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Abstract: The use of convolutional neural networks (CNNs) in image classification has become the1

standard method of approaching computer vision problems. Here we apply pre-trained networks to2

classify images of non-breaking, plunging and spilling breaking waves. The CNNs are used as basic3

feature extractors and a classifier is then trained on top of these networks. The dynamic nature of4

breaking waves is exploited by using image sequences to gain extra information and improve the5

classification results. We also see improved classification performance in using pre-computed image6

features such as the optical flow between image pairs. The inclusion of the dynamic information7

improves the classification between breaking wave classes. We also provide corrections to the8

methodology from the article from which the data originates to achieve a more accurate assessment9

of performance.10
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1. Introduction12

Large ocean waves carry huge amounts of energy which can be dissipated through a process13

known as breaking. One example of breaking is when an overturning of the crest causes a collapse and14

a breakdown to turbulence. The breaking process releases large amounts of energy in the dissipation15

of the kinetic energy of the wave through this turbulence. Understanding the breaking process,16

exchange of gases and energy in waves at various scales is of great importance to improving models17

of ocean-atmosphere interactions such as weather and climate models [1,2]. The dissipation of large18

amounts of energy through turbulent breaking is also of interest in coastal engineering applications19

where waves may slam into cliffs or man-made coastal structures.20

The dissipation of energy at small length-scales creates difficulty in modelling breaking waves, as21

they interact with the air above the surface in the breaking process, creating large and small bubbles22

through a turbulent air entrainment [3,4]. Breaking waves being turbulent, it is a complex two-phase23

process at the free surface where by overturning waves generate bubbles and jets of water plunging24

back into the wave create vortices which increase the mixing further. Current numerical methods25

make great simplifications/assumptions about the fluid flow at which point the details in the breaking26

process may be lost [5] and what happens after breaking is largely unresearched as numerical methods27

are unable to simulate the process on large scales.28

Ocean waves are difficult to recreate in the laboratory due to the different salinity, temperature29

and thus density gradients throughout the fluid. The waves are usually generated mechanically and30

do not experience the same breaking or spraying as ocean waves generated by wind. It is desirable31

then to study breaking waves in such a way that it is feasible to measure turbulent quantities and32

determine further characteristics of these waves in a real world setting. Examples are the breaking33

threshold, a criterion that distinguishes breaking waves from non-breaking waves and the spreading34

of breaking through the wave.35

To overcome these challenges new methods are being pursued to extract dense or detailed36

information from ocean waves in real time using video data. A large video database of waves allows37
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for a thorough analysis of breaking waves using image processing and modern computer vision38

techniques. The collected image data can also be used in the training of deep learning models for39

classification [6], clustering, segmentation and prediction of wave characteristics [7]. Such models can40

be of use in further processing the image data collected to automatically detect, track and estimate41

further quantitative properties of the wave.42

We have applied image processing algorithms to breaking wave image data to probe what extra43

information can be gained from this approach of analysing fluid flows and in particular breaking44

waves. The main technique used on the dataset is optical flow [8,9], which calculates the displacement45

of pixels between a pair of images. One of the difficulties is the discontinuous nature of breaking waves46

and the fact that these algorithms have been developed to deal with typically more rigid objects and47

motions. Thus it may prove necessary to use images from video at high resolution and high frequency48

to be able to resolve the details in the motions.49

2. Materials and Methods50

2.1. Data collection51

The data used for this project is from Buscombe and Carini [6] in which they used a multitude52

of popular pre-trained CNNs as basic feature extractors for infra-red (IR) images of breaking waves53

in order to classify them. Details of the data acquisition can be found within the cited paper. The54

dataset consists of 9996 images split among three different wave classes: nonbreaking, plunging and55

spilling waves. The IR images were taken at a resolution of 640 by 480 pixels and are downsampled56

to a resolution of 299 by 299 for the CNN feature extractions. The dataset is highly imbalanced and57

contains relatively few examples of the plunging breakers: with 9996 total images, 208 are plunge,58

