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Abstract- This paper presents a robust and efficient fault detection and diagnosis framework for handling small faults 
and oscillations in synchronous generator (SG) systems. The proposed framework utilizes the Brunovsky form 
representation of nonlinear systems to mathematically formulate the fault detection problem. A differential-flatness model 
of SG systems is provided to meet the conditions of the Brunovsky form representation. A combination of high-gain 
observer and group method of data handling neural network is employed to estimate the trajectory of the system and to 
learn/ approximate the fault and uncertainties associated functions. The fault detection mechanism is developed based on 
output residual generation and monitoring so that any unfavourable oscillation and/or fault occurrence can be detected 
rapidly. Accordingly, an average L1-norm criterion is proposed for rapid decision making of faulty situations. The 
performance of the proposed framework is investigated for two benchmark scenarios which are actuation fault and fault 
impact on system dynamics. The simulation results demonstrate the capacity and effectiveness of the proposed solution 
for rapid fault detection and diagnosis in SG systems in practice, and thus enhancing service maintenance, protection, and 
life cycle of SGs. 

Keywords: Group Method of Data Handling Neural Network, High-Gain Observer, L1-Norm Criterion, Output Residual 
Generation, Small Fault Detection, Synchronous Generator. 

1. Introduction  

Fault detection and identification (FDI) approaches for nonlinear systems have drawn attention in the last few decades, 
as they play a vital role for modern complex systems with a higher reliability requirement. Particularly, FDI design 
tackling the actuator faults is of significance. This is due to the key role of actuator effort on system stability and 
performance. In contrast to sensors for which the physical redundancy can be readily realized, several identical actuators 
are costly to be implemented as well as the increased weight, occupied space, and data acquisition complexity. On the 
other hand, for the large interconnected systems, e.g. wind farms [1], it is not easy to isolate the actuator faults. This stems 
from the different sources that cause the final malfunctions. More importantly, in the case of a small actuator fault, its 
symptoms may be buried in the system uncertainties or external disturbances. In such a case, the well-known approaches, 
such as observer design [2], parameter estimation [3], and parity space [4], fail to operate satisfactorily. It is worth noting 
that even though the actuator fault is small it still may lead to degraded performance, instability or even catastrophe.   

In safety-critical systems such as synchronous generator (SG) systems, which are subject to hazardous operation 
conditions, even small hidden faults can result in the loss of generator impacting the stability of the entire grid. Stator 
faults or ground faults in the stator windings are classified as common generator faults. The small fault currents occur 
specifically when the SG systems are grounded with high impedance. However, it is extremely difficult to detect such 
small-scale faults just by relying on differential protection functions[5]. A common solution to overcome this issue is to 
simultaneously use neutral overvoltage relays, percentage differential relays, and third harmonic schemes. As documented 
in the literature, fault detection based on the generator neutral and terminal third harmonic voltage characteristics are 
restricted to the factors such as loading and generator design and configuration. Moreover, the proposed solution imposes 
an extra cost on the SG systems and additional complexity for service maintenance, protection, and real-world 
applications [5-7].   

In this regard, a robust FDI system, with the capacity of fast detection of small faults, can contribute to the fault-tolerant 
control (FTC) module to maintain the stability and overall performance of the SG systems. In addition, the early detection 
of such small faults in the generator can significantly contribute to decreasing the maintenance/replacement cost and 
outage period. As such, different hardware-based, model-based, and data-driven approaches have been proposed in the 
literature [8-18]. A conventional class of FDI in the literature is called hardware redundancy techniques which employ 
multiple identical components for monitoring and acquiring data of interest and validation in a system [19-21]. However, 
the main disadvantage of this approach is imposing cost, weight, and complexity on the system. Moreover, the redundant 
hardware is usually used as a backup system at the occurrence of the fault and it is not able to provide any information of 
fault features such as fault time, fault shape, and its amplitude [10, 11, 20]. The second class of FDI approaches is called 
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model-based techniques (analytical redundancy), which is established upon the mathematical model of the underlying 
system. In this category, observer-based methods are quite popular as they can either estimate states and faults of the 
system directly or compare residual evaluation function with a predefined/adaptive threshold. In this regard, sliding mode 
observer-based FDI (SMOFDI) is one of the popular model-based techniques which have been extensively used due to 
its accuracy, fast convergence, and robustness against disturbances [22-28]. For example, in [29-31], the concept of first-
order SMO is utilized for actuator fault detection and in [9], the SMOFDI utilizes the principle of the equivalent injection 
signal to reconstruct the fault or the quantity of non-measurable system parameters. To generate a chattering-free 
equivalent output injunction signal, the use of low pass filters are essential; however, this imposes some delays and 
consequently impact the accuracy of estimation and stability of the underlying system [32]. More recently, higher-order 
sliding mode observer (HSMO) techniques have been proposed to accommodate the need for low pass filters while 
producing chattering free continuous estimations [33, 34]. In [35], the HSMO technique for detecting a fault in a linear-
time invariant system is proposed and the necessary and sufficient condition of finite-time convergence is provided. 
However, the application of the proposed solution is restricted in practice as the information of higher-order derivatives 
of the sliding surface is required. In [36], an adaptive super-twisting sliding mode observer for actuator FDI is proposed. 
This technique enables the system to adapt and maintain sliding motion while the system is experiencing high frequency 
oscillation failures.  

Finally, the third class of FDI approaches is called data-driven techniques which have been employed for fault detection 
and protection in SG and interconnected power systems [8, 12, 14-16, 18, 37]. The fundamental of these techniques is to 
use available sensory data for the purpose of detection and diagnosis without knowledge of physical modelling of the 
underlying system. As opposed to the model-based techniques, the data-driven solutions are load-dependent and require 
additional sensors although their performance do not highly dependent on the accuracy of the model and parameter 
estimation. The main drawbacks of the data-driven solutions, however, are the limitation in rapid and accurate detection 
and diagnosis of different fault types and high computational training and tuning demanding, which makes their real-time 
implementation difficult [37, 38].  

