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Abstract

Powder bed fusion (PBF) process is a metal additive manufacturing process which can build parts with any complexity from a wide range of
metallic materials. PBF process research has predominantly focused on the impact of only a few parameters on product properties due to the lack
of a systematic approach for optimizing a large set of process parameters simultaneously. The pivotal challenges regarding this process require a
quantitative approach for mapping the material properties and process parameters onto the ultimate quality; this will then enable the optimization
of those parameters. In this study, we propose a two-phase framework for optimizing the process parameters and developing a predictive model
for 316L stainless steel material. We also discuss the correlation between process parameters -- i.e., laser specifications -- and mechanical
properties and how to achieve parts with high density (> 98%) as well as better ultimate mechanical properties. In this paper, we introduce and
test an innovative approach for developing AM predictive models, with a relatively low error percentage of 10.236% that are used to optimize
process parameters in accordance with user or manufacturer requirements. These models use support vector regression, random forest regression,
and neural network techniques. It is shown that the intelligent selection of process parameters using these models can achieve an optimized
density of up to 99.31% with uniform microstructure, which improves hardness, impact strength, and other mechanical properties.

Keywords: Additive manufacturing, powder bed fusion, optimization framework, predictive models, neural network, intelligent parameters
selection, energy density optimization, mechanical properties optimization.

1. Introduction

With Industry 4.0, the application of advanced manufacturing
technologies integrated with information management
technologies has flourished rapidly. This integration has created
smart manufacturing processes which plays an important role in
topology optimization, increasing cost efficiency, decreasing
manufacturing lead time, and producing a superior buy-to-fly
ratio in the rising economic competitiveness [1, 2]. Smart
factories combine the physical world with the cyber world to
fulfill such objectives (see Figure 1 for a schematic of smart
factories).

With the increasing demand for mass customization in
different industries, developing a precise predictive model is an
essential prerequisite for controlling process parameters in
complex advanced manufacturing techniques such as additive
manufacturing (AM). This will help in the manufacturing of
customized, topologically optimized parts with lower weight and
better mechanical properties. In the fabrication of metal
components, the powder-bed fusion (PBF) process has been
proven to manufacture complex free-form parts with better
mechanical properties than traditional manufacturing [3, 4].

The increasing demand and interest in the application of AM
in such industries as aerospace, defense, and biomedical have led
to significant research aimed at standardizing the AM process.
However, multiple challenges exist, in particular, understanding
the influence of the large number of process parameters involved
in AM. There are more than 100 process parameters that
influence the ultimate part quality [5-7]. Among all of those,
there are only a few controllable parameters that significantly
affect the part quality [3, 8] and lead to the formation of in-
process defects such as microstructural -- porosity, balling,
keyhole formation, cracks, etc. --, geometric and dimensional,
and surface finishing defects [3]. These anomalies substantially
weaken the ultimate mechanical properties of manufactured
parts [4].
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The full potential of AM cannot be achieved without
controlling these parameters. Scholars can leverage the
understanding and recognition of the influence of process
parameters on the process defects and the mechanical properties
in order to control of the process efficiently. This objective can
be achieved by studying the process parameters, material
properties, defects formation, and mechanical properties, and
then mapping them together. Developing such a benchmark can
provide a complete understanding of the defect formation and
lead to the development of a precise predictive model for
adjusting process parameters and obtaining the desired
properties of manufactured part and, consequently,
standardizing the process.

To date, no work has reported the ability to model and predict
the influence of multiple process parameters on microstructure,
densification, surface roughness, fabrication time, and
mechanical properties simultaneously. On the other hand,
scholars have not agreed about what constitute the most
influential or significant parameters to optimize a given
objective function. For instance, scholars reported 104 J/mm3,
70-120 J/mm3, 70- 95 J/mm3 as the optimum values of
volumetric energy density (VED) for SS316L material [9-11].
Similarly, some literature introduced hatch space as the most
influential parameter on the formation of porosity and tensile
strength while few scholars proposed that hatch space does not
affect the defect generation and mechanical properties [12-14].
Similarly, the knowledge of the influence of beam diameter is
limited when it varies along with other controllable parameters.
We address these challenges by proposing and demonstrating a
systematic approach for modeling and optimizing the process to
achieve build consistency with controlled mechanical and
microstructural properties.

Although PBF technology has significantly developed and is
employed in different industries, many challenges have
remained. These challenges hinder process repeatability,
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consistency, and stability. Numerous research studies regarding
the influence of process parameters on the ultimate quality of
fabricated parts for different materials and machines have been
conducted. These have revealed that it is very difficult to control
all aspects of the process or even to evaluate the collective
influence of all parameters on the properties of fabricated parts.
Scholars focused on identifying the influence of only a few
process parameters -- predominantly laser specifications -- on
the surface quality, process signatures, or particular mechanical
properties of printed components [15, 16]; the ultimate quality
was predominantly correlated with a single parameter only. A
systematic approach for optimizing all controllable parameters
while mapping the process parameters and material properties
onto the ultimate properties of the fabricated parts is critical to
achieve a near-flawless fabrication process.
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Figure 1: Schematic of general properties required in industry 4.0 [1].

Providing a predictive model is a significant notion for
achieving smart manufacturing, which is the key for a
transformative development in product fabrication. For instance,
in orthodontic treatment altering the material properties in a
designed mouthpiece results in different force magnitude,
location, and distribution applied on mandibular central incisor
and mandibular canine [17]. To develop a predictive model for
a process, a comprehensive interpretation of the relationship
between the process parameters, defects, and ultimate quality of
the manufactured part is vital. PBF lacks such an efficient
approach that can facilitate the avoidance or significant
minimization of defect generation and mechanical property
anomalies by governing the process parameters. This research
proposes a framework for studying the influence of process
parameters on multiple properties of the manufactured part,
optimizing the parameters for improving the ultimate quality of
the part and developing a predictive model of the process by
training a machine learning (ML) algorithm — support vector
regression, random forest regression — and an artificial neural
network (ANN) with back-propagating algorithm.

