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Abstract 
Powder bed fusion (PBF) process is a metal additive manufacturing process which can build parts with any complexity from a wide range of 
metallic materials. PBF process research has predominantly focused on the impact of only a few parameters on product properties due to the lack 
of a systematic approach for optimizing a large set of process parameters simultaneously. The pivotal challenges regarding this process require a 
quantitative approach for mapping the material properties and process parameters onto the ultimate quality; this will then enable the optimization 
of those parameters. In this study, we propose a two-phase framework for optimizing the process parameters and developing a predictive model 
for 316L stainless steel material. We also discuss the correlation between process parameters -- i.e., laser specifications -- and mechanical 
properties and how to achieve parts with high density (> 98%) as well as better ultimate mechanical properties. In this paper, we introduce and 
test an innovative approach for developing AM predictive models, with a relatively low error percentage of 10.236% that are used to optimize 
process parameters in accordance with user or manufacturer requirements. These models use support vector regression, random forest regression, 
and neural network techniques. It is shown that the intelligent selection of process parameters using these models can achieve an optimized 
density of up to 99.31% with uniform microstructure, which improves hardness, impact strength, and other mechanical properties.  

Keywords: Additive manufacturing, powder bed fusion, optimization framework, predictive models, neural network, intelligent parameters 
selection, energy density optimization, mechanical properties optimization. 
 
1. Introduction 
With Industry 4.0, the application of advanced manufacturing 
technologies integrated with information management 
technologies has flourished rapidly. This integration has created 
smart manufacturing processes which plays an important role in 
topology optimization, increasing cost efficiency, decreasing 
manufacturing lead time, and producing a superior buy-to-fly 
ratio in the rising economic competitiveness [1, 2]. Smart 
factories combine the physical world with the cyber world to 
fulfill such objectives (see Figure 1 for a schematic of smart 
factories). 

With the increasing demand for mass customization in 
different industries, developing a precise predictive model is an 
essential prerequisite for controlling process parameters in 
complex advanced manufacturing techniques such as additive 
manufacturing (AM). This will help in the manufacturing of 
customized, topologically optimized parts with lower weight and 
better mechanical properties.  In the fabrication of metal 
components, the powder-bed fusion (PBF) process has been 
proven  to manufacture complex free-form parts with better 
mechanical properties than traditional manufacturing [3, 4]. 

The increasing demand and interest in the application of AM 
in such industries as aerospace, defense, and biomedical have led 
to significant research aimed at standardizing the AM process. 
However, multiple challenges exist, in particular, understanding 
the influence of the large number of process parameters involved 
in AM. There are more than 100 process parameters that 
influence the ultimate part quality [5-7]. Among all of those, 
there are only a few controllable parameters that significantly 
affect the part quality [3, 8] and lead to the formation of in-
process defects such as microstructural -- porosity, balling, 
keyhole formation, cracks, etc. --, geometric and dimensional, 
and surface finishing defects [3].  These anomalies substantially 
weaken the ultimate mechanical properties of manufactured 
parts [4]. 

 
†Corresponding author (emalekip@purdue.edu) 

The full potential of AM cannot be achieved without 
controlling these parameters. Scholars can leverage the 
understanding and recognition of the influence of process 
parameters on the process defects and the mechanical properties 
in order to control of the process efficiently. This objective can 
be achieved by studying the process parameters, material 
properties, defects formation, and mechanical properties, and 
then mapping them together. Developing such a benchmark can 
provide a complete understanding of the defect formation and 
lead to the development of a precise predictive model for 
adjusting process parameters and obtaining the desired 
properties of manufactured part and, consequently, 
standardizing the process. 

To date, no work has reported the ability to model and predict 
the influence of multiple process parameters on microstructure, 
densification, surface roughness, fabrication time, and 
mechanical properties simultaneously. On the other hand, 
scholars have not agreed about what constitute the most 
influential or significant parameters to optimize a given 
objective function. For instance, scholars reported 104 J/mm3, 
70-120 J/mm3, 70- 95 J/mm3 as the optimum values of 
volumetric energy density (VED) for SS316L material [9-11]. 
Similarly, some literature introduced hatch space as the most 
influential parameter on the formation of porosity and tensile 
strength while few scholars proposed that hatch space does not 
affect the defect generation and mechanical properties [12-14]. 
Similarly, the knowledge of the influence of beam diameter is 
limited when it varies along with other controllable parameters. 
We address these challenges by proposing and demonstrating a 
systematic approach for modeling and optimizing the process to 
achieve build consistency with controlled mechanical and 
microstructural properties.  
 Although PBF technology has significantly developed and is 
employed in different industries, many challenges have 
remained. These challenges hinder process repeatability, 
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consistency, and stability. Numerous research studies regarding 
the influence of process parameters on the ultimate quality of 
fabricated parts for different materials and machines have been 
conducted. These have revealed that it is very difficult to control 
all aspects of the process or even to evaluate the collective 
influence of all parameters on the properties of fabricated parts. 
Scholars focused on identifying the influence of only a few 
process parameters -- predominantly laser specifications -- on 
the surface quality, process signatures, or particular mechanical 
properties of printed components [15, 16]; the ultimate quality 
was predominantly correlated with a single parameter only. A 
systematic approach for optimizing all controllable parameters 
while mapping the process parameters and material properties 
onto the ultimate properties of the fabricated parts is critical to 
achieve a near-flawless fabrication process. 

 
Figure 1: Schematic of general properties required in industry 4.0 [1]. 
 

Providing a predictive model is a significant notion for 
achieving smart manufacturing, which is the key for a 
transformative development in product fabrication. For instance, 
in orthodontic treatment altering the material properties in a 
designed mouthpiece results in different force magnitude, 
location, and distribution applied on mandibular central incisor 
and mandibular canine [17]. To develop a predictive model for 
a process, a comprehensive interpretation of the relationship 
between the process parameters, defects, and ultimate quality of 
the manufactured part is vital. PBF lacks such an efficient 
approach that can facilitate the avoidance or significant 
minimization of defect generation and mechanical property 
anomalies by governing the process parameters. This research 
proposes a framework for studying the influence of process 
parameters on multiple properties of the manufactured part, 
optimizing the parameters for improving the ultimate quality of 
the part and developing a predictive model of the process by 
training a machine learning (ML) algorithm – support vector 
regression, random forest regression – and an artificial neural 
network (ANN) with back-propagating algorithm.  