To overcome the inadequacies of FDI development for SG systems discussed above, this paper develops a systematic and 
mathematically proven robust and efficient FDI approach with the capacity of rapid detecting and handling small faults 
and oscillations in practice. The FDI mechanism in this paper is developed based on output residual generation and 
monitoring so that any unfavourable oscillation and/or fault occurrence can be detected rapidly. To generate the residual 
for the FDI purpose, first, a bank of high-gain observers is constructed for both normal and faulty modes of the monitored 
system. A promising technology of group method of data handling neural network (GMDHNN) is utilized for the 
approximation of unknown dynamics and fault functions in the SG system. The rationale behind the use of GMDHNN in 
the proposed FDI system is to utilize a computationally efficient set of hierarchically connected networks rather than a 
complex neural model for uncertainty and system fault approximation which accommodates the difficulties of rapid fault 
detection in practice. Finally, an average L1-norm criterion is proposed for rapid decision making of faulty situations. In 
summary, this paper provides the following contributions: 

- A systematic FDI procedure with the capacity of rapid detection of small faults and oscillations in the SG system is 
presented. 

- A differential flatness approach is employed to model the SG system in a Brunovsky form utilizable for the FDI 
procedure.  

- A bank of a practically implementable high-gain observer is developed for state estimation of the SG system in both 
healthy and faulty mode. 

- A computationally efficient and real-time implementable GMDHNN is developed to approximate unknown 
dynamics and fault functions in the SG system. 

- A decision masking mechanism for the detection of small oscillation and fault occurrence based on an average L1-
norm criterion is proposed. 

The rest of the paper is organized as follows. In Section 2, technical preliminaries and problem statements are presented. 
In Section 3, first, the original third-order model of SG is presented and then the flatness-based representation is developed 
to meet the condition of Brunovsky form systems described in Section 1. In Section 4, the GMDHNN-based FDI design 
procedure including the essence of GMDHNN, high-gain observer design, and FDI decision-making mechanism is 
discussed in detail. Section 5 demonstrates simulation results and performance evaluation of the proposed FDI system for 
two benchmark scenarios of actuation fault and fault impact on the system’s dynamics. Finally, Section 6, presents the 
conclusion of this paper.  
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2. Technical Preliminaries and Problem Description 

2.1. Technical Preliminaries  

Let us consider the strict feedback nonlinear system in a Brunovsky form including faults and disturbances as (1): 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑥̇ଵ = 𝑥ଶ                                                                                                                                           
𝑥̇ଶ = 𝑥ଷ                                                                                                                                           

.                                                                                                                                             

.                                                                                                                                             

.                                                                                                                                             
𝑥̇௡ିଵ = 𝑥௡                                                                                                                                         

𝑥̇௡ = 𝑓൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ + 𝑔൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯𝑢 + 𝜂(𝑡 − 𝑇଴)Λఝ(𝑥, 𝑢) + 𝑑(𝑡)                    
𝑦 = 𝑥ଵ                                                                                                                                              

  (1) 

where 𝑥௜ ∈ ℝ, 𝑖 = 1, … , 𝑛,  is the unknown states vector, 𝑢 ∈ ℝ represents the control input vector, 𝑦 ∈ ℝ  is the output, 
𝑓(. ) is the continuous nonlinear function of the system dynamics, 𝑔(. ) represents the continuous nonlinear mapping 
function associated with the input, and  Λఝ(. ) represents the impact of the fault 𝜑 on the system dynamics. Indeed, the 
variation of Λఝ(. ) deteriorates the actuator effort 𝑔(. )𝑢. On the other hand, 𝜂(𝑡 − 𝑇଴) is the fault time profile including 
the unknown fault time occurrence of 𝑇଴, such that for 𝑡 < 𝑇଴, 𝜂(𝑡 − 𝑇଴) = 0, otherwise 𝜂(𝑡 − 𝑇଴) = 1. 𝑑(𝑡) represents 
unknown bounded disturbances.  

To initiate the design, the following assumptions are made in the design procedure. 

Assumption 1. The system states and controls are always bounded even under faults, that is (𝑥, 𝑢) ∈  Ω ∈  ℝ௡ାଵ, ∀𝑡 ≥

𝑡଴ where Ω is a compact set. It is assumed that the disturbance is bounded, i.e., |𝑑(𝑡)| < 𝑑̅ , where 𝑑̅ > 0 and 𝑑̅ is known 
constant.  

Assumption 2. The continuous nonlinear functions 𝑓(. ) and 𝑔(. ) can be expressed as a combination of a nominal part 
and an unknown part, that is: 

 𝑓൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ = 𝑓௢൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ + 𝜐(𝑥, 𝑥̇, … , 𝑥(௡ିଵ))     (2) 

𝑔൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ = 𝑔௢൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ + 𝜎(𝑥, 𝑥̇, … , 𝑥(௡ିଵ))      (3) 

where 𝑓௢(. ) and  𝑔௢(. )  are the nominal parts of 𝑓(. )  and 𝑔(. ) , respectively and 𝜐(. )  and 𝜎(. )  represent unknown 
continuous bounded uncertainties associated with  𝑓(. ) and 𝑔(. ), respectively.  

Assumption 3. The systems trajectories in normal and fault modes are presented as 𝜙଴(𝑥(𝑡 < 𝑇଴), 𝑢(𝑡 < 𝑇଴)) and 
𝜙௦(𝑥(𝑡 ≥ 𝑇଴), 𝑢(𝑡 ≥ 𝑇଴)) , respectively, and are in oscillations.  