This research addresses the above-mentioned challenges by
achieving five objectives:

a. Proposing a framework for optimizing the PBF process
parameters.

b. Understanding the influence of laser power and scan speed
on the porosity and density of fabricated samples and optimizing
the VED for achieving maximum density (Phase I of the
proposed framework).

c. Studying and optimization of the combined influence of
laser power, scan speed, hatch space, and beam diameter on
microstructural properties, mechanical properties (hardness,
impact strength, and tensile strength) and surface roughness.
(Phase II of proposed framework). This is achieved using DOE
(Design of Experiments).

d. Mapping the material properties and process parameters
onto the ultimate properties of the manufactured samples by
using ML.

e. Developing a predictive model for intelligent selection of
process parameters and achievement of the desired quality
properties by using different ML techniques, namely, SVR,
Random Forest Regression, and FFBP Neural Network, with
limited quantitative data.

2. Methodology: Developing a Two-phase Framework and
Predictive Models

In-process defects -- such as porosity, crack formation, etc. -- are
amongst the most prevalent defects encountered by
manufacturers. Uncertainty in selection of laser power, scan
speed, hatch spacing, and VED for printing parts with different
materials are the main contributing parameters for formation
defects during the manufacturing process. The formation of
defects decreases the density through irregular porosity
distribution which, in turn, affects the mechanical properties and
quality characteristics of the manufactured part.

In this work, we implemented a two-phase framework for
optimizing the process parameters. In phase I, we conducted the
first set of experiments to achieve more insight into densification
and porosity formation as well as to attain maximum density by
minimizing porosity. These experiments provided the optimized
range for VED to be used in the next phase.

In phase II, we studied the effects of a set of process
parameters on the mechanical properties and quality
characteristics by running the second set of experiments within
the optimized VED range obtained from phase 1. The objective
of this phase was to understand the correlation between process
parameters, material properties, and ultimate quality
characteristics of printed parts. By employing the results from
phase II, a predictive model was developed for intelligent
selection of process parameters according to the desired quality
properties.

2.1. Proposed Framework

To address the challenges and gaps mentioned above, we are
introducing a two-phase framework for establishing the
correlation between process parameters and the ultimate
properties of manufactured parts. Figure 2 shows the proposed
framework to standardize the process of studying and optimizing
the process parameters, reducing inconsistency in results for a
given material, and developing an innovative predictive model
for intelligent selection of process parameters, with emphasis on
the different ML techniques, error rate, uncertainty of the data,
and predictions algorithm.

2.2. Phasel
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Achieving maximum density is the first prerequisite for
manufacturing flawless parts by metal AM. Hence, the main
objective of phase | was to achieve maximum density. In this
phase, we considered altering only laser power and scan speed
and studied the resulting microstructure in the first set of printed
samples in order to obtain the optimum range for VED. This
optimized range of VED was later employed in phase II for
studying the effects of other process parameters on the
mechanical and quality characteristics of the second set of
samples printed within their maximum densification range.
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Figure 2: The proposed framework and corresponding workflow for
developing the ANN model.

2.2.1. Material and Equipment

316L stainless steel (SS) was used in this research. 316L SS has
widespread application in additive manufacturing given its high
tensile strength at high temperatures, high hardness, toughness,
and corrosion resistance properties [4]. In this work, samples
were manufactured with a constant layer thickness of 20 pm
using an EOS M270 3D printer.

2.2.2. Mathematical Modeling

For any AM process, the first step is to determine the accurate
process parameters for successful completion of the
manufacturing process. In thermal AM processes such as PBF,
process parameters are predominantly adjusted by evaluating the
VED (i.e., the amount of heat flux given per unit volume) which
is required for the sintering/melting of the powder feedstock.
Substantial research has been conducted by scholars to identify
the best range of VED values for SS 316L. Scholars obtained a
diversified range of values for the same material processed using
PBF (see Figure 3).
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Figure 3: VED benchmark provided in [18].

We first estimated the range of VED values for SS 316L in
PBF then conducted experiments to obtain the optimized range
to achieve maximum density. A rough VED required for
successful melting and consequent solidification can be
estimated based on the heat per unit volume -- q (JJmm3) -- in
Eq. 1.a[19]

q=[cAT +]p Eq. la

AT =T,, — Ty Eq. 1.b
where ¢ (J/Kg.K) is the specific heat capacity, s (J/Kg) is the
latent heat of fusion, p (Kg/mm3) is the density of the powder
material in Eq. l.a and Tm (K) and To (K) are the melting
temperature of the material and room temperature, respectively,
in Eq. 1.b.

To consider various thermal phenomena [20] associated with
PBF process, an efficiency coefficient 1) is incorporated, which
accounts for heat losses due to the reflectivity of the powder, heat
conduction, and additional losses. Eq. 2 shows the VED equation
considering the efficiency coefficient

_ 9 _ q
VED = n A-Rp)A—kre)n*

Eq.2
where Rp and k,; are the reflectivity of the powder feedstock
material and relative thermal conductivity of the feedstock
material respectively. n* is an additional efficiency factor
assumed to be 0.20 [19].

Table 1: Property values for SS316L.

Property Value
Specific heat capacity, ¢ (J/Kg.K) 500
Melting temperature, T, (K) 1673
Latent heat of fusion, l¢(J/kg) 0.25
Density, p (Kg/mm3) 7.99x 107°

By substituting the SS316L properties values (see Table 1) in
Eq. 1a, the heat flux was obtained as

q = 5.50 -2

mm3

Eq.3.a

Substitution of the obtained heat flux from Eq. 3.a in Eq. 2
produces VED:
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J

VED p,—g.05 = 57.89 —— Eq.3.b
VED g,=06 = 137.5 m{ng Eq.3.c

The obtained VED values using Eq. 3.b and Eq. 3.c were
considered as the lowest and highest limits for the design of
experiments (DOE) in which the VED varied £10%.

