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Abstract: The use of convolutional neural networks (CNNs) in image classification has become the
standard method of approaching computer vision problems. Here we apply pre-trained networks to
classify images of non-breaking, plunging and spilling breaking waves. The CNNs are used as basic
feature extractors and a classifier is then trained on top of these networks. The dynamic nature of
breaking waves is exploited by using image sequences to gain extra information and improve the
classification results. We also see improved classification performance in using pre-computed image
features such as the optical flow between image pairs. The inclusion of the dynamic information
improves the classification between breaking wave classes. We also provide corrections to the
methodology from the article from which the data originates to achieve a more accurate assessment
of performance.
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1. Introduction

Large ocean waves carry huge amounts of energy which can be dissipated through a process
known as breaking. One example of breaking is when an overturning of the crest causes a collapse and
a breakdown to turbulence. The breaking process releases large amounts of energy in the dissipation
of the kinetic energy of the wave through this turbulence. Understanding the breaking process,
exchange of gases and energy in waves at various scales is of great importance to improving models
of ocean-atmosphere interactions such as weather and climate models [1,2]. The dissipation of large
amounts of energy through turbulent breaking is also of interest in coastal engineering applications
where waves may slam into cliffs or man-made coastal structures.

The dissipation of energy at small length-scales creates difficulty in modelling breaking waves, as
they interact with the air above the surface in the breaking process, creating large and small bubbles
through a turbulent air entrainment [3,4]. Breaking waves being turbulent, it is a complex two-phase
process at the free surface where by overturning waves generate bubbles and jets of water plunging
back into the wave create vortices which increase the mixing further. Current numerical methods
make great simplifications/assumptions about the fluid flow at which point the details in the breaking
process may be lost [5] and what happens after breaking is largely unresearched as numerical methods
are unable to simulate the process on large scales.

Ocean waves are difficult to recreate in the laboratory due to the different salinity, temperature
and thus density gradients throughout the fluid. The waves are usually generated mechanically and
do not experience the same breaking or spraying as ocean waves generated by wind. It is desirable
then to study breaking waves in such a way that it is feasible to measure turbulent quantities and
determine further characteristics of these waves in a real world setting. Examples are the breaking
threshold, a criterion that distinguishes breaking waves from non-breaking waves and the spreading
of breaking through the wave.

To overcome these challenges new methods are being pursued to extract dense or detailed
information from ocean waves in real time using video data. A large video database of waves allows
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for a thorough analysis of breaking waves using image processing and modern computer vision
techniques. The collected image data can also be used in the training of deep learning models for
classification [6], clustering, segmentation and prediction of wave characteristics [7]. Such models can
be of use in further processing the image data collected to automatically detect, track and estimate
further quantitative properties of the wave.

We have applied image processing algorithms to breaking wave image data to probe what extra
information can be gained from this approach of analysing fluid flows and in particular breaking
waves. The main technique used on the dataset is optical flow [8,9], which calculates the displacement
of pixels between a pair of images. One of the difficulties is the discontinuous nature of breaking waves
and the fact that these algorithms have been developed to deal with typically more rigid objects and
motions. Thus it may prove necessary to use images from video at high resolution and high frequency
to be able to resolve the details in the motions.

2. Materials and Methods

2.1. Data collection

The data used for this project is from Buscombe and Carini [6] in which they used a multitude
of popular pre-trained CNNs as basic feature extractors for infra-red (IR) images of breaking waves
in order to classify them. Details of the data acquisition can be found within the cited paper. The
dataset consists of 9996 images split among three different wave classes: nonbreaking, plunging and
spilling waves. The IR images were taken at a resolution of 640 by 480 pixels and are downsampled
to a resolution of 299 by 299 for the CNN feature extractions. The dataset is highly imbalanced and
contains relatively few examples of the plunging breakers: with 9996 total images, 208 are plunge,
2354 spilling and 7434 non-breaking wave images. Consecutive sample frames from each one of the
wave classes are shown in Fig. 1.