Assumption 4. The nonlinear terms 𝑓௢(. ) , 𝑔௢(. ) , 𝜐(. ), 𝜎(. ), and Λఝ(. )are local Lipchitz around 𝑥, i.e., 

ห𝑓௢൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ − 𝑓௢൫𝑥ො, 𝑥ො̇, … , 𝑥ො(௡ିଵ)൯ห ≤  𝜌ଵ|𝑥 − 𝑥ො|       (4) 

ห𝑔௢൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ − 𝑔௢൫𝑥ො, 𝑥ො̇, … , 𝑥ො(௡ିଵ)൯ห ≤  𝜌ଶ|𝑥 − 𝑥ො|       (5) 

ห𝜐൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ − 𝜐൫𝑥ො, 𝑥ො̇, … , 𝑥ො(௡ିଵ)൯ห ≤  𝜌ଷ|𝑥 − 𝑥ො|       (6) 

ห𝜎൫𝑥, 𝑥̇, … , 𝑥(௡ିଵ)൯ − 𝜎൫𝑥ො, 𝑥ො̇, … , 𝑥ො(௡ିଵ)൯ห ≤  𝜌ସ|𝑥 − 𝑥ො|       (7) 

|Λఝ(𝑥, 𝑢) − Λఝ(𝑥ො, 𝑢)| ≤  𝜌ହ|𝑥 − 𝑥ො|         (8) 

where 𝜌௜  (𝑖 = 1, . . ,5) represents local Lipchitz constants in the set 𝒳, where 𝒳 is the system operation set, i.e., ∀ 𝑥, 𝑥ො  ∈

𝒳 , ∀ 𝑢 ∈ 𝒰 , and 𝒰 is an admissible control set. 

Assumption 5.  The fault magnitude ratio factor is bounded and defined as: 

0 < 𝓅 =
|ஃക(௫,௨)|

ఉഥ
< 1           (9) 

where 𝛽̅ is the upper bound of the modelling uncertainty 𝛽 = 𝜐(. ) + 𝜎(. )  + 𝑑(𝑡), i.e., |𝜐(. ) + 𝜎(. )  + 𝑑(𝑡)| ≤ 𝛽̅. 

Remark 1. Assumptions 1 and 4 considers the reasonable aspects of the practical dynamic systems, i.e. the unbounded 
signals and their variation are not admissible. Assumption 2 considers the system uncertainties, covering a variety of 
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model mismatches and variations. Assumption 5 stands for the small faults, i.e. the fault size is smaller than the upper 
bound of model uncertainties and disturbance. In such a case, the system state variation due to the fault may be buried 
under the effects of model uncertainties and disturbance. Therefore, most developed FDI schemes fail to detect the fault 
accurately [39-41]. 

 
2.2.  Problem Description  

The main objective of this paper is to develop a rapid FDI system for the SG model to be used in real-time and in practice. 
In order to develop a rapid fault detection system for the SG model, enabling detection of even small magnitude faults, 
the following requirements should be addressed: 

1) The dynamic model of SG should be in a Brunovsky form as described in (1). 

Remark 2. The Brunovsky representation of a system is a popular controllable canonical form including a finite set of 
integrators which allows implementing the strict state feedback and linear observers. Thus, the differential flatness 
property of the system is utilized to transform the original model of the generator into the Brunovsky representation.  

2) The SG states in the nominal form should be estimated robustly. 

Remark 3. In practice, measurement of all system states is often not available. On the other hand, information of states’ 
trajectories of SG is essential for persistent monitoring and diagnosis of any small oscillation/ fault in the system. The 
nominal states’ trajectories can be estimated robustly via a linear high-gain observer due to the representation of the 
system in the Brunovsky form. This is incorporated in the neural network module.    

3) The unknown dynamics in (2)-(3) should be approximated accurately. 

Remark 4. There exist unknown dynamics and uncertainties associated with the model of generators in practice. These 
unmodeled dynamics should be approximated to enable the design of FDI. To solve this problem, a rigorous function 
approximator method with the capacity of learning and approximating unknown dynamics in a local region along any 
arbitrary recurrent or periodic trajectory should be employed. This results in the exponential stability of the system (1) 
and is achieved via GMDHNN.  

4) A bank of dynamical estimators should be developed to produce fault residual and consequently detect the real-
time fault occurrence at 𝑇଴. 

Remark 5. The dynamical estimators take advantage of the learned knowledge of the system and are established upon a 
bank of non-high gain observers to produce necessary information for the residual generation and decision making on the 
fault occurrence at 𝑇଴. 

In the subsequent sections of this paper, we show how to address the mentioned requirements.  

3. The SG Model 

3.1. Third Order SG Model 

The connection of an SG to a power grid is illustrated in Figure 1. This configuration is known as a single-machine 
infinite-bus (SMIB) model. In this model, the generator is contented to the rest of the network via a transformer and purely 
reactive transmission lines. The infinite bus is the representation of a machine that rotates at a synchronous speed of  𝜔௢ 
and has the capacity to absorb or deliver any energy amount. The classic third-order dynamical model of this configuration 
in Figure 1 includes mechanical and electrical dynamic models of SG [42, 43]. The mechanical dynamic of SG is as 

𝛿̇ =  𝜔 − 𝜔଴            (10) 

𝜔̇ =  − 
஽

ଶ௃
 (𝜔 − 𝜔଴) +

ఠబ

ଶ௃
(𝑃௠ − 𝑃௘)         (11)  

where 𝛿 is power angle of the generator, 𝜔  is rotor speed with respect to the synchronous reference, 𝜔଴ represents the 
synchronous speed of the generator, 𝐽 is generator’s moment of inertia, 𝑃௠ is the mechanical input torque to the generator, 
D is the damping constant of the generator, and 𝑃௘  is the electrical torque corresponding to the active power of the 
generator. The electrical dynamical model of SG is as 

 𝐸ሖ̇௤ =   
ଵ

்೏బ
 ൫𝐸௙ − 𝐸௤൯           (12)  
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where  𝐸ሖ௤ is the quadrature-axis transient voltage of the generator, 𝐸௤  is the quadrature-axis voltage of the generator, 𝐸௙  

is the equivalent voltage in the excitation coil, and 𝑇ௗ଴ represents the direct-axis open-circuit transient time constant of 
the generator.  

