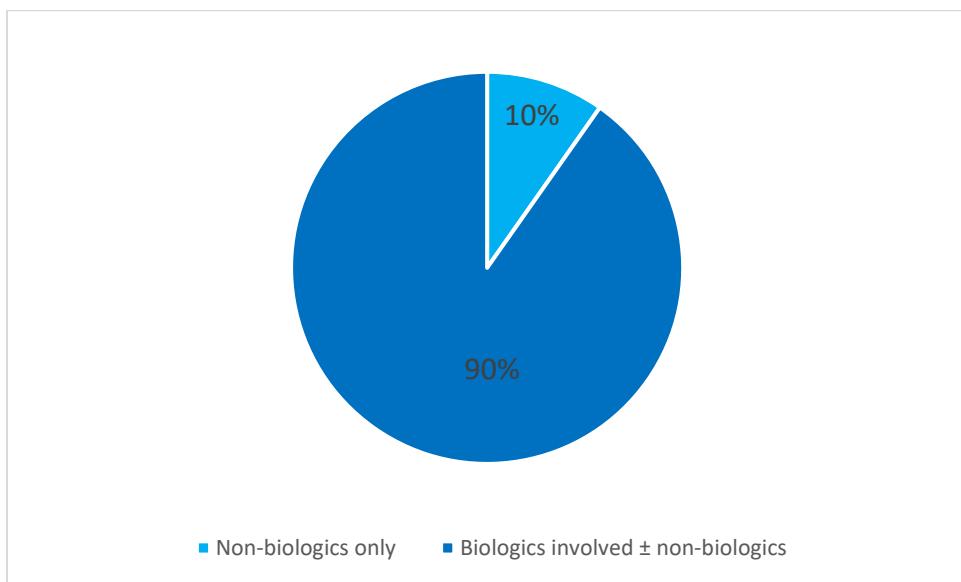

380 **Tables and figures**

381

382 Table 1: Registered interventional studies involving biologic DMARD agents, clinical phases and planned
383 enrollments. *,† refer to studies involving multiple biological targets.384 *IL interleukine, JAK janus kinase, TNF tumor necrosis factor*

Target	DMARD	Phase	Registration number	Enrollment	
TNF	ADA / ETA	I	NCT04585711	30	(total 1,327)
			NCT01421069	109	
		III	NCT02840175*	62	
			NCT03728478	260	
			NCT03816397	118	
			EudraCT2009-012520-84	100	
		IV	EudraCT2013-003956-18†	325	
	CER	III	NCT01550003	193	
	GOL	III	NCT02277444	130	
JAK	BAR	III	NCT03773965	190	(total 1,048)
			NCT03773978	197	
			NCT04088396	103	
			NCT04088409	40	
	TOF	I	EudraCT2011-004914-40	24	
		III	NCT01500551	340	
	UPA	I	NCT03725007	54	
IL-6	SAR	II	NCT02776735	100	(total 726)
			NCT02991469	72	
	TOC	I	NCT02165345	82	
			NCT02840175*	62	
		III	EudraCT2007-000872-18	108	
			EudraCT2009-011593-15	185	
		IV	NCT03301883	74	
			EudraCT2012-000444-10	43	
T cell	ABA	I/II	NCT03733067	40	(total 920)
			NCT01844518	306	
		III	NCT02840175*	62	
			NCT03841357	187	
IL-17	IXE	III	EudraCT2013-003956-18†	325	(total 238)
			NCT04527380	100	
	SEC	III	NCT03769168	58	
			EudraCT2016-003761-26	80	
IL-1	ANA	IV	EudraCT2015-004393-16	55	(total 197)
	CAN	III	EudraCT2008-005476-27	122	
		IV	EudraCT2018-004284-30	20	