2354 spilling and 7434 non-breaking wave images. Consecutive sample frames from each one of the59

wave classes are shown in Fig. 1.60

Our proposal is to achieve better results on the classification task by incorporating some of the61

dynamical information from the waves using the optical flow methods described in the following62

sections. In the original paper, the authors claim to already have a high precision and recall on each of63

the classes (after augmentation F1 scores ≈ 92 for all classes) but in a further analysis we found flaws64

with their dataset and model. The metrics used to assess the models were significantly degraded after65

correction of the dataset problems described in subsection 2.2. Thus, we aim to improve upon the66

corrected results by inclusion of the dynamical information.67

2.2. Dataset Corrections68

During the course of the investigation a number of issues were identified with the dataset that69

was originally proposed to be used. Firstly in going through the original authors code, it was noted70

that the dataset splitting into training and testing sets was randomised. As the data was sequential71

(video images at 10 frames per second) it essentially meant that the authors’ model was training on72

images that were one tenth of a second away from the testing images and in most cases the model saw73

images either side of the test image. Thus to sort the dataset correctly we separated the images into74

discrete waves based on the filename (i.e. group images xxx110 xxx120 and xxx130 into wave 1 for the75

class they belong to).76

The grouping of the images into waves revealed another problem with the dataset: misclassified77

images. The grouping method described above revealed some waves in the classes contained only78

one or two images, but a file search for the images that would surround these revealed images of the79

same wave put into a different class (e.g. found spill/xx30, spill/xx50 but plunge/xx40). This is a clear80

mislabelling of the dataset as the waves do not change class and back again within 0.2 seconds. Each81

of these corrections was manually verified.82

Once the data was sorted correctly, we tested the original authors best model and found it was83

significantly less accurate and the original logistic regression model did not perform well even on84
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Figure 1. Samples of wave dynamics for each of the given classes. The image sequences span a
time-frame of 1.0, 0.4 and 0.4 seconds for the non-breaking, spilling and plunging sequences respectively.
The wave movement is difficult to observe in the non-breaking case. However the breaking waves
(spilling and plunging) show turbulent white-water effects which are picked up well by the infra-red
(IR) camera. These white-water patterns contain distinctive identifying markers for the type of breaking
that occurs. In the spilling case the breaking occurs more slowly and the white-water spreads over the
back face of the wave. To contrast this in the plunging wave there is more structure to the back of the
wave as the breaking happens more suddenly and crashes in front of the wave.

training data. One of the proposed reasons for this under-performance is the large class imbalance in85

the dataset and the fact that there are very few samples of the plunging breaking waves. Thus, the86

model is unable to find a distinguishing feature between the spilling waves and the plunging waves87

before over-fitting to the training set.88

It is cautioned to not randomly split sequential data like this which is highly dependent on the89

previous observation when splitting into training and testing datasets. This will give false results in90

regard to the models ability to generalise as the testing set contains near identical examples to the91

training set.92

2.3. Optical flow93

Motion analysis in image processing can be reduced to three main groups of problems: motion94

detection, object tracking and location and the derivation of 3D properties from 2D projections acquired95

at different points in time [10]. In this section we are concerned with tracking the motions of individual96

pixels in a pair of images. In this way we calculate the displacement of pixels from the first image to97

the second; this is optical flow.98

The optical flow between a pair of successive images is the apparent motion of the objects99

appearing in the two frames [10]. Thus the optical flow is a vector field of the displacements of pixels100

and provides a mapping from the first image to the second image. There exists a number of problems101

that can cause errors in this mapping such as occlusion where the movement of objects blocks other102

objects in the second image, a lack of texture (high gradients in the pixel intensity) on the objects, or103

sudden brightness shifts such that tracking the motion becomes difficult.104

A variety of techniques for calculating the optical flow field exist including classical methods105

and methods using convolutional neural networks (CNN) for the estimation of optical flow. Classical106

methods include variational techniques like the Horn-Schunck optical flow [8] which minimises an107

energy functional over the images, yielding a dense (for each pixel) vector field of displacements. These108

techniques are based on the assumption that displacements are very small, thus pyramid or multi-scale109

approaches are implemented which can allow the detection of larger motions. The multi-scale method110
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Figure 2. Samples of calculated optical flows using TV-L1 for each of the given classes. The optical
flows are calculated using the sample IR images in Figure 1 and their respective next frame. The
difference between the non-breaking and breaking classes is clear while the differences between spilling
and plunging classes are more subtle but the extended "white water" region can be seen in the spilling
optical flows.