Our proposal is to achieve better results on the classification task by incorporating some of the
dynamical information from the waves using the optical flow methods described in the following
sections. In the original paper, the authors claim to already have a high precision and recall on each of
the classes (after augmentation F; scores ~ 92 for all classes) but in a further analysis we found flaws
with their dataset and model. The metrics used to assess the models were significantly degraded after
correction of the dataset problems described in subsection 2.2. Thus, we aim to improve upon the
corrected results by inclusion of the dynamical information.

2.2. Dataset Corrections

During the course of the investigation a number of issues were identified with the dataset that
was originally proposed to be used. Firstly in going through the original authors code, it was noted
that the dataset splitting into training and testing sets was randomised. As the data was sequential
(video images at 10 frames per second) it essentially meant that the authors’ model was training on
images that were one tenth of a second away from the testing images and in most cases the model saw
images either side of the test image. Thus to sort the dataset correctly we separated the images into
discrete waves based on the filename (i.e. group images xxx110 xxx120 and xxx130 into wave 1 for the
class they belong to).

The grouping of the images into waves revealed another problem with the dataset: misclassified
images. The grouping method described above revealed some waves in the classes contained only
one or two images, but a file search for the images that would surround these revealed images of the
same wave put into a different class (e.g. found spill/xx30, spill/xx50 but plunge/xx40). This is a clear
mislabelling of the dataset as the waves do not change class and back again within 0.2 seconds. Each
of these corrections was manually verified.

Once the data was sorted correctly, we tested the original authors best model and found it was
significantly less accurate and the original logistic regression model did not perform well even on
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Figure 1. Samples of wave dynamics for each of the given classes. The image sequences span a
time-frame of 1.0, 0.4 and 0.4 seconds for the non-breaking, spilling and plunging sequences respectively.
The wave movement is difficult to observe in the non-breaking case. However the breaking waves
(spilling and plunging) show turbulent white-water effects which are picked up well by the infra-red
(IR) camera. These white-water patterns contain distinctive identifying markers for the type of breaking
that occurs. In the spilling case the breaking occurs more slowly and the white-water spreads over the
back face of the wave. To contrast this in the plunging wave there is more structure to the back of the
wave as the breaking happens more suddenly and crashes in front of the wave.

training data. One of the proposed reasons for this under-performance is the large class imbalance in
the dataset and the fact that there are very few samples of the plunging breaking waves. Thus, the
model is unable to find a distinguishing feature between the spilling waves and the plunging waves
before over-fitting to the training set.

It is cautioned to not randomly split sequential data like this which is highly dependent on the
previous observation when splitting into training and testing datasets. This will give false results in
regard to the models ability to generalise as the testing set contains near identical examples to the
training set.

2.3. Optical flow

Motion analysis in image processing can be reduced to three main groups of problems: motion
detection, object tracking and location and the derivation of 3D properties from 2D projections acquired
at different points in time [10]. In this section we are concerned with tracking the motions of individual
pixels in a pair of images. In this way we calculate the displacement of pixels from the first image to
the second; this is optical flow.

The optical flow between a pair of successive images is the apparent motion of the objects
appearing in the two frames [10]. Thus the optical flow is a vector field of the displacements of pixels
and provides a mapping from the first image to the second image. There exists a number of problems
that can cause errors in this mapping such as occlusion where the movement of objects blocks other
objects in the second image, a lack of texture (high gradients in the pixel intensity) on the objects, or
sudden brightness shifts such that tracking the motion becomes difficult.

A variety of techniques for calculating the optical flow field exist including classical methods
and methods using convolutional neural networks (CNN) for the estimation of optical flow. Classical
methods include variational techniques like the Horn-Schunck optical flow [8] which minimises an
energy functional over the images, yielding a dense (for each pixel) vector field of displacements. These
techniques are based on the assumption that displacements are very small, thus pyramid or multi-scale
approaches are implemented which can allow the detection of larger motions. The multi-scale method
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Figure 2. Samples of calculated optical flows using TV-L! for each of the given classes. The optical
flows are calculated using the sample IR images in Figure 1 and their respective next frame. The
difference between the non-breaking and breaking classes is clear while the differences between spilling
and plunging classes are more subtle but the extended "white water" region can be seen in the spilling
optical flows.

downsamples the image to calculate a rough optical flow to be used as a base approximation for each
increase in resolution back to the original resolution. This is often referred to as a coarse-to-fine optical
flow estimation.