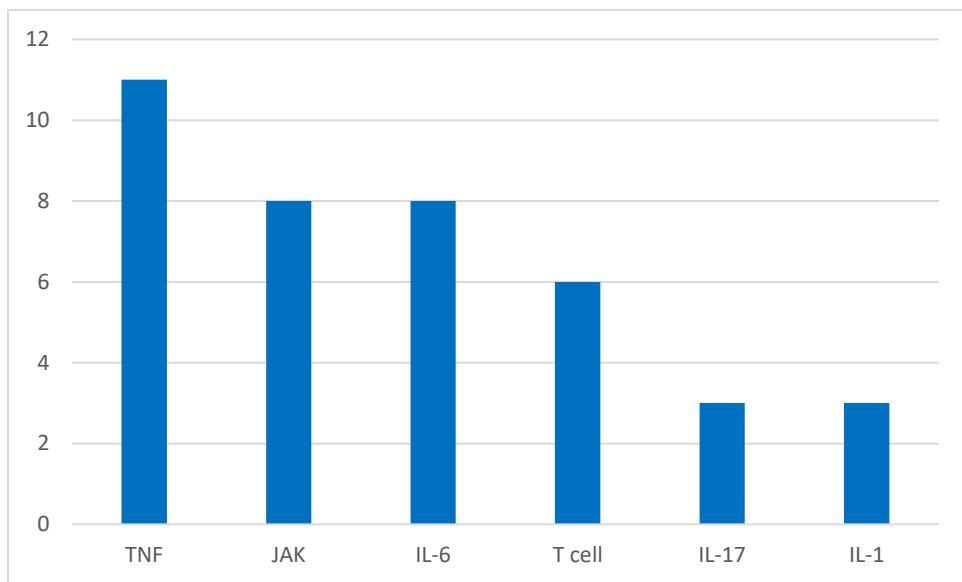
385



386

387 Figure 1: Proportions of registered study objectives.

388


389

390

391 Figure 2: Proportions of DMARD agents involved in registered studies.

392

393

394 Figure 3: Number of studies concerning biological DMARDs sorted for biological targets (interventional and
395 observational studies, partly multiple agents involved per study). *IL interleukine, JAK janus kinase, TNF tumor*
396 *necrosis factor*

397

398

399 Funding Information

400 Not applicable.

401

402 Author Contributions

403 RL conducted the data analysis and interpretation, and wrote the draft of this manuscript.
404 MR conceived of the study design, supervised data interpretation and revised the
405 manuscript. Both authors approved the final manuscript.

406

407 Conflict of Interest

408 The authors declare to have no conflict of interest.

409

410 Ethics Statements

411 Not applicable.

412

413 Data availability statement

414 Underlying data of this study is fully available as supplement.

415

416 **References**

417 1. Ravelli, A.; Martini, A. Juvenile idiopathic arthritis. *Lancet (London, England)* **2007**, *369*, 767-
418 778, doi:10.1016/s0140-6736(07)60363-8.

419 2. Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.;
420 Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.M.; et al. International League of
421 Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision,
422 Edmonton, 2001. *The Journal of rheumatology* **2004**, *31*, 390-392.

423 3. Bridges, J.M.; Mellins, E.D.; Cron, R.Q. Recent progress in the treatment of non-systemic
424 juvenile idiopathic arthritis. *Faculty reviews* **2021**, *10*, 23, doi:10.12703/r/10-23.

425 4. Hinze, C.H.; Holzinger, D.; Lainka, E.; Haas, J.P.; Speth, F.; Kallinich, T.; Rieber, N.; Hufnagel,
426 M.; Jansson, A.F.; Hedrich, C.; et al. Practice and consensus-based strategies in diagnosing
427 and managing systemic juvenile idiopathic arthritis in Germany. *Pediatric rheumatology
428 online journal* **2018**, *16*, 7, doi:10.1186/s12969-018-0224-2.

429 5. Covert, L.; Mater, H.V.; Hechler, B.L. Comprehensive Management of Rheumatic Diseases
430 Affecting the Temporomandibular Joint. *Diagnostics (Basel, Switzerland)* **2021**, *11*,
431 doi:10.3390/diagnostics11030409.

432 6. Guzman, J.; Oen, K.; Tucker, L.B.; Huber, A.M.; Shiff, N.; Boire, G.; Scuccimarra, R.; Berard, R.;
433 Tse, S.M.; Morishita, K.; et al. The outcomes of juvenile idiopathic arthritis in children
434 managed with contemporary treatments: results from the ReACCh-Out cohort. *Annals of the
435 rheumatic diseases* **2015**, *74*, 1854-1860, doi:10.1136/annrheumdis-2014-205372.

436 7. Guzman, J.; Henrey, A.; Loughlin, T.; Berard, R.A.; Shiff, N.J.; Jurencak, R.; Benseler, S.M.;
437 Tucker, L.B. Predicting Which Children with Juvenile Idiopathic Arthritis Will Have a Severe
438 Disease Course: Results from the ReACCh-Out Cohort. *The Journal of rheumatology* **2017**, *44*,
439 230-240, doi:10.3899/jrheum.160197.