downsamples the image to calculate a rough optical flow to be used as a base approximation for each111

increase in resolution back to the original resolution. This is often referred to as a coarse-to-fine optical112

flow estimation.113

The CNN based methods are instead trained to estimate the motion fields in a more “black box”114

manner by providing many example images and their ground truth optical flows. A CNN model then115

learns to detect the textures within the images, and the change in location of these textures between116

the images thus producing an optical flow field. The ability to generalise is then dependent on the117

variety of textures and objects in motion in the images used for training the CNN. Datasets used for118

this training create an artificial optical flow by overlaying objects in the images and moving them from119

one frame to the next, in this way they know the “ground truth” optical flow.120

We have selected two optical flow (OF) methods for use in this study; a classical method TVL1 [9,121

11–13] and a CNN based method SPyNet [14,15]. The details of the OF algorithms can be found in the122

respective articles along with working implementations. Fig. 2 shows the optical flow (computed with123

TVL1) corresponding to the sample frames shown in Fig. 1.124

2.4. Training and classification metrics125

For the feature extraction, we use different pre-trained image classification models from the126

Tensorflow Python library. The top (fully connected) layer of these networks was removed so that a127

vector of features was outputted. This feature vector is then saved for each image or image pair. For128

comparison with the original paper [6], we then trained the same logistic regression (LR) model on129

these feature vectors. A new fully connected layer was found to give no significant improvement over130

the LR model although more samples of the plunging class or more aggressive data augmentation131

could boost the neural networks performance but this was not pursued here. The images were132

downsampled to the appropriate size for each respective CNN architecture (based on what they had133

originally been trained on) for optimal feature extraction. We trained several different models of which134

some take two or three images as the inputs. For the multi-image inputs we process each image with135

the CNN and combine the feature vectors together before training the classification model. Stacking136

the inputs on top of each other and processing these with the CNNs was found to produce inferior137

results. This result is likely because the channels in these pre-trained CNNs corresponded to the red,138

green and blue features but extracting all those channel features on each of the grayscale images gave139
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more useful information. We trained an IR, OF, IR+IR and IR+OF models, where IR stands for infra-red140

and OF stands for optical flow image inputs. The addition represents the concatenation of the feature141

vectors with IR+IR being two consecutive infra-red images.142

The metrics used for the evaluation of the classification predictions are described below, with143

the inclusion of two more metrics than in the Buscombe and Carini paper. The models were assessed144

using five different metrics on the classes: Precision (Pr), Recall (Re), F1 score (F1), Informedness [16]145

(In) and the Brier score [17] (Bs) and each is defined in terms of the true and false positive (TP, FP) and146

true and false negatives (TN, FN) as follows:147

Pr =
TP

TP + FP
, Re =

TP
TP + FN

, F1 = 2
Pr × Re
Pr + Re

In =
TP

TP + FN
+

TN
TN + FP

− 1, Bs =
1
N

N

∑
t

R

∑
i
(pti − lti)2 ,

where in the Bs the sums are over all N samples and all R classes, pti represents the predicted148

probability for sample t and class i and lti is then a vector with a 1 in the position indicating the true149

label. It thus measures the mean square difference between the predicted probability and the actual150

labels and thus a lower Bs is better. The informedness score estimates the probability of making an151

“informed decision": a score of 1 indicates a perfect classifier while a score of 0 indicates random152

decisions.153

3. Results154

3.1. Classification155

After fixing the problems with the original dataset (see 2.2), we use the original authors methods156

as a new baseline measure for our results. The best model from the [6] paper is a logistic regression157

model fit to features extracted by a pre-trained MobileNet_V2 [18]. We found the MobileNet_V2 CNN158

to perform much worse than using the features extracted from the Xception [19] pre-trained CNN. All159

model results below are from features extracted by the Xception network and a logistic regression fit.160

Table 1. Metrics for tested models. For each metric (column) the best score for each class is indicated
by the bold text. Higher scores are better for all metrics except for the Brier score where a score
of 0 indicates perfect predictions and confidence. Results for models using augmented data are in
parenthesis.