2.2.3. Sensitivity Analysis

Sensitivity analysis (SA) quantifies the correlation between a
given model and its input parameters [21]. The main objective
of conducting SA is to understand which inputs contribute most
to output variability [21]. Another function to model VED (Eq.
4) is based on the commonly cited controllable parameters in
PBF, namely, laser power (LP), scan speed (SS), layer thickness
(LT), and hatch space (HS). In fact, these parameters have a
significant influence on the ultimate quality of manufactured
parts [3, 8, 22, 23]. We employed SA to evaluate the correlation
of the laser specifications (i.e., LP, SS, and HS) with VED from
Eq. 4 while kept the layer thickness constant.

LP
VED = ————
HSXSSXLT

Eq. 4

We used Fourier Amplitude Sensitivity Testing (FAST) -- a
variance-based global sensitivity analysis method, which is
based on conditional variance to determine the sensitivity within
the range of 0 to 1. The SA results showed that scan speed
drastically changes the energy density, hence, it might
predominantly influence the ultimate properties of the fabricated
part. Similarly, laser power and hatch spacing had considerable
effects while the effect of layer thickness was zero since it was
set to a constant value. We assigned the number of levels --
number of values assigned in the parameters’ range -- according
to the parameters’ sensitivity. Figure 4 shows the values of the
ultimate global sensitivity coefficients obtained by SA. Previous
literature also confirmed the significant influence of laser power
and scan speed as the two main parameters on the ultimate
quality of the printed part [24].

Parametric Influence on Volumetric Energy Input
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Figure 4: Total Global Sensitivity (GS) Coefficient.

2.24.  Design of Experiments for Phase I

In this phase, we employed full factorial analysis for designing
the experiments. Table 2 shows the parameters -- laser power
and scan speed -- whose values were assigned based on the
estimated VED in section 2.2.2 and the benchmarks provided in

literature [25-28]. For the first set of experiments, we printed
10x10x5 mm?® samples considering only laser power and scan
speed while hatch space (HS) and beam diameter were kept
constant at their machine default values (HS = 0.09 mm and BD
=0.2mm).

In this phase, we studied the microstructure, porosity, and
densification of the printed samples to map them onto the VED
values. Previous literature demonstrated that the porosity
generated during the process significantly affects the mechanical
properties of manufactured parts. The literature shows that low
porosity formation in near fully dense parts substantially
enhanced mechanical properties and build consistency [29, 30].
Therefore, we sought the optimal range of energy density for
maximum densification in this phase. It should be noticed that
we studied only 13 of 16 total samples due to similar energy
density of sample 2 to 8, sample 6 to 12, and sample 9 to 14.

Table 2: Full factorial DOE.

No LP, SS, VED, No LP, SS, VED,

W m/s J/mm3 W mm/s J/mm3
1 100 700 79.36 9 150 700 119.05
2 100 800 69.44 10 150 800 104.17
3 100 900 61.73 11 150 900 92.59
4 100 1000 55.56 12 150 1000 83.33
5 125 700 99.21 13 175 700 138.89
6 125 800 86.81 14 175 800 121.53
7 125 900 77.16 15 175 900 108.02
8 125 1000 69.44 16 175 1000 97.22

2.3. Phase 11

From phase I, the optimized range of VED values was obtained
for achieving maximum densification. In the second phase, laser
power, scan speed, hatch space, and beam diameter were studied
to unveil the correlation of the process parameters with ultimate
mechanical and quality properties of the manufactured part. We
discuss details about the parameter selection, DOE, mechanical
testing along with the data analysis in the Results and Discussion
section.

2.3.1. Design of Experiments for Phase 11

In this phase, we considered four process parameters -- laser
power, scan speed, hatch space, and beam diameter -- with
different levels. We employed the Taguchi method to optimize
the DOE instead of conducting a more expensive full-factorial
analysis. Table 3 shows the levels and level values assigned to
each parameter based on the results obtained from phase I. Table
4 shows the resulting Taguchi DOE. For each set of parameters,
a sample was printed and different mechanical tests -- namely
tensile, impact, and hardness -- were performed. For tensile and
impact tests, the samples were designed according to ASTM E8
and ASTM E23 standards [31].

Table 3: Control factors and levels for Taguchi DOE.

Factor Level values Levels
LP (W) 125,150, 175, 195 4

SS (mm/s) 700, 800, 900, 1000, 1100, 1200 6

HS (mm) 0.09,0.12,0.15 3

BD (mm) 0.1,0.15,0.2 3

Table 4: Taguchi DOE.

No LP W) SS (mm/s) HS (mm) BD (mm)
1 125 700 0.09 0.1
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2 125 800 0.09 0.2
3 150 700 0.12 0.15
4 150 800 0.09 0.2
5 150 900 0.09 0.1
6 175 700 0.12 0.2
7 175 800 0.12 0.1
8 175 900 0.09 0.15
9 175 1000 0.09 0.2
10 175 1100 0.09 0.1
11 195 700 0.15 0.15
12 195 800 0.12 0.15
13 195 900 0.12 0.2
14 195 1000 0.09 0.1
15 195 1100 0.09 0.2
16 195 1200 0.09 0.15
2.3.2. Signal-to-noise Ratio and Analysis of Variance

Signal-to-noise (S/N) ratio is used as a quality indicator that
evaluates the influence of the process parameters on the ultimate
properties. The S/N ratio is calculated at three levels: lower-the
better, nominal-the-better, and higher-the-better. S/N value was
calculated in phase II for all 16 experiments and the effects plot
for S/N ratios and means of optimized parameters was
represented for each parameter at their assigned levels using
Taguchi method, generated by Minitab® (See sub-section 3.2.1
for S/N results of surface roughness). Finally, the variance was
calculated based on the resulting S/N values by applying
Analysis of Variance (ANOVA).

ANOVA is a statistical method evaluating the variance of
properties within the tested range of levels for each process
parameter in comparison with the total variance of all parameters
to express the percentage contribution (Cntb%) of each process
parameter. The relative percentage contribution among the
process parameters is determined by comparing the relative
variance using adjusted sum of square (A.SSq), adjusted mean
square (A.MS), P-values (P-val.), and F-values (F-val.) [32].

