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Abstract: Software reliability is an important characteristic for ensuring the qualities of software
products. Predicting the potential number of bugs from the beginning of a development project
allows practitioners to make the appropriate decisions regarding testing activities. In the initial
development phases, applying traditional software reliability growth models (SRGMs) with limited
past data does not always provide reliable prediction result for decision making. To overcome this,
herein we propose a new software reliability modeling method called deep cross-project software
reliability growth model (DC-SRGM). DC-SRGM is a cross-project prediction method that uses
features of previous projects’ data through project similarity. Specifically, the proposed method
applies cluster-based project selection for training data source and modeling by a deep learning
method. Experiments involving 15 real datasets from a company and 11 open source software
datasets show that DC-SRGM can more precisely describe the reliability of ongoing development
projects than existing traditional SRGMs and the LSTM model.

Keywords: Software reliability, deep learning, long short-term memory, project similarity and
clustering, cross-project prediction

1. Introduction

Reliability is one of the most significant attributes to enhance the quality of the product in the
software development process [1–3]. Assessing software reliability is vital to deliver failure free
software system. Despite the enormous amount of testing, a number of software defects always occur
in the product [4]. Software Reliability Growth Models (SRGMs) express the number of potential errors
or defects that might be occurred in the future from analyzing the past data such as the cumulative
number of errors, test cases, error rate, and detection time [5]. Therefore, application of SRGMs helps
to optimize resource planning and achieve the highly reliable systems.

The SRGMs are not always a reliable indicator to evaluate the situation of an ongoing software
project and may even lead to an incorrect plan for testing resources [6]. New projects are not available
past data which SRGM use for model fitting. In most studies, SRGM model fitting are relying on past
data to predict future for the same project. Cross-project prediction is feasible in such case of requiring
past data by applying the other projects. If a source project is dissimilar to the target project, it affects
prediction performance and lead to unstable results for the future prediction.
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To address the deficiency of SRGMs and to adopt a more reliable method of software reliability
growth modeling, this study 1 introduces a new SRGM method which can be utilized at the beginning
stage of ongoing projects. For the target project with an insufficient amount of data, this method
acquires the required information and features from similar projects to use in building model. More
specifically, a clustering method, k-means is applied according to the features of projects such as the
correlation of datasets and the number of bugs to create a new training data source. According to the
identified clusters, the included datasets are combined. Prediction modeling is performed by deep
long short-term memory (LSTM) model using the merged dataset.

The goals of the study are to:

• Identify the correlation among projects by the number of bugs occurrence pattern and the same
attributes of the projects.

• Determine groups of similarity projects from a defect prediction viewpoint.
• Adopt a new approach for SRGM for the initial or ongoing stage of software development

projects.

Here, we apply our proposed method called deep cross-project software reliability growth model
(DC-SRGM) to 15 actual software projects from a company and 11 open source software (OSS) projects.
Then we compare the performance of DC-SRGM with traditional models and the deep learning LSTM
models. In our case study, DC-SRGM achieves the best scores in most cases. Hence, it can be regarded
as an effective SRGM capable of improving deep learning LSTM models. Additionally, it significantly
outperforms conventional SRGMs. Therefore, DC-SRGM method allows software developers and
managers to understand project situations in an ongoing stage with limited historical data.

The contributions of this work are as follows:

• A new SRGM method that uses a combination of deep learning and a cluster-based project
selection method.

• Experimental comparison to two different models using 15 empirical projects and 11 open source
projects to verify the prediction accuracy of the proposed model comparing with two different
models.

• Analysis of effective metrics, clustering factors and suitable time to create reliability growth
models for industry.

The rest of the paper is organized as follows. Section 2 reviews the related works. Section 3
contains the employment of current project prediction method. Section 4 presents the proposed
DC-SRGM framework. Section 5 explains the experimental setup, data and design. Section 6 reports
the results and evaluations. Section 7 describes the threats to validity. Section 8 provides conclusions
and future work respectively.

2. Related Work

Many SRGMs have been studied to measure the failure process. These models require external
parameters to be estimated by the least squares or maximum likelihood estimation to build the relevant
parameters [1]. N. Ullah et al. [8] studied different SRGMs using defect data in industrial and open
source software and performed comparative analysis between them. To evaluate the qualities of
development projects monitored by SRGM applications, K. Honda et al. [6] analyzed the tendencies
for unstable situations in the results of different SRGM models. K. Okumoto et al. [4] applied SRGM in
developing a reliability assessment automated tool.

1 This paper is extended from our previous study [7]. We conducted additional experiments to investigate the impact of
clustering factors, another similarity score using dynamic time warping, applying at different time points of ongoing projects
and predictions across organizations.
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Ongoing projects have limited data for use as historical defect data. One alternative is to employ
a cross-project prediction, which utilizes external projects to construct a prediction model for the
current project [3,9]. In literature, cross-project prediction is a very well-study subject by utilizing
project data of different organizations. K. Honda et al. [5] proposed a cross project SRGM model to
compare software products within the same company. However, they did not implement cross-project
applications of SRGMs for ongoing projects. Remarkably, there are a few studies in SRGM modeling
using cross-project data.