The CNN based methods are instead trained to estimate the motion fields in a more “black box”
manner by providing many example images and their ground truth optical flows. A CNN model then
learns to detect the textures within the images, and the change in location of these textures between
the images thus producing an optical flow field. The ability to generalise is then dependent on the
variety of textures and objects in motion in the images used for training the CNN. Datasets used for
this training create an artificial optical flow by overlaying objects in the images and moving them from
one frame to the next, in this way they know the “ground truth” optical flow.

We have selected two optical flow (OF) methods for use in this study; a classical method TVL' 9,
11-13] and a CNN based method SPyNet [14,15]. The details of the OF algorithms can be found in the
respective articles along with working implementations. Fig. 2 shows the optical flow (computed with
TV L) corresponding to the sample frames shown in Fig. 1.

2.4. Training and classification metrics

For the feature extraction, we use different pre-trained image classification models from the
Tensorflow Python library. The top (fully connected) layer of these networks was removed so that a
vector of features was outputted. This feature vector is then saved for each image or image pair. For
comparison with the original paper [6], we then trained the same logistic regression (LR) model on
these feature vectors. A new fully connected layer was found to give no significant improvement over
the LR model although more samples of the plunging class or more aggressive data augmentation
could boost the neural networks performance but this was not pursued here. The images were
downsampled to the appropriate size for each respective CNN architecture (based on what they had
originally been trained on) for optimal feature extraction. We trained several different models of which
some take two or three images as the inputs. For the multi-image inputs we process each image with
the CNN and combine the feature vectors together before training the classification model. Stacking
the inputs on top of each other and processing these with the CNNs was found to produce inferior
results. This result is likely because the channels in these pre-trained CNNs corresponded to the red,
green and blue features but extracting all those channel features on each of the grayscale images gave
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more useful information. We trained an IR, OF, IR+IR and IR+OF models, where IR stands for infra-red
and OF stands for optical flow image inputs. The addition represents the concatenation of the feature
vectors with IR+IR being two consecutive infra-red images.

The metrics used for the evaluation of the classification predictions are described below, with
the inclusion of two more metrics than in the Buscombe and Carini paper. The models were assessed
using five different metrics on the classes: Precision (Pr), Recall (Re), F1 score (F1), Informedness [16]
(In) and the Brier score [17] (Bs) and each is defined in terms of the true and false positive (TP, FP) and
true and false negatives (TN, FN) as follows:

TP Re — TP . PrxRe
~ TP+ FP’ ~ TP+ FN’ "~ "Pr+Re

TP TN 1 N R )
“TP+FN TN+EP Bsfﬁ;;(mi—lﬁ),

Pr

In

where in the Bs the sums are over all N samples and all R classes, p;; represents the predicted
probability for sample f and class i and I;; is then a vector with a 1 in the position indicating the true
label. It thus measures the mean square difference between the predicted probability and the actual
labels and thus a lower Bs is better. The informedness score estimates the probability of making an
“informed decision": a score of 1 indicates a perfect classifier while a score of 0 indicates random
decisions.

3. Results

3.1. Classification

After fixing the problems with the original dataset (see 2.2), we use the original authors methods
as a new baseline measure for our results. The best model from the [6] paper is a logistic regression
model fit to features extracted by a pre-trained MobileNet_V2 [18]. We found the MobileNet_V2 CNN
to perform much worse than using the features extracted from the Xception [19] pre-trained CNN. All
model results below are from features extracted by the Xception network and a logistic regression fit.

Table 1. Metrics for tested models. For each metric (column) the best score for each class is indicated
by the bold text. Higher scores are better for all metrics except for the Brier score where a score
of 0 indicates perfect predictions and confidence. Results for models using augmented data are in

parenthesis.