This research addresses the above-mentioned challenges by 
achieving five objectives: 

a. Proposing a framework for optimizing the PBF process 
parameters. 

b. Understanding the influence of laser power and scan speed 
on the porosity and density of fabricated samples and optimizing 
the VED for achieving maximum density (Phase I of the 
proposed framework). 

c. Studying and optimization of the combined influence of 
laser power, scan speed, hatch space, and beam diameter on 
microstructural properties, mechanical properties (hardness, 
impact strength, and tensile strength) and surface roughness. 
(Phase II of proposed framework). This is achieved using DOE 
(Design of Experiments). 

d. Mapping the material properties and process parameters 
onto the ultimate properties of the manufactured samples by 
using ML. 

e. Developing a predictive model for intelligent selection of 
process parameters and achievement of the desired quality 
properties by using different ML techniques, namely, SVR, 
Random Forest Regression, and FFBP Neural Network, with 
limited quantitative data.   

 
2. Methodology: Developing a Two-phase Framework and 
Predictive Models 
In-process defects -- such as porosity, crack formation, etc. -- are 
amongst the most prevalent defects encountered by 
manufacturers. Uncertainty in selection of laser power, scan 
speed, hatch spacing, and VED for printing parts with different 
materials are the main contributing parameters for formation 
defects during the manufacturing process. The formation of 
defects decreases the density through irregular porosity 
distribution which, in turn, affects the mechanical properties and 
quality characteristics of the manufactured part. 

 In this work, we implemented a two-phase framework for 
optimizing the process parameters. In phase I, we conducted the 
first set of experiments to achieve more insight into densification 
and porosity formation as well as to attain maximum density by 
minimizing porosity. These experiments provided the optimized 
range for VED to be used in the next phase.  

In phase II, we studied the effects of a set of process 
parameters on the mechanical properties and quality 
characteristics by running the second set of experiments within 
the optimized VED range obtained from phase I. The objective 
of this phase was to understand the correlation between process 
parameters, material properties, and ultimate quality 
characteristics of printed parts. By employing the results from 
phase II, a predictive model was developed for intelligent 
selection of process parameters according to the desired quality 
properties. 

2.1. Proposed Framework 
To address the challenges and gaps mentioned above, we are 
introducing a two-phase framework for establishing the 
correlation between process parameters and the ultimate 
properties of manufactured parts. Figure 2 shows the proposed 
framework to standardize the process of studying and optimizing 
the process parameters, reducing inconsistency in results for a 
given material, and developing an innovative predictive model 
for intelligent selection of process parameters, with emphasis on 
the different ML techniques, error rate, uncertainty of the data, 
and predictions algorithm. 

2.2. Phase I 
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Achieving maximum density is the first prerequisite for 
manufacturing flawless parts by metal AM. Hence, the main 
objective of phase I was to achieve maximum density. In this 
phase, we considered altering only laser power and scan speed 
and studied the resulting microstructure in the first set of printed 
samples in order to obtain the optimum range for VED. This 
optimized range of VED was later employed in phase II for 
studying the effects of other process parameters on the 
mechanical and quality characteristics of the second set of 
samples printed within their maximum densification range. 

Figure 2: The proposed framework and corresponding workflow for 
developing the ANN model. 

2.2.1. Material and Equipment 
316L stainless steel (SS) was used in this research. 316L SS has 
widespread application in additive manufacturing given its high 
tensile strength at high temperatures, high hardness, toughness, 
and corrosion resistance properties [4]. In this work, samples 
were manufactured with a constant layer thickness of 20 µm 
using an EOS M270 3D printer. 

2.2.2. Mathematical Modeling 
For any AM process, the first step is to determine the accurate 
process parameters for successful completion of the 
manufacturing process. In thermal AM processes such as PBF, 
process parameters are predominantly adjusted by evaluating the 
VED (i.e., the amount of heat flux given per unit volume) which 
is required for the sintering/melting of the powder feedstock. 
Substantial research has been conducted by scholars to identify 
the best range of VED values for SS 316L. Scholars obtained a 
diversified range of values for the same material processed using 
PBF (see Figure 3).  

 
Figure 3: VED benchmark provided in [18]. 

We first estimated the range of VED values for SS 316L in 
PBF then conducted experiments to obtain the optimized range 
to achieve maximum density. A rough VED required for 
successful melting and consequent solidification can be 
estimated based on the heat per unit volume -- q (J/mm3) -- in 
Eq. 1.a [19] 

    𝒒 = ൣ𝒄. ∆𝑻 + 𝒍𝒇൧𝝆                              Eq. 1.a 

∆𝑻 =  𝑻𝒎  −  𝑻𝟎                           Eq. 1.b 

where c (J/Kg.K) is the specific heat capacity, 𝑙௙ (J/Kg) is the 
latent heat of fusion, ρ (Kg/mm3) is the density of the powder 
material in Eq. 1.a and Tm (K) and T0 (K) are the melting 
temperature of the material and room temperature, respectively, 
in Eq. 1.b. 

To consider various thermal phenomena [20] associated with 
PBF process, an efficiency coefficient ƞ is incorporated, which 
accounts for heat losses due to the reflectivity of the powder, heat 
conduction, and additional losses. Eq. 2 shows the VED equation 
considering the efficiency coefficient 

𝑽𝑬𝑫 =  
𝒒

𝜼
 =  

𝒒

(𝟏ି𝑹𝑷)(𝟏ି𝒌𝒓𝒆𝒍)𝜼∗
                    Eq. 2 

where 𝑅௉ and  𝑘௥௘௟ are the reflectivity of the powder feedstock 
material and relative thermal conductivity of the feedstock 
material respectively. 𝜂∗ is an additional efficiency factor 
assumed to be 0.20 [19]. 

Table 1: Property values for SS316L. 

Property Value 

Specific heat capacity, c (J/Kg.K) 500 
Melting temperature, Tm (K) 1673 
Latent heat of fusion, lf (J/kg) 0.25 
Density, 𝜌 (Kg/mm3) 7.99 x 10ି଺ 

By substituting the SS316L properties values (see Table 1) in 
Eq. 1a, the heat flux was obtained as 

𝒒 =  𝟓. 𝟓𝟎 
𝑱

𝒎𝒎𝟑
                                 Eq. 3.a 

 
Substitution of the obtained heat flux from Eq. 3.a in Eq. 2 
produces VED: 
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𝑽𝑬𝑫 𝑹𝑷ୀ𝟎.𝟎𝟓 = 𝟓𝟕. 𝟖𝟗 
𝑱

𝒎𝒎𝟑
                   Eq. 3.b 

 

𝑽𝑬𝑫 𝑹𝑷ୀ𝟎.𝟔 = 𝟏𝟑𝟕. 𝟓 
𝑱

𝒎𝒎𝟑
                     Eq. 3.c 

The obtained VED values using Eq. 3.b and Eq. 3.c were 
considered as the lowest and highest limits for the design of 
experiments (DOE) in which the VED varied ±10%. 