The mismatch between the randomly selected source project and the target project affects the
cross-project prediction performance and makes unstable results. Earlier studies in [10,11] implied
that usage of cross-company data without any modification degrades accuracy of prediction models.
Irrelevant source project data may decrease the efficiency of the cross-project prediction model. To
overcome this issue, C. Liu et al. [12] considered the Chidamber and Kemerer (CK) metric suite [13]
and size metrics to implement a cross-project model which detects change-proneness class files. Source
projects were selected by the best-matched distribution. To choose appropriate training data, X. Zhang
et al. [14] investigated the efficiencies of nine different relevancy filtering methods. Cross-projects
defect prediction model was constructed with a random forest classifier on the PROMISE repository. M.
Jureczko et al. [15] also studied a similar project clustering approach using k-means and hierarchical
clustering by a stepwise liner regression in the PROMISE data repository. They confirmed that k-means
can successfully identify similar project clusters from a defect prediction viewpoint. The above studies
with cross-project prediction focused on the clustering or filtering approaches and employed a specific
classifier to label defective module or class. None of these methods did not deal with the observed
time series failure data.

J. Wang et al. [1] proposed a encoder-decoder-based deep learning model RNN and performed
analysis between non-parameter models and parameter models. They applied the cumulative executive
time and the accumulated number of defects. However, cross-project prediction model was not
implemented. In addition, most of the past studies have not investigated sufficiently in the area
of SRGMs modeling that utilize cross-project prediction. This study conducted projects reliability
assessment by SRGM modeling with a sophisticated method rather than traditional approaches using
cross-project data which was carefully selected with a project similarity method.

3. Current Project Prediction

Current project prediction applies existing project data as training source and then makes
prediction for future days. Therefore, the LSTM and SRGM models in this study are created using only
the target project’s existing data, 50 percent data points. Then these models are used to predict the
subsequent days for the rest 50 percent data points.

3.1. Software Reliability Growth Model

Software reliability growth models SRGMs are the Black box approach of software reliability
model (SRM) [16] on the basis of failure data regardless of the source code characteristics [8]. The
SRGM process are usually with data from testing. After development is done, if the detected failures
or defects are resolved which enables system more stable and reliable. Therefore, to understand the
underlying condition of the system, such processes are described using a mathematical expression,
usually based on parameters such as number of failure or failure density, etc [17]. The literature reports
many ways to create models based on the model’s assumption of failure occurrence patterns. Similar
to a previous study [6,18], we focused on the logistics model which is the most suitable with regard to
fitness for the collected experimental datasets. We employed the model using the number of detected
bugs and detected time. The Logistics model can be expressed as

N(t) =
Nmax

1 + exp−A(t − B)
(1)
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where N(t) the number of bugs detected by time t. The parameters, Nmax, A and B were estimated
using Nonlinear Least Square Regression (NLR) function [6].

3.2. LSTM Model

A Recurrent Neural Network (RNN) connects neurons with one or more feedback loops, which is
capable of modeling sequential data in sequence recognition and prediction [19,20]. Because it includes
high-dimensional hidden states with nonlinear dynamics. These hidden states perform as the memory
of the network, and its current state is conditioned on its previous one [21]. In a simple RNN structure,
it has an input layer, recurrent hidden and output layers, which accepts the input sequences through
time. Consequently, RNNs are capable of storing, remembering and processing data from past time
periods, which enables the RNN to elucidate sequential dependencies [19]. However, it comes with
the challenges that the memory produced from the recurrent connections may be limited to learning
long range sequential data.

An RNN-based LSTM network is designed to resolve that problem. The LSTMs are capable to
bridge very long-time lags with an advanced RNN architecture, self-connected units [19,22,23]. The
inputs and outputs of hidden units are controlled by gates, which maintain the extracted features
from previous time steps [19,23]. LSTM contains an input gate, forget gate, cell state, output gate, and
output response. The input gate and forget gate manage the information flow into and out of the cell,
respectively. The output gate decides what information is passed to the output cell. The memory cell
has a self-connected recurrent edge of weight, ensuring that the gradient can pass across many time
steps without exploding [24]. The advantage of an LSTM model is it can keep information over long
periods by removing or adding information to the state.

Here, we constructed a LSTM model for SRGM modeling. At each time step, the input layer
receives a vector of the number of bugs, pass the data to hidden layers which have four LSTM neurons
in each. An output layer generates a single output that gives the predictions for the next time step.

3.3. Application of current project prediction

To allocate optimal testing resources, application of SRGMs are primarily used in cloud service
development projects of e-Seikatsu company thus allows managers to assess the release readiness.
By current project prediction, traditional SRGMs cannot realize underlying project condition if they
are applied at initial stage with limited historical data as shown in Figs. 1a. Therefore, we applied an
advanced technique LSTM model with the same amount of data during model construction. Although
improvements occur (Figs. 1b), the LSTM model does not always give the accurate results at the
beginning in cases with very little data that has different reliability growth pattern.