Model Class Precision Recall Fj score  Informedness Brier score

IR Non-breaking  0.97 (0.96) 0.94(0.93)  0.95 (0.95) 0.87 0.09

Plunge 0.33(0.30) 0.42(0.47) 0.37(0.37) 0.41 0.97

Spill 0.80 (0.79)  0.85(0.83) 0.82 (0.81) 0.79 0.22

TV-LT Non-breaking 0.98 (0.98) 0.96 (0.96) 0.97 (0.97) 0.90 0.06

Plunge 0.32(0.30) 0.59 (0.57) 0.42 (0.39) 0.58 0.70

Spill 0.85(0.85) 0.86 (0.85) 0.85(0.85) 0.81 0.22

SPyNet || Non-breaking 0.97 (0.97) 0.96 (0.96) 0.96 (0.96) 0.87 0.06

Plunge 0.15(0.14) 0.46(0.46) 0.22(0.22) 043 0.92

Spill 0.84 (0.84) 0.76 (0.76)  0.80 (0.80) 0.72 0.33

IR +IR Non-breaking  0.98 (0.97) 0.96 (0.95) 0.97 (0.96) 0.89 0.08

Plunge 0.39 (0.34) 0.43(0.49) 0.41 (0.40) 0.42 1.01

Spill 0.84 (0.82) 0.89 (0.87) 0.86 (0.84) 0.83 0.24

IR + TV-L! Non-breaking  0.98 (0.98) 0.97 (0.97) 0.98 (0.98) 0.90 0.05

Plunge 0.43 (0.36) 0.41(0.46) 0.42 (0.40) 0.48 0.91

Spill 0.88 (0.88) 0.92 (0.91) 0.90 (0.89) 0.86 0.12

From Table 1 we can see that the optical flow of the images can be used in the classification task
and it provides results comparable to using a single image. However the best results came from using
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the two IR images or a combination of the IR images and the optical flow. The extra information from
the use of two images does not affect the nonbreaking classifications significantly, but it does have
a positive impact on the spill and plunge classifications. In our experiments we also observed that
the image augmentation implemented (rotation, zoom, crop) does not help when using the optical
flow and in some cases it decreases performance. The SPyNet model shows difficulty in extracting the
features to differentiate the two breaking types (plunge and spill). The CNN'’s output for calculating
optical flow was seen to produce inaccurate and overly smooth flows on these images and thus
performs slightly worse than the TV-L! model. The probabilities of each class obtained from the
models are visualised in Fig. 3.

We also tabulate the errors from each of these metrics to make it more clear where exactly the best
improvements in our models are. In Table 2 we give these improvements as percentages relative to the
baseline IR model. It is clear that most models have performed significantly better in most metrics
when compared to the single IR input model. The IR+TV-L! model reports the majority of largest
improvements (indicted by the bold text).

Table 2. The table below gives first the Infrared errors as a reference in section (a). The rest of the
rows within section (b) contain the relative % improvement over the simple IR input model. Each
error (except for Brier score) is calculated as 1 — score, where the score is the value reported in Table
1. For the Brier score, since a lower score is best, we leave it as is. The percentages reported are the
improvements in respective errors for the models, so a high positive % indicates a large improvement
in the metric (reduced error). The best improvements are once again highlighted in bold text.

(a)
Errors
Model Class Precision Recall Fqscore Informedness Brier score
IR Non-breaking 0.03 0.06 0.05 0.13 0.09
Plunge 0.77 0.58 0.63 0.59 0.97
Spill 0.20 0.15 0.18 0.21 0.22
(b)
Relative Improvements over IR Model Errors
TV-LI Non-breaking  +33.33%  +33.33%  +40.0% +23.08% +33.33%
Plunge -1.49% +29.31% +7.94% +28.81% +27.84%
Spill +25.0% +6.67%  +16.67% +9.52% 0.0%
SPyNet Non-breaking 0.0% +33.33%  +20.0% 0.0% 33.33%
Plunge -26.87% +6.9% -23.81% +3.39% +5.15%
Spill +20.0% -60.0% -11.11% -33.33% -50.00%
IR+IR Non-breaking  +33.33%  +33.33%  +40.0% +15.38% +11.11%
Plunge +8.96% +1.72% +6.35% +1.69% -4.12%
Spill +20.0%  +26.67%  +22.22% +19.05% -9.09%
IR+TV-LT || Non-breaking  +33.33%  +50.0%  +60.0% +23.08% +44.44%
Plunge +14.93% -1.72% +7.94% +11.86% +6.19%
Spill +40.0% +46.67%  +44.44% +33.33% +45.45%
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3.2. Misclassifications