The algebraic equations of the SG are given in (13). 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝐸௤ =
௫೏೸

௫́೏೸
 𝐸௤

ሖ − (𝑥ௗ − 𝑥́ௗ)𝐼ௗ     

𝐼ௗ =
ா೜ሖ

௫́೏೸
−

௏ೞ

௫́೏೸
cos(𝛿)              

𝐼௤ =
௏ೞ

௫́೏೸
sin(𝛿)                           

𝑃௘ =
ா೜ሖ ௏ೞ

௫́೏೸
sin(𝛿)                         

𝑄௘ =
ா೜ሖ ௏ೞ

௫́೏೸
cos(𝛿) −

௏ೞ
మ

௫೏೸
            

𝑉௧ = ට(𝐸௤
ሖ − 𝑥́ௗ𝐼ௗ)ଶ + (𝑥́ௗ𝐼௤)ଶ

          (13) 

where 𝑥ௗஊ = 𝑥ௗ + 𝑥் + 𝑥௅, 𝑥́ௗஊ = 𝑥́ௗ + 𝑥் + 𝑥௅, 𝑥ௗ represents the direct-axis synchronous reactance, 𝑥́ௗ is the direct-
axis transient reactance, 𝑥் represents the reactance of the transformer, 𝑥௅ is the reactance of transmission line, 𝐼ௗ  and 𝐼௤  

are direct and quadrature axis currents of generator respectively, 𝑉௦ represents the infinite bus voltage, 𝑄௘ is the generator 
reactive power that is delivered to the infinite bus, and 𝑉௧ represents the terminal voltage of the generator.  

 

Figure 1. The SG connection to a SMIB model. 

Now let us substitute equation (13) into the mechanical and electrical dynamic equations of the SG in (10)-(12). This 
results in the complete model of SMIB systems as presented in (14)-(16): 

𝛿̇ = 𝜔 − 𝜔଴            (14) 

𝜔̇ = −
஽

ଶ௃
(𝜔 − 𝜔଴) + 𝜔଴

௉೘

ଶ௃
−

ఠబ

ଶ௃

௏ೞாሖ೜

௫́೏ಂ
𝑠𝑖𝑛 (𝛿)        (15) 

𝐸ሖ̇௤ = −
ଵ

ሖ் ೏
𝐸ሖ௤ +

ଵ

்೏బ

௫೏ି௫́೏

௫́೏ಂ
𝑉௦𝑐𝑜 𝑠(𝛿) +

ଵ

்೏బ
 𝐸௙        (16) 

where 𝑇ௗ
ሖ =

௫́೏ಂ

௫೏ಂ
 𝑇ௗ଴ represents the time constant of the field winding. The SMIB model indicated in (14)-(16), can be 

further expressed by the general nonlinear state-space representation of the form (17): 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢           (17) 

where 𝑥 = [𝛿 𝜔 𝐸ሖ௤]் is the state vector, and 𝑓(𝑥) and 𝑔(𝑥) are as follows: 

𝑓(𝑥) =

⎝

⎜
⎛

𝜔 − 𝜔଴

−
஽

ଶ௃
(𝜔 − 𝜔଴) + 𝜔଴

௉೘

ଶ௃
−

ఠబ

ଶ௃

௏ೞாሖ೜

௫́೏ಂ
𝑠𝑖𝑛 (𝛿)

−
ଵ

ሖ் ೏
𝐸ሖ௤ +

ଵ

்೏బ

௫೏ି௫́೏

௫́೏ಂ
𝑉௦𝑐𝑜 𝑠(𝛿)

⎠

⎟
⎞

, 𝑔(𝑥) = ቀ0,0,
ଵ

்೏బ
ቁ

்

.    (18) 

The control input and the measurable output are defined as 𝑢 = 𝐸௙  and 𝑦 = 𝛿, respectively. Evidently, the SG model (18) 
does not satisfy the Brunovsky form requirement. This issue is resolved by using the differential flatness concept. 

5.2. Flatness-based SG Model 

In order to meet the system requirement of Brunovsky form in (1), the differential flatness theory is employed [44] and 
then a flatness-based model of SG is developed.  
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Definition 1.  Suppose system (1) excluding the fault function and disturbance. The proposed system, which is briefly 
expressed by 𝑥̇ = 𝑓(. ) + 𝑔(. )𝑢 ,  is called differentially flat if there exists an output vector 𝓏 ∈ ℝ௠ in conjunction with 
mapping functions  𝒽: ℝ௡ × (ℝ௠)௥ାଵ → ℝ௠ , 𝜙: (ℝ௠)௥ → ℝ௡  , and 𝜓: (ℝ௠)௥ାଵ → ℝ௠  such that 𝓏 = (𝓏ଵ, … , 𝓏௠) =

𝒽(𝑥, 𝑢, 𝑢̇, … , 𝑢(௥))implies the following expressions : 

ቊ
𝑥 = 𝜙(𝓏, 𝓏̇, … ,  𝓏(௥ିଵ))

𝑢 = 𝜓൫𝓏, 𝓏̇, … ,  𝓏(௥)൯  
            (19) 

Definition 1 demonstrates that all the system states and control can be expressed in terms of the flat output and a finite 
number of its derivatives. As a result, the differential flatness theory can be used as a useful tool to transform the general 
nonlinear representation of a flat system into a controllable Brunovsky form facilitating the observer and feedback control 
design. In the subsequent of this subsection, the flatness-based model of SG is investigated.  

Let us define the flat output as 𝑧 = 𝑥ଵ. Then, all state variables and its control inputs of the model (14)-(16) can be written 
as functions of the flat output and its derivatives as follows: 

⎩
⎪
⎨

⎪
⎧

𝑥ଵ = 𝑧                                 
𝑥ଶ = 𝑧̇                                 

𝑥ଷ =

ഘబು೘షమ಻೥̈షವ೥̇

మ಻
ഘబೇೞ
మ಻ೣ́೏ಂ

௦௜௡ (௭)
             

          (20) 

where  

𝑧̈ = −
஽

ଶ௃
𝑧̇ + 𝜔଴

௉೘

ଶ௃
−

ఠబ

ଶ௃

௏ೞ௫య

௫́೏ಂ
𝑠𝑖 𝑛(𝑧)                  (21) 

for 𝑧 ≠ 𝑛𝜋, 𝑛 = 0,1,2, …. Similarly, the control input can be written as: 
 