2.2.3. Sensitivity Analysis 
Sensitivity analysis (SA) quantifies the correlation between a 
given model and its input parameters [21]. The main objective 
of conducting SA is to understand which inputs contribute most 
to output variability [21]. Another function to model VED (Eq. 
4) is based on the commonly cited controllable parameters in 
PBF, namely, laser power (LP), scan speed (SS), layer thickness 
(LT), and hatch space (HS). In fact, these parameters have a 
significant influence on the ultimate quality of manufactured 
parts [3, 8, 22, 23]. We employed SA to evaluate the correlation 
of the laser specifications (i.e., LP, SS, and HS) with VED from 
Eq. 4 while kept the layer thickness constant. 

𝑽𝑬𝑫 =  
𝑳𝑷

𝑯𝑺×𝑺𝑺×𝑳𝑻
                            Eq. 4 

We used Fourier Amplitude Sensitivity Testing (FAST) -- a 
variance-based global sensitivity analysis method, which is 
based on conditional variance to determine the sensitivity within 
the range of 0 to 1. The SA results showed that scan speed 
drastically changes the energy density, hence, it might 
predominantly influence the ultimate properties of the fabricated 
part. Similarly, laser power and hatch spacing had considerable 
effects while the effect of layer thickness was zero since it was 
set to a constant value. We assigned the number of levels -- 
number of values assigned in the parameters’ range -- according 
to the parameters’ sensitivity. Figure 4 shows the values of the 
ultimate global sensitivity coefficients obtained by SA. Previous 
literature also confirmed the significant influence of laser power 
and scan speed as the two main parameters  on the ultimate 
quality of the printed part [24]. 

 

Figure 4: Total Global Sensitivity (GS) Coefficient. 

2.2.4. Design of Experiments for Phase I 
In this phase, we employed full factorial analysis for designing 
the experiments. Table 2 shows the parameters -- laser power 
and scan speed -- whose values were assigned based on the 
estimated VED in section 2.2.2 and the benchmarks provided in 

literature [25-28]. For the first set of experiments, we printed 
10×10×5 mm3 samples considering only laser power and scan 
speed while hatch space (HS) and beam diameter were kept 
constant at their machine default values (HS = 0.09 mm and BD 
= 0.2mm). 

In this phase, we studied the microstructure, porosity, and 
densification of the printed samples to map them onto the VED 
values. Previous literature demonstrated that the porosity 
generated during the process significantly affects the mechanical 
properties of manufactured parts. The literature shows that low 
porosity formation in near fully dense parts substantially 
enhanced mechanical properties  and build consistency [29, 30]. 
Therefore, we sought the optimal range of energy density for 
maximum densification in this phase. It should be noticed that 
we studied only 13 of 16 total samples due to similar energy 
density of sample 2 to 8, sample 6 to 12, and sample 9 to 14. 
 
 
Table 2: Full factorial DOE. 

No LP, 
W 

SS, 
m/s 

VED, 
J/mm3 

No LP, 
W 

SS, 
mm/s 

VED, 
J/mm3 

1 100 700 79.36 9 150 700 119.05 
2 100 800 69.44 10 150 800 104.17 
3 100 900 61.73 11 150 900 92.59 
4 100 1000 55.56 12 150 1000 83.33 
5 125 700 99.21 13 175 700 138.89 
6 125 800 86.81 14 175 800 121.53 
7 125 900 77.16 15 175 900 108.02 
8 125 1000 69.44 16 175 1000 97.22 

2.3. Phase II 
From phase I, the optimized range of VED values was obtained 
for achieving maximum densification. In the second phase, laser 
power, scan speed, hatch space, and beam diameter were studied 
to unveil the correlation of the process parameters with ultimate 
mechanical and quality properties of the manufactured part. We 
discuss details about the parameter selection, DOE, mechanical 
testing along with the data analysis in the Results and Discussion 
section. 

2.3.1.  Design of Experiments for Phase II 
In this phase, we considered four process parameters -- laser 
power, scan speed, hatch space, and beam diameter -- with 
different levels. We employed the Taguchi method to optimize 
the DOE instead of conducting a more expensive full-factorial 
analysis. Table 3 shows the levels and level values assigned to 
each parameter based on the results obtained from phase I. Table 
4 shows the resulting Taguchi DOE. For each set of parameters, 
a sample was printed and different mechanical tests -- namely 
tensile, impact, and hardness -- were performed. For tensile and 
impact tests, the samples were designed according to ASTM E8 
and ASTM E23 standards [31]. 

Table 3: Control factors and levels for Taguchi DOE. 
Factor Level values Levels 
LP (W) 125, 150, 175, 195 4 
SS (mm/s) 700, 800, 900, 1000, 1100, 1200 6 
HS (mm) 0.09, 0.12, 0.15 3 
BD (mm) 0.1, 0.15, 0.2 3 

Table 4: Taguchi DOE. 
No LP (W) SS (mm/s) HS (mm) BD (mm) 
1 125 700 0.09 0.1 
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2 125 800 0.09 0.2 
3 150 700 0.12 0.15 
4 150 800 0.09 0.2 
5 150 900 0.09 0.1 
6 175 700 0.12 0.2 
7 175 800 0.12 0.1 
8 175 900 0.09 0.15 
9 175 1000 0.09 0.2 
10 175 1100 0.09 0.1 
11 195 700 0.15 0.15 
12 195 800 0.12 0.15 
13 195 900 0.12 0.2 
14 195 1000 0.09 0.1 
15 195 1100 0.09 0.2 
16 195 1200 0.09 0.15 

2.3.2. Signal-to-noise Ratio and Analysis of Variance 
Signal-to-noise (S/N) ratio is used as a quality indicator that 

evaluates the influence of the process parameters on the ultimate 
properties. The S/N ratio is calculated at three levels: lower-the 
better, nominal-the-better, and higher-the-better. S/N value was 
calculated in phase II for all 16 experiments and the effects plot 
for S/N ratios and means of optimized parameters was 
represented for each parameter at their assigned levels using 
Taguchi method, generated by Minitab® (See sub-section 3.2.1 
for S/N results of surface roughness). Finally, the variance was 
calculated based on the resulting S/N values by applying 
Analysis of Variance (ANOVA). 