Model Class Precision Recall F1 score Informedness Brier score
IR Non-breaking 0.97 (0.96) 0.94 (0.93) 0.95 (0.95) 0.87 0.09

Plunge 0.33 (0.30) 0.42 (0.47) 0.37 (0.37) 0.41 0.97
Spill 0.80 (0.79) 0.85 (0.83) 0.82 (0.81) 0.79 0.22

TV-L1 Non-breaking 0.98 (0.98) 0.96 (0.96) 0.97 (0.97) 0.90 0.06
Plunge 0.32 (0.30) 0.59 (0.57) 0.42 (0.39) 0.58 0.70

Spill 0.85 (0.85) 0.86 (0.85) 0.85 (0.85) 0.81 0.22
SPyNet Non-breaking 0.97 (0.97) 0.96 (0.96) 0.96 (0.96) 0.87 0.06

Plunge 0.15 (0.14) 0.46 (0.46) 0.22 (0.22) 0.43 0.92
Spill 0.84 (0.84) 0.76 (0.76) 0.80 (0.80) 0.72 0.33

IR + IR Non-breaking 0.98 (0.97) 0.96 (0.95) 0.97 (0.96) 0.89 0.08
Plunge 0.39 (0.34) 0.43 (0.49) 0.41 (0.40) 0.42 1.01

Spill 0.84 (0.82) 0.89 (0.87) 0.86 (0.84) 0.83 0.24
IR + TV-L1 Non-breaking 0.98 (0.98) 0.97 (0.97) 0.98 (0.98) 0.90 0.05

Plunge 0.43 (0.36) 0.41 (0.46) 0.42 (0.40) 0.48 0.91
Spill 0.88 (0.88) 0.92 (0.91) 0.90 (0.89) 0.86 0.12

From Table 1 we can see that the optical flow of the images can be used in the classification task161

and it provides results comparable to using a single image. However the best results came from using162
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the two IR images or a combination of the IR images and the optical flow. The extra information from163

the use of two images does not affect the nonbreaking classifications significantly, but it does have164

a positive impact on the spill and plunge classifications. In our experiments we also observed that165

the image augmentation implemented (rotation, zoom, crop) does not help when using the optical166

flow and in some cases it decreases performance. The SPyNet model shows difficulty in extracting the167

features to differentiate the two breaking types (plunge and spill). The CNN’s output for calculating168

optical flow was seen to produce inaccurate and overly smooth flows on these images and thus169

performs slightly worse than the TV-L1 model. The probabilities of each class obtained from the170

models are visualised in Fig. 3.171

We also tabulate the errors from each of these metrics to make it more clear where exactly the best172

improvements in our models are. In Table 2 we give these improvements as percentages relative to the173

baseline IR model. It is clear that most models have performed significantly better in most metrics174

when compared to the single IR input model. The IR+TV-L1 model reports the majority of largest175

improvements (indicted by the bold text).176

Table 2. The table below gives first the Infrared errors as a reference in section (a). The rest of the
rows within section (b) contain the relative % improvement over the simple IR input model. Each
error (except for Brier score) is calculated as 1 − score, where the score is the value reported in Table
1. For the Brier score, since a lower score is best, we leave it as is. The percentages reported are the
improvements in respective errors for the models, so a high positive % indicates a large improvement
in the metric (reduced error). The best improvements are once again highlighted in bold text.

(a)
Errors

Model Class Precision Recall F1 score Informedness Brier score
IR Non-breaking 0.03 0.06 0.05 0.13 0.09

Plunge 0.77 0.58 0.63 0.59 0.97
Spill 0.20 0.15 0.18 0.21 0.22

(b)
Relative Improvements over IR Model Errors

TV-L1 Non-breaking +33.33% +33.33% +40.0% +23.08% +33.33%
Plunge -1.49% +29.31% +7.94% +28.81% +27.84%

Spill +25.0% +6.67% +16.67% +9.52% 0.0%
SPyNet Non-breaking 0.0% +33.33% +20.0% 0.0% 33.33%

Plunge -26.87% +6.9% -23.81% +3.39% +5.15%
Spill +20.0% -60.0% -11.11% -33.33% -50.00%

IR+IR Non-breaking +33.33% +33.33% +40.0% +15.38% +11.11%
Plunge +8.96% +1.72% +6.35% +1.69% -4.12%

Spill +20.0% +26.67% +22.22% +19.05% -9.09%
IR+TV-L1 Non-breaking +33.33% +50.0% +60.0% +23.08% +44.44%

Plunge +14.93% -1.72% +7.94% +11.86% +6.19%
Spill +40.0% +46.67% +44.44% +33.33% +45.45%