𝑢 = 𝑇ௗ଴(𝑥ଷ̇ +
ଵ

ሖ் ೏
𝑥ଷ

ଵ

்೏బ

௫೏ି௫́೏

௫́೏ಂ
𝑉௦𝑐𝑜 𝑠(𝑧)).         (22) 

 
Equations (20)-(22) hold the differential flatness property of the SG model. Now let us apply the variable changes as 𝑧ଵ =

𝑧, 𝑧ଶ = 𝑧̇, 𝑧ଷ = 𝑧̈ . Then, the SG model can be written in the following Brunovsky from: 
 

൥

𝑧̇ଵ

𝑧̇ଶ

𝑧̇ଷ

൩ = ൥
0
0
0

 
1
0
0

 
0
1
0

൩ ൥

𝑧ଵ

𝑧ଶ

𝑧ଷ

൩ + ൥
0
0
1

൩ 𝑣          (23) 

where 𝑣 is the control input for the system (23) and defined as:  

𝑣 = 𝑓௕(𝑧, 𝑧̇, 𝑧̈) + 𝑔௕(𝑧, 𝑧̇, 𝑧̈)𝑢 = ቆቀ
஽

ଶ௃మቁ 𝑧̇−𝜔଴
஽

ଶ௃

௉೘

ଶ௃
+ 𝜔଴

஽

(ଶ௃)మ

௏ೞ

௫́೏ಂ
𝑥ଷ𝑠𝑖 𝑛(𝑧̇) +

ఠబ

ଶ௃

௏ೞ

௫́೏ಂ

ଵ

ሖ் ೏
𝑥ଷ𝑠𝑖 𝑛(𝑧) −

ఠబ

ଶ௃

௏ೞ

௫́೏ಂ

ଵ

்೏బ

௫೏ି௫́೏

௫́೏ಂ
𝑉௦ cos(𝑧) 𝑠𝑖 𝑛(𝑧) −

ఠబ

ଶ௃

௏ೞ

௫́೏ಂ
𝑥ଷcos (𝑧) 𝑧̇ቇ + ቀ−

ఠబ

ଶ௃

ଵ

்೏బ

௏ೞ

௫́೏ಂ
𝑠𝑖 𝑛(𝑧)ቁ 𝑢.       (24) 

Equation (24) provides the flatness-based model of SG and hence meeting the requirements of the system (1).  

4. FDI Design Process 

In this section, the FDI mechanism is established based on the GMDHNN and high-gain observer, utilized for the 
approximation of unknown dynamics, system states, and fault function in the system (1). To this end, first, the essence of 
GMDHNN is briefly presented followed by the role of the high-gain observer that provides estimates of states as a 
regressor vector for the proposed GMDHNN. Finally, the residual generation and FDI algorithms are presented.  

4.1. The Essence of GMDH Neural Network 

The GMDHNN can be employed for nonlinear function approximation and provides more flexibility in design and 
robustness in performance over the conventional neural networks such as multi-layer perceptron [45, 46]. The rationale 
behind the GMDHNN is to utilize a set of hierarchically connected networks rather than a complex neural model for 
function approximation and system identification purposes. Automatic selection of a network structure just based on the 
measured data becomes possible in GMDHNN and thus modelling uncertainty, as a result of neural networks structure, 
is accommodated to a great extent. The GMDHNN is a layered structure network in which each layer consists of pairs of 
independent neurons being linked via a quadratic polynomial. In all layers, new neurons are developed upon the 
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connections of the previous layers. In this self-organized neural structure, the input-output relationship is obtained via 
Kolmogorov-Gabor polynomial of the form [47-49]:  
  
𝑦ത = 𝑎଴ + ∑ 𝑎௜𝑥௜

௡
௜ୀଵ + ∑ ∑ 𝑎௜௝𝑥௜

௡
௝ୀଵ 𝑥௝ + ∑ ∑ ∑ 𝑎௜௝௞𝑥௜

௡
௞ୀଵ 𝑥௝𝑥௞ + ⋯௡

௝ୀଵ
௡
௜ୀଵ

௡
௜ୀଵ       (25) 

 
where 𝑦ത represents the network’s output, the input vector is represented by X = (x1, x2, x3, . . ., xn), ( 𝑎௜ , 𝑎௜௝ , 𝑎௜௝௞)  represents 
the coefficient of the quadratic polynomial, and i, j, k ∈ (1,2, . . ., n). 
 
To implement a GMDHNN, the following steps can be adopted: 

- Step 1:  Neurons with inputs consist of all possible couple of input variables that are ቀ
𝑛
2

ቁ are developed.  

- Step 2: The neurons with higher error rates are ignored and other neurons are utilized to construct the next layer. 
In this regard, each neuron is used to calculate the quadratic polynomial. 

- Step 3: The second layer is constructed via the output of the first layer and hence a higher-order polynomial is 
developed. Then Step 2 is repeated to determine the optimal output utilized for the next layer input. This process 
is continued until the termination condition is fulfilled, i.e., the function approximation is achieved with the 
desired accuracy. 

The above procedure indicates the evolution of the GMDHNN structure by which more desired quality of system 
approximation and identification can be obtained. This approach addresses the weakness of classic neural networks in 
system identification as determination of appropriate structure (including hidden layers and number of neurons) are more 
often than not cumbersome and tedious process.    
 
To employ a GMDHHNN for FDI purposes, let us define the network by:  
 

𝑓௡௡(𝑘, 𝑊) = ℊ(𝑊ଵ
(ଵ)

, … , 𝑊௡ଵ
(ଵ)

, … , 𝑊ଵ
(௟)

, … , 𝑊௡௟
(௟)

)         (26) 

where ℊ(. ) represents the GMDHNN structure, 𝑙 denotes the number of layers in the GMDHNN, and 𝑛𝑙 expresses the 
number of neurons in the 𝑙௧௛  layer. In the proposed network (26), each neuron’s model is as: 

𝑓௡
(௟)

(𝑘, 𝑊௡
(௟)

) = 𝜉((𝜓௡
௟ (𝑘))୘𝑊௡

(௟)
)           (27) 

where 𝑓௡
(௟)

(𝑘) represents the output of the nth neuron in the lth layer based on the kth input signal, 𝜉(. ) expresses the 

nonlinear invertible activation function,  𝜓௡
௟ (𝑘) are the regressor vectors, and 𝑊௡

(௟) represent the parameter vectors.  