ANOVA is a statistical method evaluating the variance of 
properties within the tested range of levels for each process 
parameter in comparison with the total variance of all parameters 
to express the percentage contribution (Cntb%) of each process 
parameter. The relative percentage contribution among the 
process parameters is determined by comparing the relative 
variance using adjusted sum of square (A.SSq), adjusted mean 
square (A.MS), P-values (P-val.), and F-values (F-val.) [32].  

The combination of S/N and ANOVA helped obtain the 
optimal range of process parameters and also revealed the 
correlation between the material properties, process parameters, 
and ultimate properties of SS 316L parts printed by PBF. In 
addition, this combination makes it possible to understand the 
significance of each parameter within the employed range. 

2.3.3.  Mechanical Testing 
To understand the correlation between process parameters and 
quality properties of the printed samples, a series of mechanical 
tests –surface roughness, hardness, Charpy impact, and tensile 
tests -- was conducted. 

The surface roughness (Ra) measurement was carried out 
on Bruker DektakXT. A stylus of 2µm-radius was used with the 
profile set to hills and valleys and with a range of 6.5 µm, force 
of 5 mg, speed of 600 µm/s, and time duration of 25 seconds. 
Three surface profiles with the scan length of 10 mm were 
measured for each sample on two sides and the center of samples 
Ra value was calculated from the profile by using equation 5 

𝑹𝒂  =  
𝟏

𝑳
 ∫ |𝒀(𝒙)|𝒅𝒙

𝑳

𝟎
                         Eq. 5 

where Ra is defined as the arithmetic average deviation of hills 
and valleys from the mean line, L is the scan length, and Y(x) is 
the curvature profile. 

The hardness test was conducted on a Rockwell hardness 
testing machine B scale equipped with a 1/16-inch steel ball; a 

100-Kgf force was applied. We conducted the hardness test to 
achieve more insight into the resistance of material for plastic (or 
permanent) deformation for different sets of parameters. 

For the Charpy impact test, the specimen was loaded, and 
the position of the specimen was adjusted such that the notch 
was parallel and centered to the pendulum. The pendulum was 
dropped electronically to avoid any losses due to vibrations. The 
equipment was not bolted to the ground, which might affect the 
results with variances of ± 5 J. The objective of conducting the 
impact test was to study the amount of absorbed energy and the 
effect of process parameters on the strength of the printed 
samples. 

The Tensile test was conducted on a Jinan Dual column 
Universal testing Machine, with a pancake type load cell of 
20KN, at the room temperature. The yield strength (YS), 
elongation, and ultimate tensile strength (UTS) were obtained 
for each experiment. The objective of conducting the tensile test 
was to study the mechanical behavior (strength, ductility etc.) of 
the part under uniaxial load conditions. This will help in quality 
control of the material for specific applications. 

2.4. Predictive Modeling 
PBF process is inherently a complex process with more than 100 
different process parameters involved [5-7]. Previous literature 
studied the impact of each parameter on the quality properties 
and developed a one-to-one correlation between the selected 
parameter and property of interest; however, those estimations 
could not provide a comprehensive relationship between a 
process parameter and multiple part quality properties. For 
instance, increasing scan speed reduces the average surface 
roughness (for speed lower than 15 mm/s) and thermal shrinkage 
which are positive effects while increases in melt pool instability  
causes deeper longitudinal cracks on scanning tracks –which is 
a negative effect [33, 34] . 

To obtain an optimum quality printed part, the correlation 
between “a set” of process parameters and the resulting 
properties is required.  To fulfill such an objective, one scenario 
is to develop a physics-based model to predict the quality 
properties according to the parameters. The scholars’ previous 
attempts have been unsuccessful for developing a 
comprehensive analytical model due to the complex non-linear 
nature of the process. Alternatively, a data-driven modeling 
based on empirical benchmarks and statistical theories was 
developed [32]. 

In this work, we employed three different methods -- support 
vector regression (SVR), random forest methods in machine 
learning (ML), and ANN -- to develop practical predictive 
models and correlate different process parameters to different 
ultimate quality properties. We will discuss these techniques, 
and identify the best one based on multiple criteria, including 
error rate, loss function, uncertainty, and stability.  

2.4.1. Support Vector Regression 
SVR is a type of ML that can be used for regression problems. 
Using SVR, a hyperplane was identified so that the maximum 
number of data points fell within that boundary (maximal 
margin). Instead of eliminating/reducing the error rate -- as 
carried out in simple linear regression -- SVR adjusts the error 
within a certain threshold. Our objective in SVR was to keep the 
maximum points within this margin. The best fit line was the 
hyperplane with the highest number of points within the 
boundaries. 
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2.4.2. Random Forest Regression 
Random forest regression (RFR) is one of the supervised 
learning techniques used for both classification and regression 
model training. In this technique, the training data is divided into 
several groups -- called trees or bagging -- and the model runs in 
each tree. The final prediction is the average of the values 
generated by each tree. Using the average reduces the 
uncertainty of the model.  As a result, variation in error rate is 
greatly reduced because error in one data set will not 
significantly affect the final predicted output. The only 
possibility for a wrong prediction is if more than half of the data 
is deceptive. This lower uncertainty is the major advantage of 
models developed by RFR compared with other techniques such 
as SVR and NN. 

2.4.3. Neural Network 
ANN is a supervised ML technique that can be employed for 
regression problem effectively. This technique is suitable for 
PBF process due to non-linear complex correlation between the 
input and output data (i.e., process parameters and quality 
characteristics). In this work, a multi-layer feed-forward back-
propagating (FFBP) neural network (NN) was developed with 
laser power, scan speed, hatch space, and beam diameter as 
features/inputs and ultimate tensile strength (UTS) and surface 
roughness as labels/outputs (Figure 5). To train the model, we 
employed one hidden layer with three nodes and used the 
experimental results acquired from the framework as the training 
data. The weights were calculated and adjusted by 
backpropagation (BP) method, which gradually reduces the gap 
between the generated and expected output (actual experimental 
output). 

 
Figure 5: The schematic for ANN architecture of this research. 