440 8. d'Angelo, D.M.; Di Donato, G.; Breda, L.; Chiarelli, F. Growth and puberty in children with
441 juvenile idiopathic arthritis. *Pediatric rheumatology online journal* **2021**, *19*, 28,
442 doi:10.1186/s12969-021-00521-5.

443 9. Saurenmann, R.K.; Levin, A.V.; Feldman, B.M.; Rose, J.B.; Laxer, R.M.; Schneider, R.;
444 Silverman, E.D. Prevalence, risk factors, and outcome of uveitis in juvenile idiopathic arthritis:
445 a long-term followup study. *Arthritis and rheumatism* **2007**, *56*, 647-657,
446 doi:10.1002/art.22381.

447 10. Minden, K.; Horneff, G.; Niewerth, M.; Seipelt, E.; Aringer, M.; Aries, P.; Foeldvari, I.; Haas,
448 J.P.; Klein, A.; Tatsis, S.; et al. Time of Disease-Modifying Antirheumatic Drug Start in Juvenile
449 Idiopathic Arthritis and the Likelihood of a Drug-Free Remission in Young Adulthood. *Arthritis
450 care & research* **2019**, *71*, 471-481, doi:10.1002/acr.23709.

451 11. Bartoli, M.; Tarò, M.; Magni-Manzoni, S.; Pistorio, A.; Traverso, F.; Viola, S.; Magnani, A.;
452 Gasparini, C.; Martini, A.; Ravelli, A. The magnitude of early response to methotrexate
453 therapy predicts long-term outcome of patients with juvenile idiopathic arthritis. *Annals of
454 the rheumatic diseases* **2008**, *67*, 370-374, doi:10.1136/ard.2007.073445.

455 12. Oen, K.; Duffy, C.M.; Tse, S.M.; Ramsey, S.; Ellsworth, J.; Chédeville, G.; Chetaille, A.L.; Saint-
456 Cyr, C.; Cabral, D.A.; Spiegel, L.R.; et al. Early outcomes and improvement of patients with
457 juvenile idiopathic arthritis enrolled in a Canadian multicenter inception cohort. *Arthritis care
458 & research* **2010**, *62*, 527-536, doi:10.1002/acr.20044.

459 13. Hashkes, P.J. 50 Years Ago in The Journal of Pediatrics: Revolutionary Changes in the
460 Management of Juvenile Idiopathic Arthritis. *The Journal of pediatrics* **2020**, *224*, 65,
461 doi:10.1016/j.jpeds.2020.02.044.

462 14. Prakken, B.; Albani, S.; Martini, A. Juvenile idiopathic arthritis. *Lancet (London, England)*
463 **2011**, *377*, 2138-2149, doi:10.1016/s0140-6736(11)60244-4.

464 15. Saougou, I.G.; Markatseli, T.E.; Voulgari, P.V.; Drosos, A.A. Current therapeutic options for
465 the treatment of juvenile idiopathic arthritis. *Current rheumatology reviews* **2020**,
466 doi:10.2174/1573403x16999200917151805.

467 16. Ruperto, N.; Martini, A. Current and future perspectives in the management of juvenile
468 idiopathic arthritis. *The Lancet. Child & adolescent health* **2018**, *2*, 360-370,
469 doi:10.1016/s2352-4642(18)30034-8.

470 17. Klein, A.; Minden, K.; Hospach, A.; Foeldvari, I.; Weller-Heinemann, F.; Trauzeddel, R.;
471 Huppertz, H.I.; Horneff, G. Treat-to-target study for improved outcome in polyarticular
472 juvenile idiopathic arthritis. *Annals of the rheumatic diseases* **2020**, *79*, 969-974,
473 doi:10.1136/annrheumdis-2019-216843.

474 18. Ringold, S.; Angeles-Han, S.T.; Beukelman, T.; Lovell, D.; Cuello, C.A.; Becker, M.L.; Colbert,
475 R.A.; Feldman, B.M.; Ferguson, P.J.; Gewanter, H.; et al. 2019 American College of
476 Rheumatology/Arthritis Foundation Guideline for the Treatment of Juvenile Idiopathic
477 Arthritis: Therapeutic Approaches for Non-Systemic Polyarthritis, Sacroiliitis, and Enthesitis.
478 *Arthritis & rheumatology (Hoboken, N.J.)* **2019**, *71*, 846-863, doi:10.1002/art.40884.