Remark 6. Proven in [49], for any function 𝑓(𝑘): Ω௞ → ℝ   where Ω௞ ⊂ ℝ௤  is a compact set, there exists an ideal 
parameter (weight) vector 𝑊∗ that satisfies the following equation: 

Θ = ൛𝑊∗ ∈ ℝ௡೛ห𝑓(𝑘) − 𝜀(𝑘) ≤ 𝜓(𝑘)୘𝑊∗ ≤ 𝑓(𝑘) − 𝜀(𝑘), 𝑘 = 1, … , 𝑛்ൟ       (28) 

where 𝜀(𝑘) ∈ [ 𝜀(𝑘), 𝜀(𝑘) ] represents the bounded approximation error. 

There exists a spectrum of GMDHNN algorithms in the state-of-the-art for obtaining an ideal weight vector [49, 50]; in 
this study, the following theorem is used for updating the weight vector.   

 Theorem 1. Let us consider the following dynamical GMDHNN for the approximation of a dynamic f(x) in an nth-order 
controllable canonical system 𝑥̇௡ = 𝑓(𝑥):  

𝜒̇ = −𝛼(𝜒 − 𝑥ො௡) + 𝜓(𝑥ො)்𝑊          (29) 

where 𝜒 represents the state of dynamical GMDHNN, 𝑥ො௡ is estimated state variable obtained by any observer, 𝛼 is the 
design constant, and 𝜓(𝑥ො)்𝑊 denotes a GMDHNN used for approximation of f(x). The adaptation law for the weight 
vector W is provided by (30): 

𝑊̇ = −Γ𝜓(𝑥ො)்𝑥̅௡ − Γ𝜇𝑊           (30)  

where Γ = Γ୘ > 0 is the learning coefficient, 𝜇 > 0 is a small value, and 𝑥̅௡ is defined as 𝑥̅௡ ≔  𝜒 − 𝑥ො௡.   

For the sake of brevity, the proof of Theorem 1 is not presented here and can be found in [51].   

4.2. High-Gain Observer Design 

In the past three decades, the design and development of high-gain observers have been under the attention of nonlinear 
system control communities to be used for output feedback control of nonlinear systems [52]. The main idea behind the 
high-gain observers is to separate a nonlinear system into linear and nonlinear parts and obtain the gain of the observer in 
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such a way that the linear part becomes dominant over the nonlinear part [52, 53]. This is carried out by selecting the 
observer gains large enough to converge the observation error into a sufficiently small region in a finite time, i.e., a 
neighbourhood of the system state trajectory.  

In order to implement the FDI mechanism, the estimate of full states of the system (1) (or equivalently (23)) is required. 
To this end, a high-gain observer, which only uses the output information, is designed in the following theorem.  

Theorem 2. Consider the system (1) in conjunction with Assumptions 1-5. The following high-gain observer is designed 
to estimate the system states, i.e. the estimation error asymptotically converges to a sufficiently small neighbourhood of 
the origin. 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑥ො̇ଵ = 𝑥ොଶ + 𝛼ଵ𝜅 (𝑦 − 𝑦ො)                                                                                                            

 𝑥ෝ̇ଶ = 𝑥ොଷ + 𝛼ଶ𝜅ଶ(𝑦 − 𝑦ො)                                                                                                          
.                                                                                                                                  
.                                                                                                                                  
.                                                                                                                                  

𝑥ො̇௡ିଵ = 𝑥ො௡ + 𝛼௡ିଵ𝜅௡ିଵ (𝑦 − 𝑦ො)                                                                                            

𝑥ො̇௡ = 𝑓௢൫𝑥ො, 𝑥ො̇, … , 𝑥ො(௡ିଵ)൯ + 𝑔௢൫𝑥ො, 𝑥ො̇, … , 𝑥ො(௡ିଵ)൯ 𝑢 + 𝛼௡𝜅௡(𝑦 − 𝑦ො)                               

𝑦ො = 𝑥ොଵ                                                                                                                                         
                                 

    (31) 

where 𝛼௜(𝑖 = 1, … , 𝑛)  and 𝜅 are constant values and 𝛼௜ should be chosen in a way that to make 𝑠௡ + 𝛼ଵ𝑠௡ିଵ + ⋯ +

𝛼௡ିଵ𝑠 + 𝛼௡  Hurwitz polynomial with distinct roots; 𝑥ො௜  is the estimate of the system states 𝑥௜  and 𝑦ො  represents the 
system’s output estimate. 

For the sake of brevity, the proof of Theorem 2 is not presented here as it is similar to the proof of [51, 54]. 

Remark 7. Theorem 2 indicates that the observer (31) only requires the output 𝑦(𝑡) to estimate the states of the system. 
To achieve the convergence of the estimates 𝑥ො௜  to a sufficiently small neighbourhood of the system states, and hence to 
reduce the estimation errors, 𝜅 should be chosen large enough.  

It should be noted that known functions associated with  𝑓(. ) and 𝑔(. ) in (1) depend on the system states of (1). Therefore, 
𝑥ො௜  can be used instead of the 𝑥௜  as the input to the GMDHNN to approximate 𝑓(. ) and 𝑔(. ) when 𝑥௜ →  𝑥ො௜ , i.e.:  

ቊ
𝑓መ൫𝑥௜|𝑤௙൯ = 𝑆௙(𝑥పෝ )்𝑤௙ + 𝜖௜(𝑥పෝ )

𝑔ො൫𝑥௜|𝑤௚൯ = 𝑆௚(𝑥పෝ )்𝑤௚ + 𝜖௜(𝑥పෝ )
          (32) 

where 𝑓መ൫𝑥௜|𝑤௙൯  and 𝑔ො൫𝑥௜|𝑤௚൯  represent approximations of 𝑓(. )  and 𝑔(. )  respectively, 𝑆௙(𝑥పෝ )  and 𝑆௚(𝑥పෝ )  are basis 

functions associated with 𝑓(. ) and 𝑔(. ) respectively in the GMDHNN, and  𝜖௜(𝑥పෝ ) ≤ 𝜖 is an approximation error. 𝑤௙ and 