The combination of S/N and ANOVA helped obtain the
optimal range of process parameters and also revealed the
correlation between the material properties, process parameters,
and ultimate properties of SS 316L parts printed by PBF. In
addition, this combination makes it possible to understand the
significance of each parameter within the employed range.

2.3.3. Mechanical Testing

To understand the correlation between process parameters and
quality properties of the printed samples, a series of mechanical
tests —surface roughness, hardness, Charpy impact, and tensile
tests -- was conducted.

The surface roughness (R,) measurement was carried out
on Bruker DektakXT. A stylus of 2um-radius was used with the
profile set to hills and valleys and with a range of 6.5 pm, force
of 5 mg, speed of 600 um/s, and time duration of 25 seconds.
Three surface profiles with the scan length of 10 mm were
measured for each sample on two sides and the center of samples
R, value was calculated from the profile by using equation 5

R, = %fOLIY(x)Idx Eq.5

where R, is defined as the arithmetic average deviation of hills
and valleys from the mean line, L is the scan length, and Y(x) is
the curvature profile.

The hardness test was conducted on a Rockwell hardness
testing machine B scale equipped with a 1/16-inch steel ball; a

100-Kgf force was applied. We conducted the hardness test to
achieve more insight into the resistance of material for plastic (or
permanent) deformation for different sets of parameters.

For the Charpy impact test, the specimen was loaded, and
the position of the specimen was adjusted such that the notch
was parallel and centered to the pendulum. The pendulum was
dropped electronically to avoid any losses due to vibrations. The
equipment was not bolted to the ground, which might affect the
results with variances of + 5 J. The objective of conducting the
impact test was to study the amount of absorbed energy and the
effect of process parameters on the strength of the printed
samples.

The Tensile test was conducted on a Jinan Dual column
Universal testing Machine, with a pancake type load cell of
20KN, at the room temperature. The yield strength (YS),
elongation, and ultimate tensile strength (UTS) were obtained
for each experiment. The objective of conducting the tensile test
was to study the mechanical behavior (strength, ductility etc.) of
the part under uniaxial load conditions. This will help in quality
control of the material for specific applications.

2.4. Predictive Modeling

PBEF process is inherently a complex process with more than 100
different process parameters involved [5-7]. Previous literature
studied the impact of each parameter on the quality properties
and developed a one-to-one correlation between the selected
parameter and property of interest; however, those estimations
could not provide a comprehensive relationship between a
process parameter and multiple part quality properties. For
instance, increasing scan speed reduces the average surface
roughness (for speed lower than 15 mm/s) and thermal shrinkage
which are positive effects while increases in melt pool instability
causes deeper longitudinal cracks on scanning tracks —which is
a negative effect [33, 34] .

To obtain an optimum quality printed part, the correlation
between “a set” of process parameters and the resulting
properties is required. To fulfill such an objective, one scenario
is to develop a physics-based model to predict the quality
properties according to the parameters. The scholars’ previous
attempts have Dbeen unsuccessful for developing a
comprehensive analytical model due to the complex non-linear
nature of the process. Alternatively, a data-driven modeling
based on empirical benchmarks and statistical theories was
developed [32].

In this work, we employed three different methods -- support
vector regression (SVR), random forest methods in machine
learning (ML), and ANN -- to develop practical predictive
models and correlate different process parameters to different
ultimate quality properties. We will discuss these techniques,
and identify the best one based on multiple criteria, including
error rate, loss function, uncertainty, and stability.

24.1. Support Vector Regression

SVR is a type of ML that can be used for regression problems.
Using SVR, a hyperplane was identified so that the maximum
number of data points fell within that boundary (maximal
margin). Instead of eliminating/reducing the error rate -- as
carried out in simple linear regression -- SVR adjusts the error
within a certain threshold. Our objective in SVR was to keep the
maximum points within this margin. The best fit line was the
hyperplane with the highest number of points within the
boundaries.
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2.4.2. Random Forest Regression

Random forest regression (RFR) is one of the supervised
learning techniques used for both classification and regression
model training. In this technique, the training data is divided into
several groups -- called trees or bagging -- and the model runs in
each tree. The final prediction is the average of the values
generated by each tree. Using the average reduces the
uncertainty of the model. As a result, variation in error rate is
greatly reduced because error in one data set will not
significantly affect the final predicted output. The only
possibility for a wrong prediction is if more than half of the data
is deceptive. This lower uncertainty is the major advantage of
models developed by RFR compared with other techniques such
as SVR and NN.

2.4.3. Neural Network

ANN is a supervised ML technique that can be employed for
regression problem effectively. This technique is suitable for
PBF process due to non-linear complex correlation between the
input and output data (i.e., process parameters and quality
characteristics). In this work, a multi-layer feed-forward back-
propagating (FFBP) neural network (NN) was developed with
laser power, scan speed, hatch space, and beam diameter as
features/inputs and ultimate tensile strength (UTS) and surface
roughness as labels/outputs (Figure 5). To train the model, we
employed one hidden layer with three nodes and used the
experimental results acquired from the framework as the training
data. The weights were calculated and adjusted by
backpropagation (BP) method, which gradually reduces the gap
between the generated and expected output (actual experimental
output).

Hidden

Input Output

Figure 5: The schematic for ANN architecture of this research.

We employed sigmoid function in python for developing our
ANN model. Since this function varies between 0 to 1, the input
and output were normalized between 0 and 1 (see table 15-18).
The activation function makes the training of weights easier for
sigmoid function. The network is forwarded from input to output
by assigning some random values and then BP uses a loss
function for calculating the error between the computed value
and the target value. The loss function is calculated by the mean
sum squared loss function shown in Eq. 6 [35]

Loss = Y(0.5)(0 — y)? Eq.6

where o is the predicted output and y is the actual output. The
function was trained individually for each output (quality
characteristics). In the last step, a multi-input multi-output NN

was trained to provide a model correlating all inputs to all
outputs.