In this section we present the analysis of some misclassifications in Fig. 4 and confusion matrices
in Fig. 5 of the models on testing (unseen) data both with and without augmentation applied. This
allows for quick visual identification of misclassifications by looking at the off-diagonal terms in the
confusion matrices. For the confusion matrices, each row corresponds to a true label and each column
corresponds to the predicted label. Higher performance corresponds to a darker main diagonal in the
matrix.

We observe that all models perform well on the non-breaking waves, with IR and the SPyNet
OF having the largest errors on spilling waves (approximately 19 and 10 percent of spilling waves
classified as non-breaking respectively). The TV-L! OF and the combined IR+OF (TV-L!) are the best
performing models at separating plunging waves from spilling waves.

True: 0 Pred: [0.08524627 0.913717 0.00103673] True: 1 Pred: [0.63756657 0.31300542 0.04942794]

e + Al
(a) missed - plunge (b) missed - spill

Figure 4. Samples of the misclassified images which are not waves at the boundary of the image. It may
indicate an inability of these simple classifiers to separate the transition from plunging and spilling
breaking waves, identifying this transition is not a trivial task from the dataset and it thus causes many
of the misclassifications across all the classifiers. The predicted probabilities are given in the title for
each image for the classes plunge, spill, non-breaking respectively.

The majority of misclassifications occur as a wave is just entering or exiting the frame when
it is reasonable to be incorrect. However, in Fig. 4, we provide an example of the images that are
misclassified with the breaking wave clearly in the frame. The predicted probabilities for these images
are given at the top of the respective image.
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Figure 5. Confusion matrices for each of the tested models. The true class is in each row and the

predicted class in each column.
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4. Discussion

We have explored the use of optical flow features for the classification of breaking wave images.
This was tested on an image classification task with an aim to gain improved classification of sequences
of IR images of breaking waves compared to only using a single IR image. After an initial exploration
of the original dataset, the original analysis was found to be flawed. A large class imbalance exists,
which made it difficult to train and test a robust classifier, and initial results were compromised. After
correction of the data, comparisons were drawn between the baseline IR model which was claimed
as best by the original authors and several other models which took advantage of the dynamical
nature of the waves by performing a feature extraction on sequential images. It was found that a
combination of the IR and optical flow information could produce slightly better results and the
inclusion of augmented images provides additional gains to the IR models, but acts to somewhat
deteriorate the performance of the optical flow models.

An analysis of the misclassified cases of the models shows that most misclassifications occur at
the beginning or end of the image sequences where the type of wave is unclear. The slight gains on
identifying both the plunging and spilling waves from using the optical flow can be achieved also by
using the two IR images and applying the feature extraction on these. Further improvements may be
possible with more regularisation or more aggressive data augmentation, in combination with more
complex models, for better performance on the plunging samples. The dataset was deemed insufficient
to train more complex neural networks or fine-tuning without over-fitting and adapting of the SPyNet
optical flow network was abandoned after it failed to produce accurate optical flows on the images.
The inclusion of Optical Flow into the features for the classification task improved the results on the
plunging wave category, and a combination of optical flow and IR images gave the best results on the
spilling waves.

In future work, a higher quality dataset in terms of clearer and higher resolution images, but
also in terms of a better balance of the breaking wave classes, will make the classification task and
training of more complex models easier. Distinctive patterns in wave breaking can be identified but
capturing the temporal evolution of wave properties through a sequence of images remains a challenge.
Investigation of how breaking evolves over time and an understanding of how it affects the free surface
is crucial to provide accurate parameterizations for numerical forecasting systems.
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