In earlier studies, cross-project predictions models have been utilized to resolve the requirement
of a huge historical data. However, one challenge in the cross-project prediction is that the distribution
of the source and target project usually differ significantly [14,25]. If the training data contains all the
source project data, a poor prediction quality can be resulted. Ideally, one defect prediction model
should work well for all projects that belong to a group [15]. Therefore, to eliminate the unrelated
data from all source project for each target project, we derived Deep Cross-Project framework which
process only the project data with the most common features of the target project.

4. Deep Cross-Project Software Reliability Framework

DC-SRGM utilizes a cross-project prediction method that use other projects data as a training
data source with the advantageous of LSTM modelling for time series data.

Fig. 2 overviews the proposed model DC-SRGM. It includes three processes, similarity scoring,
clustering-based project selection and prediction modeling. Fig. 3 details the process of selecting the
most appropriate projects that shares common characteristics with the target project. The core feature
of DC-SRGM is that it filters irrelevant projects from training data sources and only selects projects
with the most common characteristics as the target project.
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Figure 1. Applying a Logistics model and LSTM model at day 5 for ongoing project F10.

Figure 2. Overview of the DC-SRGM model

4.1. Similarity Scoring

Each project has its own features such as project size and number of bugs [3]. Identifying
similarities among the datasets is the basis to eliminate differences between the data across projects.
Otherwise, inappropriate source data may be chosen. To exclude irrelevant projects from training
data sources, the clustering factors include project similarity scores. In DC-SRGM, cross-correlation is
applied to identify the correlation of projects against with the target project.

Cross-correlation: A measure of the similarity among the projects by aligning two time series.
The coefficients identify the connections between different time series of datasets [26]. Here, only time
series data for detecting the number of bugs is included in the clustering factors scores between the
candidate source project and target project. In given time series datasets d in N by the detected number
of days for cumulative number of bugs, each dataset is considered as one time series and calculate the
cross-correlation function of each pair (di, dj), 1 < i, j < N, is calculated.

Dynamic Time Warping (DTW): A well-known technique to measure the optimal alignment or
similarity between time series sequences of different lengths with respect to the shape of information
and patterns [27]. It calculates the minimal distance to observe dissimilarities among the datasets
according to the projects scale and distribution. Here, it is used to compare the performances of
DC-SRGM.
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Figure 3. Project selection process

4.2. Project Clustering

Project clustering groups similar projects together using k-means algorithm with the following
clustering factors:

• Cross-correlation similarity scores between the number of bugs growth patterns
• Normalized values of the maximum number of bugs
• Normalized values of the maximum number of days

The clustering results indicated three groups. Each group includes projects with characteristics
similar to the target project according to the cross-correlation scores and the distribution of the projects
such as the number of bugs and the number of days.

Table 1 summarizes the clustering factors, which are the cross-correlation similarity score,
maximum number of bugs and maximum number of days. Table 2 summarizes the project clustering
results in the industrial datasets. For each target dataset, the number of projects in each group differ
slightly based on the similarity scores between the candidate target and source datasets. Table 2 details
of each cluster such as the range of the number of bugs, number of days, and overall number of bugs
of the included projects. “Grad” indicates a gradual increase in the detected number of bugs. “Expo”
refers to an exponential increase in bug growth. “Expo & Grad” denotes both an exponential and
gradual increase in the number of bugs.

Table 3 shows the clustering results by projects, where “Cluster” represents the cluster containing
the target project. Projects applied for model building are presented in Table 2 according to the
expressed cluster name. “Actual Growth” describes the bug growth of each project. “Prediction Result”
shows the growth of the number of bugs by the prediction model created by clustered projects.

In this study, since the maximum number of bugs, maximum number days, and cross-correlation
scores for the connections between projects are used as clustering factors, the obtained clusters are
always three main groups depending on these factors, their similar attributes and data patterns. The
first cluster denotes a group with moderate to strong correlation scores. The second cluster is influenced
by exponential growth of the number of bugs. The third cluster is grouped by the distribution of the
number of days of the projects. For example, F01 and F02 projects have the same distribution scales
and a moderate cross-correlation score. Hence, they are grouped in the same cluster. On the other

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 October 2021                   doi:10.20944/preprints202110.0237.v1

https://doi.org/10.20944/preprints202110.0237.v1


Journal Not Specified 2020, 1, 0 7 of 21

Table 1. Summary of the clustering factors.

Similarity Max Bugs Max Days
0 ∼1 47 ∼ 752 14 ∼ 36

Table 2. Summary of the clustering results. Projects are generally clustered into three groups according
to similarity scores and the projects scales. Grad, Expo & Grad, and Expo indicate the growth of
number of bugs is gradually increasing, exponentially and gradually increasing, and exponentially
increasing.

Cluster Clustered projects Max Bugs Max Days Growth Type

C1 F01, F02, F04, F05, F07, F08, F09, F10, F11 91 ∼ 188 14 ∼ 22 Grad Similarity
C2 F12, F15 540 ∼ 752 18 ∼ 24 Expo # Bugs
C3 F03, F06, F13, F14 47 ∼ 331 22 ∼ 36 Expo & Grad # Days

hand, the F12 project shows exponential growth for the number of bugs and a different data occurrence
pattern. Building a model for the F01 project using F12 would overestimates the prediction result.
Hence, DC-SRGM achieves better performance when applying in the middle of the projects to build a
model using a similar group of projects.