3. Results and Discussion

In section 2, we explained the methodology of implementing a
two-phase framework for developing a predictive model in PBF
process. In this section, we discuss the results obtained from each
phase and try to establish a correlation between process
parameters and the ultimate quality properties of the printed
samples. In addition, we assess the different predictive models,
including their efficiency based on the minimum error rate.

3.1. Phase I: Results and Discussion

The VED minimum and maximum values were obtained as
57.89 and 137.5 J/mm?, respectively, using the mathematical
model described in subsection 2.2.2. In subsection 2.2.3, SA was
conducted to study the influence of laser power, scan speed, and
hatch space on VED. The results showed that scan speed had the
highest impact on VED, followed by laser power and hatch space
respectively. After SA, samples were printed according to the
DOE for phase I, introduced in subsection 2.2.4. We cut each
sample in the middle -- both perpendicular and parallel to the
build direction (Figure 6) -- by using wire electric discharge
machining (WEDM) process. WEDM process was chosen
because of its capability of machining electrically conductive
hard materials without inducing any stresses or impact.

a1/ =0
)

Parallel

—

Prrvrree 7
Sean surface .:.0.0.0‘0.0.0,;,-.75 cross- [MECATEL,
R econ, EAE
Cutngplane g S8 551 ()
Sdad N
forpanﬂlel e v Vertical 5
cross-sections  [SAMEE . °eq '
(index p) Cutting plane s | anur g
for vertical section. | o o oE
crogs-sections (indexv) | o '_® [
(index v)

Figure 6: WEDM cutting planes through specimens from phase I.

Then, we took sixteen micrographs in total from each sample
by using a scanning electron microscope (SEM), six
micrographs from the horizontal cross-section -- each corner
plus two from the center -- and two from the vertical cross-
section. We used two different magnifications -- 60X and 300X
(100pm and 10pm scale, respectively) — for each micrograph
and then employed MATLAB image processing to measure the
porosity of each sample in three steps (Figure 7). First, we
generated bi-color black and white images from each

micrograph; second, the threshold level was adjusted by
comparing the pore size between the SEM image and the
MATLAB-generated image to increase the method accuracy
[36]; finally, we obtained the porosity percentage by calculating
and averaging the ratio of black parts (pores) to the white parts
in the micrographs related to each cross-section [37].
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Figure 7: a. Micrograph; b. Bi-color micrograph with adjusted
threshold level.

By analyzing the horizontal cross-section, we revealed three
different types of porosity — low, medium, high -- according to
the level of VED. In the first type, low VED led to incomplete
melting of the powder particles and formation of irregular pores
due to lack of fusion (LOF) (Figure 7.a). In the second type,
exposure of the samples to high VED vaporized the material and
formed circular gas pores (Figure 7.b). These pores could be
either the cross-section of a keyhole or a simple circular pore.
The type of pores could be detected by analyzing the vertical
micrographs. In the third type, the samples gained from exposure
by medium VED possessed microscale holes with a nearly
uniform distribution throughout the cross-section. These

samples depicted better mechanical properties compared to other
types [38]. Vertical cross-sections, on the other hand, illustrated
less frequent but bigger size porosity, which usually were
propagated through layers underneath. Table 5 illustrates the
porosity percentage of the samples shown in Figure 8. The
results were in close agreement with the results from previous
literature [18].

Figure 8: a. LOF pores (the low VED with LP 100 W and SS 900
mm/s); b. gas pores (the highest VED with LP 175 W and SS
700 mm/s).

As Figure 9 depicts, we printed the samples with the range
of VED altered between 55 and 138 J/mm?. This VED range
created parts with a density between 95.52% and 99.31% and a
maximum of 99.31% by VED of 99.2 J/mm?. Considering the
density percentage, we could narrow the range of optimum VED
-- the green band in Figure 9 - to 90 and 105 J/mm?. This
suggested that the optimized range of laser power is 150 to 200
W while the optimized range of scan speed is 800 to 1000 mm/s.
These ranges were employed as the inputs for phase II in our
next step.

Table 5: The porosity percentage of the samples.

VED (J/mm®) Horizontal Vertical Average
61.7 5.453% 3.5% 4.48%
97.2 0.879% 0.5% 0.69%
138 1.875% 1.31% 1.59%
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Figure 9: Porosity vs VED.

3.2. Phase II: Results and Discussion

In phase II, we studied the correlation between material
properties, process parameters -- laser power, scan speed, hatch
space, and beam diameter -- and ultimate quality characteristics
of manufactured parts within the maximum range of
densification.

3.2.1. Surface Roughness
Surface roughness measurement was conducted on the Bruker
DektakXT system. Three profiles with 10mm-scan length were
read and the average roughness (R,) was calculated for each
sample. We obtained Y(x) from each profile (see Figure 10) and
Ra was calculated using Eq. 5.

Surface roughness (um)

0 2000 4000 6000 8000 9998
Sample length (um)
Figure 10: Profile of 10mm scan.
Table 6: Obtained surface roughness for DOE in phase II.

No. Left (um) Center (um) Right (um) Average
1 20.31 18.94 27.22 22.16
2 17.39 232 14.13 18.24
3 22.34 17.39 11.56 17.1
4 17.61 13.07 16 15.56
5 14.12 15.84 11.68 13.88
6 14.44 18.25 17.98 16.89
7 13.3 16.29 16.26 15.28
8 13.52 24.39 14.75 17.55
9 15.85 16.11 14.44 15.47
10 14.28 18.89 15.88 16.35
11 10.79 15.78 14.99 13.85
12 20.98 19.71 18.36 19.68
13 10.6 21.04 9.83 13.82
14 11.26 14.82 11.68 12.59
15 16.05 12.87 14.5 14.47
16 11.18 13.2 9.49 11.29
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Figure 11: Trend of process parameters influence on Ra represented by
main effects plot of means.

Table 6 presents the average roughness values for the set of all
DOE. The main effect plot of means — based on S/N ratio (the
lower-the-better) analysis -- was represented in Figure 11. The
analysis of the average surface roughness in this figure reveals
that R, decreased with the increase in scan speed or laser power.
ANOVA evidenced that in a process with multiple varying
parameters, scan speed and laser power followed by hatch space
and beam diameter have the highest impact on the roughness
within the optimum VED range respectively (Table 7), which
corroborates the results of the S/N analysis.