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2021                   



7
of11

Figure 3. The evolution of probabilities for each class from some of the tested models. The horizontal axis corresponds to the image in the sequences. We see that the
gain from the optical flow method in the classification of plunge images comes at the cost of uncertainty in the spill cases. A Brier score of 0 indicates a correct
classification and total confidence in the classification i.e. the probability of that class is 1. Sudden spikes or changes in predictions are mostly from start and ending
of image sequences where waves are only starting to enter the frame or almost entirely out of frame.
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3.2. Misclassifications177

In this section we present the analysis of some misclassifications in Fig. 4 and confusion matrices178

in Fig. 5 of the models on testing (unseen) data both with and without augmentation applied. This179

allows for quick visual identification of misclassifications by looking at the off-diagonal terms in the180

confusion matrices. For the confusion matrices, each row corresponds to a true label and each column181

corresponds to the predicted label. Higher performance corresponds to a darker main diagonal in the182

matrix.183

We observe that all models perform well on the non-breaking waves, with IR and the SPyNet184

OF having the largest errors on spilling waves (approximately 19 and 10 percent of spilling waves185

classified as non-breaking respectively). The TV-L1 OF and the combined IR+OF (TV-L1) are the best186

performing models at separating plunging waves from spilling waves.187

(a) missed - plunge (b) missed - spill

Figure 4. Samples of the misclassified images which are not waves at the boundary of the image. It may
indicate an inability of these simple classifiers to separate the transition from plunging and spilling
breaking waves, identifying this transition is not a trivial task from the dataset and it thus causes many
of the misclassifications across all the classifiers. The predicted probabilities are given in the title for
each image for the classes plunge, spill, non-breaking respectively.

The majority of misclassifications occur as a wave is just entering or exiting the frame when188

it is reasonable to be incorrect. However, in Fig. 4, we provide an example of the images that are189

misclassified with the breaking wave clearly in the frame. The predicted probabilities for these images190

are given at the top of the respective image.191
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IR IR with augmentation

OF (TV-L1) OF (TV-L1) with augmentation

OF (SPyNet) OF (SPyNet) with augmentation

IR + IR IR + IR with augmentation

IR + OF (TV-L1) IR + OF (TV-L1) with augmentation

Figure 5. Confusion matrices for each of the tested models. The true class is in each row and the
predicted class in each column.
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4. Discussion192

We have explored the use of optical flow features for the classification of breaking wave images.193

This was tested on an image classification task with an aim to gain improved classification of sequences194

of IR images of breaking waves compared to only using a single IR image. After an initial exploration195

of the original dataset, the original analysis was found to be flawed. A large class imbalance exists,196

which made it difficult to train and test a robust classifier, and initial results were compromised. After197

correction of the data, comparisons were drawn between the baseline IR model which was claimed198

as best by the original authors and several other models which took advantage of the dynamical199

nature of the waves by performing a feature extraction on sequential images. It was found that a200

combination of the IR and optical flow information could produce slightly better results and the201

inclusion of augmented images provides additional gains to the IR models, but acts to somewhat202

deteriorate the performance of the optical flow models.203

An analysis of the misclassified cases of the models shows that most misclassifications occur at204

the beginning or end of the image sequences where the type of wave is unclear. The slight gains on205

identifying both the plunging and spilling waves from using the optical flow can be achieved also by206

using the two IR images and applying the feature extraction on these. Further improvements may be207

possible with more regularisation or more aggressive data augmentation, in combination with more208

complex models, for better performance on the plunging samples. The dataset was deemed insufficient209

to train more complex neural networks or fine-tuning without over-fitting and adapting of the SPyNet210

optical flow network was abandoned after it failed to produce accurate optical flows on the images.211

The inclusion of Optical Flow into the features for the classification task improved the results on the212

plunging wave category, and a combination of optical flow and IR images gave the best results on the213

spilling waves.214

In future work, a higher quality dataset in terms of clearer and higher resolution images, but215

also in terms of a better balance of the breaking wave classes, will make the classification task and216

training of more complex models easier. Distinctive patterns in wave breaking can be identified but217

capturing the temporal evolution of wave properties through a sequence of images remains a challenge.218

Investigation of how breaking evolves over time and an understanding of how it affects the free surface219

is crucial to provide accurate parameterizations for numerical forecasting systems.220
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