4.3. Selection

To investigate whether a cluster for SRGM modeling exists, a prediction model is created by the
datasets from each same cluster. According to our initial analysis, the cluster from the number of bugs
prediction viewpoint exists only in the group with the target project itself. Because each group shares
the most common attributes of the projects such as failure occurrence pattern and only those within
the same group are appropriate to model for each project. In addition, only a cluster that belongs to
the target project is selected. All the containing projects in that cluster are combined but the target
project itself is excluded when merging the data. Eventually, the merged group of projects which have
been eliminated the irrelevant training data, is used for model training.

4.4. Training

To employ the LSTM model, the input to the network at each time step is a vector of the number
of bugs, and the single output is the number of bugs for the next time step. Fig. 4 shows the process of
LSTM training at each time step. Because the ranges of the input values can vary, the values of bugs
are scaled into the range of 0 to 1. By considering the prediction process as a time series, the input
layer receives the values of number of bugs for 9 days and the single output node produces the next
day prediction. By shifting by 1 in each time step, the model is trained to the maximum days of the
training dataset. The model is trained with 300 epochs because the results are similar to those using
500 epochs. The stochastic gradient descent method is employed using the mean squared error loss
function. For a target project prediction, the trained model is employed with fifty percent data points
of its project to predict next fifty percent data points because we considered a project to be ongoing.

5. Experiments Design

Experiments were conducted to answer the following research questions. Fig. 3 overviews the
evaluation design for each research question.

• RQ1: Is DC-SRGM more effective in ongoing projects than other models?

This question evaluates the effectiveness of the DC-SRGM model compared to the Logistic model
and LSTM model (Fig. 5, RQ1). That is, does the proposed method correctly describe ongoing
projects’ reliability despite insufficient data to apply in a prediction model. Specifically, we used
a case study to compare the performance of different models for 15 industrial projects with a
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Table 3. Summary of the clustering results by project. Grad, Expo & Grad, Expo and Const indicate
the growth of number of bugs is gradually increasing, exponentially and gradually increasing,
exponentially increasing and constantly increasing.

Project Max Bugs Days Cluster Actual Growth Prediction Result

F01 91 19 C1 Grad Grad
F02 137 22 C1 Grad Grad
F03 47 36 C3 Grad Grad
F04 122 17 C1 Grad Grad
F05 188 19 C1 Grad Grad
F06 263 26 C3 Expo Expo
F07 146 15 C1 Grad & Expo Grad
F08 97 17 C2 Grad Grad
F09 99 16 C3 Expo & Grad Grad
F10 184 18 C4 Grad Grad
F11 74 14 C5 Grad Grad
F12 540 24 C2 Expo Expo & Grad
F13 187 22 C3 Expo & Grad Expo & Grad
F14 752 18 C3 Expo & Grad Const
F15 331 35 C2 Expo Expo

Figure 4. Model training process

Figure 5. Overview of the evaluation design (Research Questions)
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duration longer than 14 days and 11 OSS projects. Because the target is an ongoing project, the
first half of its data is used to obtain the similarity scores as well as for input data. Then the
models are used to predict the second half of the target data. The results should reveal whether
cluster-based similar project selection improves the LSTM model performance relative to that of
a traditional Logistics model.

• RQ2: What factors influence the performance of DC-SRGM?

This question examines the performance of DC-SRGM upon applying a different clustering factor
to the similarity scores of the projects. Domain experts indicated that the projects are clustered
according to the project domain type and the same types of projects are applied as the training
source projects for modeling. We compared the prediction results with the results of similarity
scores in term of AE values to reveal how different clustering factors influence the prediction
results. This RQ help to assess whether DC-SRGM can be utilized when the same type of other
projects is not available.

• RQ3: Do different similarity measurements affect the prediction quality of DC-SRGM?

This research question investigates the performances of DC-SRGM based on cross-correlation
and Dynamic Time Warping (DTW) to determine the impact of the similarity measurement
techniques on the model (Fig. 3, RQ3). We analyzed the impact of the similarity measurement on
DC-SRGM by comparing the performance of two methods in terms of AE values by model. In
general, AE > 0.10 indicated a satisfactory model.

• RQ4: Can DC-SRGM precisely describe an ongoing projects’ status?

This research question explores the relation of the amount of utilized project data and the model’s
prediction capability for new initial stage projects. It aims to determine to determine if there is a
suitable time for managers to begin to evaluate projects with acceptable accuracy by DC-SRGM.
Therefore, we applied the DC-SRGM model at different time points in ongoing projects to assess
the prediction performance and the impact of target project’s past data usage.

• RQ5: Can DC-SRGM trained with OSS datasets indicate the industrial projects’ situation?

Even if previous source projects data is unavailable, this RQ evaluates whether DC-SRGM
created with OSS datasets can predict the conditions for an industrial project. We used open
source datasets to create DC-SRGM with the same setting and procedure performed on industrial
datasets. Then the results are compared to those predicted using industrial datasets.