 
We employed sigmoid function in python for developing our 

ANN model. Since this function varies between 0 to 1, the input 
and output were normalized between 0 and 1 (see table 15-18). 
The activation function makes the training of weights easier for 
sigmoid function. The network is forwarded from input to output 
by assigning some random values and then BP uses a loss 
function for calculating the error between the computed value 
and the target value. The loss function is calculated by the mean 
sum squared loss function shown in Eq. 6 [35] 

𝑳𝒐𝒔𝒔 =  ∑(𝟎. 𝟓)(𝒐 − 𝒚)𝟐                     Eq. 6 

where o is the predicted output and y is the actual output. The 
function was trained individually for each output (quality 
characteristics). In the last step, a multi-input multi-output NN 

was trained to provide a model correlating all inputs to all 
outputs. 

3. Results and Discussion 
In section 2, we explained the methodology of implementing a 
two-phase framework for developing a predictive model in PBF 
process. In this section, we discuss the results obtained from each 
phase and try to establish a correlation between process 
parameters and the ultimate quality properties of the printed 
samples. In addition, we assess the different predictive models, 
including their efficiency based on the minimum error rate. 

3.1. Phase I: Results and Discussion 
The VED minimum and maximum values were obtained as 
57.89 and 137.5 J/mm3, respectively, using the mathematical 
model described in subsection 2.2.2. In subsection 2.2.3, SA was 
conducted to study the influence of laser power, scan speed, and 
hatch space on VED. The results showed that scan speed had the 
highest impact on VED, followed by laser power and hatch space 
respectively. After SA, samples were printed according to the 
DOE for phase I, introduced in subsection 2.2.4. We cut each 
sample in the middle -- both perpendicular and parallel to the 
build direction (Figure 6) -- by using wire electric discharge 
machining (WEDM) process. WEDM process was chosen 
because of its capability of machining electrically conductive 
hard materials without inducing any stresses or impact. 

  
Figure 6: WEDM cutting planes through specimens from phase I. 

Then, we took sixteen micrographs in total from each sample 
by using a scanning electron microscope (SEM), six 
micrographs from the horizontal cross-section -- each corner 
plus two from the center -- and two from the vertical cross-
section. We used two different magnifications -- 60X and 300X 
(100µm and 10µm scale, respectively) – for each micrograph 
and then employed MATLAB image processing to measure the 
porosity of each sample in three steps (Figure 7). First, we 
generated bi-color black and white images from each 
micrograph; second, the threshold level was adjusted by 
comparing the pore size  between the SEM image and the 
MATLAB-generated image to increase the method accuracy 
[36]; finally, we obtained the porosity percentage by calculating 
and averaging the ratio of black parts (pores) to the white parts 
in the micrographs related to each cross-section [37].  
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Figure 7: a. Micrograph; b. Bi-color micrograph with adjusted 
threshold level. 

By analyzing the horizontal cross-section, we revealed three 
different types of porosity – low, medium, high -- according to 
the level of VED. In the first type, low VED led to incomplete 
melting of the powder particles and formation of irregular pores 
due to lack of fusion (LOF) (Figure 7.a). In the second type, 
exposure of the samples to high VED vaporized the material and 
formed circular gas pores (Figure 7.b). These pores could be 
either the cross-section of a keyhole or a simple circular pore. 
The type of pores could be detected by analyzing the vertical 
micrographs. In the third type, the samples gained from exposure 
by medium VED possessed microscale holes with a nearly 
uniform distribution throughout the cross-section. These 
samples depicted better mechanical properties compared to other 
types [38]. Vertical cross-sections, on the other hand, illustrated 
less frequent but bigger size porosity, which usually were 
propagated through layers underneath. Table 5 illustrates the 
porosity percentage of the samples shown in Figure 8. The 
results were in close agreement with the results from previous 
literature [18].  

    
Figure 8: a. LOF pores (the low VED with LP 100 W and SS 900 
mm/s); b. gas pores (the highest VED with LP 175 W and SS 
700 mm/s). 
 

As Figure 9 depicts, we printed the samples with the range 
of VED altered between 55 and 138 J/mm3. This VED range 
created parts with a density between 95.52% and 99.31% and a 
maximum of 99.31% by VED of 99.2 J/mm3. Considering the 
density percentage, we could narrow the range of optimum VED 
-- the green band in Figure 9 -- to 90 and 105 J/mm3. This 
suggested that the optimized range of laser power is 150 to 200 
W while the optimized range of scan speed is 800 to 1000 mm/s. 
These ranges were employed as the inputs for phase II in our 
next step. 

Table 5: The porosity percentage of the samples. 
VED (J/mm3) Horizontal Vertical Average 

61.7 5.453% 3.5% 4.48% 
97.2 0.879% 0.5% 0.69% 
138 1.875% 1.31% 1.59% 

 

 
Figure 9: Porosity vs VED. 

3.2. Phase II: Results and Discussion  
In phase II, we studied the correlation between material 
properties, process parameters -- laser power, scan speed, hatch 
space, and beam diameter -- and ultimate quality characteristics 
of manufactured parts within the maximum range of 
densification. 

3.2.1. Surface Roughness 
Surface roughness measurement was conducted on the Bruker 
DektakXT system. Three profiles with 10mm-scan length were 
read and the average roughness (Ra) was calculated for each 
sample. We obtained Y(x) from each profile (see Figure 10) and 
Ra was calculated using Eq. 5. 

 
Figure 10: Profile of 10mm scan. 

Table 6: Obtained surface roughness for DOE in phase II. 

No. Left (um) Center (um) Right (um) Average 

1 20.31 18.94 27.22 22.16 
2 17.39 23.2 14.13 18.24 
3 22.34 17.39 11.56 17.1 
4 17.61 13.07 16 15.56 
5 14.12 15.84 11.68 13.88 
6 14.44 18.25 17.98 16.89 
7 13.3 16.29 16.26 15.28 
8 13.52 24.39 14.75 17.55 
9 15.85 16.11 14.44 15.47 

10 14.28 18.89 15.88 16.35 
11 10.79 15.78 14.99 13.85 
12 20.98 19.71 18.36 19.68 
13 10.6 21.04 9.83 13.82 
14 11.26 14.82 11.68 12.59 
15 16.05 12.87 14.5 14.47 
16 11.18 13.2 9.49 11.29 
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Figure 11: Trend of process parameters influence on Ra   represented by 

main effects plot of means. 