𝑤௚  are ideal weight vectors on the compact sets Ω௙௪  and Ω௚௪  associated with 𝑓(. )  and 𝑔(. )  respectively, which 

minimize 𝜖௜(𝑥పෝ ) when 𝑥௜ →  𝑥ො௜ , i.e.: 

ቐ

𝑤௙ = arg min
௪೑∈ஐ೑ೢ

[ sup
௫∈ஐೣ

ห 𝑓መ൫𝑥௜|𝑤௙൯ − 𝑓(. )ห ]            

𝑤௚ = arg min
௪೒∈ஐ೒ೢ

[ sup
௫∈ஐೣ

ห 𝑔ො൫𝑥௜|𝑤௙൯ − 𝑔(. )ห ]            
        (33) 

4.3. FDI Mechanism  

The FDI mechanism in this paper is developed based on output residual generation and monitoring so that any 
unfavourable oscillation and/or fault occurrence can be detected rapidly. To generate the residual for the FDI purpose, 
first, the following bank of N+1 observers are constructed for both normal and faulty modes of the monitored system (1):  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑥ො̇ଵ
௦ = 𝑥ොଶ

௦
 
+ 𝜅ଵ (𝑦 − 𝑦ො ௦)                                                                                                                                                

𝑥ො̇ଶ
௦ = 𝑥ොଷ

௦ + 𝜅ଶ(𝑦 − 𝑦ො ௦)                                                                                                                                                   
.                                                                                                                                  
.                                                                                                                                  
.                                                                                                                                  

𝑥ො̇௡ିଵ

௦
= 𝑥ො௡

௦ + 𝜅௡ିଵ (𝑦 − 𝑦ො ௦)                                                                                                                                           

𝑥ො̇௡
௦ = 𝑓଴൫𝑥ො ௦, 𝑥ො̇ ௦, … , 𝑥ො ௦(௡ିଵ)

൯ + 𝑔଴൫𝑥ො௦, 𝑥ො̇௦, … , 𝑥ො ௦(௡ିଵ)
൯𝑢 + 𝑊௙

തതതത௦்
𝑆௙(𝑥ො௦) + 𝑊௚

തതതത௦்
𝑆௚(𝑥ො ௦) + 𝜅௡ (𝑦 − 𝑦ො ௦)        

𝑦ො ௦ = 𝑥ොଵ
௦                                                                                                                                                                                

  (34) 
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where 𝑥ො ௦ ∈ ℝ௡  represents the state vector of the estimator, 𝑦ො ௦  represents the estimated output, and 𝑠 = {0,1, … , 𝑁} 

indicates the sth estimator.  𝑊௙
തതതത௦்

𝑆௙(𝑥ො௦) and  𝑊௚
തതതത௦்

𝑆௚(𝑥ො ௦) compose the GMDHNN for the approximation of the unknown 

dynamics and fault functions. Κ = [𝜅ଵ, … , 𝜅௡]୘  represents the observer gains which are identical for all normal and fault 
estimators.  

Theorem 3.  The residual 𝑦෤ ௦ = 𝑦 − 𝑦ො ௦  will asymptotically converge to a small neighbourhood of origin if the estimator 
gain  𝛫  in (34) is chosen such that the residual dynamic matrix  𝐴̅ = (𝐴 − 𝛫𝐶்), obtained by comparing (1) and (34), 
is stable and for all eigenvalues of 𝐴 and all the eigenvalues of 𝐴̅ satisfy: 

 𝑅𝑒(−𝜆) > Κଶ(𝑃)𝜌௦,   𝑠 = 0,1, … , 𝑁        (35) 

where 𝐴̅ = 𝑃𝛬𝑃ିଵ, P is a symmetric positive definite matrix, 𝛫ଶ(𝑃) is the condition number of matrix P, and 𝜌௦ is defined 
as follows: 

ቊ
𝜌௦ = ∑ 𝜌௜  , 𝑓𝑜𝑟 𝑠 = 0ସ

௜ୀଵ                  

𝜌௦ = ∑ 𝜌௜ , 𝑓𝑜𝑟 𝑠 = 1,2, … , 𝑁ହ
௜ୀଵ

          (36) 

where 𝜌௜ represents the Lipchitz constants defined in (4)-(8). 

For the sake of brevity, the proof of Theorem 3 is not presented here as it is similar to the proof of [51].   

The result of Theorem 3 enables us to utilize the average L1-norm for the FDI mechanism as follows: 

 ‖𝑦෤ ௦(𝑡)‖ଵ =
ଵ

்
 ∫  |𝑦෤ ௦(𝜏)𝑑𝜏|,   𝑡 ≥ 𝑇

௧

௧ି்
        (37) 

where T is a design parameter and represents the time window length of the residual. It should be noted that the robustness 
and rapidness of the FDI mechanism are a function of the time window length as the larger T increases the robustness of 
the FDI mechanism by making the residual norm (37) less sensitive to noise but decreases the rapidness as the system 
should be monitored under a longer residual window time. Hence, the designer deals with a compromise in tuning T.  
Accordingly, by considering (37) and the following lemma, the fault detection decision is made. 

Lemma 1- The decision on the occurrence of a fault on the system (1) is made if there exists some finite time like  𝑇ௗ , 
and for some 𝑠 ∈ {1,2, … , 𝑁}, such that ‖𝑦෤ ௦(𝑇ௗ)‖ଵ < ‖𝑦෤଴(𝑇ௗ)‖ଵ. This yields the fault detection time 𝑡ௗ = 𝑇ௗ − 𝑇଴ [54]. 

For the sake of summarization, we exclude the analysis of the fault detectability in this paper and interested readers can 
refer to [54]. 

Consequently, Algorithm 1 summarizes the FDI mechanism of this paper. 

Algorithm 1       FDI Mechanism 
High-gain Observer 
 Construct the high-gain observer (31) to estimate 

the states (𝑥ො௜ ) and output (𝑦ො) of the system (1). 
 