5.1. Initial analysis

To identify similar groups, the initial analysis used cosine similarity and DTW. However, the
similarity measurements and the prediction performance were not correlated. Therefore, the k-means
clustering method was applied. Then the optimum number of clusters, k was determined by the
Elbow method. Initially, the clustering produced biased results on the number of days. After the
addition of cross-correlation coefficients in clustering factors, the same characteristics of the projects
were classified.

5.2. Performance Measure

We evaluated the prediction capability in terms of accuracy by considering the ratio between the
difference in the error values and the prediction over a time period namely average error (AE) [1]. AE
is defined as:

AE =
1
n

n

∑
i=1

∣∣∣Uij − Dj

Dj

∣∣∣ (2)

where Uij denotes the c number of predicted bugs by time tj, Dj represents the accumulative number
of detected bugs by time tj, and n is the project size [1]. A value closer to zero indicates a better the
prediction accuracy.
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Table 4. Industrial projects details.

Project Days # of Bugs

F01 19 91
F02 22 137
F03 12 47
F04 17 259
F05 19 188
F06 26 263
F07 15 146
F08 17 97
F09 16 99
F10 18 184
F11 14 74
F12 25 351
F13 22 187
F14 34 331
F15 18 752

Table 5. OSS projects details.

Project Days # of Bugs Studied Version

Camel 36 32 2.15.1 2.15.2
Ignite 48 149 2.5 2.6

Jclouds 175 25 2.1.0 2.1.1
Karaf 56 64 4.1 4.2

Lucene 91 6 6.6.0 6.6.1
Maven 160 22 3.5.1 3.5.2
Shiro 30 6 1.3.0 1.3.1
Spark 99 185 2.3.1 2.3.2

Syncope 80 36 2.0.2 2.0.3
Tez 120 27 0.6.0 0.6.1

Zookeeper 86 14 3.4.12 3.4.13

We employed the Frideman test with the Nemenyi test as a post-hoc test to evaluate the statistically
significant difference in performances between DC-SRGM and the base line methods because it is
better suited for non-normal distributions.

5.3. Data Collection

The datasets were from 15 projects data with a duration longer than 14 days from real cloud
services development projects. Each dataset consisted of the time series number of bugs per the testing
day. The domains of the projects were property information management, customer relationship
management, contract management, money receipt/ payment management and content management
systems [6]. To derive more generalize results, we aimed to include as many software projects as
possible. Thus, 11 datasets from Apache open source projects were also collected from apache.org
using a bug tracking system, JIRA, to study reliability growth modeling. For each project, all the issues
reported in two minor versions, which were declared as bugs or defects excluding any other categories,
were collected. Table 4 and 5 describe details of each dataset.

6. Results and Discussion

6.1. RQ1: Effectiveness of DC-SRGM

To generalize the finding, the experiments in RQ1 compared DC-SRGM to the Logistics and LSTM
models. Table 6 and Table 7 present the AE values of the three models for the industrial datasets and
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OSS datasets respectively. Table 8 describes the results of the statistical test between DC-SRGM and the
two other models. For the industrial datasets, DC-SRGM yielded the largest improvement. On average,
it improved the AE by 24.6% and 50% compared to the LSTM and Logistic model, respectively. Table
6 compares the number of datasets where each model obtained better or worse (win or lose) scores
across datasets. If a model obtained a score below the threshold (0.1), it was considered as an indicator
of good accuracy. In most cases, DC-SRGM achieved better AE values. Fig. 6a also expresses the
median of AE values among the three models. The red line represents the threshold. The DC-SRGM
model had a lower AE values with a median below 0.1, implying a higher accuracy than the other
two models. The LSTM models was close to the threshold, but the Logistics model had at the worst
performance.

In case of the OSS datasets (Fig. 6b and Table 7), the results slightly differed, which is most likely
due to the difference in the project nature between industrial and OSS projects. DC-SRGM achieved
the best score. It had 65.4% improvement compared to the Logistic model in terms of AE average
and better scores in terms of W/L. However, the performance with the LSTM model did not pass
the significant test and its boxplot was bigger than the LSTM model. The LSTM model increased its
accuracy in the OSS environment due to larger amount of training data. OSS datasets have a different
development environment and style, specifically having a larger project size provides better accuracy
for the LSTM model using the current project prediction method.

There are two exceptional cases where the proposed DC-SRGM was less accurate: F03 and F14
prediction. In the clustering result, the F03 project was grouped in the third cluster, which was grouped
according to the number of days despite having a strong correlation with the projects in the first cluster.
This impacted F03 modeling and is the reason DC-SRGM provided less accurate results than the LSTM
model and Logistics model. In the F14 project, its domain differed from the other projects and it had a
long duration according to the domain experts of these experimental projects.

Figs. 7a-7d plot the results when applying DC-SRGM, LSTM and Logistics models to the on
F02, F03, F04 and F10 datasets at the middle of the projects, respectively. The predicted number of
bugs by DC-SRGM described the potential number of bugs more correctly than the other two models.
Hence, the results from both industrial and OSS datasets indicated that DC-SRGM outperformed
LSTM and Logistics model and improved the prediction accuracy when applied in an ongoing stage of
industrial development. For OSS projects, DC-SRGM significantly outperformed the Logistics model
and, on average, was better than LSTM. However, its performance slightly decreased in the industrial
environment while the performances of the LSTM model increased.