Table 6 presents the average roughness values for the set of all 
DOE. The main effect plot of means – based on S/N ratio (the 
lower-the-better) analysis -- was represented in Figure 11. The 
analysis of the average surface roughness in this figure reveals 
that Ra decreased with the increase in scan speed or laser power. 
ANOVA evidenced that in a process with multiple varying 
parameters, scan speed and laser power followed by hatch space 
and beam diameter have the highest impact on the roughness 
within the optimum VED range respectively (Table 7), which 
corroborates the results of the S/N analysis. 

 

Table 7: ANOVA for surface roughness vs LP, SS, HS & BD. 
Source DF A.SSq A.MS F-val. P-val. Cntb % 
LP 3 18.65 6.215 1.65 0.346 21.37 
SS 5 28.31 5.663 1.50 0.392 32.45 
HS 2 15.60 7.802 2.07 0.310 17.88 
BD 2 13.38 6.690 1.77 0.272 15.33 
Error 3 11.31 3.770    
Total 15 87.25     

 
3.2.2. Hardness 
We calculated HRB (Rockwell Hardness B Scale) by taking the 
average of three readings, one from each side and one from the 
center of each sample. Table 8 shows the calculated HRB and 
S/N ratio (the higher-the-better) for all samples. The results show 
that the hardness value was almost constant (with ±5 variance), 
irrespective of the set selection of individual parameters as long 
as VED fell within the optimized range and was corroborated by 
the nearly constant S/N value. Thus, we needed neither calculate 
ANOVA nor to train a predictive model for hardness test. 

Table 8: S/N ratios for samples with different hardness values. 
Sample HRB S/N ratio Sample HRB S/N ratio 

1 86.6 38.75 9 91 39.18 
2 94.8 39.54 10 91.5 39.23 
3 93.23 39.39 11 88.57 38.95 
4 93.67 39.43 12 92.23 39.3 
5 89.13 39.00 13 89.47 39.03 
6 89.9 39.07 14 89.5 39.04 
7 89.6 39.05 15 92.87 39.36 
8 93.03 39.37 16 93.6 39.42 

3.2.3. Charpy Impact Test 
The impact test was conducted on all 16 samples in phase II and 
the results were presented in Table 9. S/N ratio (the higher-the-
better) was calculated, and the main effect plot of means is 
represented in Figure 12. In general, the result demonstrated that 
within the study range of parameters, increasing scan speed 

elevated the impact strength, whereas, increasing laser power 
and hatch space decreased the impact strength of the samples. 
The best Charpy impact was obtained for the sample with the 
lowest beam diameter.  ANOVA was also conducted to calculate 
the P-value, which illustrates the effect of each process 
parameter on the impact strength presented in Table 10. The 
results demonstrate that the influence of a parameter on the 
strength of the printed samples is in the following order: hatch 
space, laser power, scan speed, and then beam diameter.  

Table 9: Impact test results for all 16 samples in phase II. 
Sample Impact strength (J) Sample Impact strength (J) 

1 148 9 137.2 
2 144 10 143.8 
3 127.5 11 109.5 
4 136.5 12 120.5 
5 150.2 13 126.2 
6 124 14 140 
7 129.6 15 134.2 
8 134.5 16 132.2 

 

 
Figure 12: Trend of process parameters influence on impact strength 

represented by main effect plot of means. 

Table 10: ANOVA for impact strength vs LP, SS, HS & BD. 
Source DF A. SSq A.MS F-val. P-val. Cntb. % 
LP 3 50.12 25.06 13.72 0.028 27.06 
SS 5 30.40 11.20 7.50 0.012 16.46 
HS 2 78.49 26.16 14.32 0.031 42.38 
BD 2 20.70 8.140 4.46 0.009 11.18 
Error 3 5.48 1.827    
Total 15 185.2     

 
3.2.4. Tensile Test 
The tensile test was conducted to study the influence of process 
parameters within the optimized range on the mechanical 
behavior of the printed samples. Figure 13 shows the main effect 
plot of means plotted to each process parameter with individual 
levels while Table 11 shows the UTS values and their respective 
S/N ratio. The maximum UTS of 808.52 MPa was achieved at 
the VED of 98.48 J/mm³ which is higher than the UTS achieved 
by conventional manufacturing [39].  
 
Table 11: Obtained UTS for DOE in phase II. 

Sample UTS Sample UTS 

1 716.79 9 792.36 

2 775.16 10 689.64 

3 644.03 11 678.74 

4 779.32 12 634.11 

5 643.39 13 663.44 

6 699.92 14 726.06 

7 752.94 15 808.52 
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8 632.70 16 749.98 

As shown in Figure 13, the results clearly demonstrate that LP, 
SS, HS, and BD have a significant effect on the UTS within the 
optimized range of VED. Following the S/N ratio, ANOVA was 
also conducted to calculate the P-value (Table 12). The results 
demonstrate that the influence of parameters within the tested 
range are in the following order: SS, BD, LP, and HS. No 
specific correlation was observed between these parameters and 
UTS; however, the results depict that the lower LP and HS 
generally resulted in higher UTS while it was higher SS and BD 
that resulted in higher UTS. More experiments need to be 
conducted to develop a complete correlation between the 
parameters and UTS. 
 
Table12: ANOVA for UTS vs LP, SS, HS, & BD. 

Source DF A. SSq A. MS F-val. P-val. Cntb. % 
LP 3 73.47 17.2 0.32 0.400 22.34 
SS 5 114.2 38.06 0.57 0.997 34.73 
HS 2 36.58 5.26 0.13 0.186 11.12 
BD 2 95.32 24.14 0.41 0.618 28.99 
Error 3 9.24     
Total 15 328.8     

 
 

 
Figure 13: Trend of process parameters influence on UTS represented by 
main effect plot of means. 
 
3.3. Predictive Modeling 
3.3.1. Support Vector Regression 
16 data sets were employed to develop an SVR predictive model 
- 13 sets for training and 3 sets for testing. To fulfill such an 
objective, we first conducted heatmap evaluation. Heatmap is an 
exhibition of correlation between inputs to detect dependencies. 
The heatmap is calculated using the coefficient of determination 
(R2), which quantifies the proportion of variance in output 
properties in relation to the process parameters.  Any correlation 
between 2 inputs with calculated value of R2 above +0.5 or 
below – 0.5 demonstrates their dependency; thus, one of the 
inputs can be eliminated from the training set. Furthermore, the 
top half pair of inputs above the diagonal is neglected since it is 
a replica of the bottom half as well as the diagonal pairs since 
they represent the correlation between the same inputs. Such 
performance increases the efficiency of the predictions. We used 
a heatmap to investigate any possible correlation between the 
inputs in phase II before employing different techniques for 
developing predictive models. The results demonstrated no 
correlation between the inputs with obtained R2 value of 0.4511. 
The second step was to develop the predictive model using SVR. 
After training the data, we conducted trial evaluation using the 
remaining 3 data sets to validate the model. Table 13 shows the 
predicted value and error percentage for surface roughness 

prediction for each set. The error percentage obtained varied 
between 12.92 and 34.47 with a mean error of 20.18%. We 
concluded this technique was not suitable for developing a 
predictive model for PBF process since it showed high error rate 
percentage and produced uncertain results. 