Table 7: ANOVA for surface roughness vs LP, SS, HS & BD.

Source DF  A.SSq AMS F-val. P-val. Cntb %
LP 3 18.65 6.215 1.65 0346  21.37
SS 5 28.31 5.663 1.50 0.392 3245
HS 2 15.60 7.802  2.07 0.310 17.88
BD 2 13.38 6.690 1.77 0.272 15.33
Error 3 11.31 3.770
Total 15 87.25

3.2.2. Hardness

We calculated HRB (Rockwell Hardness B Scale) by taking the
average of three readings, one from each side and one from the
center of each sample. Table 8 shows the calculated HRB and
S/N ratio (the higher-the-better) for all samples. The results show

that the hardness value was almost constant (with £5 variance),
irrespective of the set selection of individual parameters as long
as VED fell within the optimized range and was corroborated by
the nearly constant S/N value. Thus, we needed neither calculate

ANOVA nor to train a predictive model for hardness test.

Table 8: S/N ratios for samples with different hardness values.

Sample HRB S/N ratio  Sample HRB S/N ratio
1 86.6 38.75 9 91 39.18
2 94.8 39.54 10 91.5 39.23
3 93.23 39.39 11 88.57 38.95
4 93.67 39.43 12 92.23 39.3
5 89.13 39.00 13 89.47 39.03
6 89.9 39.07 14 89.5 39.04
7 89.6 39.05 15 92.87 39.36
8 93.03 39.37 16 93.6 39.42
3.2.3.  Charpy Impact Test

The impact test was conducted on all 16 samples in phase II and
the results were presented in Table 9. S/N ratio (the higher-the-
better) was calculated, and the main effect plot of means is
represented in Figure 12. In general, the result demonstrated that
within the study range of parameters, increasing scan speed

elevated the impact strength, whereas, increasing laser power
and hatch space decreased the impact strength of the samples.
The best Charpy impact was obtained for the sample with the
lowest beam diameter. ANOVA was also conducted to calculate
the P-value, which illustrates the effect of each process
parameter on the impact strength presented in Table 10. The
results demonstrate that the influence of a parameter on the
strength of the printed samples is in the following order: hatch
space, laser power, scan speed, and then beam diameter.

Table 9: Impact test results for all 16 samples in phase II.

Sample Impact strength (J) Sample Impact strength (J)
1 148 9 137.2
2 144 10 143.8
3 127.5 11 109.5
4 136.5 12 120.5
5 150.2 13 126.2
6 124 14 140
7 129.6 15 134.2
8 134.5 16 132.2
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Figure 12: Trend of process parameters influence on impact strength
represented by main effect plot of means.

Table 10: ANOVA for impact strength vs LP, SS, HS & BD.

Source DF A.SSq A.MS F-val. P-val. Cntb. %
LP 3 50.12 25.06 13.72 0.028  27.06
SS 5 30.40 11.20  7.50 0.012 16.46
HS 2 78.49 26.16 1432 0.031 4238
BD 2 20.70 8.140 446 0.009 11.18
Error 3 5.48 1.827
Total 15 185.2

3.24. Tensile Test

The tensile test was conducted to study the influence of process
parameters within the optimized range on the mechanical
behavior of the printed samples. Figure 13 shows the main effect
plot of means plotted to each process parameter with individual
levels while Table 11 shows the UTS values and their respective
S/N ratio. The maximum UTS of 808.52 MPa was achieved at
the VED of 98.48 J/mm? which is higher than the UTS achieved
by conventional manufacturing [39].

Table 11: Obtained UTS for DOE in phase II.

Sample UTS Sample UTS
1 716.79 9 792.36
2 775.16 10 689.64
3 644.03 11 678.74
4 779.32 12 634.11
5 643.39 13 663.44
6 699.92 14 726.06
7 752.94 15 808.52
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8 632.70 16 749.98

As shown in Figure 13, the results clearly demonstrate that LP,
SS, HS, and BD have a significant effect on the UTS within the
optimized range of VED. Following the S/N ratio, ANOVA was
also conducted to calculate the P-value (Table 12). The results
demonstrate that the influence of parameters within the tested
range are in the following order: SS, BD, LP, and HS. No
specific correlation was observed between these parameters and
UTS; however, the results depict that the lower LP and HS
generally resulted in higher UTS while it was higher SS and BD
that resulted in higher UTS. More experiments need to be
conducted to develop a complete correlation between the
parameters and UTS.

Tablel12: ANOVA for UTS vs LP, SS, HS, & BD.

prediction for each set. The error percentage obtained varied
between 12.92 and 34.47 with a mean error of 20.18%. We
concluded this technique was not suitable for developing a
predictive model for PBF process since it showed high error rate
percentage and produced uncertain results.

Table 13: SVR method: actual vs predicted value for surface roughness.

Test data Actual Ra Predicted Ra Error %
175,800,0.12,0.1 15.28 17.255 12.92
195,700,0.15,0.15  13.85 15.67 13.14
195,1000,0.09,0.1  12.59 16.93 34.47

Source DF A.SSq A.MS F-val. P-val. Cntb. %
LP 3 73.47 17.2 0.32 0.400 2234
SS 5 114.2 38.06 0.57 0.997  34.73
HS 2 36.58 5.26 0.13 0.186 11.12
BD 2 95.32 24.14 0.41 0.618  28.99
Error 3 9.24
Total 15 328.8
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Figure 13: Trend of process parameters influence on UTS represented by
main effect plot of means.