RQ1: Is DC-SRGM more effective in ongoing projects than other models? For most datasets, the
proposed DC-SRGM outperforms the LSTM and Logistics models as it has a lower mean AE value.
The improvements are significant in industrial datasets. Hence, DC-SRGM is more effective to
describe the future number of bugs correctly for ongoing software development projects.

6.2. RQ2: Impact of clustering factors on DC-SRGM

RQ2 examined the prediction accuracy of two different clustering factors on DC-SRGM. Two
models were built. One used the project similarity score, which is a cross-correlation, and the other
used the project type to identify important factors for modeling. Fig. 6c shows a boxplot for median
AE from the predictions using the two different clustering factors. "Project Similarity" and "Project
Type" in Table 9 report the details of the AE values, where bold denotes the better result. Blank cells are
projects which cannot be determined in the selected experiment datasets. The project similarity-based
DC-SRGM obtained better scores in most cases, and the median was below the threshold. On the
other hand, the project type-based model was close to the threshold. Hence, project clustering by
similarity scores affected the model’s ability to obtain suitable projects data to learn the number of bugs.
Although the domain was the same, clustering by project type did not affect the model performance.
For some projects, it might include irrelevant projects with very different growth pattern for the
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Figure 6. Comparison of the model prediction accuracy in terms of average error, AE. (a) Performance
in Industrial datasets (DS), (b) Performance in OSS DS, (c) DC-SRGM based on project similarity and
project type, (d) DC-SRGM based on cross-correlation and DTW, (e) DC-SRGM applied at different
number of days, and (f) DC-SRGM across organizations.
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Table 6. Comparison of DC-SRGM with the LSTM and Logistics models by the AE values. Bold denotes
the best AE values. W/L is the number of DS that each method is better and worse. # DS Threshold
below 0.1 is the number of DS that each model’s performance is lower than the threshold.

Project DC-SRGM LSTM Logistics

F01 0.067 0.040 0.266
F02 0.071 0.080 0.146
F03 0.192 0.130 0.142
F04 0.091 0.260 0.377
F05 0.075 0.127 0.218
F06 0.040 0.090 0.211
F07 0.329 0.500 0.146
F08 0.049 0.104 0.187
F09 0.055 0.048 0.146
F10 0.088 0.121 0.214
F11 0.068 0.073 0.074
F12 0.095 0.161 0.359
F13 0.211 0.243 0.348
F14 0.107 0.020 0.183
F15 0.126 0.201 0.191

Average 0.110 0.146 0.220

Improved% - +24.6% +50%

W/L 10/5 4/11 1/14

# DS Threshold below 0.1 10 6 1

Table 7. Prediction Accuracy of the models on OSS datasets by the AE values. Bold denotes the best
AE Values. W/L is the number of DS that each method is better and worse. # DS Threshold below 0.1
is the number of DS that each model’s performance is lower than the threshold.

Project DC-SRGM LSTM Logistics

Camel 0.081 0.099 0.440
Ignite 0.067 0.063 0.110

Jclouds 0.190 0.029 0.260
Karaf 0.035 0.105 0.830

Lucene 0.270 0.438 0.950
Maven 0.120 0.122 0.240
Shiro 0.100 0.139 0.110
Spark 0.201 0.139 0.190

Syncope 0.240 0.128 0.220
Tez 0.037 0.180 0.780

Zookeeper 0.133 0.190 0.140

Average 0.134 0.148 0.388

Improved% - +9.45% +65.4%

W/L 7/4 4/7 0/11

# DS Threshold below 0.1 5 3 1

Table 8. Statistic results with the Nemenyi test for the effectiveness of DC-SRGM. * and ** denote there
were significant differences in the groups as the significance level were 0.1 and 0.01, respectively.

Models p_Value

Industry
DC-SRGM & LSTM 0.0710 *

DC-SRGM & Logistics 0.0045 **

OSS
DC-SRGM & LSTM 0.3657

DC-SRGM & Logistics 0.0288 *
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Figure 7. Predicted number bugs as function of the number of days. Actual, DC-SRGM, LSTM, SRGM
represent the actual detected number of bugs, the prediction by DC-SRGM, LSTM model, and the
Logistics SRGM model, respectively
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Table 9. Comparison of the prediction accuracy of DC-SRGM using project similarity and project type
as clustering factors. W/L is the number of DS that each method is better, and worse. Threshold below
0.1 is the number of DS that each method’s performance is lower than the threshold.

Project Project Similarity Project Type

F01 0.067 0.074

F02 0.071 0.091

F03 0.192 0.129

F04 0.091 0.137

F05 0.075 –

F06 0.040 0.119

F07 0.329 0.714

F08 0.049 0.186

F09 0.055 0.113

F10 0.088 0.096

F11 0.068 0.066

F12 0.095 –

F13 0.211 0.239

F14 0.107 –

F15 0.126 0.080

Average 0.110 0.170

W/L 9/3 3/9

# DS Threshold below 0.1 10 7

number of bugs even though they are in the same domain. Therefore DC-SRGM modeling should be
performed using the project similarity scores as the first priority rather than the project type.