Table 13: SVR method: actual vs predicted value for surface roughness. 

Test data Actual Ra Predicted Ra Error % 

175,800,0.12,0.1 15.28 17.255 12.92 
195,700,0.15,0.15 13.85 15.67 13.14 
195,1000,0.09,0.1 12.59 16.93 34.47 

 
3.3.2. Random Forest Regression 
Out of the 16 data sets, 12 sets were assigned as training data and 
4 sets as testing data. Training data was divided into three 
random groups called trees. The number of trees was selected by 
running the model with different numbers of trees -- 2 to 6 trees 
-- and among all the values, 3 trees generated a minimum error 
rate with better R2. Table 14 shows the predicted vs. actual data. 
The results show that the error rate was between 23 to27% by 
considering only 12 sets of training data. More experimental data 
is needed to reduce this error rate. 

Table 14: RFR method: actual vs. predicted value for surface roughness. 
Test data Actual Ra Predicted Ra Error % 
175,800,0.12,0.1 15.28 19.35 26.64 
195,700,0.15,0.15 13.85 17.122 23.624 
195,1000,0.09,0.1 12.59 15.57 23.67 

3.3.3. Neural Network 
16 data sets were divided into 12 sets for training and 4 sets for 
testing. Test data is used to assess the trained network. The mean 
error rate is calculated by averaging the error rates from the test 
data. Two networks were developed to predict separately surface 
roughness and UTS. Table 15 and 16 show the error percentage 
of training data sets for surface roughness and UTS respectively. 
The results show the mean error rate of 10.236% with a loss rate 
of 0.0002946 for surface roughness network and the mean error 
rate of 7.53% with a loss rate of 0.000253 for The UTS network. 

Table 15: Surface roughness: Actual vs predicted data with error 
percentage in multi-input single-output neural network. 

Training data Actual 
Ra/100 

Predicted 
Ra/100 

Error % 

125,700,0.09,0.1 0.2216 0.21 5.2346 
125 ,800 ,0.09 ,0.2 0.1824 0.169 7.3465 
150 ,800 ,0.09 ,0.2 0.1556 0.168 7.9691 
150 ,900, 0.09, 0.1 0.1388 0.1743 25.5764 
175 ,700 ,0.12 ,0.2 0.1689 0.1819 7.6966 
175,900,0.09,0.15 0.1755 0.1633 6.9515 
175,1000,0.09,0.2 0.1547 0.1437 7.1105 
175, 1100, 0.09, 0.1 0.1635 0.1482 9.3578 
195 ,800 ,0.12 ,0.15 0.1968 0.1764 10.3658 
195 ,900, 0.12, 0.2 0.1382 0.1539 11.3603 
195, 1100,0.09,0.2 0.1447 0.134 7.3946 
195,1200,0.09,0.15 0.1129 0.1315 16.4748 

Table 16: UTS: Actual vs predicted data with error percentage in multi-
input single-output neural network. 

Training data Actual 
UTS/1000 

Predicted 
UTS/1000 

Error % 

125,700,0.09,0.1 0.7167864 0.693078 3.308 
125 ,800 ,0.09 ,0.2 0.7751575 0.80191983 3.452 
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150 ,800 ,0.09 ,0.2 0.7793171 0.75758627 2.788 
150 ,900, 0.09, 0.1 0.6433868 0.66440513 3.267 
175 ,700 ,0.12 ,0.2 0.6999128 0.70178787 0.268 
175,900,0.09,0.15 0.6327041 0.66676657 5.384 
175,1000,0.09,0.2 0.7923613 0.7852447 0.898 
175, 1100, 0.09, 0.1 0.6896397 0.66995102 2.855 
195 ,800 ,0.12 ,0.15 0.6341026 0.63290032 0.19 
195 ,900, 0.12, 0.2 0.6634371 0.65801495 0.817 
195, 1100,0.09,0.2 0.808517 0.79140182 2.117 
195,1200,0.09,0.15 0.7499815 0.76108938 1.481 

Finally, a multi-input – LP, SS, HS, and BD, multi-output – 
surface roughness and UTS neural network was developed with 
the training data and tested for error rate. The results show the 
achieved minimum error rate of 0.46% and the maximum error 
rate of 33.17% (Table 17). From the results, it is evident that for 
training a multi-input multi-output network, more data will need 
to be incorporated to make the model both more stable (lower 
loss function and more accurate weights in the trained function) 
and accurate. 

Table 17: Surface roughness: actual vs predicted data with error 
percentage in multi-input multi-output neural network.  

Training data Actual  
Ra/100 

Predicted 
Ra/100 

Error % 

125,700,0.09,0.1 0.2216 0.2075 6.34 
125 ,800 ,0.09 ,0.2 0.1824 0.1352 25.88 
150 ,800 ,0.09 ,0.2 0.1556 0.1458 6.32 
150 ,900, 0.09, 0.1 0.1388 0.1848 33.17 
175 ,700 ,0.12 ,0.2 0.1689 0.1829  8.31 
175,900,0.09,0.15 0.1755 0.1691  3.67  
175,1000,0.09,0.2 0.1547 0.1282 17.13 
175, 1100, 0.09, 0.1 0.1635 0.1656 1.29 
195 ,800 ,0.12 ,0.15 0.1968 0.1929  1.99 
195 ,900, 0.12, 0.2 0.1382 0.1618  17.07 
195, 1100,0.09,0.2 0.1447 0.1235  14.61 
195,1200,0.09,0.15 0.1129 0.1347 19.28 

Table 18: UTS: actual vs predicted data with percentage error in multi-
input multi-output neural network.  