GMDHNN 
 Construct a GMDHNN using (26) and (27); 
 Use the estimated states ( 𝑥ො௜ ) in (31) as a regressor 

vector in the GMDHNN. 
 Employ the adaptation law (30) for training the 

network and obtaining the ideal weight vector. 
 Use the developed GMDHNN for the 

approximation of unmodeled dynamics in (2)-(3) 
and fault function Λఝ(𝑥, 𝑢). 

 

Residual Generation 
 Construct the bank of N+1 observer (34) for both 

healthy and faulty modes of the system. 
 Develop the L1-norm residual (37) to constantly 

monitor the system status. 
 

Decision Making 
 Use Lemma 1 for decision making on the fault 

occurrence and determining the fault detection time 
𝑡ௗ = 𝑇ௗ − 𝑇଴. 
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5. Results and Discussion 

In this section, the effectiveness and robustness of the proposed fault detection system are demonstrated through extensive 
simulation studies. To this end, the SG system (23) is simulated based on the parameters tabulated in Table 1. The SG is 
excited by 𝑢 = 2𝑠𝑖𝑛(2𝜋𝑡)𝑐𝑜𝑠(𝑡)  and unknown disturbance 𝑑(𝑡) = 0.01𝑠𝑖𝑛(𝑡) + 0.02𝑐𝑜𝑠(0.5𝑡)  is imposed on the 
system. The GMDHNN uses topology as illustrated in Figure 2 and for the training phase, its weighting vector 𝑊 is 
initialized by zero. The weights are updated according to (29) and (30), and the design parameters are chosen as  𝛼 = 1 , 
Γ = 1.5, 𝜇 = 0.05 . Similarly, in the training phase, the design parameters for the high-gain observer (31) are set as 𝛼ଵ= 
4, 𝛼ଶ = 8, 𝛼ଷ = 12, 𝜅 = 5 . 
Two scenarios are defined for the performance assessment of the proposed FDI system. In the first scenario, the SG is 
experiencing an actuation fault defined as 𝑢 = 𝑢ത + (𝑞௨ − 1)𝑢ത  where 𝑢ത  is the control signal in the healthy mode and 
𝑞௨=0.1, which means 10% fault on the actuator. In the second scenario, a fault model impacting the system dynamics of 
the SG, that is Λఝ(𝑥, 𝑢) = −𝑥ଷ, is considered.  
                                                                                 Table 1. Parameters of SG model. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 compares the SG’s state trajectories in normal and fault modes. Figure 4 focuses on the comparison of fault 
functions and modelling uncertainty involved with the SG. This confirms that magnitudes of both fault functions are 
smaller than the SG’s modelling uncertainty that is a sort of indication of the difficulty of detecting such small magnitude 
faults in practice (as described in Section 1). Figure 5 represents the estimation of the system’s output under actuator and 
system dynamics faults. This confirms the fidelity and high accuracy of both trained GMDHNN and the high-gain 
observer for the diagnosis phase of the fault detection process. 
To evaluate the performance of the FDI system in the diagnosis phase, a bank of four nonlinear observers (34) 
incorporating the knowledge of the trained GMDHNN, is constructed. In this regard, the observer gains are defined as 
𝜅ଵ = 4, 𝜅ଵଶ = 8, 𝜅ଷ = 12.  
In the first scenario, the actuation fault on the SG model is applied at T0= 6 sec.  The L1-norm residual (37) with a length 
of the time interval T=20 is utilized for constantly monitoring the system status. Figure 6 illustrates the profile of L1-
norm residual for both normal and fault modes. This figure obeys Lemma 1 and thus detection of the fault as the residual 
of actuation fault becomes smaller than the normal one at the time of the fault detection, that is Td=6.147 sec.  
Similarly, in the second scenario, the corresponding fault is applied on the SG model at T0= 6 sec.  Figure 7 shows the 
profile of the L1-norm residual of this scenario and confirms that at the time of the fault detection Td=6.089 sec, the 
average L1-norm of the fault becomes smaller than the normal counterpart and thus obeying Lemma 1 and the detection 
of the fault very rapidly, td=0.1 sec.  

 
 

Figure 2. Topology of GMDHNN. 
 

Parameter Value 

𝑥ௗ  2.1 (p.u) 

𝑥́ௗ  0.4 (p.u) 

H 3.5 (s) 

𝑇ௗ଴  8 (s) 

D 4 

𝑥்  0.016 (p.u) 

𝑥௅  0.054 (p.u) 

𝑉௦  1 (p.u) 

𝑃௠  0.9 (p.u) 
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Figure 3. Comparison of SG trajectories in normal and fault modes, a) actuation fault b) fault impacted on the system dynamics. 

 

Figure 4. Comparison of fault trajectories and modelling uncertainty. 

 

(a)                                                                               (b) 

Figure 5. Estimation of system output a) under actuation fault b) under fault impact on system dynamics. 
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(a)                                                                             (b) 

Figure 6. a) Detection of actuator fault applied on the SG model at Td =6.147 seconds, b) zoom-in view.  

 

(a)                                                                               (b) 

Figure 7. a) Detection of the fault impacted on the dynamics of the SG model at Td =6.089 seconds, b) zoom-in view.  

6. Conclusion 

This paper developed an FDI framework to rapidly detect small faults and oscillations in SG systems. The proposed 
framework was established upon the GMDH NN and high-gain observer to estimate the trajectory of the system and 
to approximate uncertainties associated with unmodeled dynamics and external disturbances in the SG. The fault 
detection mechanism was developed based on the average L1-norm criterion for rapid decision making in faulty 
situations. The performance of the proposed framework was investigated via simulation studies. In this regard, two 
benchmark scenarios of the actuation fault and fault impact on system dynamic changes were applied on the SG. The 
simulation results confirmed the fidelity, effectiveness, and robustness of the proposed FDI system in fast detection 
of small magnitude faults on the SG system which is promising for practical applications. The future line of this 
research will focus to integrate the proposed FDI system with a robust FTC module based on sliding mode control 
[55-58]  and include the impact of sensor fault as well.      
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