RQ2: What factors influence the performance of DC-SRGM? In most cases, DC-SRGM clustered by
project similarity scores outperforms the model clustered by project type on AE values, indicating
that project similarity is an important factor in the clustering process for good predictions results.

6.3. RQ3: Impact of similarity measurements on DC-SRGM

RQ3 compared the performances of DC-SRGM based on cross-correlation and DTW to assess the
impact of the similarity measurement technique and to determine a better similarity measurement
for DC-SRGM. Fig. 6d shows boxplots for the median AE values of both methods. DC-SRGM based
on the cross-correlation had lower AE values with a median below the threshold. On the other hand,
the DTW-based model, was close to the threshold, implying that cross-correlation shows a better
performance. "Cross-correlation" and DTW in Table 10 represents details of the AE values, where
bold denotes the better method. Across 15 datasets, although there is no obvious difference between
two methods in the number of datasets with the lower AE value, the cross-correlation-based model
outperformed the DTW-based model on average, and achieved a lower than threshold in more cases.

Clustering based on DTW could not always classify relevant datasets or eliminate the irrelevant
datasets for the target project. One reason is that DTW function basically returned the scores based on
the shape of the datasets sequence whereas cross-correlation returned the scores based on the value
and pattern of datasets. Another reason is that the cross-correlation scores can describe the correlation
level such as significant or non-significant. In DTW, it is difficult to identify the threshold in the
variations of datasets. Therefore, changing the applied similarity measurement technique impacted
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Table 10. Comparison of the prediction accuracy DC-SRGM using cross-correlation and DTW as
similarity measures. W/L is the number of DS that each method is better, and worse. Threshold below
0.1 is the number of DS that each method’s performance is lower than the threshold.

Project Cross-correlation DTW

F01 0.067 0.037

F02 0.071 0.039

F03 0.192 0.499

F04 0.091 0.081

F05 0.075 0.048

F06 0.040 0.170

F07 0.329 0.988

F08 0.049 0.166

F09 0.055 0.089

F10 0.088 0.115

F11 0.068 0.169

F12 0.095 0.115

F13 0.211 0.165

F14 0.107 0.060

F15 0.126 0.089

Average 0.110 0.188

W/L 8/7 7/8

# DS Threshold below 0.1 10 7

the model performance. To identify the similar project groups correctly, the cross-correlation technique
is better suited for DC-SRGM.

RQ3: Do different similarity measurements affect the prediction quality of DC-SRGM?
Cross-correlation-based DC-SRGM achieves a better accuracy than DTW. To enhance source
project selection, cross-correlation is a better technique for DC-SRGM from the SRGM modeling
viewpoint.

6.4. RQ4: Impact of applying DC-SRGM at different time points

To determine the impact of the amount of data from an ongoing project applied in DC-SRGM
modeling, the experiment was conducted using the target datasets from industrial data at day 7, 10, 12,
13, and 14. The model’s performances at different time points were compared to determine if there is a
suitable time frame to apply DC-SRGM in ongoing development stages. Table 11 shows the AE values
of the models at each time point. Fig. 6e compares the median accuracy values at each prediction time
point. Accurate results were not obtained when applying DC-SRGM at Day 7 of ongoing projects, but
a few projects had significant improvement upon applying at Day 10. Applying the model at Day 12
or later improved the AE values. Overall, the proposed method can identify the correct clusters and
achieve stable results starting from Day 12. Therefore, DC-SRGM can be applied to ongoing software
development projects beginning on Day 12.

RQ4: Can DC-SRGM precisely describe ongoing projects’ status? The model applied at Day 12 of
the ongoing projects provides a more stable and improved accuracy than the other models. Hence,
managers can start applying DC-SRGM at Day 12 to correctly describe the reliability of a projects.
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Table 11. Comparison of DC-SRGM for different numbers of days. DS Threshold below 0.1 is the
number of DS that each model’s performance is lower than the threshold.

Project Day 7 Day 10 Day 12 Day 13 Day 14

F01 0.070 0.078 0.072 0.060 0.060

F02 0.050 0.030 0.045 0.040 0.050

F03 0.580 0.377 0.167 0.160 0.170

F04 0.100 0.087 0.073 0.031 0.028

F05 0.130 0.070 0.029 0.024 0.020

F06 0.140 0.225 0.039 0.043 0.030

F07 1.140 0.780 0.333 0.270 0.140

F08 0.410 0.098 0.009 0.011 0.015

F09 0.160 0.111 0.007 0.005 0.005

F10 0.190 0.112 0.143 0.110 0.079

F11 0.140 0.020 0.006 0.007 0.007

F12 0.190 0.230 0.058 0.066 0.060

F13 0.430 0.190 0.025 0.260 0.270

F14 0.130 0.100 0.131 0.120 0.100

F15 0.080 0.190 0.125 0.087 0.050

Average 0.262 0.179 0.090 0.092 0.072

# of DS below Threshold 4/15 7/15 10/15 10/15 12/15

6.5. RQ5: predicting the performance by cross organization datasets

For RQ5, the experiment was designed to validate the effectiveness of the DC-SRGM model
applied using cross organization OSS datasets for predictions of industrial projects. DC-SRGM trained
by OSS datasets predicted the second half of the industrial datasets. The performance was compared
with the results of models trained by industrial datasets.