3.3. Predictive Modeling

3.3.1. Support Vector Regression

16 data sets were employed to develop an SVR predictive model
- 13 sets for training and 3 sets for testing. To fulfill such an
objective, we first conducted heatmap evaluation. Heatmap is an
exhibition of correlation between inputs to detect dependencies.
The heatmap is calculated using the coefficient of determination
(R?), which quantifies the proportion of variance in output
properties in relation to the process parameters. Any correlation
between 2 inputs with calculated value of R? above +0.5 or
below — 0.5 demonstrates their dependency; thus, one of the
inputs can be eliminated from the training set. Furthermore, the
top half pair of inputs above the diagonal is neglected since it is
a replica of the bottom half as well as the diagonal pairs since
they represent the correlation between the same inputs. Such
performance increases the efficiency of the predictions. We used
a heatmap to investigate any possible correlation between the
inputs in phase II before employing different techniques for
developing predictive models. The results demonstrated no
correlation between the inputs with obtained R? value of 0.4511.
The second step was to develop the predictive model using SVR.
After training the data, we conducted trial evaluation using the
remaining 3 data sets to validate the model. Table 13 shows the
predicted value and error percentage for surface roughness

3.3.2. Random Forest Regression

Out of the 16 data sets, 12 sets were assigned as training data and
4 sets as testing data. Training data was divided into three
random groups called trees. The number of trees was selected by
running the model with different numbers of trees -- 2 to 6 trees
-- and among all the values, 3 trees generated a minimum error
rate with better R%. Table 14 shows the predicted vs. actual data.
The results show that the error rate was between 23 t027% by
considering only 12 sets of training data. More experimental data
is needed to reduce this error rate.

Table 14: RFR method: actual vs. predicted value for surface roughness.

Test data Actual R, Predicted R, Error %
175,800,0.12,0.1 15.28 19.35 26.64
195,700,0.15,0.15  13.85 17.122 23.624
195,1000,0.09,0.1  12.59 15.57 23.67

3.3.3. Neural Network

16 data sets were divided into 12 sets for training and 4 sets for
testing. Test data is used to assess the trained network. The mean
error rate is calculated by averaging the error rates from the test
data. Two networks were developed to predict separately surface
roughness and UTS. Table 15 and 16 show the error percentage
of training data sets for surface roughness and UTS respectively.
The results show the mean error rate of 10.236% with a loss rate
0f 0.0002946 for surface roughness network and the mean error
rate of 7.53% with a loss rate of 0.000253 for The UTS network.

Table 15: Surface roughness: Actual vs predicted data with error
percentage in multi-input single-output neural network.

Training data Actual Predicted Error %
Ra/100 Ra/100

125,700,0.09,0.1 0.2216 0.21 5.2346
125,800,0.09 ,0.2 0.1824 0.169 7.3465
150,800,0.09 ,0.2 0.1556 0.168 7.9691
150,900, 0.09, 0.1 0.1388 0.1743 25.5764
175,700 ,0.12 ,0.2 0.1689 0.1819 7.6966
175,900,0.09,0.15 0.1755 0.1633 6.9515
175,1000,0.09,0.2 0.1547 0.1437 7.1105
175,1100,0.09,0.1  0.1635 0.1482 9.3578
195,800,0.12,0.15  0.1968 0.1764 10.3658
195,900, 0.12, 0.2 0.1382 0.1539 11.3603
195, 1100,0.09,0.2 0.1447 0.134 7.3946
195,1200,0.09,0.15 0.1129 0.1315 16.4748

Table 16: UTS: Actual vs predicted data with error percentage in multi-
input single-output neural network.

Training data Actual Predicted Error %
UTS/1000 UTS/1000

125,700,0.09,0.1 0.7167864 0.693078 3.308

125,800,0.09 ,0.2 0.7751575 0.80191983 3.452
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150,800,0.09 ,0.2 0.7793171 0.75758627 2.788
150,900, 0.09, 0.1 0.6433868 0.66440513 3.267
175,700,0.12,0.2 0.6999128 0.70178787 0.268
175,900,0.09,0.15 0.6327041 0.66676657 5.384
175,1000,0.09,0.2 0.7923613 0.7852447 0.898
175, 1100, 0.09,0.1  0.6896397 0.66995102 2.855
195,800,0.12,0.15  0.6341026 0.63290032 0.19

195,900, 0.12, 0.2 0.6634371 0.65801495 0.817
195, 1100,0.09,0.2 0.808517 0.79140182 2.117
195,1200,0.09,0.15 0.7499815 0.76108938 1.481

Finally, a multi-input — LP, SS, HS, and BD, multi-output —
surface roughness and UTS neural network was developed with
the training data and tested for error rate. The results show the
achieved minimum error rate of 0.46% and the maximum error
rate of 33.17% (Table 17). From the results, it is evident that for
training a multi-input multi-output network, more data will need
to be incorporated to make the model both more stable (lower
loss function and more accurate weights in the trained function)
and accurate.

Table 17: Surface roughness: actual vs predicted data with error
percentage in multi-input multi-output neural network.

Training data Actual Predicted Error %
Ra/100 Ra/100

125,700,0.09,0.1 0.2216 0.2075 6.34
125,800,0.09 ,0.2 0.1824 0.1352 25.88
150,800,0.09 ,0.2 0.1556 0.1458 6.32
150,900, 0.09, 0.1 0.1388 0.1848 33.17
175,700 ,0.12 ,0.2 0.1689 0.1829 8.31
175,900,0.09,0.15 0.1755 0.1691 3.67
175,1000,0.09,0.2 0.1547 0.1282 17.13
175,1100,0.09,0.1  0.1635 0.1656 1.29
195,800,0.12,0.15  0.1968 0.1929 1.99
195,900, 0.12, 0.2 0.1382 0.1618 17.07
195, 1100,0.09,0.2 0.1447 0.1235 14.61
195,1200,0.09,0.15  0.1129 0.1347 19.28

Table 18: UTS: actual vs predicted data with percentage error in multi-
input multi-output neural network.