479 19. Horneff, G.; Klein, A.; Ganser, G.; Sailer-Höck, M.; Günther, A.; Foeldvari, I.; Weller-
480 Heinemann, F. Protocols on classification, monitoring and therapy in children's rheumatology
481 (PRO-KIND): results of the working group Polyarticular juvenile idiopathic arthritis. *Pediatric
482 rheumatology online journal* **2017**, *15*, 78, doi:10.1186/s12969-017-0206-9.

483 20. Choida, V.; Hall-Craggs, M.; Jebson, B.R.; Fisher, C.; Leandro, M.; Wedderburn, L.R.; Ciurtin, C.
484 Biomarkers of Response to Biologic Therapy in Juvenile Idiopathic Arthritis. *Frontiers in
485 pharmacology* **2020**, *11*, 635823, doi:10.3389/fphar.2020.635823.

486 21. Orczyk, K.; Smolewska, E. The Potential Importance of MicroRNAs as Novel Indicators How to
487 Manage Patients with Juvenile Idiopathic Arthritis More Effectively. *Journal of immunology
488 research* **2021**, *2021*, 9473508, doi:10.1155/2021/9473508.

489 22. Diener, C.; Horneff, G. Comparison of adverse events of biologicals for treatment of juvenile
490 idiopathic arthritis: a systematic review. *Expert opinion on drug safety* **2019**, *18*, 719-732,
491 doi:10.1080/14740338.2019.1632288.

492 23. Singh, R.; Ivaturi, V.D.; Penzenstadler, J.; Liu, T.; Chen, J.; Marathe, A.; Ji, P.; Glaser, R.;
493 Nikolov, N.; Sahajwalla, C. Response similarity assessment between polyarticular juvenile
494 idiopathic arthritis and adult rheumatoid arthritis for biologics. *Clinical pharmacology and
495 therapeutics* **2021**, doi:10.1002/cpt.2218.

496 24. Chausset, A.; Pereira, B.; Echaubard, S.; Merlin, E.; Freychet, C. Access to paediatric
497 rheumatology care in juvenile idiopathic arthritis: what do we know? A systematic review.
498 *Rheumatology (Oxford, England)* **2020**, *59*, 3633-3644, doi:10.1093/rheumatology/keaa438.

499 25. Consolaro, A.; Giancane, G.; Alongi, A.; van Dijkhuizen, E.H.P.; Aggarwal, A.; Al-Mayouf, S.M.;
500 Bovis, F.; De Inocencio, J.; Demirkaya, E.; Flato, B.; et al. Phenotypic variability and disparities
501 in treatment and outcomes of childhood arthritis throughout the world: an observational
502 cohort study. *The Lancet. Child & adolescent health* **2019**, *3*, 255-263, doi:10.1016/s2352-
503 4642(19)30027-6.

504 26. McColl, J.; Semalulu, T.; Beattie, K.A.; Alam, A.; Thomas, S.; Herrington, J.; Gorter, J.W.;
505 Cellucci, T.; Garner, S.; Heale, L.; et al. Transition Readiness in Adolescents With Juvenile
506 Idiopathic Arthritis and Childhood-Onset Systemic Lupus Erythematosus. *ACR open
507 rheumatology* **2021**, doi:10.1002/acr2.11237.

508 27. Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.;
509 Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies
510 in Epidemiology (STROBE): explanation and elaboration. *International journal of surgery
511 (London, England)* **2014**, *12*, 1500-1524, doi:10.1016/j.ijsu.2014.07.014.

512 28. Krippendorff, K. *Content analysis: an introduction to its methodology*, 2nd ed.; Sage:
513 Thousand Oaks, CA, 2004.

514 29. Lestishock, L.; Nova, S.; Disabato, J. Improving Adolescent and Young Adult Engagement in
515 the Process of Transitioning to Adult Care. *The Journal of adolescent health : official
516 publication of the Society for Adolescent Medicine* **2021**,
517 doi:10.1016/j.jadohealth.2021.01.026.

518 30. Palman, J.; McDonagh, J.E. Young Minds: Mental Health and Transitional Care in Adolescent
519 and Young Adult Rheumatology. *Open access rheumatology : research and reviews* **2020**, *12*,
520 309-321, doi:10.2147/oarr.S228083.

521 31. McDonagh, J.E.; Farre, A. Transitional Care in Rheumatology: a Review of the Literature from
522 the Past 5 Years. *Current rheumatology reports* **2019**, *21*, 57, doi:10.1007/s11926-019-0855-
523 4.

524