Table 12 shows the AE values predicted utilizing industrial datasets and OSS datasets along with
the performances of the LSTM model and Logistics model. Fig 6f shows the median of the AE values.
Among the models, DC-SRGM based on industrial datasets achieved the best performance on average.
However, the industry-based model and OSS-based model produced the same number of best cases.
Therefore, OSS datasets can be applied to predict industrial projects in situations where source project
data is unavailable.

RQ5: Can DC-SRGM trained with OSS datasets indicate the industrial project’s situation? DC-SRGM
trained with OSS datasets obtains a better accuracy than LSTM models and Logistics model.
However, its accuracy is not better than industrial projects-based model. Thus, OSS projects can
be applied when previous source project data is unavailable.

6.6. Use Cases

Practitioners from e-Seikatsu Co., Ltd wanted to focus on the situation of the ongoing software
development projects because it helps with effective test planning and resource arrangements. Because
the traditional reliability growth model could not describe the growth in number of bugs for a project,
we attempted to model with an advanced methodology, deep learning based LSTM model. Due to the
lack of training data, the model’s performance required additional refinement. The company had a lot
of data from previously developed and released projects. By applying data from previous projects, we
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Table 12. Accuracies of DC-SRGM built with industrial datasets and cross-organization datasets (OSS)
are compared with the LSTM model and Logistics model. W/L is the number of DS that each method
is better, and worse. Threshold below 0.1 is the number of DS that each method’s performance is lower
than the threshold.

Project
DC-SRGM

LSTM Logistics
Industry DS Cross-org DS

F01 0.067 0.051 0.040 0.266

F02 0.071 0.104 0.080 0.146

F03 0.192 0.107 0.130 0.142

F04 0.091 0.124 0.260 0.377

F05 0.075 0.049 0.127 0.218

F06 0.040 0.136 0.090 0.211

F07 0.329 0.196 0.500 0.146

F08 0.049 0.333 0.104 0.187

F09 0.055 0.196 0.048 0.146

F10 0.088 0.120 0.121 0.214

F11 0.068 0.066 0.073 0.074

F12 0.095 0.066 0.161 0.359

F13 0.211 0.205 0.243 0.348

F14 0.107 0.172 0.020 0.183

F15 0.126 0.196 0.201 0.191

Average 0.110 0.141 0.146 0.220

W/L 6/9 6/9 2/13 1/14

# DS Threshold below 0.1 10 4 6 1

developed the DC-SRGM framework to apply in the middle or earlier stage of development projects.
The proposed approach is applicable when the past data is unavailable in the initial stage of the current
development projects. By implementing DC-SRGM in the ongoing projects of e-Seikatsu, the proposed
model provided a more accurate prediction than the other models considered.

7. Threats to Validity

In this research, we treated the number of bugs growing as time-dependent variable for model
construction. However, there may be other related factors. For example, the number of detected
bugs may depend upon testing efforts. In addition, the experiment was conducted with one LSTM
architecture, although the LSTM network architecture may impact to its prediction performance.
Moreover, when collecting data from open sources, data validity in reporting defect data may be an
issue. One study indicated that open software often contains information which is not described as
bugs [28]. These are threats to the internal validity.

We tested DC-SRGM only with two datasets from two organizations. This is insufficient to
make generalizations. In the future, testing of more datasets from many organizations needs to be
performed. Additionally, when comparing models, only the Logistics model was considered as a
traditional method. However, the literature reports many traditional SRGMs. These are threats to
external validity.

One threat to the construct validity is that we supposed that identifying of correct clusters means
the group of projects with the same attributes such as the project scale and growth pattern of number
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of bugs rather than the projects domains. Therefore, the project domains may differ within the same
cluster in actual cases.

8. Conclusions and Future work

Herein we propose a new software reliability growth modeling method using a combination of a
LSTM model and a cluster-based project selection method based on similar characteristics of projects
via a similarity scoring process. This proposed method alleviates issues regarding insufficient previous
data, and is an improvement compared to traditional methods for reliability growth modeling. We
conducted experiments using both industrial and OSS data to evaluate DC-SRGM with a statistical
significant test. The case studies showed that DC-SRGM is superior to all other evaluated models.
It achieves the highest accuracy in industrial datasets, indicating that the project similarity is more
important than project type when clustering projects. Moreover, cross-correlation performs better than
DTW in specifying project similarity from a defect prediction viewpoint. The experiment involving
different time points indicated that DC-SRGM can be used for a project with 12 days of defect data
to stably and accurately predict the number of bugs that might be encountered in subsequent days.
Finally, DC-SRGM in ongoing projects can assist managers in decision-making for testing activities by
understanding reliability growth in ongoing projects.

Future works include implementing other metrics such as software product metrics [29,30] in the
clustering factors and model construction as well as comparing to other prediction models reported in
the literature. To improve the quality and continuous monitoring, this method should be extended to
provide more reliability metrics beyond the prediction of the number of bugs.

Author Contributions: Conceptualization and methodology, Kyawt Kyawt San.; literature review and analysis,
all authors. All authors have read and agreed to the published version of the manuscript.
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