Training data Actual Predicted Error %
(UTS /1000)  (UTS /1000)

125,700,0.09,0.1 0.7168 0.6736 6.03
125,800 ,0.09 ,0.2 0.7752 0.8003 3.24
150,800 ,0.09 ,0.2 0.7793 0.7757 0.46
150,900, 0.09, 0.1 0.6434 0.6773 5.27
175,700 ,0.12 ,0.2 0.6999 0.6745 3.62
175,900,0.09,0.15 0.6327 0.7055 11.51
175,1000,0.09,0.2 0.7923 0.7799 1.58
175, 1100, 0.09, 0.1  0.6896 0.6809 1.27
195,800,0.12,0.15  0.6341 0.6276 1.02
195,900, 0.12, 0.2 0.6634 0.6837 3.05
195, 1100,0.09,0.2 0.8085 0.7741 426
195,1200,0.09,0.15 0.7499 0.7316 2.44

Comparing the results of models developed by SVR, RFR,
and FFBP neural network revealed that SVR was not an ideal
method for developing a predictive function since the error rate
was not constant, which showed uncertainty inside the
developed model (Table 13). RFR using three trees and a limited
number of experiments led to a much more stable error rate
compared to SVR.

Similarly, FFBP NN with a loss rate of 0.0002946 is more stable
and accurate than SVR. Hence, in the future, we will employ

both random forest and FFBP NN with more experimental data
to study the uncertainty and minimize the error rate.

4. Conclusion and Future Works

In this work, a two-phase framework was proposed for
optimizing the process parameters thereby achieving maximum
density and better ultimate properties in parts manufactured by
PBF. Next, the results were employed to develop a predictive
model using different approaches to correlate a given set of
process parameters, material properties, and ultimate quality
properties.

In phase I, VED optimum range was obtained between 90
and 105 J/mm® to manufacture SS 316L parts with maximum
density, the optimum range of laser power -- between 100 to 175
W, and optimum range of scan speed between 700 to 1000 mm/s.
SA was conducted and the results showed that scan speed has
the highest impact on VED, followed by laser power and hatch
space respectively.

Porosity and microstructure analysis showed that the
formation of gas pores and LOF pores led to high porosity
percentage in both high and low VED ranges; whereas porosity
reduced steeply in the optimum VED range -- mentioned
previously -- with maximum density of 99.31% achieved for
VED 0f 99.2 J/mm?

In phase II, the impact of laser power, scan speed, hatch
space, and beam diameter on surface roughness, hardness,
impact strength, and ultimate tensile strength were studied.
These results were employed to develop the correlation between
the process parameters, material properties, and ultimate quality
properties of the manufactured samples.

Analysis of surface roughness showed that the impact on
roughness within the optimum VED range is in the following
order: scan speed, laser power, hatch space, and beam diameter.
The results also demonstrated that increasing scan speed or laser
power decreased the average roughness. Also, the analysis of
hardness results showed that the hardness of samples remained
constant -- at the value of 90 + 4 -- within the optimum VED
range, regardless of the set of process parameters used for
printing of the samples. Analysis of the impact strength
demonstrated that the effect of the process parameters on the
strength of the printed samples is in the following order: hatch
space, laser power, scan speed, and then beam diameter, in a way
that, increasing scan speed increased the impact strength.
Whereas laser power and hatch space had an opposite effect no
specific correlation was found between beam diameter and
impact strength. Analysis of tensile test results demonstrated that
the impact on UTS is in the following order: scan speed, beam
diameter, laser power, and hatch space. More experiments have
to be conducted within the optimized VED to gain an increased
understanding of the correlation between process parameters and
tensile properties.

Finally, we developed an intelligent model for prediction of
surface roughness by using three different techniques: SVR,
RFR, and FFBP NN. According to our results, FFBP NN
includes the lowest mean error percentage rate of 10.25%
amongst all of the techniques for surface roughness. Thus, this
technique was used to develop the prediction model for UTS and
achieved a mean error percentage rate of 7.53%. In the final step,
the same technique was considered for developing a
comprehensive multi-input multi-output predictive model with
similar inputs, while considers both surface roughness and UTS
as outputs. Analysis of results for the comprehensive predictive
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model showed a mean error percentage 24.19% considering all
outputs. However, this error is higher than multi-input single-
output predictive model, which was expected given the limited
amount of training data. We anticipate that the results can be
improved by increasing the size of the training dataset.

The proposed framework demonstrates the capability of
standardizing evaluation and optimizing process parameters
while addressing important limitations in the literature,
especially the statistical inconsistency in the impact of different
parameters on the ultimate quality of printed samples. The
developed multi-input model addressed one of the main
challenges -- model uncertainty -- leading to process stability;
however, the error rate was high. Using a larger dataset can
eliminate this drawback.

Ongoing work includes incorporating more data in order to
minimize the loss function and error rate and to improve the
predictive accuracy. Next, we will merge all trained networks to
provide a model correlating all controllable inputs to all outputs.
The longer-term objective is to integrate the proposed
framework within an online monitoring and control (OMC)
system [2, 40]. This will make it possible to manufacture nearly
flawless parts by using customized scan strategies to achieve
desired ultimate qualities [41, 42]. Currently, a great deal of
research has focused on the development of OMC systems [43,
44] to avoid/diminish the in-process defects and abnormalities
[45, 46]. To fulfill such objective, real-time monitoring, and
control of VED is the first step. This is because thermal
specifications and the evolution of any inherently thermal AM
process such as PBF have been found to be the predominant
contributing factors affecting the microstructure and ultimate
mechanical properties of manufactured parts [47, 48].

Moreover, real-time control of VED helps in manufacturing
a more efficient topologically optimized support structure -- an
efficient approach for reducing residual stress and distortion
through facilitating conduction during the manufacturing
process and increasing the structural strength. Using multi-laser
PBF process allows manufacturers to use a laser with different
power for manufacturing the support structures. Thus, it is
possible to use different layer thickness/material for support
structures. However, employment of such technique required
adjusting VED for layers with different thickness or material
with different thermal characteristics. Integration of the
predictive model and OMC system will make this possible.
Optimization of PBF process by using a predictive model —
introduced in this project — integrated with an OMC system will
be a breakthrough, which will considerably improve the
mechanical properties and surface quality, increase the
repeatability, reduce manufacturing lead time, and significantly
decrease the need for the post-processing operations.
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