Training data Actual  
(UTS /1000) 

Predicted 
(UTS /1000) 

Error % 

125,700,0.09,0.1 0.7168 0.6736 6.03  
125 ,800 ,0.09 ,0.2 0.7752 0.8003 3.24 
150 ,800 ,0.09 ,0.2 0.7793 0.7757 0.46 
150 ,900, 0.09, 0.1 0.6434 0.6773 5.27 
175 ,700 ,0.12 ,0.2 0.6999 0.6745  3.62  
175,900,0.09,0.15 0.6327 0.7055  11.51  
175,1000,0.09,0.2 0.7923 0.7799 1.58  
175, 1100, 0.09, 0.1 0.6896 0.6809 1.27 
195 ,800 ,0.12 ,0.15 0.6341 0.6276  1.02 
195 ,900, 0.12, 0.2 0.6634 0.6837  3.05  
195, 1100,0.09,0.2 0.8085 0.7741  4.26 
195,1200,0.09,0.15 0.7499 0.7316 2.44 

Comparing the results of models developed by SVR, RFR, 
and FFBP neural network revealed that SVR was not an ideal 
method for developing a predictive function since the error rate 
was not constant, which showed uncertainty inside the 
developed model (Table 13). RFR using three trees and a limited 
number of experiments led to a much more stable error rate 
compared to SVR. 

Similarly, FFBP NN with a loss rate of 0.0002946 is more stable 
and accurate than SVR. Hence, in the future, we will employ 

both random forest and FFBP NN with more experimental data 
to study the uncertainty and minimize the error rate. 
 
4. Conclusion and Future Works 
 In this work, a two-phase framework was proposed for 
optimizing the process parameters thereby achieving maximum 
density and better ultimate properties in parts manufactured by 
PBF. Next, the results were employed to develop a predictive 
model using different approaches to correlate a given set of 
process parameters, material properties, and ultimate quality 
properties.  

In phase I, VED optimum range was obtained between 90 
and 105 J/mm3 to manufacture SS 316L parts with maximum 
density, the optimum range of laser power -- between 100 to 175 
W, and optimum range of scan speed between 700 to 1000 mm/s. 
SA was conducted and the results showed that scan speed has 
the highest impact on VED, followed by laser power and hatch 
space respectively.  

Porosity and microstructure analysis showed that the 
formation of gas pores and LOF pores led to high porosity 
percentage in both high and low VED ranges; whereas porosity 
reduced steeply in the optimum VED range -- mentioned 
previously -- with maximum density of 99.31% achieved for 
VED of 99.2 J/mm3 

In phase II, the impact of laser power, scan speed, hatch 
space, and beam diameter on surface roughness, hardness, 
impact strength, and ultimate tensile strength were studied. 
These results were employed to develop the correlation between 
the process parameters, material properties, and ultimate quality 
properties of the manufactured samples.  

Analysis of surface roughness showed that the impact on 
roughness within the optimum VED range is in the following 
order: scan speed, laser power, hatch space, and beam diameter. 
The results also demonstrated that increasing scan speed or laser 
power decreased the average roughness. Also, the analysis of 
hardness results showed that the hardness of samples remained 
constant -- at the value of 90 ± 4 -- within the optimum VED 
range, regardless of the set of process parameters used for 
printing of the samples. Analysis of the impact strength 
demonstrated that the effect of the process parameters on the 
strength of the printed samples is in the following order: hatch 
space, laser power, scan speed, and then beam diameter, in a way 
that, increasing scan speed increased the impact strength. 
Whereas laser power and hatch space had an opposite effect no 
specific correlation was found between beam diameter and 
impact strength. Analysis of tensile test results demonstrated that 
the impact on UTS is in the following order: scan speed, beam 
diameter, laser power, and hatch space. More experiments have 
to be conducted within the optimized VED to gain an increased 
understanding of the correlation between process parameters and 
tensile properties. 

Finally, we developed an intelligent model for prediction of 
surface roughness by using three different techniques: SVR, 
RFR, and FFBP NN. According to our results, FFBP NN 
includes the lowest mean error percentage rate of 10.25% 
amongst all of the techniques for surface roughness. Thus, this 
technique was used to develop the prediction model for UTS and 
achieved a mean error percentage rate of 7.53%. In the final step, 
the same technique was considered for developing a 
comprehensive multi-input multi-output predictive model with 
similar inputs, while considers both surface roughness and UTS 
as outputs. Analysis of results for the comprehensive predictive 
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model showed a mean error percentage 24.19% considering all 
outputs. However, this error is higher than multi-input single-
output predictive model, which was expected given the limited 
amount of training data. We anticipate that the results can be 
improved by increasing the size of the training dataset. 
 The proposed framework demonstrates the capability of 
standardizing evaluation and optimizing process parameters 
while addressing important limitations in the literature, 
especially the statistical inconsistency in the impact of different 
parameters on the ultimate quality of printed samples. The 
developed multi-input model addressed one of the main 
challenges -- model uncertainty -- leading to process stability; 
however, the error rate was high. Using a larger dataset can 
eliminate this drawback. 

Ongoing work includes incorporating more data in order to 
minimize the loss function and error rate and to improve the 
predictive accuracy. Next, we will merge all trained networks to 
provide a model correlating all controllable inputs to all outputs. 
The longer-term objective is to integrate the proposed 
framework within an online monitoring and control (OMC) 
system [2, 40]. This will make it possible to manufacture nearly 
flawless parts by using customized scan strategies to achieve 
desired ultimate qualities [41, 42]. Currently, a great deal of 
research has focused on the development of OMC systems [43, 
44] to avoid/diminish the in-process defects and abnormalities 
[45, 46]. To fulfill such objective, real-time monitoring, and 
control of VED is the first step. This is because thermal 
specifications and the evolution of any inherently thermal AM 
process such as PBF have been found to be the predominant 
contributing factors affecting the microstructure and ultimate 
mechanical properties of manufactured parts [47, 48]. 

Moreover, real-time control of VED helps in manufacturing 
a more efficient topologically optimized support structure -- an 
efficient approach for reducing residual stress and distortion 
through facilitating conduction during the manufacturing 
process and increasing the structural strength. Using multi-laser 
PBF process allows manufacturers to use a laser with different 
power for manufacturing the support structures. Thus, it is 
possible to use different layer thickness/material for support 
structures. However, employment of such technique required 
adjusting VED for layers with different thickness or material 
with different thermal characteristics. Integration of the 
predictive model and OMC system will make this possible. 
Optimization of PBF process by using a predictive model – 
introduced in this project – integrated with an OMC system will 
be a breakthrough, which will considerably improve the 
mechanical properties and surface quality, increase the 
repeatability, reduce manufacturing lead time, and significantly 
decrease the need for the post-processing operations. 
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